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Elements of a flexible approach for conceptual hydrological
modeling: 2. Application and experimental insights
Dmitri Kavetski1 and Fabrizio Fenicia2,3
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[1] In this article’s companion paper, flexible approaches for conceptual hydrological
modeling at the catchment scale were motivated, and the SUPERFLEX framework, based
on generic model components, was introduced. In this article, the SUPERFLEX framework
and the ‘‘fixed structure’’ GR4H model (an hourly version of the popular GR4J model) are
applied to four hydrologically distinct experimental catchments in Europe and New
Zealand. The estimated models are scrutinized using several diagnostic measures, ranging
from statistical metrics, such as the statistical reliability and precision of the predictive
distribution of streamflow, to more process-oriented diagnostics based on flow-duration
curves and the correspondence between model states and groundwater piezometers. Model
performance was clearly catchment specific, with a single fixed structure unable to
accommodate intercatchment differences in hydrological behavior, including seasonality
and thresholds. This highlights an important limitation of any ‘‘fixed’’ model structure. In
the experimental catchments, the ability of competing model hypotheses to reproduce
hydrological signatures of interest could be interpreted on the basis of independent
fieldwork insights. The potential of flexible frameworks such as SUPERFLEX is then
examined with respect to systematic and stringent hypothesis-testing in hydrological
modeling, for characterizing catchment diversity, and, more generally, for aiding progress
toward a more unified formulation of hydrological theory at the catchment scale. When
interpreted in physical process-oriented terms, the flexible approach can also serve as a
language for dialogue between modeler and experimentalist, facilitating the understanding,
representation, and interpretation of catchment behavior.

Citation: Kavetski, D., and F. Fenicia (2011), Elements of a flexible approach for conceptual hydrological modeling: 2. Application

and experimental insights, Water Resour. Res., 47, W11511, doi:10.1029/2011WR010748.

1. Introduction
[2] Despite a current proliferation of conceptual hydro-

logical models, the presently dominant philosophy of
model development can arguably be described as pursuing
a ‘‘one model fits all’’ solution, a ‘‘universal’’ fixed model
structure that is adequate over a large range of applications,
and, in particular, is transposable in both space and time
(e.g., as advocated by Linsley [1982] and Andréassian et al.
[2009]). However, a case can also be made that flexible
frameworks are a powerful tool for a more systematic hy-
pothesis testing in hydrology, allowing the formulation and
appraisal of alternative representations of hydrological sys-
tems of interest [e.g., McDonnell, 2003; Clark et al., 2008,
2011a; Fenicia et al., 2008b; Savenije, 2009, and others].

[3] In the companion paper [Fenicia et al., 2011], the
field of conceptual hydrological modeling was reviewed,
motivating a flexible framework, termed SUPERFLEX, for
building models from generic components intended to repre-
sent distinct hydrological functions at the catchment scale
(e.g., see discussions by Wagener et al. [2007] and Sivapalan
[2005]). The ‘‘fixed’’ and ‘‘flexible’’ approaches can be
compared and contrasted with respect to several scientific
and operational criteria, including their ability to provide
adequate representations of dominant hydrological processes,
to explore the model complexity supported by available data
and prior knowledge, and to serve as a language of exchange
between modelers and experimentalists. These issues, which
have appreciable overlap, are briefly reviewed next (for fuller
discussion, see the companion paper Fenicia et al. [2011]).

1.1. Hypothesis-Testing and ‘‘Uniqueness of Place’’
[4] The lack of hydrological theories at the catchment

scale has been noted by several commentators [e.g., Siva-
palan, 2005; McDonnell et al., 2007; Troch et al., 2009].
An important related question is whether a single lumped
model structure could feasibly characterize the diversity of
catchments (‘‘uniqueness of place,’’ [Beven, 2000]), or,
alternatively, whether the heterogeneities of natural sys-
tems require specific model modifications. For example,
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does ‘‘appropriate’’ model complexity depend on the catch-
ment characteristics [Wagener et al., 2001; Atkinson et al.,
2002]? Can differences in inferred model structure and
complexity be motivated and/or interpreted based on exper-
imental understanding of catchment behavior? We note
that the fixed modeling philosophy would appear to be in
conflict with the perception that appropriate structure and
complexity may depend on the catchment characteristics.

[5] Finally, while one could argue that model structure
and complexity should be dictated solely by the physical
laws governing the system of interest, in practice it appears
difficult to avoid model development becoming dependent
on a multitude of pragmatic factors, such as the availability
and quality of data, computing budgets, perceptions of the
dominant characteristics of the hydrologic system, and the
modeling objectives [e.g., Butts et al., 2004; Refsgaard
and Henriksen, 2004; and others].

1.2. Model ‘‘Realism’’
[6] Although it is not necessarily clear-cut in conceptual

hydrological modeling where considerable spatio-temporal
lumping and process abstraction takes place, we define ‘‘re-
alism’’ in terms of the following two criteria: (1) the model
contains components representing, in some way, processes
that are deemed important in the particular catchment (e.g.,
as suggested by independent experimental fieldwork), and,
importantly, (2) these components are behaving in a way
that is qualitatively or quantitatively consistent with the
processes they are intended to represent. Such correspon-
dence between model and ‘‘reality,’’ often described as
‘‘working for the right reasons’’ [Kirchner, 2006], is essen-
tial if the model is to be used as a tool for improving the
understanding of a hydrological system, and/or used for pre-
diction and extrapolation, such as simulating the impacts of
land use change, variability in climatological forcings, etc.

1.3. Dialogue Between Modeler and Experimentalists
[7] The dialogue between the modeler and experimentalist

has been described as an essential aspect of hydrological sci-
ence [Seibert and McDonnell, 2002; Fenicia et al., 2008a].
The experimentalist perspective is, arguably, irreplaceable in
the interpretation of the data and in the quantitative assess-
ment of the model ‘‘realism.’’ The modeler perspective is
needed to implement the range of competing model hypothe-
ses, to quantitatively test them, and, ultimately, use them to
produce predictions, uncertainty estimates, etc. In line with
the view of science as a cycle of theory and experiments,
where new theories motivate new experiments and vice
versa, robust exchanges between modelers and experimental-
ists can help identify limitations in the current understanding
of hydrological processes, motivate additional fieldwork
investigations, and inform improved model representations.
Yet establishing and maintaining such a dialogue is ham-
pered by the absence of a common language of communica-
tion, which could be used by both sides to exchange both
quantitative information and qualitative insights.

[8] Whether fixed or flexible model approaches are the
most appropriate learning tools is debatable. In favor of the
fixed model philosophy, Linsley [1982, p. 14] suggests that
‘‘a new model for every application would eliminate the op-
portunity for learning that comes with repeated applications
of the same model.’’ On the other hand, a flexible framework

is a powerful instrument for comparing and testing alternative
hypotheses and for systematically organizing and interpret-
ing modeling results. This paper continues our discussions
in the companion paper and in other work [Clark et al.,
2011a] and argues that, while fixed model structures play
an important role in hydrological modeling, there are major
benefits in using flexible frameworks to more directly
represent current uncertainties and ambiguities in environ-
mental process representation, and facilitate, whenever pos-
sible, the use of site-specific experimental insights as part
of the model interpretation process.

2. Aims and Scope
[9] This paper discusses the application of the flexible

framework SUPERFLEX, within which several specific
model structures are hypothesized and implemented, and
compares it to the ‘‘fixed structure’’ GR4H model (an hourly
version of the popular GR4J model), on four catchments in
Europe and New Zealand. Our intention is not to critique
the GR4H and GR4J models per se, as these are valuable
and popular models used in research worldwide and
employed operationally in France [Berthet et al., 2009].
Rather, the aims of the study are (1) to investigate the gen-
eral limitations of restricting ourselves to a single fixed
model structure, especially when facing the challenge of
diversity and ‘‘uniqueness of place’’ [Beven, 2000], (2) to
illustrate how alternative model structures can be hypothe-
sized and implemented using the generic components, and
(3) to argue that a flexible framework can, when applied
carefully, overcome many of the limitations of the fixed
model paradigm.

[10] As part of the hypothesis-based model evaluation,
we compare the model results obtained under different infer-
ence assumptions, examine the statistical reliability and pre-
cision of the models’ predictive distributions in reproducing
the observed streamflow data, use flow-duration curves to
more stringently diagnose model deficiencies in reproducing
‘‘data signatures’’ [Gupta et al., 2008; Yilmaz et al., 2008],
and make further inroads into using groundwater piezometer
measurements to appraise the ‘‘physical realism’’ of concep-
tual models [Seibert, 2000; Seibert and McDonnell, 2002;
Freer et al., 2004; Fenicia et al., 2008b].

[11] Given the range of outstanding issues in hydrologi-
cal modeling, and because of length constraints, we must
necessarily limit the scope of the analyses and discussion.
In particular, evaluations over large numbers of experimen-
tal and operational catchments [e.g., Perrin et al., 2001; Le
Moine et al., 2007; Merz et al., 2009] are beyond our scope
here and will be carried out separately. Detailed recom-
mendations and recipes on how best to pursue model devel-
opment with different levels of prior information, from
ungaged to well-instrumented catchments, are left to future
investigations. The inclusion of rainfall uncertainty [e.g.,
Kavetski et al., 2002; Vrugt et al., 2008; Götzinger and
Bardossy, 2008], more sophisticated structural error analysis
[e.g., Kuczera et al., 2006; Reichert and Mieleitner, 2009;
Doherty and Welter, 2010], more comprehensive applica-
tion of multiple model diagnostics [e.g., Gupta et al., 2008;
Yilmaz et al., 2008], and the extension to semidistributed
and fully distributed modeling systems [e.g., Ivanov et al.,
2004; Immerzeel and Droogers, 2008] are also substantial

W11511 KAVETSKI AND FENICIA: FLEXIBLE FRAMEWORK FOR HYDROLOGICAL MODELING, 2 W11511

2 of 19



further developments in their own right, and hence deferred
to separate investigations.

3. Case Study Setup
3.1. Methodology

[12] The case study methodology was designed as follows.
Four catchments with contrasting climatology and/or physi-
cal attributes were selected on the basis of prior experimental
insights and data availability (section 3.2 and Table 1). Seven
distinct model structures, partly motivated by previous mod-
eling experience in these catchments, were then hypothesized
and built using the SUPERFLEX framework (section 3.3).
The GR4H model [Le Moine, 2008], which is a modified
hourly version of the popular GR4J model [Perrin et al.,
2003], was included as a benchmark and as a representative
of an a priori fixed ‘‘compromise’’ model structure.

[13] The parameters of the hypothesized model struc-
tures were calibrated using two regression schemes, namely
the standard and weighted least squares methods (section
3.4). A range of statistical and process-oriented diagnostics
was used to scrutinize the model performance in the cali-
bration and validation periods (section 3.5). Several plausi-
ble interpretations of differences in performance across the
different model structures and catchments were then pro-
posed, based on the fieldwork understanding available in
these catchments.

[14] Although one of the motivations of SUPERFLEX is
to facilitate the process of iterative model improvement, the
case study is formulated to explore the representation of
catchment diversity using fixed versus flexible models. To
keep the analyses and presentation manageable, the case
study is carried out using a set of model structures hypothe-
sized a priori. While previous modeling experience played a
role in selecting these hypotheses (section 3.3.2), we do not
attempt to refine them further as part of this application. For
illustrations of such ‘‘learning from model improvement’’
using the earlier FLEX model, see Fenicia et al. [2008a].

3.2. Experimental Catchments
3.2.1. Maimai Catchment (New Zealand)

[15] The Maimai study area is located in the South Island
of New Zealand (see McGlynn et al. [2002], for a review of
hydrological investigations in this basin). In this work, we use
the Maimai M8 catchment, which has a long history of field-
work [e.g., Mosley, 1979; Pearce et al., 1986; McDonnell,
1990] and modeling [e.g., Seibert and McDonnell, 2002;
Freer et al., 2004; Vaché and McDonnell, 2006; Fenicia
et al., 2010].

[16] The topography is characterized by steep slopes and
deeply incised channels; its soils are shallow and underlain
by a nearly impermeable cemented conglomerate. The
climatology is humid, with little seasonal variation. The
catchment is highly responsive to rainfall and its soils are
normally at more than 90% saturation [Mosley, 1979].

[17] The response dynamics of the Maimai have been
described as ‘‘strikingly simple’’ [Vaché and McDonnell,
2006]. The simplicity of its behavior has been attributed to
(1) a wet climate with little seasonality, leading to a chroni-
cally wet catchment state and narrowing its range of hydro-
logical regimes, and (2) a combination of steep slopes and
an impermeable underlying substratum, resulting in quick
forcing-response characteristics.
3.2.2. The Alzette Catchments: Wollefsbach,
Useldange, and Pfaffenthal (Luxembourg)

[18] Three Luxembourgish catchments (Wollefsbach,
Useldange, and Pfaffenthal) form part of the larger Alzette
system (Figure 1), which is monitored by a dense hydrolog-
ical observation network [Pfister et al., 2002]. While their
precipitation shows little seasonality, potential evaporation
varies significantly across the seasons, resulting in the
catchment discharge being generally higher in winter than
in summer [Pfister et al., 2004; Hellebrand et al., 2008].
The Alzette region is characterized by a heterogeneous ge-
ological substratum, which strongly influences its response
behavior. A summary of the catchments’ climatology and
hydrogeology is as follows (see Table 1 and van den Bos
et al. [2006a, 2006b], for further details).

[19] The Wollefsbach catchment is located on marls for-
mations. Its topsoils are shallow and loamy, and are underlain
by low-permeability clay deposits. Since deep percolation is
likely to be minor, the main storage unit of the catchment is
provided by its top layer overlaying the clay bedrock. While
the Wollefsbach catchment is highly responsive during win-
ter, its summer streamflow is generally low. Since the rainfall
is quite uniform throughout the year, streamflow variations
can be attributed to seasonal variations of evaporation associ-
ated with the low storage capacity of this catchment [Pfister
et al., 2004].

Table 1. Basic Summary of Catchments Used in the Case Studies

Maimai Wollefsbach Useldange Pfaffenthal

Area (km2) 0.038 4.61 250 385
Average annual

precipitation (mm)
2400 840 840 840

Average annual
discharge (mm)

1400 200 160 400

Average annual
potential ET (mm)

840 660 660 660

Forest (%) 100 7 32 27
Cropland (%) 0 28 29 25
Grassland (%) 0 65 35 28
Urban (%) 0 0 4 20

Figure 1. Luxembourgish catchments within the Alzette
region. The location of the piezographs used in the model
evaluation process for the Pfaffenthal catchment are
depicted with circles.
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[20] The Useldange catchment contains the Wollefsbach as
one of its subcatchments. However, its geology is markedly
more heterogeneous. While the main geological unit is the
largely impermeable marls (a clay) (55%), the basin also con-
tains significant schist (30%) and some sandstone (15%).
Although the schist is fractured (foliated), it appears essentially
impermeable in the vertical direction, since the fractures are
obstructed by clay deposits. Hence, its contribution to ground-
water flows is generally low. However, at the soil-bedrock
interface, where a well-developed weathered zone is present,
the fractured schist formation, in combination with the irregu-
lar shape of the bedrock topography, generates local reservoirs
where water can be stored. When saturated, this flow network
can support subsurface lateral flow [e.g., van den Bos et al.,
2006b]. The sandstone formation, in contrast to marls and
schist, is highly permeable and supplies a groundwater compo-
nent during dry weather periods. However, this formation
occupies a relatively small fraction of this catchment.

[21] The Pfaffenthal catchment is the largest catchment in
our analysis (385 km2). Its geology is composed of sandstone
(70%) and marls (30%). The large and highly permeable
sandstone formation provides a stable groundwater compo-
nent, sustaining streamflows during the summer season.
3.2.3. Rationale Behind the Catchment Selection

[22] The catchments were selected to include a range of
different hydrological dynamics, as well as on the basis of
fieldwork insights into their climatological and physical
characteristics (e.g., McGlynn et al. [2002] for the Maimai,
and van den Bos et al. [2006a] for the Alzette). Some con-
siderations are listed below:

[23] 1. Maimai: A Small catchment described as an
‘‘end member’’ on a simplicity-complexity scale, with rapid
response and little seasonality. It is included to explore
model complexity issues (including internal scrutiny using
piezometric data), and to provide a contrast to the more
complex Luxembourgish catchments.

[24] 2. Wollefsbach: It is slightly larger than the Mai-
mai, but still a comparatively small catchment. Although
its geology and soils are different from the Maimai, they are
still fairly uniform and deep percolation appears negligible.
Hence, hydrological differences between the Wollefsbach
and the Maimai appear driven primarily by climatological
differences: in the Wollefsbach, rainfall is still uniformly
distributed, but evaporation varies seasonally. As a result,
the discharge regime is quite different in summer (‘‘dry’’)
versus winter (‘‘wet’’).

[25] 3. Useldange: A larger basin comprising the Wollefs-
bach as one of its headwater catchments. Since their clima-
tology is the same, the hydrological differences between the
Useldange and Wollefsbach basins can be attributed to dif-
ferences in physical attributes. In particular, the Useldange
catchment is composed of a wider variety of soils; its lithol-
ogy is also more heterogeneous, comprising three main units.
However, similar to the Maimai and Wollefsbach, hydrogeo-
logical studies suggest that groundwater flows are minor.

[26] 4. Pfaffenthal : A heterogeneous catchment in terms
of geology and land use, which could therefore be a priori
classified as moderately complex. Unlike the previous catch-
ments, the importance of any catchment compartment can-
not be excluded a priori. Importantly, there is a substantial
contribution to base flow from the sandstone formation,
leading to significant groundwater activity.

[27] The range of selected catchments allows exploring
the representation of diverse hydrological dynamics using
lumped conceptual models (the ‘‘uniqueness of place’’
argument [Beven, 2000]), while the availability of field-
work-based insights helps interpret the model results.
3.2.4. Data Used in the Analysis

[28] The inference and validation data are composed of
consecutive 2-year calibration and 1-year validation periods,
selected as 1 September 2005 – 1 September 2007 – 1 Sep-
tember 2008 for the Luxembourgish basins, and 1 January
1985 –1 January 1987–1 January 1988 for the Maimai catch-
ment. In the Alzette, approximately 30 storm events were
included in the calibration period and about 20 events in vali-
dation. In the Maimai, about 100 storm events were included
in the calibration and about 50 events in validation. The anal-
ysis periods were selected to avoid changes in instrumentation
in the catchments and to have the same total duration. Hourly
resolution precipitation, discharge, and potential evaporation
data are available in all four catchments. An additional 1-yr
warm-up period was included prior to the calibration period.
The validation analysis used the preceding calibration period
as a warm-up.

[29] In the Maimai basin, the rainfall is measured with a
recording rain gage within the catchment, and potential
evaporation is estimated as described by Rowe et al. [1994]
and Vaché and McDonnell [2006]. In the Wollefsbach,
Useldange, and Pfaffenthal catchments, the rainfall was
measured using tipping bucket rain gages (2, 5, and 4 rain
gages, respectively), while evaporation was estimated using
the Penman equation.

[30] In the Maimai and Pfaffenthal basins, in addition to
diagnostic measures derived solely from streamflow data, the
internal dynamics of the inferred models are evaluated
against observed groundwater levels not used in the calibra-
tion. In the Maimai catchment, 20-min resolution piezometer
time series are available at two locations: one in the proxim-
ity of the stream, and another on a steep upslope area. A
detailed description of this data and its uncertainties is given
by Freer et al. [2004], where the measurement locations cor-
respond to the ‘‘NS’’ and ‘‘P5’’ sites, respectively. For the
Pfaffenthal catchment, hourly resolution data is available
from five piezometers, located in roughly equal spacing
in the proximity of the main stream channel, as shown in Fig-
ure 1. Some of the important limitations of using the piezom-
eter data for model evaluations are reviewed in section 4.3.

3.3. Hydrological Models
3.3.1. Model Hypotheses Explored in the Case Study

[31] Eight alternative model hypotheses of varying com-
plexity are considered in this study, including seven
SUPERFLEX configurations and the GR4H model (the lat-
ter used as a representative fixed model structure). The
SUPERFLEX model schematics are shown in Figure 2 and
summarized in Table 2. The model equations are detailed
in the appendix (Tables A1 and A2), with constitutive func-
tions already introduced in Table 1 of the companion paper.
Section 3.3.2 outlines the perceptual motivation behind
these hypotheses.

[32] All models simulate total discharge Qt, given
observed precipitation Pt, and pre-estimated potential evapo-
ration Ep. The seven SUPERFLEX models are a combination
of, at most, three reservoirs, which are for convenience
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labeled ‘‘fast’’ (FR), ‘‘slow’’ (SR), and ‘‘unsaturated’’
(UR). The subscripts x ¼ f, s, u, which are used to index
the reservoir storages (Sx) and fluxes (Px, Ex, Qx) refer to
the fast, slow, and unsaturated reservoirs, respectively. In
addition, three of the models employ a lag function (LF) to
represent flow network routing delays.

3.3.2. Process-Oriented Rationale for the A Priori
Model Hypotheses

[33] The selection of model hypotheses in this study is
motivated by several considerations, including prior insights
into the catchment characteristics (section 2.3.3), previous
modeling experience in Luxembourg and the Maimai [e.g.,

Figure 2. Schematic representations of the hydrological model structures analyzed in this study. The
states and fluxes are noted in black and the associated parameters are in red.

Table 2. Components and Parameters of Model Structures M1–M7

Model Components Parameters

N�
a Ns

b URc FRd SRe LFf Ce (�) Su,max (mm) � (�) Rmax (mm h�1) Tf (h) Kf mm1�� h�1� �
� (�) D (�) Ks (1 h�1)

M1 3 1 - � - - � - - - - � � - -
M2 4 1 � - - - � � � � - - - - -
M3 4 2 � � - - � � - - - � � - -
M4 5 2 � � - - � � � - - � � - -
M5 6 3 � � - � � � � - � � � - -
M6 6 4 � � � � � � - - � � - � �
M7 8 4 � � � � � � � - � � � � �

aN� is the number of parameters.
bNs is the number of states.
cUR, unsaturated reservoirs.
dFR, fast reservoirs.
eSR, slow reservoirs.
fLF, lag function.
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Fenicia et al., 2008a, 2010], and to at least partially reflect the
range of complexities and configurations typically encoun-
tered in conceptual hydrological modeling [e.g., as reviewed
by Beven, 2001; Singh and Woolhiser, 2002, and others].
Some of the rationale for the selected models is outlined next.

[34] Model M1 is composed of a single nonlinear reser-
voir (FR) with three parameters. The outflow is a power
function of the storage, while the predicted evaporation is
proportional to the potential rate (with a smoothing func-
tion for near-zero storage values). This model can be con-
sidered an ‘‘end member’’ on the simplicity scale.

[35] Model M2 resembles the core soil moisture account-
ing component of TOPMODEL and VIC [Beven, 1997;
Wood et al., 1992]. It is composed of a single reservoir
(UR) with four parameters and two outputs: quick flow Qq

and slow flow Qu. The evaporation Eu is assumed to be pro-
portional to its potential value, with smoothing for near-
zero storage.

[36] Model M3 characterizes flow generation as a thresh-
old process, which is typical of small scale systems
[Spence, 2010]. It is composed of two reservoirs (UR and
FR) and has four parameters. In this model, UR is a bucket
with a (smoothed) threshold (Table A2), where outflow Qq

occurs when the reservoir storage reaches the threshold.
[37] Model M4 differs from M3 solely in the outflow

from UR, which in M4 and M2 is a power function of the
storage (whereas in structure M3, the unsaturated soil store
has a threshold). It has two reservoirs and five parameters.

[38] Model M5 differs from M4 by the addition of a lag
function to the flow that connects UR and FR. This model
has six parameters, two reservoirs, and one lag function.

[39] Model M6 represents a special case of a multistore
model where all fluxes are linear with respect to the sto-
rages. It differs from M5 by the inclusion of an additional
reservoir for the simulation of slow flow (SR, representing
a groundwater component). The output from UR is linearly
partitioned between FR and SR. In contrast to M5, this
model is characterized by linear constitutive functions, i.e.,
both FR and UR are linear reservoirs. This structure is char-
acterized by six parameters, three reservoirs, and one lag
function.

[40] Model M7 also contains a groundwater reservoir, but
differs from M6 in that the constitutive relationships of UR
and FR are nonlinear, as in model M5. This structure has
eight parameters, three reservoirs, and one lag function.
Hypotheses M6 and M7, which contain several interconnected
nonlinear reservoirs and a lag function, resemble more com-
plex models such as the HBV model [Lindström et al., 1997].

[41] Finally, the GR4H model is used as a representative
‘‘fixed’’ model structure that provided a best ‘‘average’’
performance in extensive empirical trials over hundreds of
catchments with different physical and climatological prop-
erties [Perrin et al., 2001, 2003; Le Moine et al., 2007]. It
is characterized by four state variables and four parameters
[see Perrin et al., 2003, and others].

3.4. Model Inference Methods
3.4.1. Bayesian Inference Equations and Error Models

[42] The hydrological parameters are inferred from
observed rainfall-runoff data ~P; ~Q

� �
using Bayes equation,

p h; N ~P; ~Q
��� �

¼ p ~Q ~P; h;N
��� �

p h;Nð Þ; ð1Þ

where p h; N ~P; ~Q
��� �

is the posterior distribution of the pa-
rameters h of the hydrological model and the parameters N
of the residual error model, p ~Q ~P; h; N

��� �
is the likelihood

function, and p h;Nð Þ is the prior. The tilde indicates quanti-
ties that are observed and hence subject to sampling and
measurement uncertainties. In the absence of additional
knowledge, we used noninformative priors for h and N
[Box and Tiao, 1992].

[43] The error model is based on the weighed least
squares (WLS) scheme, which assumes zero-mean Gaus-
sian errors and allows for heteroscedasticity. Here we
hypothesize that the standard deviation of individual resid-
uals increases linearly with the corresponding simulated
streamflows,

p ~Q ~P; h; a; b
��� �

¼
YNt

n¼1

N ~Qn � Q̂n
~P; h
� �

0; �2
n

��� �
; ð2Þ

�n ¼ aþ bQ̂n; ð3Þ

where �n is the standard deviation of the residual errors at
time step n, ~Qn and Q̂n ~P; h

� �
are the observed and predicted

streamflows, respectively, N(zjm,s2) is the probability den-
sity of a Gaussian deviate z with mean m and variance s2,
and Nt is the number of observations.

[44] The standard least squares (SLS) scheme, which can
be viewed as a special case of WLS with b ¼ 0, makes the
assumption of constant variance of residual errors. It corre-
sponds closely to widely used objective functions such as
the Nash-Sutcliffe (NS) index and the root-mean-square
error (RMSE). Despite its considerable limitations [e.g.,
Schaefli and Gupta, 2007], the Nash-Sutcliffe index
remains widely used in hydrological communication.
Including the SLS scheme into the analysis allows us to
appraise the influence of the likelihood function and diag-
nostic metrics on model results and interpretation.

[45] The least squares regression in equations (2) and (3)
provides only an approximate description of the heterosce-
dasticity of the total data and structural errors. It also
ignores autocorrelation [e.g., Sorooshian and Dracup,
1980; Schoups and Vrugt, 2010, and many others], which
generally leads to an underestimation of the parametric
uncertainty. Hence, several posterior diagnostics are
employed to appraise the predictive performance of the
inferred models. Additional ‘‘process-oriented’’ diagnostics
are also included to provide a tentative evaluation of the
physical ‘‘realism’’ of the models. These diagnostics are
detailed in section 3.5.
3.4.2. Multistart Quasi-Newton Parameter
Optimization

[46] Parameter calibration was carried using a multistart
quasi-Newton method (e.g., Kavetski and Clark [2010], see
also Moore and Clarke [1981] and Skahill and Doherty
[2006] for hydrological applications of the related Gauss-
Newton method). Here we initiated independent local
quasi-Newton searches (with trust-region safeguards) from
1000 random seeds in the feasible parameter space. The
large number of initial seeds was used to thoroughly exam-
ine the parameter space; the CPU runtimes were on the
order of a few hours on a single standard desktop CPU (i.e.,
without using any multicore parallel computation).
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3.4.3. Markov Chain Monte Carlo Analysis of
Posterior Parameter Distributions

[47] The posterior distributions of the model parameters
were approximated using the Markov chain Monte Carlo
(MCMC) sampling strategy described by Thyer et al.
[2009] with a total of 60,000 model runs and five parallel
chains. During the first 10,000 samples, the jump distribu-
tion was tuned one parameter at a time. During the next
10,000 samples, the jump distribution was tuned by scaling
its entire covariance matrix. The jump distribution was
then fixed and 40,000 samples collected. The first 30,000
samples were treated as a burn-in [Gelman et al., 2004] and
the final 10,000 samples were used to analyze and report
the parameter distributions.

[48] The stationarity (convergence) of the MCMC chains
was evaluated using the Gelman-Rubin statistic [Gelman
et al., 2004]. Given the vulnerability of common conver-
gence diagnostics to the entrapment of MCMC chains on
local optima of the target distribution [e.g., as shown by
Schoups et al., 2010], randomly seeded multistart quasi-
Newton optimization analyses of the Bayesian posteriors
were carried out to explore their macroscale multimodality
structure [Kavetski and Clark, 2010]. Their termination
points were used as starting seeds for the MCMC chains, in
an attempt to further guard against false convergence.

3.5. Posterior Diagnostics
3.5.1. Statistical Diagnostic Tests of the Predictive
Distribution of Streamflow

[49] The statistical reliability of the predictions, i.e., the
consistency of the observed data and the predictive distribu-
tion generated by the model is examined using quantile-
quantile (QQ) plots [e.g., Gneiting et al., 2007; Thyer et al.,
2009]. In particular, the uniformity of the distribution of the
quantiles of the observed data within the predictive distribu-
tion can be viewed as a measure of consistency of the model
and the observed data. Departures from linearity of the QQ
plot can be interpreted in specific terms, such as underesti-
mation of predictive uncertainty, systematic underestimation
of responses, etc. (see detailed Figure 3 by Renard et al.
[2010]). Statistical reliability can also be quantified using
numerical measures [e.g., see Renard et al., 2010]. Here the
area �(�) between the QQ curve and the 1:1 diagonal is
reported. Larger values of � indicate lower reliability.

[50] In addition to the statistical reliability, the precision
(or ‘‘sharpness’’) of the predictive distribution is reported.
The distinction is important : two predictive distributions
can both be reliable (implying the distributions of actual
errors are suitably approximated by the error models), yet
one can be more precise and hence more useful to a mod-
eler [see also Gneiting et al., 2007]. Here the predictive
precision is quantified using the average standard deviation
of the predictions (�a), where the averaging is over the time
steps within the period of interest (e.g., calibration and/or
validation). This quantity is directly related to the widely
used Nash-Sutcliffe (NS) measure �NS , which is also
reported for the case of SLS calibration.

[51] Note that the case of high precision but low reliability
represents a prediction that is misleading with respect to its
accuracy, which is clearly undesirable. Hence, in our hypoth-
esis-testing analyses, the predictive reliability of a calibrated
model takes some priority over its predictive precision.

3.5.2. Process-Oriented Model Diagnostic Tests
[52] The model’s ability to reproduce characteristic ‘‘sig-

natures’’ of the catchment response is of clear importance
from a hydrological perspective and should be appraised as
part of posterior diagnostics [Gupta et al., 2008].

[53] The ability of the models to approximate the observed
flow duration (FD) curves [e.g., see Yilmaz et al., 2008] is
reported. This is important because flow duration curves tend to
reflect climatological and geomorphological catchment attrib-
utes [e.g., Linsley et al., 1949; Wagener and Wheater, 2006].

[54] In addition to the FD curve criteria, which are based
on the same data as used in the calibration, available data
on groundwater levels in the Maimai and Pfaffenthal basins
are exploited as an independent data source. The use of
groundwater data for the evaluation of a conceptual hydro-
logical model has proven useful in several previous studies.
These include investigating model inadequacies [Seibert,
2000], improving model realism [Seibert and McDonnell,
2002; Son and Sivapalan, 2007], reducing equifinality in
the parameter space [Freer et al., 2004], and supporting
model improvement [Fenicia et al., 2008a].

[55] In this study, because of commensurability limita-
tions (section 4.3), the piezometer data is used as a largely
qualitative check of the overall trends in the internal model
dynamics. By not calibrating the model to these time series,
the latter can be used to provide an independent assessment
of the fidelity of model components to the physical proc-
esses they are intended to represent. This then contributes
to the comparative evaluation of the physical realism of the
different model structures [Seibert and McDonnell, 2002].

4. Results of Empirical Case Studies
[56] Section 4 presents the modeling results, with a par-

ticular emphasis on comparing model performances in the
various catchments using a range of diagnostic metrics, and
on interpreting the differences in model performance based
on known differences in catchment characteristics.

[57] We report the results for the WLS inference, unless
indicated otherwise. The inclusion of SLS results allows
the appraising of the sensitivity of the results to the likeli-
hood function. In our opinion, although consistent behavior
across different likelihood functions is not a strictly neces-
sary criterion for hydrological hypothesis testing (because
it is unreasonable to expect even a ‘‘good’’ hypothesis to
perform well when calibrated under poor error model
assumptions), it can provide some additional indication of
whether the inference is robust.

4.1. Comparison of Model Structures
[58] Figure 3 compares numerical measures of reliabil-

ity, precision, and accuracy of all model structures on the
four catchments. The hydrographs and the associated 95%
prediction limits are shown in Figure 4 for selected model
structures, and the corresponding predictive QQ plots are
shown in Figure 5.

[59] In the Maimai catchment, the single-reservoir con-
figuration M1 is competitive with, and indeed often supe-
rior to, the more complex models. Although its average
precision is somewhat lower than more complex models, this
model ranks best with respect to the critical metric of predic-
tive reliability in the validation period (Figures 3 and 5). The
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hydrograph comparison of M1 and M7 shows that M1 is
better at capturing the peaks, while M7 tends to underesti-
mate them, in favor of a better representation of low flows
(Figure 4). With respect to the NS index, calculated for the
SLS calibration, the performance of M1 is comparable to

more complex models, with a value above 0.88 in the vali-
dation period (Figure 3). The ability to represent the Mai-
mai catchment dynamics by a single nonlinear reservoir
corroborates that the behavior of this catchment is rela-
tively simple (section 3.2.1).

Figure 3. Statistical metrics used to evaluate the predictive distributions of streamflow against the
observed data, applied separately to the calibration and validation periods. The x-axis lists the model
structures, with an approximate measure of complexity (N� þ Ns, see Table 2) indicated in parentheses.
The statistical reliability is quantified by the area between the predictive QQ curves and the 1:1 diagonal
(�, see section 3.5.1), while the predictive precision is quantified using the average standard deviation of
the predictions (�a). The metrics were computed for the predictive distributions estimated using a WLS
regression. In addition, the Nash-Sutcliffe measure �NS obtained using SLS is reported. While in some
cases (e.g., the Wollefsbach) the metrics were broadly consistent with one another, in other cases (e.g.,
the Pfaffenthal) considerable tradeoffs arise.

W11511 KAVETSKI AND FENICIA: FLEXIBLE FRAMEWORK FOR HYDROLOGICAL MODELING, 2 W11511

8 of 19



[60] The Wollefsbach catchment, which is larger in size,
though still relatively homogeneous in terms of its geology
and land cover, displays a more complex hydrological
behavior than the Maimai catchment. M1 has a relatively
poor performance on this catchment, while M3, which con-
tains a threshold-type saturated area function, appears to
be the simplest configuration that captures the essential
response dynamics. The average precision (WLS) and the

NS efficiency (SLS) are comparable to other, more com-
plex models (Figure 3). For example, M3 has an NS index
of 0.87 in the validation period, exceeding the value of
0.53 obtained using the more complex GR4H. In terms of
hydrograph behavior, Figure 4 shows that, despite being
more complex (Figure 3), GR4H is unable to capture the
seasonal behavior of this catchment, underestimating the
flow during winter and overestimating it during summer.

Figure 4. Model predictions and associated uncertainty bounds for selected model structures and rep-
resentative portions of the calibration and validation periods. Lines denote near-optimal predictions,
while bands indicate 95% prediction limits.
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As will be discussed in section 4.4.2, capturing this season-
ality requires particular features in the model structure,
such as the stronger thresholds present in hypothesis M3.

[61] It is worth noting that the QQ plots in Figure 5 indi-
cate that predictive reliability of GR4H is high despite its
relatively poor accuracy. The predictive reliability, here
defined as the consistency of the predictive distribution and
the observed data, is a property not just of the (determinis-
tic) model, but of the error models. Although the error of
the calibrated GR4H model is relatively large, it appears
well described by the heteroscedastic error model in equa-
tion (3). Hence, while less precise, its predictive distribu-
tions appear statistically trustworthy.

[62] The Useldange catchment contains the Wollefsbach
as one of its headwater subcatchments. Here M1–M3 have
a relatively low performance, while M4 performs notably
better (Figure 3). Hypotheses M4 and M3 differ solely in
the form of the saturated area function, which in M4 allows
for smoother saturation dynamics. Figure 4 contrasts the
hydrographs predicted by models M3 and M4 for this
catchment. M3 tends to overpredict the flows, while M4
has a more balanced performance. Figure 5 also suggest
that M4 is somewhat more reliable for this catchment (e.g.,
in the center of the plot, the M4 QQ line deviates notably

from the expected diagonal pattern). The GR4H performs
relatively well and is even superior to other models of simi-
lar complexity.

[63] The Pfaffenthal catchment is the largest catchment
in this study (385 km2) and, unlike the previous catchments,
its geological formation comprises a large groundwater res-
ervoir. Models M1–M5 fail to adequately represent the
behavior of this catchment. In particular, the shapes of their
recessions were qualitatively different from the observed
recessions. Conversely, hypotheses M6 and M7, which
include a groundwater reservoir, perform considerably bet-
ter. From these two models, M7, which includes nonlinear-
ities, performs better than M6 in terms of average precision
and in terms of the Nash-Sutcliffe index �NS , while M6 is
slightly better in terms of the reliability index � (Figure 3).
The suitable performance of the linear multistore model
M6 for the Pfaffenthal can be contrasted to its behavior
on the other catchments, where this model ranked as one of
the worst with respect to several criteria. Figure 4 compares
the hydrographs of M5 and M7. While M5 misses hydro-
graph recessions, M7 is able to capture the recession signa-
ture quite well. GR4H performs similarly to M6 and M7
with respect to �NS , however, it has poorer statistical
reliability.

Figure 5. Quantile-quantile plots for appraising the statistical reliability of the predictive distributions
of streamflow for selected models, in calibration (dashed lines) and validation (solid lines). Departures
from the 1:1 diagonal pattern represent a measure of the discrepancy between the predictive distribution
and the observed data. For example, when validation and calibration performances were compared in the
Maimai basin, model M7 suffered a notably larger loss of predictive reliability than model M1.
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[64] The performance of the GR4H model, both in abso-
lute terms and relative to competing models, was clearly
catchment-specific. In the Maimai and Useldange basins,
GR4H ranks among the best models with respect to most
of the performance criteria analyzed. Yet, for example, in
the Wollefsbach its performance is markedly poor: it
achieves a NS value of about 0.5, whereas the simpler M3
structure, which contains a threshold runoff mechanism,
reaches NS values of about 0.9 and has a clearly superior
precision. In the Pfaffenthal catchment, GR4H has a low
statistical reliability, with models M6 and M7 performing
better overall.

4.2. Simulation of Catchment Signatures: Flow
Duration Curves

[65] Figure 6 shows the flow duration curves, including
the uncertainty limits of the predicted curves, for all catch-
ments and selected model structures in the validation pe-
riod. Figure 6a shows the FD curves for the Maimai
catchment, contrasting the simplest (M1) versus the most
complex (M7) hypotheses. It can be seen that structure M7
(which includes a groundwater component) has a higher
uncertainty in the low flows, while structure M1 (which
lacks a groundwater store) has larger uncertainty in the
high flow. Hence, despite its additional complexity, M7
does not appear to improve performance across the full
range of responses.

[66] Figure 6b compares the GR4H and M3 models
applied to the Wollefsbach catchment. The limitations of
the GR4H model for this catchment are apparent, with a
simulated flow duration curve that is significantly different
from the observed, and a large uncertainty, especially in
the low flows. Conversely, the simpler hypothesis M3 pro-
vides a notably better and tighter approximation of the
range of responses of this catchment.

[67] Figure 6c compares the flow duration curves of
models M3 and M4 in the Useldange catchment. Here M3
has significantly larger uncertainty and is in poorer agree-
ment with the observation than M4.

[68] Finally, Figure 6d shows the effect of the addition
of a groundwater reservoir for the modeling of the Pfaffen-
thal catchment (which is known to have a considerable
groundwater store). Model M7 performs better than M5 on
low flows, while the two models have a more or less similar
performance on high flows.

4.3. Simulation of Internal Catchment Function:
Groundwater Levels

[69] Figure 7 compares the evolution of the internal
states of model hypotheses M1 and M7 to the observed
water level dynamics (measured using the piezometers, see
section 3.2.4). The top row indicates the observations,
where the measurement locations have been ordered from
upstream to downstream. Although there are substantial
differences between individual piezometer readings, their
overall behavior does follow a common pattern in response
to the recharge arising from the rainfall input [Seibert and
McDonnell, 2002; Freer et al., 2004]. The second and third
rows of Figure 7 show the corresponding time series of sto-
rages predicted using model structures M1 (which appears
to work reasonably for Maimai and poorly for Pfaffenthal)
versus the storages predicted using M7 (which works well

for Pfaffenthal, but may be overly complex for Maimai).
The second rows show inferences using SLS, and the third
row shows the inferences using WLS.

[70] The single reservoir hypothesis M1 appears to cap-
ture reasonably well the qualitative groundwater dynamics
of the Maimai catchment. Storage dynamics are similar for
SLS and WLS. On the Pfaffenthal catchment, the storage
of M1 appears to react fast when SLS is used, mimicking
the fast reaction of the catchment, while it has a more
damped behavior when WLS is used. This is likely because
SLS favors the fitting of high flows, while WLS, by approx-
imating the heteroscedasticity of the errors, can also give
considerable weight to low flows.

[71] Conversely, the more complex model M7 performs
poorly on Maimai when SLS is used. The storage Ss, which
in hypothesis M7 is intended to represent a groundwater
store, exhibits a continuously increasing trend that is in
clear disagreement with the piezometer measurements. Yet
when WLS is used, the storages are in a markedly better
agreement with the observations. In the Pfaffenthal, the
storage dynamics of M7 are similar for both inference
schemes, with storages Su and Sf appearing to follow some
of the observed piezograph patterns.

[72] These findings can be used to scrutinize the physical
realism of the model hypotheses, subject to important limi-
tations with respect to the scale commensurability of the
data and the model. In particular, a piezometer measure-
ment time series can be used to explore the degree to which
the internal model states approximated the observed
groundwater dynamics, and to detect cases of unreasonable
behavior. However, the insights from this comparison are
limited by the fact that model states within a lumped model
are, at best, ‘‘effective’’ average representations over an
entire catchment, while piezometer observations apply over
a much smaller (essentially, ‘‘point’’) scale at specific loca-
tions. Hence, the ‘‘scale representativeness’’ of the piezometer
time series can be called into question [e.g., Wagener and
Gupta, 2005; Freer et al., 2004; Liu and Gupta, 2007].

[73] In our (somewhat pragmatic) opinion, the scale mis-
match between groundwater piezometer measurements and
a state variable in a catchment-scale model does not negate
the utility of inspecting trends and patterns in this data to
scrutinize the internal performance of a lumped model hy-
pothesis. Indeed, observed groundwater levels have been
very useful in appraising model ‘‘realism’’ and in discrimi-
nating between competing lumped model structures in a se-
ries of previous studies [e.g., Seibert, 2000; Seibert and
McDonnell, 2002; Freer et al., 2004; Fenicia et al., 2008a;
Son and Sivapalan, 2007]. Here they were interpreted as
supporting the perception, that hypothesis M7 was poorly
identifiable from rainfall-runoff data alone for the Maimai
catchment, but that it appeared physically plausible for the
Pfaffenthal basin. Conversely, comparison of the ground-
water time series patterns suggested that hypothesis M1 is
too simplistic for the Pfaffental but, within the limits of the
data used in this study (see section 4.4.1), appears adequate
for the Maimai. These findings highlight the benefits of in-
dependent complementary sources of information to assess
model performance [e.g., Seibert and McDonnell, 2002;
Fenicia et al., 2008a, and others]. They also highlight the
poor discriminative power of any single performance indi-
cator, e.g., the Nash-Sutcliffe error measure applied solely
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to the streamflow time series [e.g., Schaefli and Gupta,
2007; Gupta et al., 2008].

4.4. Relations Between Catchment Attributes and
Model Structures

[74] Section 4.4 attempts to provide a physically oriented
interpretation of the model hypotheses. Such analysis can
improve our understanding of the correspondence between
catchment properties and model structure, which is an im-
portant, yet poorly understood aspect of contemporary con-
ceptual hydrology [McDonnell and Woods, 2004]. Although
it is currently difficult to a priori translate experimental find-
ings into a perceptual model of catchment behavior, such
insights can help provide a posteriori plausible explanations
and interpretations of differences in the performance of dif-
ferent models. The main insights, and associated caveats,
are as follows.

4.4.1. Maimai Catchment
[75] Despite the perceived functional simplicity of the

Maimai, previous models used in this catchment differed
substantially in terms of structure, complexity, and level of
spatial discretization. For example, Vaché and McDonnell
[2006] developed a distributed grid-based model, Freer
et al. [2004] applied TOPMODEL, Beven [1997] and Seibert
and McDonnell [2002] developed a three-reservoir model,
and Fenicia et al. [2010] used a single reservoir model. In
our opinion, such a broad range of models highlights that
limited guidance is available for model-building even in ex-
perimental basins (see also the critique by McDonnell and
Woods [2004]).

[76] In this study, the hydrograph dynamics of the Mai-
mai catchment were adequately captured by a simple single-
reservoir nonlinear model [see also Fenicia et al., 2010].
More complex models have a slightly better performance,

Figure 6. Flow duration curves for selected model structures in all catchments over the validation pe-
riod. The 95% uncertainty limits are shown. Overall, the best model structure for reproducing flow dura-
tion characteristics appears to be catchment-specific. For example, GR4H struggles to capture the
streamflow distribution in the Wollefsbach, and the uncertainty limits are particularly wide. Similarly,
model M3 does not adequately reproduce the flow duration signature of the Useldange catchment, while
M5 does poorly in the Pfaffenthal.
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yet their additional complexity may result in overfitting
when calibrating solely to rainfall-runoff data. For exam-
ple, inspection of internal model states and their compari-
son with groundwater levels suggests that model M7 is
overfitted and provides a poor approximation of internal
dynamics when SLS calibration is used (Figure 7). Under
this model estimation scenario, the inference of hypothesis
M7 is ill-posed: It may appear to work well for some per-
formance indicators, such as the Nash-Sutcliffe index, but
‘‘it works for the wrong reasons’’ [Kirchner, 2006]. This is
suggested by the deficiencies in reproducing the internal
dynamics of the system, and, tellingly, by the considerable
loss of predictive reliability in the validation period (see
the QQ plots in Figure 5).

[77] On the other hand, the internal dynamics of hypothe-
sis M1 appear in much better agreement with the ground-
water levels, its (single) storage variable followed a similar

overall pattern of behavior as the piezometer heads (despite
not being calibrated to them). However, further analysis
would be needed before hypothesis M1 can be accepted as a
physically realistic description of the Maimai catchment. In
particular, it is markedly simpler than the perceptual models
suggested by McGlynn et al. [2002]. This may be explained
by the (relative) simplicity of the model development meth-
odology used in this study. For example, the groundwater
piezometer data were used solely for posterior diagnostics:
it was exploited neither to guide model development or
improvement nor to constrain model calibration. Other ex-
perimental insights were also used only a posteriori in the
interpretation of model results, rather than throughout model
development. A more comprehensive strategy would exploit
different sources of information, including groundwater and
tracer data, hydrogeological insights, etc., within an iterative
process of model development, which could help elucidate

Figure 7. Correspondence between groundwater piezometer levels in the Maimai and Pfaffenthal
catchments with the storages in models M1 and M7. The results of calibrating solely to runoff using SLS
versus WLS are contrasted. When model M7 is calibrated to the Maimai catchment using SLS, its inter-
nal states, intended to represent groundwater storage, exhibit a continuous rising trend, casting doubt on
its physical realism.
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additional system complexity and inform more physically
realistic model hypotheses [e.g., Seibert and McDonnell,
2002; Uhlenbrook et al., 2004; Vaché and McDonnell,
2006; Fenicia et al., 2008a; Birkel et al., 2010, and others].
4.4.2. Wollefsbach Catchment

[78] The Wollefsbach catchment displays a more com-
plex hydrological behavior than the Maimai catchment.
Since it still relatively homogeneous in terms of its geology
and land cover, a key difference from the Maimai is argu-
ably in the climatic forcing. While the Maimai catchment
is permanently humid and wet, the Wollefsbach catchment
is characterized by a clear switch between a ‘‘dry’’ summer
regime versus a ‘‘wet’’ winter regime. This behavior can be
interpreted if, following the fieldwork based perceptions of
van den Bos et al. [2006a], we view the topsoil as the main
storage reservoir of the catchment, and represent it using
the unsaturated reservoir (UR). When the catchment is dry,
its soil profile can store water, resulting in little or no
streamflow response to rainfall events. When the soil pro-
file saturates, excess water cannot be accommodated and
saturation overland flow occurs, resulting in a strong and
rapid response to rainfall events.

[79] These (relatively simple) process perceptions suggest
that the seasonal switch in behavior could be captured using
a threshold in the storage-discharge function of the unsatu-
rated store (hypothesis M3). Under this hypothesis, high
evaporation during summer keeps the storage below the run-
off-generating threshold, while the lower evaporation during
winter results in a saturation of the store beyond the thresh-
old and determines a pronounced streamflow response. The
transition between ‘‘dry’’ (nonresponsive) and ‘‘wet’’ (re-
sponsive) must be reasonably sharp to reflect the distinct
seasonal switch in the streamflow dynamics of this basin.

[80] These considerations may provide an intuitively
plausible interpretation of why model hypothesis M3, which
is characterized by a threshold-like saturated area (overflow)
function in the unsaturated zone store, is the simplest con-
figuration that appears able to capture the seasonality of the
Wollefsbach catchment. Interestingly, the more complex
GR4H model is not able to capture the seasonal switch,
underestimating the flow during winter and overestimating
it during summer. This is probably because of the shape of
the response function in the unsaturated soil (‘‘production’’)
store of the GR4H model, which is fixed to be quadratic
[Edijatno and Michel, 1989; Perrin et al., 2003]. Also note
that the more complex models M4 and M7, which do not fix
the shape of the A S hjð Þ function and include M3 as a special
case (Table A2), do not perform much better than structure
M3. Hence, in terms of reproducing rainfall-streamflow dy-
namics, their additional complexity appears unwarranted.

[81] Finally, with respect to interpreting catchment func-
tion in terms of traits and patterns [e.g., Sivapalan, 2005;
McDonnell et al., 2007], we may question if the threshold
behavior would be apparent in the Wollefsbach if its cli-
matic conditions were closer to the Maimai. Similarly, we
could speculate that even a small and ‘‘simple’’ catchment
such as the Maimai could produce a more complex response
under different climatic settings.
4.4.3. Useldange Catchment

[82] The Useldange catchment is larger and more hetero-
geneous than the Wollefsbach. Indeed, it contains the Wol-
lefsbach as one of its headwater subcatchments. As seen in

Figures 3 and 4, model M3, which contains a threshold-
type saturated area function, yields a poor performance for
this catchment, while model M4, which allows for a
smoother behavior, performs substantially better.

[83] The higher performance of M4 relative to M3 could
be interpreted as suggesting that the threshold-like soil satu-
ration dynamics at the small scale (Wollefsbach catchment,
4.6 km2) becomes increasingly smoother at larger spatial
scales (Useldange catchment, 250 km2). Such behavior is
perhaps unsurprising: even processes with sharp threshold-
type behavior at the local scale, when aggregated over larger
spatial (and temporal) areas, produce an increasingly
smooth overall system response (e.g., see the classic demon-
stration by Moore [1985], where local threshold dynamics
give rise to a power law behavior in the overall reservoir).
Indeed, while experimental work has often detected thresh-
old behavior at the plot and hillslope scale, threshold behav-
ior at the catchment scale appears more rare [Spence, 2010].
4.4.4. Pfaffenthal Catchment

[84] The Pfaffenthal catchment is the largest (385 km2)
and most complex catchment in this study (section 3.2.2).
Here the simpler models M1–M5, despite spanning a wide
range of structures and complexities, perform markedly
worse than model M7, in particular, with respect to repre-
senting the flow recessions. This can be reconciled with inde-
pendent experimental knowledge, which has highlighted the
important contribution of the sandstone formation to ground-
water flow [van den Bos et al., 2006a]. In particular, the
inability to adequately represent the behavior of this catch-
ment using models M1–M5 could be attributed to their lack
of a groundwater component. This proposition is supported
by inspecting Figure 4, which shows that the recession
shapes simulated using the M5 model were qualitatively dif-
ferent from the shapes of the observed recessions.

[85] Adding a model component to represent the ground-
water store makes an immediate difference: model hypothesis
M6, although including only linear reservoirs, outperforms
the (nonlinear) models M1–M5, which lack a groundwater
component. Model hypothesis M7, which includes nonli-
nearities in the unsaturated zone and the fast routing reser-
voir, further improves the model predictions. As can be
seen in Figure 4, while model M5 misses hydrograph reces-
sions, model M7 captures the recession signature quite
well.

[86] The physically oriented interpretation is further sup-
ported by the finding that the storage dynamics of hypothesis
M7 are in reasonable agreement with the groundwater level
observations within the Pfaffenthal catchment (Figure 7).
This lends further support to the physical realism of hypothe-
sis M7 for the Pfaffenthal Basin. This contrasts with the case
of the Maimai catchment, where the internal dynamics of this
same model were in clear disagreement with the observed
dynamics of the processes they are designed to represent.

5. General Discussion
5.1. Hypothesis Testing: Fixed Versus Flexible Model
Structures

[87] The variability in the performance of individual
model structures in different catchments illustrates the dif-
ficulties in developing generic model structures (hypothe-
ses) that are valid across different hydrological regimes.
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For example, as a result of extensive testing in a large num-
ber of catchments, the GR4H model was able to provide a
good compromise performance in the Maimai, Useldange,
and Pfaffenthal catchments, which are generally, wet catch-
ments with little seasonality or threshold behavior. How-
ever, its ability to approximate different hydrological
regimes is poorer, both in absolute terms and relative to the
alternative SUPERFLEX-derived model hypotheses. For
example, GR4H was unable to capture the seasonal dynam-
ics and the switch in hydrograph response from wet to dry
conditions occurring in the Wollefsbach catchment.

[88] These findings are representative of difficulties typi-
cally encountered when attempting to cross-validate a fixed
model structure on different catchments. For example, as
part of a regionalization study, Merz and Blöschl [2004]
calibrated the popular HBV model to 308 catchments in
Austria. For some of the catchments, the calibrated perform-
ance was very poor (e.g., with Nash-Sutcliffe efficiencies
below 0.5, volume errors exceeding 25%, etc.), which Merz
and Blöschl [2004] attributed to data and/or structural error
problems. Given analogous findings in our (much smaller)
case study applying another fixed model, GR4H, to four
diverse catchments, may be indicative that ‘‘pursuing model
transposability in space’’ [e.g., as advocated by Klemes,
1986; Andréassian et al., 2009] as a condition for evaluat-
ing ‘‘model adequacy’’ and testing model hypotheses may
be an unduly stringent, or perhaps an even unattainable,
objective. We stress that we do not imply that hydrologi-
cally similar catchments cannot be modeled using similar
(or identical) model structures, but rather that catchments
with wide differences in climatology, hydrogeology, stream
network geometry, vegetation, and land use, etc., may
require different model structures, especially when modeled
at lumped spatio-temporal scales.

[89] Not only the mechanistic behavior of different catch-
ments may require different structural representations, but
‘‘appropriate’’ model complexity also appears to be quite
catchment-specific. This held despite all models being eval-
uated using data of the same type, length, and resolution. In
particular, the behavior of the Maimai catchment appeared
remarkably simple, and was effectively captured using a sin-
gle-reservoir model. At the other extreme, the Pfaffenthal
catchment exhibited a much more complex behavior, and its
simulation required the inclusion of multiple states, includ-
ing a representation of a groundwater store. A fixed struc-
ture with predefined complexity may provide an adequate
compromise for some, perhaps many, catchments, but it will
generally be either too complex, or too simple, for many
other applications. This is especially undesirable in studies
that attempt to physically interpret model complexity and its
internal parameters and dynamics [e.g., Gupta et al., 2008;
Schoups et al., 2008].

[90] In addition, the application of multiple models allows
an assessment of model performance in relative terms, which
facilitates the evaluation of the relative merits and limita-
tions of individual model structures. For example, Perrin
et al. [2001], when trialing multiple competing model struc-
tures as part of seeking a single ‘‘best’’ fixed model, relate
the performance of each candidate to the best-performing
model structure. Such comparison can provide more hydro-
logically insightful benchmarks than metrics such as the
Nash-Sutcliffe index [Schaefli and Gupta, 2007]. See also

the discussion by Savenije [2009], advocating a search for a
‘‘better’’ model in lieu of a ‘‘good’’ model. However, we
stress that, for a comparison to be meaningful and to provide
maximum guidance for subsequent model improvement, the
competing models must differ from each other in a con-
trolled way. Otherwise, differences in performance cannot
be reliably attributed to specific hypotheses, and can be
masked by interactions of model components, unaccounted
differences in overall model philosophy, numerical imple-
mentation, etc. [Clark et al., 2011a]. A well-designed flexi-
ble framework addresses this, by giving the modeler fine-
grain control over individual model components as well as
over the overall model architecture.

[91] We also stress that the pursuit of more rigorous hy-
pothesis testing using flexible model frameworks does not
imply disregarding the considerable insights embodied in
many existing models. Models such as GR4J, TOPMODEL,
HBV, and others have themselves emerged after a process
of extensive refinement and adjustment, even if this pro-
cess is not always fully detailed in the published literature.
Such models can inspire further model development, and
can serve both as initial points for further work and as
widely accepted benchmarks in model comparison studies.
For example, the M1–M7 models used here have been
developed to be generally representative of operational fore-
casting models [Berthet et al., 2009] and of the conceptual
models used in major hydrological investigations [e.g.,
Duan et al., 2006]. In addition, we have used GR4H, which
represents a ‘‘best-compromise’’ model identified in previ-
ous studies, as a benchmark for comparison.

[92] We also note that the flexibility of a modular model-
ing framework such as SUPERFLEX, if applied without
adequate scrutiny, can result in unwarranted model ‘‘cus-
tomization’’ that is not supported by empirical data or other
evidence. In extreme scenarios, this could lead to new mod-
els being developed indiscriminately for every catchment,
failing to recognize the commonality of hydrological func-
tion [Wagener et al., 2007]. Hence, the use of multiple
diagnostics, both of the overall model predictions and also
of its internal components, is an essential aspect of hydro-
logical model development, as eloquently noted by Gupta
et al. [2008] and others. These principles hold equally
strongly for flexible models as they do for any particular
fixed model structure.

5.2. Toward More ‘‘Realistic’’ Models: Flexible
Frameworks as a ‘‘Language’’ for Dialogue Between
Modeler and Experimentalist

[93] The realism of conceptual hydrological models, if
defined in terms of the criteria in section 1, is far from
achieved in current practice. It is not even clear how to
evaluate the ‘‘realism’’ of a lumped model where ‘‘soil’’ is
represented by a single reservoir [e.g., see discussions by
Wagener, 2003; Liu and Gupta, 2007; Beven, 2008, and
others]. Yet, such limitations notwithstanding, in our opin-
ion, there remains much room for improvement through a
better dialogue between the modeler and experimentalist
[Seibert and McDonnell, 2002]. Such exchanges can occur:
(1) a priori, during the development of a perceptual model
based on an initial understanding of processes [e.g., Seibert
and McDonnell, 2002]; (2) a posteriori, during the scrutiny
of model structures using a range of diagnostics and
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independent data [e.g., Gupta et al., 2008]; or, preferably,
(3) continuously across several or all stages of model de-
velopment [e.g., Fenicia et al., 2008a]. In all cases, the
fruitfulness of the dialogue depends on the ability to mean-
ingfully communicate, robustly implement, and rigorously
compare alternative hypotheses [Fenicia et al., 2008a].
These may involve both major and minor (often subtle)
changes in the type and number of model elements, their
connectivity, and constitutive functions.

[94] We argue that a flexible framework can facilitate
the dialogue between the modeler and experimentalist
[Seibert and McDonnell, 2002] by providing (1) a more
precise language for exchanging perceptual/conceptual in-
formation (e.g., see section 3.3, which illustrates some of
the reasoning behind the construction of the model hypoth-
eses used in this study), and (2) a robust platform to sys-
tematically generate, implement, and compare model
hypotheses. By quantitatively accommodating the experi-
mentalist’s perceptual understanding [e.g., Vaché and
McDonnell, 2006], importantly, using robust mathematical
techniques [e.g., see Clark and Kavetski, 2010], it can facil-
itate model development and improvement, both in
research and operation.

[95] While it is beyond our scope to provide detailed
‘‘how-to’’ recipes for using the flexible modeling approaches
for different applications, we note that flexible frameworks
have already facilitated more in-depth investigations of catch-
ment behavior. For example, Fenicia et al. [2008b] illustrated
an iterative approach of model development, where different
types of data are progressively introduced to constrain the hy-
pothesis space, and the model is updated as part of a mod-
eler-experimentalist dialogue [e.g., Seibert and McDonnell,
2002]. Similarly, Clark et al. [2011b] detail the application of
a range of diagnostics within the FUSE framework to test
competing hypotheses using field data and improve process
representation in an experimental catchment.

6. Conclusions
[96] The two-part paper proposed and illustrated a flexi-

ble model framework for conceptual hydrological modeling
at the catchment scale. Within this framework, model struc-
tures are hypothesized and constructed using generic com-
ponents such as reservoirs and lag functions, assembled
(connected) into a coupled-system model using junctions
and fluxes, and parameterized using constitutive functions
relating internal states and fluxes.

[97] The potential of the flexible framework is explored
in a four-catchment study, where seven a priori selected
model hypotheses of varying structure and complexity are
contrasted with the fixed-GR4H structure representative of
a ‘‘best-compromise’’ model identified in previous studies.
The key conclusions of the study are as follows:

[98] (1) Catchments with distinct hydrological dynamics
appear best characterized using distinctly different lumped
model structures. A fixed model structure struggles to
accommodate the wide range of possible behavior encoun-
tered even in just the four catchments considered in this
study. For example, the GR4H model is unable to satisfacto-
rily reproduce the seasonal signature of the Wollefsbach
catchment (arguably because of the absence of thresholds in
its runoff production function). An alternative four-parameter

hypothesis of the catchment function, including a threshold-
like production store, notably improves the model perform-
ance. Importantly, the threshold-based model hypothesis is
in better qualitative agreement with independent experimen-
tal insights available in this catchment, including the shal-
lowness of the soil store and flashy response of the schistose
geology. Similar findings held in the Pfaffenthal catchment,
where a groundwater store component is needed to accom-
modate the sandstone aquifer dynamics.

[99] (2) A flexible structure can be exploited to incorpo-
rate independent experimental understanding, such as the
presence or absence of groundwater storage, threshold dy-
namics, etc. It can also readily accommodate nonstandard
storage-recession relationships derived from recession anal-
ysis, saturation-response functions derived from topographic
analysis, etc. This offers better prospects for exploiting spa-
tial analysis, both within semidistributed and fully distrib-
uted contexts. Conversely, the fixed model paradigm is
poorly suited to the incorporation of independent data analy-
sis insights from a specific catchment.

[100] (3) A structure with a predefined complexity, while
perhaps representing a ‘‘best compromise’’ over a broad
range of catchments, can be either too complex, or too sim-
ple for a specific catchment. In the former case, nonidentifi-
ability will result, whereas in the latter case the best
performance will not be achieved. In yet other cases, a
fixed model structure could be both too simplistic for some
aspects of catchment behavior (e.g., it may be inherently
unable to represent a threshold) and too complex for other
aspects (e.g., it could include reservoirs and lag functions
not needed for the particular basin). Conversely, in con-
junction with a set of stringent diagnostics, the appropriate
complexity of a flexible model structure can be explored
more thoroughly and transparently, taking into account
aspects such as catchment size, the spatial and temporal re-
solution of the available data, the purpose of the modeling
application, etc.

[101] (4) The fixed model structure, on the other hand,
may be advantageous in many operational contexts, in
particular, when there are insufficient time and/or human
resources to setup and trial multiple model structures, etc.
A fixed structure may also be easier to interpret in terms
of parameter differences across multiple applications, and,
potentially, may serve as a useful initial point for iterative
model improvement exploiting site-specific insights. As
such, even for proponents of seeking a fixed model struc-
ture, a flexible framework offers a more systematic plat-
form for the ongoing identification and refinement of such
models.

[102] (5) A flexible model structure offers the potential
for interpreting differences in model performance, under-
standing catchment behavior, and relating it to independent
experimental insights. A well-designed flexible modeling
framework allows a careful systematic generation and com-
parison of system-level hypotheses and their finer-grain
components under a common framework. On the other
hand, previous model comparison experiments may have
been obscured by major unaccounted for differences in
model conceptualization, numerical implementation, and
model evaluation. Such uncontrollable differences may
obscure hypothesis testing and result in important process-
understanding insights being missed and/or misinterpreted.
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Appendix A: Details of the Hydrological Models

[103] Table A1 details the water balance equations of the
SUPERFLEX model structures. Table A2 describes the
constitutive relationships used in the model components.
The functions fx are defined in Table 1 of the companion
paper [Fenicia et al., 2011].
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voie d’amélioration des performances et du réalisme des modèles pluie-
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