Investigating the metamorphic evolution of reworked terrains

Kathryn A. Cutts, B.Sc (Hons)

Geology and Geophysics
School of Earth and Environmental Sciences
The University of Adelaide

This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science, University of Adelaide

December 2010
Table of Contents

Abstract i
Declaration iii
Publications and Selected Conference Abstracts iv
Statement of authorship vi
Acknowledgements ix

Chapter 1 - Introduction: Investigating the metamorphic evolution of reworked terrains. 1
1.1 Outline of study 1
References 7

Part 1 - The record of UHT metamorphism within Australia 15

Chapter 2 - Evidence for early Mesoproterozoic (c. 1590 Ma) ultrahigh-temperature metamorphism in southern Australia. 17
2.1 Introduction 17
2.2 Geological setting 19
2.2.1 Coober Pedy Ridge and Mabel Creek Ridge 19
2.3 Sample description and petrography 21
2.3.1 Coober Pedy Ridge 23
2.3.2 Mabel Creek Ridge 23
2.4 Analytical methods 24
2.4.1 Mineral chemistry and elemental mapping 24
2.4.2 Quantified metamorphic analysis 24
2.4.3 LA-ICPMS monazite geochronology 25
2.5 Results 27
2.5.1 Mineral chemistry 27
2.5.2 Pressure-Temperature constraints 31
2.5.3 LA-ICPMS monazite geochronology 33
2.6 Discussion and Conclusions 35
2.6.1 Characterisation of early Mesoproterozoic metamorphism in the Gawler Craton 35
2.6.2 Tectonic significance of early Mesoproterozoic metamorphism in the Gawler Craton 36
2.6.3 UHT metamorphism and supercontinents 38
References 39

Chapter 3 - Evidence for late Palaeoproterozoic (c. 1690-1665 Ma) high- to ultrahigh-temperature metamorphism in southern Australia. 49
3.1 Introduction 49
3.2 Geological setting 50
3.3 Sample description and petrography 53
 3.3.1 Sample description general 54
 3.3.2 Sample 1: interval 73.4-73.6 m 56
 3.3.3 Sample 2: interval 74.9-75.0 m 56
 3.3.3 Sample 3: interval 88.2-88.3 m 57
 3.3.4 Sample 4: interval 102.0-102.1 m 57
 3.3.5 Sample 5: interval 116.8-116.9 m 57
3.4 Analytical methods 58
 3.4.1 Mineral chemistry 58
 3.4.2 Pressure-Temperature conditions 59
 3.4.3 LA-ICPMS monazite geochronology 60
3.5 Results 63
 3.5.1 Mineral chemistry 63
 3.5.2 Pressure-Temperature constraints 65
 3.5.3 LA-ICPMS monazite geochronology 68
3.6 Discussion 72
 3.6.1 Age of metamorphism 72
 3.6.2 Characterisation and tectonic significance of mid-Proterozoic metamorphism 74
 3.6.3 UHT metamorphism and the supercontinent record 75
3.7 Conclusions 77
References 77

Chapter 4 - Age constraints on the terrain-scale Karari Shear Zone in the Gawler Craton, South Australia. 89

4.1 Introduction 89
4.2 Geological setting 91
4.3 Sample description 93
4.4 LA-ICPMS monazite geochronology 95
 4.4.1 Analytical methods 95
 4.4.2 Results 97
4.5 Discussion 99
 4.5.1 Age of the Karari Shear Zone 99
 4.5.2 Tectonic implications 100
4.6 Conclusions 101
References 101

Chapter 5 - Conclusions from Part 1. 107

Part 2 - The record of Neoproterozoic metamorphism in the North Atlantic region 111

Chapter 6 - Orogenic versus extensional settings for regional metamorphism: Knoydartian events in the Moine Supergroup revisited. 113
<table>
<thead>
<tr>
<th>Chapter 7 - Three metamorphic events recorded in a single garnet: Integrated phase modelling, in situ LA-ICPMS and SIMS geochronology from the Moine Supergroup, NW Scotland.</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>126</td>
</tr>
<tr>
<td>7.2 Regional geological setting</td>
<td>127</td>
</tr>
<tr>
<td>7.3 Geology of the Moine and associated rocks of the Glen Urquhart area</td>
<td>129</td>
</tr>
<tr>
<td>7.4 Petrology of the Moine migmatites</td>
<td>129</td>
</tr>
<tr>
<td>7.5 Mineral chemistry</td>
<td>131</td>
</tr>
<tr>
<td>7.6 Analytical methods</td>
<td>131</td>
</tr>
<tr>
<td>7.6.1 LA-ICPMS monazite geochronology</td>
<td>131</td>
</tr>
<tr>
<td>7.6.2 U-Pb zircon geochronology</td>
<td>133</td>
</tr>
<tr>
<td>7.6.3 Pressure-Temperature pseudosections</td>
<td>133</td>
</tr>
<tr>
<td>7.7 Results and Interpretation</td>
<td>134</td>
</tr>
<tr>
<td>7.7.1 LA-ICPMS monazite geochronology</td>
<td>134</td>
</tr>
<tr>
<td>7.7.2 U-Pb zircon geochronology</td>
<td>137</td>
</tr>
<tr>
<td>7.7.3 Metamorphic constraints</td>
<td>140</td>
</tr>
<tr>
<td>7.8 Discussion</td>
<td>142</td>
</tr>
<tr>
<td>7.8.1 Age and nature of Neoproterozoic metamorphic events in the Scottish Highlands</td>
<td>142</td>
</tr>
<tr>
<td>7.8.2 Significance of the ages of the zircon cores</td>
<td>144</td>
</tr>
<tr>
<td>7.8.3 Age and significance of ‘D2’ deformation in the Glen Urquhart area</td>
<td>145</td>
</tr>
<tr>
<td>7.8.4 Comparison with the metamorphic evolution of the Glen Doe area</td>
<td>145</td>
</tr>
<tr>
<td>7.9 Conclusions</td>
<td>146</td>
</tr>
<tr>
<td>References</td>
<td>146</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 8 - Evidence for 930 Ma metamorphism in the Shetland Islands, Scottish Caledonides: implications for Neoproterozoic tectonics in the Laurentia-Baltica sector of Rodinia.</th>
<th>157</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>157</td>
</tr>
<tr>
<td>8.2 Geological setting</td>
<td>159</td>
</tr>
<tr>
<td>8.3 Sample descriptions</td>
<td>161</td>
</tr>
<tr>
<td>8.4 Analytical methods</td>
<td>163</td>
</tr>
<tr>
<td>8.4.1 Pressure-Temperature conditions</td>
<td>163</td>
</tr>
<tr>
<td>8.4.2 LA-ICPMS geochronology</td>
<td>164</td>
</tr>
<tr>
<td>8.4.3 Electron microprobe chemical dating of monazite</td>
<td>165</td>
</tr>
<tr>
<td>8.5 Results</td>
<td>165</td>
</tr>
<tr>
<td>8.5.1 Metamorphic constraints</td>
<td>165</td>
</tr>
<tr>
<td>8.5.2 LA-ICPMS geochronology</td>
<td>165</td>
</tr>
<tr>
<td>Figure 1.1.</td>
<td>Probability density plot of high-T metamorphic events.</td>
</tr>
<tr>
<td>Figure 1.2.</td>
<td>Geological map of the Gawler Craton.</td>
</tr>
<tr>
<td>Figure 1.3.</td>
<td>Geology and TMI image of Coober Pedy Ridge and Ooldea regions.</td>
</tr>
<tr>
<td>Figure 1.4.</td>
<td>Reconstruction of North Atlantic region at 600 Ma with previous geochronology</td>
</tr>
<tr>
<td>Figure 2.1.</td>
<td>Probability density plot of high-T metamorphic events.</td>
</tr>
<tr>
<td>Figure 2.2.</td>
<td>Geological map of the Gawler Craton.</td>
</tr>
<tr>
<td>Figure 2.3.</td>
<td>Interpreted geology of Coober Pedy Ridge with overlayed TMI.</td>
</tr>
<tr>
<td>Figure 2.4.</td>
<td>Photomicrographs of Coober Pedy and Mabel Creek Ridge samples.</td>
</tr>
<tr>
<td>Figure 2.5.</td>
<td>Microprobe elemental maps of Coober Pedy and Mabel Creek Ridge samples.</td>
</tr>
<tr>
<td>Figure 2.6.</td>
<td>Pseudosection for sample 650673.</td>
</tr>
<tr>
<td>Figure 2.7.</td>
<td>Pseudosection for sample 967234.</td>
</tr>
<tr>
<td>Figure 2.8.</td>
<td>BSE images of monazite and concordia plots.</td>
</tr>
<tr>
<td>Figure 2.9.</td>
<td>Compilation of early Mesoproterozoic age and P-T data over a TMI image of South Australia.</td>
</tr>
<tr>
<td>Figure 2.10.</td>
<td>Map of Archean to Mesoproterozoic cratons in Australia and a cross section of the proposed tectonic setting of metamorphism.</td>
</tr>
<tr>
<td>Figure 3.1.</td>
<td>Map of the subsurface geology of the Gawler Craton.</td>
</tr>
<tr>
<td>Figure 3.2.</td>
<td>TMI image of the Ooldea region with overlayed geology.</td>
</tr>
<tr>
<td>Figure 3.3.</td>
<td>Thin-section scans.</td>
</tr>
<tr>
<td>Figure 3.4.</td>
<td>Sample photomicrographs.</td>
</tr>
<tr>
<td>Figure 3.5.</td>
<td>Microprobe elemental maps.</td>
</tr>
<tr>
<td>Figure 3.6.</td>
<td>Pseudosection for sample 73.4-73.6 m.</td>
</tr>
<tr>
<td>Figure 3.7.</td>
<td>Pseudosection for sample 74.9-75.0 m.</td>
</tr>
<tr>
<td>Figure 3.8.</td>
<td>Pseudosection for sample 88.2-88.3 m.</td>
</tr>
<tr>
<td>Figure 3.9.</td>
<td>BSE images of monazite and a thin section with a concordia plot.</td>
</tr>
<tr>
<td>Figure 3.10.</td>
<td>BSE images of monazite and concordia plots.</td>
</tr>
<tr>
<td>Figure 3.11.</td>
<td>Probability density plot of high-T metamorphic events.</td>
</tr>
<tr>
<td>Figure 4.1.</td>
<td>Map of the subsurface geology of the Gawler Craton.</td>
</tr>
<tr>
<td>Figure 4.2.</td>
<td>TMI image of the Gawler Craton with overlayed geology.</td>
</tr>
<tr>
<td>Figure 4.3.</td>
<td>Geological log of Ooldea DDH3.</td>
</tr>
<tr>
<td>Figure 4.4.</td>
<td>Sample photomicrographs.</td>
</tr>
<tr>
<td>Figure 4.5.</td>
<td>BSE images of monazite.</td>
</tr>
<tr>
<td>Figure 4.6.</td>
<td>Concordia plots.</td>
</tr>
<tr>
<td>Figure 6.1.</td>
<td>Map of the subsurface geology of northern Scotland.</td>
</tr>
<tr>
<td>Figure 6.2.</td>
<td>Garnet chemical zoning.</td>
</tr>
<tr>
<td>Figure 6.3.</td>
<td>Pseudosections for the Polnish sample.</td>
</tr>
<tr>
<td>Figure 7.1.</td>
<td>Map of the subsurface geology of northern Scotland.</td>
</tr>
<tr>
<td>Figure 7.2.</td>
<td>Photomicrographs of sample 102-02.</td>
</tr>
</tbody>
</table>
Figure 7.3. Microprobe compositional maps of a garnet and a chemical zoning traverse.
Figure 7.4. BSE images of monazite and concordia plots.
Figure 7.5. Concordia plots of SIMS zircon data.
Figure 7.6. Plot of Th/U versus Pb/U age for zircon data.
Figure 7.7. Pseudosections for the Glen Urquhart sample.

Figure 8.1. Map of the subsurface geology of northern Shetland.
Figure 8.2. Sample photomicrographs and outcrop image.
Figure 8.3. Pseudosection for sample SH-11.
Figure 8.4. BSE images of monazite grains and monazite concordia plots.
Figure 8.5. Zircon CL images and zircon concordia plots from sample SH-11.
Figure 8.6. Probability density plot of detrital zircon ages.
Figure 8.7. Zircon CL images and concordia plots from sample SH-10.
Figure 8.8. Histogram of Electron Microprobe monazite ages.
Figure 8.9. Compilation of age data from the North Atlantic region.

Figure 9.1. Map of the subsurface geology of northern Shetland.
Figure 9.2. Outcrop images.
Figure 9.3. Sample photomicrographs.
Figure 9.4. Garnet chemical zoning profiles and elemental maps.
Figure 9.5. BSE images of monazite and concordia plots.
Figure 9.6. Sample pseudosections.
Figure 9.7. Pseudosection for sample FRQ-20.
Figure 9.8. Geological map with age and P-T data.
Figure 9.9. Interpreted prograde zoning for sample SH-24.
Figure 9.10. Garnet zoning modelling.
Abstract

This project is an integrated monazite and zircon LA-ICPMS geochronology and metamorphic phase equilibria study of regions which have experienced multiple metamorphic events. The aim of using this combination of techniques is to construct $P-T-t$ evolution histories of both older and younger overprinting events in a terrane. The data presented in this thesis can be used as constraints for models of supercontinent evolution.

Two different regions are targeted in this study. The first region is the Palaeo- to Mesoproterozoic rocks of the Gawler Craton. These rocks have experienced extensive granulite facies metamorphism at $c.$ 1690 - 1665 and 1590 Ma and are poorly exposed. An understanding of the tectonothermal history of this region is important for resolving the evolution of the supercontinent Columbia, which was proposed to have amalgamated from 2.1-1.8 Ga and broken up from 1.6-1.2 Ga. Based on arguments that link the formation of UHT belts to supercontinental cycles, UHT granulite facies rocks from the Gawler Craton indicate that Columbia amalgamation may still have been ongoing at $c.$ 1700 to 1500 Ma or breakup started earlier at $c.$ 1700 Ma.

The second region investigated in this study is the Neoproterozoic rocks of the north Atlantic region. The metapelitic rocks of the Moine Supergroup in Scotland and equivalents on the Shetland Islands have been found to have experienced several amphibolite facies metamorphic events at $c.$ 930 Ma (Shetland), 830 Ma, 780 Ma and 725 Ma (Scotland). All of these regions have been extensively reworked by the Ordovician to Silurian Caledonian orogeny such that all the preserved structures and in many cases the metamorphic mineral assemblages are Caledonian in age. Fortunately, large garnet porphyroblasts have preserved the older events and in situ geochronology allows us to target monazite grains within these garnets providing the age of the older metamorphic events. The garnets can also be used to determine the $P-T$ evolution of each event. The results of this study provide age and $P-T$ constraints for each of the Neoproterozoic events. The data suggest that these events were part of an accretionary orogenic system termed the Valhalla orogeny which existed on a margin of the supercontinent Rodinia. As an additional result of this study, the $P-T$ evolution of the Grampian event ($c.$ 460 Ma) of the Caledonian Orogeny in both Shetland and Scotland has been well constrained.
Declaration

I, Kathryn Cutts, certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution, and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for load and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed in ‘Publications and selected conference abstracts’) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Kathryn A. Cutts
Publications and Selected Conference Abstracts

Journal Articles

Selected Conference Abstracts

Statement of authorship

The research described in this thesis has been published or submitted for publication in scientific journals. The publication details of each journal article are listed at the beginning of each chapter and include the names of all co-authors involved in their production. The contribution of each author in the conceptualisation, realisation and documentation of these publications is outlined below.

Cutts, K. (Candidate)
Chapters 2, 3, 6-9: Conceptualisation, fieldwork, sample selection and preparation, EMPA and LA-ICPMS data collection, P-T pseudosection calculation, all data processing, data interpretation, manuscript design and creation of all figures.
I certify that the above statement is accurate.

Signed: Date:

Hand, M., Kelsey, D.E. & Strachan, R.A. (Supervisors)
Chapters 2, 3, 6-9: Conceptualisation, fieldwork assistance, guidance with data interpretation, manuscript review.
I certify that the above statement is accurate and give permission for the relevant manuscripts to be included in this thesis.

Signed: Date:

Signed: Date:

Signed: Date:

Kinny, P.D.
Chapter 7: Collection, processing and interpretation of SHRIMP zircon data. Manuscript review.
I certify that the above statement is accurate and give permission for the relevant manuscripts to be included in this thesis.

Signed: Date:
Emery, M.
Chapter 7: Sample collection, background knowledge of the regional geology.
I certify that the above statement is accurate and give permission for the relevant manuscripts to be included in this thesis.

Signed: Date:

Friend, C.R.L. & Leslie, A.G.
Chapter 7: Supervision of M. Emery. Assistance with sample collection and background geology.
I certify that the above statement is accurate and give permission for the relevant manuscripts to be included in this thesis.

Signed: Date:

Wade, B.P. & Netting, A.
Chapter 8: Assistance with data acquisition.
I certify that the above statement is accurate and give permission for the relevant manuscripts to be included in this thesis.

Signed: Date:

Clark, C.
Chapter 8: Field assistance and assistance with EPMA data collection.
I certify that the above statement is accurate and give permission for the relevant manuscripts to be included in this thesis.

Signed: Date:
Acknowledgements

A large amount of people made my PhD an enjoyable and rewarding experience. It will be impossible to thank them all but I will endeavor to cover the main ones. First of all I would like to thank my supervisors: Martin Hand, Dave Kelsey, Rob Strachan and Karin Barovich. The huge amount of work I conducted and the high quality of it (if I do say so myself) was only possible because of support and advice from them. In particular, I thank Martin for encouraging my ideas, putting me in situations that helped me to grow as an individual and as a young researcher, and for saying, ‘why don’t you do this too Kathryn, it won’t take too long’. If I become half as good a scientist as Martin is, I will be pretty pleased with myself. I would like to thank Dave for putting up with my endless questions with infinite patience and for the huge amount of help he gave me in putting everything together.

I would like to thank Rob for assistance in all things to do with Scotland from field work, to beer and whisky selection. Rob has an encyclopedic knowledge of Scottish geology which is extremely useful and is also probably the nicest person I have ever met.

Thanks to Karin for being there when I needed a chat and for reading through abstracts for me.

I would also like to thank Angus Netting, Ben Wade and John Terlet at Adelaide Microscopy for the huge amount of assistance they gave me with the collection of data. I think there were several weeks during my PhD where I actually spent more time at Adelaide Microscopy than at home!

My PhD was made a much more enjoyable experience by Katie Howard, who started her PhD the same time as I started mine. It was awesome having someone to share the experience with, whether it was work or procrastination. The friends I had before and those I made during my PhD also deserve thanks. In particular the Cerg tank crew: Ailsa, Rachael, Diana, Yee, Tom and Spuz; and also my Hamstervan compatriots: Hilary Coleman and Christine Sealing.

Most importantly I would like to thank my family for putting up with me. Thanks to my brother Ryan for the birthday text messages (wherever I happened to be) and my sister Erin for being awesome (if it wasn’t for you I never would have known what a phage was). I dedicate this thesis to my mum. She has done a brilliant job of bringing up my brother, my sister and me completely on her own. I cannot appreciate how much of a difficult and stressful position this must have been and I hope that I prove to be as strong a person as you are.

‘What’s comin’ will come an’ we’ll meet it when it does’ – J.K. Rowling