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Abstract

This thesis studies financial risk measures which dynamically assign a value to a risk
at a future date which can be interpreted as the present value of a future monetary
value. In particular, the theories of backward stochastic difference equations in discrete
time and differential equations in continuous time (BSDE) with respect to a single jump
process are developed. Based on these theories, some associated dynamic risk measures
are defined.

Chapter 1 is an introduction to the background of BSDEs, risk measures, and the
single jump process, and also outlines the structure of this thesis.

Part I considers backward stochastic difference equations related to a discrete finite
time single jump process (Chapter 2) and backward stochastic differential equations
related to a finite continuous time single jump process (Chapter 3). We prove the
existence and uniqueness of solutions of these BSDEs under some assumptions. Com-
parison Theorems for these solutions are also given. Applications to the theory of
nonlinear expectations are then investigated.

Part II considers some applications of the theories established in Part I. In Chapter
4, risk measures related to the solutions of backward stochastic difference equations
with respect to a discrete time single jump process are defined and some simple numer-
ical examples are given. In Chapter 5, we consider the question of an optimal transac-
tion between two investors to minimize their risks. We define a dynamic entropic risk
measure using backward stochastic differential equations related to a continuous time
single jump process. The inf-convolution of dynamic entropic risk measures is a key
transformation in solving the optimization problem.
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Chapter 1

Introduction

1.1 Overview

Risk is a facet of life faced everyday by both organizations and individuals. To mitigate
risk it must be modelled and quantified. Mathematical finance derives and extends the
mathematical models concerned with the financial markets. One of the important aims
of mathematical finance is to determine the financial risk associated with any form of
financing based upon various models. Risk measures were introduced in the literature
to evaluate future losses, to give some criteria on the acceptability of risk exposures
and also for pricing purposes.

The purpose of this thesis is to consider backward stochastic differential/difference
equations (BSDE) with respect to the single jump process. One the one hand, jump
processes play now a key role for modelling financial market fluctutations, such as risk
management and option pricing [7]. The simplest jump process is a process with just
one jump, i.e. a single jump process. Consequently it is also an important model.
On the other hand, backward stochastic differential equations appear in numerous
problems in finance: the theory of contingent claim valuation in a complete market,
the pricing theory in an incomplete market, and recursive utility, especially in risk
measures [11, 12, 13]. Risk measures can be defined using nonlinear expectations
based on backward stochastic differential equations [22, 23, 24].
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1.2 Risk measures in mathematical finance

1.2.1 Static risk measures

A financial position is a mapping X from some set Ω of possible future scenarios to
the real numbers, where X(ω) is the future discounted net worth of a position at the
end of the trading period if the scenario ω is realized. Write X for the set of financial
positions. Following [15], a static risk measure ρ(·) is a mapping ρ : X → R, which
satisfies some of the following properties:

• monotonicity: ρ(X) ≥ ρ(Y ),∀X, Y ∈ X and X ≤ Y a.s.;

• convexity: ρ(αX + (1− α)Y ) ≤ αρ(X) + (1− α)ρ(Y ),∀α ∈ (0, 1),∀X, Y ∈ X

• positivity: X ≥ 0⇒ ρ(X) ≤ ρ(0);

• constancy: ρ(α) = −α, ∀α ∈ R;

• translatability: ρ(X + β) = ρ(X)− β, ∀β ∈ R,∀X ∈ X ;

• positive homogeneity: ρ(αX) = αρ(X),∀α ≥ 0, ∀X ∈ X ;

• subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ), ∀X, Y ∈ X ;

• lower semi-continuity: {X ∈ X : ρ(X) ≤ γ} is closed in X for any γ ∈ R.

A functional ρ is called a coherent risk measure, [1], if it satisfies monotonicity,
translatability, positive homogeneity and subadditivity; it is a convex risk measure if
it satisfies monotonicity, convexity, lower semi-continuity and ρ(0) = 0.

The monotonicity of risk measure captures a basic asymmetry in a financial position:
the downside risk of a position is reduced if the payoff profile is increased, [16]. The
translatability property shows a risk measure can be regarded as a capital requirement
which, if added to the position and invested in a risk-free manner, makes the position
acceptable, [18]. The convexity property implies diversification of investment strategies
should not increase risk, [17]. Positive homogeneity decentralizes the task of managing
the risk arising from a collection of different financial positions, [1]. Positivity means if
a financial position always makes a profit, then its riskiness is smaller than the riskiness
of the null position, [15]. Constancy shows that the riskiness of constant positions is
simply the opposite of their net worth, [8]. Subadditivity encourages the diversification
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through portfolios of risks because the riskiness of a portfolio (X+Y ) should be smaller
than the sum of the riskiness of the single positions X and Y . Convexity assures
risk is not increased by diversification through portfolios originated by sums of single
positions, [25].

1.2.2 Value-at-Risk

Currently Value-at-Risk, VaR, is a popular risk measure [15]. However, it suffers from
various defects. Under normal market conditions and with no trading in the portfolio,
Value-at-Risk measures the worst expected loss on a specific portfolio of financial assets.
For a given portfolio and time horizon, Value-at-Risk is defined as the lowest quantile
of the potential losses that can occur on the portfolio over the given time horizon. In
the definition of Value-at-Risk, there are two major parameters that should be chosen
in a way appropriate to the overall goal of risk measurement. One is the basic time
period which can be a day, a month or a year. Another is the quantile (the confidence
level) which is relatively high, typically either 95% or 99%. Once the two elements are
given, Value-at-Risk gives an estimate of investment loss. There are three methods of
calculating Value-at-Risk: the historical method, the variance-covariance method and
the Monte Carlo simulation [10]. However, Value-at-Risk only controls the probability
of a loss; it does not capture the size of such a loss if it occurs. Actually, it is far more
important to worry about what happens when losses exceed Value-at-Risk. Because
Value-at-Risk is not a convex measure of risk, it may penalize diversification instead
of encouraging it. That means the Value-at-Risk of a combined portfolio can be larger
than the sum of the Values-at-Risk of its components.

1.2.3 Conditional Value-at-Risk

Because of the undesirable mathematical characteristics of Value-at-Risk, such as the
lack of convexity and subadditivity, Conditional Value-at-Risk is a better alternative
risk measure than Value-at-Risk. It has the following properties: it is monotonic,
convex, positively homogeneous and transition-equivariant. Conditional Value-at-Risk
is the weighted average of Value-at-Risk and expected losses strictly exceeding Value-
at-Risk. While a portfolio’s Value-at-Risk is the maximum loss one expects to suffer at
the confidence level by holding it over a period, a portfolio’s Conditional Value-at-Risk
is the average loss one expects to suffer, given that the loss is equal to or larger than
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its Value-at-Risk [14].

1.2.4 Dynamic risk measures and BSDE

A static risk measure as described above applies to a single-stage portfolio allocation
problem. However, most investors make a sequence of portfolio allocations dynamically
over time. Consequently they need time-consistent dynamic risk measures which are
appropriate not only for the entire time horizon but also for the intermediate stages as
the process evolves. We shall see that they can be defined using backward stochastic
differential or difference equations.

A dynamic risk measure is a map such that:

• ρt : X → L0(Ft), for all t ∈ [ 0, T ];

• ρ0 is a static risk measure;

• ρT (X) = −X for all X ∈ X ;

• convexity: ∀t ∈ [ 0, T ], ρt is convex;

• positivity: X ≥ 0⇒ ∀t ∈ [ 0, T ], ρt(X) ≤ ρt(0);

• constancy: ∀t ∈ [ 0, T ],∀c ∈ R, ρt(c) = −c;

• translatability: ∀t ∈ [ 0, T ],∀X ∈ X , ρt(X + a) = ρt(X)− a;

• positive homogeneity: ∀t ∈ [ 0, T ],∀α ≥ 0,∀X ∈ X , ρt(αX) = αρt(X);

• subadditivity: ∀t ∈ [ 0, T ],∀X, Y ∈ X , ρt(X + Y ) ≤ ρt(X) + ρt(Y ).

Let X = (Xt)t≥0 represent a stochastic process, FX
t be the filtration generated by X

during the time interval [ 0, t ], and mFX
t be the set of all real valued FX

t –measurable
random variables. Suppose Y ∈ mFX

T . Then E [Y |FX
t ] is called an Ft–consistent

nonlinear expectation for each 0 ≤ s ≤ t ≤ T and Y, Z ∈ FX
T if it satisfies the following

axioms [9]:

• monotonicity: E [Y |Ft ] ≥ E [Z|Ft ], a.s., if Y ≥ Z, a.s.;

• constancy: E [Y |Ft ] = Y , a.s.;

• time–consistency: E [ E [Y |Ft ] | Fs ] = E [Y |Fs ], a.s.;
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• zero–one law: for each t, E [ 1AY |Ft ] = 1AE [Y |Ft ], a.s.,∀A ∈ Ft;

• concavity: ∀t ∈ [ 0, T ], E [Y |Ft ] is concave.

A dynamic risk measure ρ : L2(FT ) → R can be defined by setting ρt(X) ,
E [−X | Ft], for all X ∈ L2(FT ), where E is a nonlinear expectation.

Risk measures can be defined using g–expectations which are nonlinear expectations
given by solutions of backward stochastic differential equations depending on a function
g [22, 23, 24].

Suppose g is an R–valued, Ft–adapted process

g = g(ω, t, y, z) : Ω× [ 0, T ]× R× Rd 7→ R.

A backward stochastic differential equation (BSDE) is an equation of the form:

Yt = Y0 −
∫

[0,t]

g(u, Yu, Zu) du+

∫

[0,t]

Zu dMu, ∀t ∈ [0, T ];

YT = X.

(1.2.1)

In the work of Peng [23], M is a Brownian Motion. The solution (Y, Z) is required to
be adapted to the forward filtration, and Z is required to be predictable. More general
martingalesM were considered by El Karoui and Huang [12]. Cohen and Elliott [5], [6]
discussed backward stochastic differential and difference equations when the martingale
term M is related to a finite state Markov chain or other finite state processes.

A solution of (1.2.1) is a pair (Y, Z) of adapted processes. In [21] it is shown that
for a given terminal condition X ∈ L2(FT ) the equation (1.2.1) has a unique solution
(Y, Z) if g satisfies the conditions:

• g is Lipschitz in (y, z), i.e. there exists a constant C > 0 such that
∀t ∈ [ 0, T ],∀(y0, z0), (y1, z1) ∈ R × Rd, |g(t, y0, z0) − g(t, y1, z1)| ≤ C(|y0 − y1| +
‖z0 − z1‖).

• g(·, y, z) ∈ L2
F(T ;R) for any y ∈ R and z ∈ Rd.

• g(t, y, 0) = 0 for any t ∈ [ 0, T ] and y ∈ R.

• g(t, y, z) is continuous in t for any y ∈ R and z ∈ Rd.

• g(t, αy, αz) = αg(t, y, z) for any t ∈ [ 0, T ], α ≥ 0 and (y, z) ∈ R× Rd.
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• g(t, y0 +y1, z0 + z1) ≤ g(t, y0, z0) + g(t, y1, z1) for any t ∈ [ 0, T ], (y0, z0), (y1, z1) ∈
R× Rd.

• g is convex in (y, z): ∀t ∈ [ 0, T ],∀(y0, z0), (y1, z1) ∈ R× Rd,∀α ∈ (0, 1),

g(t, αy0 + (1− α)y1, αz0 + (1− α)z1) ≤ αg(t, y0, z0) + (1− α)g(t, y1, z1).

• g does not depend on y.

For any X ∈ L2(FT ), let (Y X
t , ZX

t )t∈[ 0,T ] ∈ L2
F(T ;R) × L2

F(T ;Rd) be the solution
of the BSDE (1.2.1) with terminal condition X. The g-expectation Eg of X is defined
by Eg[X ] , Y X

0 ; for any t ∈ [ 0, T ] and the conditional g–expectation of X given Ft is
defined by Eg[X | Ft ] , Y X

t .
g–expectations then satisfy the following properties of nonlinear expectations [3]:

• If g is positively homogeneous in (y, z), then, for any t ∈ [ 0, T ],
Eg[αX | Ft ] = αEg[X | Ft ], ∀α ≥ 0,∀X ∈ L2(FT ).

• If g is sublinear in (y, z), then Eg and Eg[ · | Ft ] are sublinear.

• g is concave in (y, z) if and only if, for any t ∈ [ 0, T ], Eg[ · | Ft ] is concave in
X ∈ L2(FT ).

• g is positively homogeneous in (y, z) if and only if, for any t ∈ [ 0, T ],

Eg[ · | Ft ] is positively homogeneous in X ∈ L2(FT ).

• g is sublinear in (y, z) if and only if, for any t ∈ [ 0, T ], Eg[ · | Ft ] is sublinear in
X ∈ L2(FT ).

A dynamic risk measure can then be defined using a g–expectation by putting
ρg(x) = Eg[−X | Ft]. The dynamic risk measure (ρt)t∈[ 0,T ], which represents the risk-
iness at time t, monitors the riskiness of a position X at any intermediate t between
the initial date 0 and the final T . In fact, two boundary conditions at times 0 and T
are imposed on (ρt)t∈[ 0,T ]: ρ0 has to be a static risk measure and ρT has to reduce to
the opposite of the risky position, i.e. ρT (X) = −X. See [2].

A dynamic risk measure (ρt)t∈[ 0,T ] is
— coherent if it satisfies positivity, translatability, positive homogeneity and subaddi-
tivity;
— convex if it satisfies dynamic convexity and ρ(0) = 0 for any t ∈ [ 0, T ];
— time-consistent if ∀t ∈ [ 0, T ],∀X ∈ X ,∀A ∈ Ft, ρ0[X1A ] = ρ0[−ρt(X)1A ] [19].
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Backward stochastic difference equations have been considered in [20], [4] and other
works, particularly as numerical approximations and Monte Carlo simulation to contin-
uous time processes. Cohen and Elliott [6] approach the backward stochastic difference
equations related to a discrete time and finite state processes as entities in their own
right, not as approximations and the related numerical methods.

1.3 Single jump process

1.3.1 The continuous finite time single jump process

A continuous time single jump process is defined as X(ω) = {Xt(ω), t ∈ [0, L]}, where
L is a finite deterministic terminal time. X(ω) takes values in a measurable space
(E, E) and remains at its initial point z0 ∈ E until a random time T (ω), when it jumps
to a new random position z(ω) ∈ E.

Let (Ω,F , {Ft}0≤t≤L, µ) be a filtered probability space, where Ω = [0, L]× E, F =

σ{B([0, L])×E}, Ft is the completed σ-field generated by {Xs}, s ≤ t and µ : F → [0, 1]

is a probability measure on (Ω,F). We suppose that

µ([0, L]× {z0}) = 0 = µ({0} × E)

so that the probabilities of a zero jump and a jump at time zero are zero. A sample
path of the single jump process X is

Xt(ω) =




z0, 0 ≤ t < T (ω) ≤ L;

z(ω), 0 < T (ω) ≤ t ≤ L.

1.3.2 The discrete finite time single jump process

A discrete time single jump process is defined asX(ω) = {Xt(ω), where t ∈ {0, 1, · · · , L}}
and L is a finite deterministic terminal time. X takes values in a measurable space
(E,E ) and remains at its initial point z0 ∈ E until a random time T , when it jumps to
a new random position z ∈ E.

Let (Ω,F , {Ft}0≤t≤L, µ) be the filtered probability space, where Ω = {0, · · · , L}×
E, F is the σ–field generated by sets of the form {i} × A, i ∈ {0, · · · , L}, A ∈ E , Ft

is the completed σ-field generated by {Xs}, s ≤ t and µ : F → [0, 1] is a probability
measure on (Ω,F). We again suppose that

µ({0, 1, · · · , L} × {z0}) = 0 = µ({0} × E)
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so that the probabilities of a zero jump and a jump at time zero are zero. A sample
path of the single jump process X in discrete time is

Xt(ω) =




z0, if 0 ≤ t < T (ω) ≤ L;

z(ω), if 0 < T (ω) ≤ t ≤ L.

1.4 Structure of this thesis

This thesis consists of four published or submitted papers. Through these papers,
the theories and applications of BSDEs with respect to the single jump process are
developed and applied.

Part I of the thesis, Chapter 2 and 3, considers the theories of BSDE with respect
to the single jump process. In Chapter 2, we define backward stochastic difference
equations related to a discrete finite time single jump process. We prove the existence
and uniqueness of solutions under some assumptions. A comparison theorem for these
solutions is also given. Applications to the theory of nonlinear expectations are then
investigated. In Chapter 3, we consider backward stochastic differential equations
related to a finite continuous time single jump process. We prove the existence and
uniqueness of solutions when the coefficients satisfy Lipschitz continuity conditions. A
comparison theorem for these solutions is also given. Applications to the theory of
nonlinear expectations are then investigated.

Part II of the thesis, Chapter 4 and 5, considers the applications of the theories
established in Part I. In Chapter 4, some risk measures related to the solutions of
backward stochastic difference equations with respect to a discrete time single jump
process are defined and some simple numerical examples are given. In Chapter 5, we
consider the question of an optimal transaction between two investors to minimize their
risks. We define a dynamic entropic risk measure using backward stochastic differential
equations related to a continuous time single jump process. The inf-convolution of
dynamic entropic risk measures is a key transformation in solving the optimization
problem.
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Abstract

We consider the question of an optimal transaction between two investors

to minimize their risks. We define a dynamic entropic risk measure using

backward stochastic differential equations related to a continuous time single

jump process. The inf-convolution of dynamic entropic risk measures is a key

transformation in solving the optimization problem.
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1. Introduction

This paper considers the optimal structure of a contract depending on a non-tradable

risk related to a non-financial risk, such as natural catastrophe. The papers of Barrieu

and El Karoui [1], [2] discuss a related problem in a continuous diffusion setting. In

an earlier paper [13] we have constructed backward stochastic differential equations

associated with a single jump process. This process might relate to a natural disaster

or default. Our results could describe how risk should be optimally allocated between
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an insurer and the insured. In Section 2 below we first review risk measures used

in mathematical finance, including static and dynamic risk measures. We next recall

results relating to backward stochastic differential equations (BSDEs) associated with

a finite horizon continuous time, single jump process developed in [13]. Then we

introduce the dynamic entropic risk measure based on the solution of a BSDE and

generate new dynamic risk measures as the inf-convolution of dynamic entropic risk

measures. Finally we solve the problem of the optimal structure.

2. Static and dynamic risk measures

Our random variables and processes will be defined on a complete filtered probability

space (Ω,F , {Ft},P). Our processes will be defined on [0, T ], where T is finite and

deterministic.

2.1. Static risk measures

Suppose X denotes a set of financial positions, that is, X is the set of bounded, FT
measurable random variables. Following [9], a static risk measure ρ(·) is a mapping

ρ : X → R, which satisfies some of the following properties for all X,Y in X :

• monotonicity: ρ(X) ≥ ρ(Y ), if X ≤ Y a.s.;

• convexity: ρ(αX + (1− α)Y ) ≤ αρ(X) + (1− α)ρ(Y ), ∀α ∈ (0, 1);

• positivity: X ≥ 0 a.s. ⇒ ρ(X) ≤ ρ(0);

• constancy: ρ(α) = −α,∀α ∈ R;

• translatability: ρ(X + β) = ρ(X)− β,∀β ∈ R;

• subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y );

• lower semi-continuity: {X ∈ X : ρ(X) ≤ γ} is closed in X for any γ ∈ R.

A functional ρ is called a convex risk measure if it satisfies monotonicity, convexity,

lower semi-continuity and ρ(0) = 0. The convexity property implies diversification of

investment strategies should not increase risk, [10].

Example 2.1. For any X in X , an important example of a convex risk measure is the
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entropic risk measure:

eγ(X) = sup
Q∈M1

(EQ(−X)− γh(Q |P)) = γ lnEP

(
exp

(
− 1

γ
X

))
. (1)

Here γ is the risk tolerance coefficient,M1 is the set of all probability measures on the

considered space and h(Q |P) is the relative entropy of Q with respect to the probability

of P, which is defined as

h(Q |P) =




EP
(
dQ
dP ln dQ

dP
)
, if Q� P;

+∞, otherwise.

Another convex risk measure is the inf-convolution of convex functionals. This is

established in the following theorem. For the proof see [1]:

Theorem 2.1. Let ρ1 and ρ2 be two convex risk measures. ρ1,2, the inf-convolution

of ρ1 and ρ2, is defined as:

ρ1,2(X) = ρ1�ρ2(X) = inf
S∈X
{ρ1(X − S) + ρ2(S)}.

We assume that ρ1,2(0) > −∞. Then ρ1,2 is a convex risk measure, which is finite for

all X ∈ X .

2.2. Dynamic risk measures

A static risk measure as described above applies to a single-stage portfolio allocation

problem. However, most investors make portfolio allocations dynamically over time.

Consequently they need time-consistent dynamic risk measures which are appropriate

not only for the final time horizon but also for intermediate times as the process evolves.

In fact, dynamic risk measures can be defined using backward stochastic differential,

or in discrete time difference, equations.

A dynamic risk measure is a map satisfying some of the conditions:

• ρt : X → L0(Ft), for all t ∈ [ 0, T ];

• ρ0 is a static risk measure;

• ρT (X) = −X for all X ∈ X ;

• convexity: for all t ∈ [ 0, T ], ρt is a convex risk measure;

• positivity: X ≥ 0⇒ for all t ∈ [ 0, T ], ρt(X) ≤ ρt(0) a.s.;
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• constancy: for all t ∈ [ 0, T ] and all c ∈ R, ρt(c) = −c;

• translatability: for all t ∈ [ 0, T ] and all X ∈ X , ρt(X + a) = ρt(X)− a a.s.;

• subadditivity: for all t ∈ [ 0, T ], X, Y ∈ X , ρt(X + Y ) ≤ ρt(X) + ρt(Y ).

3. Backward stochastic differential equations for the single jump process

Suppose g is an R–valued, Ft–adapted process

g = g(ω, t, y, z) : Ω× [ 0, T ]× R× Rd 7→ R

satisfying suitable conditions.

A backward stochastic differential equation (BSDE) is an equation of the form:

Yt = Y0 −
∫

[0,t]

g(u, Yu, Zu) du+

∫

[0,t]

Zu dMu, ∀t ∈ [0, T ];

YT = X.

(2)

In the work of Peng [12] and Pardoux and Peng [11], M is a Brownian Motion. A

solution of (2) is a pair (Y,Z) of adapted processes. In [11] it is shown that for a

given terminal condition X ∈ L2(FT ) the equation (2) has a unique solution (Y,Z) if

g satisfies some regular conditions. The solution (Y,Z) is required to be adapted to

the forward filtration, and Z is required to be predictable. More general martingales

M were considered by El Karoui and Huang [7]. Cohen and Elliott [4], [5] discussed

backward stochastic differential and difference equations when the martingale term M

is related to a finite state Markov chain or some other finite state processes.

For appropriate coefficients g, a general dynamic risk measure ρ can be defined using

the solutions of the BSDE (2) by putting ρt(X) = −Yt. The dynamic risk measure

(ρt)t∈[ 0,T ] then provides a measure of risk of a position X at intermediate times t

between the initial time 0 and the final T . Depending on the properties of g, ρt will

be a dynamic risk measure. ρT will be the opposite of the final risky position, i.e.

ρT (X) = −X. See [3].

3.1. The continuous finite time single jump process

Consider a continuous finite time single jump process W (ω) = {Wt(ω), t ∈ [0, L]},
where L is a finite deterministic terminal time. In fact, W (ω) remains at 0 until a
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random time τ(ω) (where 0 < τ(ω) ≤ L a.s.), when it jumps to 1. τ might model the

time of an insurance event or a default.

Then W can be defined on the filtered probability space (Ω,F , {Ft}0≤t≤L, µ), where

Ω = [0, L], F = B([0, L]), Ft is the completed σ-field generated by {Ws, s ≤ t} and

µ : F → [0, 1] is a probability measure on (Ω,F). We suppose that the probability of

a jump at time zero is zero.

Write Ft for the probability that τ ∈]t, L]. Then Ft is monotonic and non-increasing.

We suppose Ft is continuous.

For t ∈]0, L], write

pt = Iτ(ω)≤t,

p̃t =

∫

]0,τ(ω)∧t]

1

Fs
d(−Fs).

Then qt = pt − p̃t is an Ft martingale. ([6], [8])

Consider the set L1(Ω,F , µ) of functions such that
∫

Ω
|f |dµ < +∞. For g ∈ L1(µ)

we define the Stieltjes integrals, with Ω = [0, L],
∫

[0,L]

g(u)dpu = g(τ(ω)),

∫

[0,L]

g(u)dp̃u =

∫

]0,τ(ω)]

g(u)
1

Fu
d(−Fu).

Put ∫

[0,L]

g(u)dqu =

∫

[0,L]

g(u)dpu −
∫

[0,L]

g(u)dp̃u

and ∫

]0,t]

g(u)dqu =

∫

[0,L]

Iu≤tg(u)dqu.

We have the following Martingale Representation Theorem ([6], [8]).

Theorem 3.1. For any Ft martingale Mt defined on (Ω,F , {Ft}0≤t≤L, µ), there ex-

ists g ∈ L1(µ) such that Mt =M0 +Mg
t a.s., where Mg

t =
∫

]0,t]
g(u)dqu.

3.2. Backward stochastic differential equations

A backward stochastic differential equation (BSDE) based on the martingale random

measure q is an equation of the form

Yt +

∫

]t,L]

H(ω, u, Zu(·))d(−Fu) +

∫

]t,L]

Zudqu = Q (3)
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for t ∈ [0, L].

Here, H is an adapted function H : Ω× [0, L]×R→ R. A solution of the BSDE (3)

is a pair of adapted processes (Y,Z) which satisfies (3) with YL(ω) = Q(ω) for ω ∈ Ω.

We assume Yu is left continuous. Also we suppose H(ω, u, Zu(·)) ∈ L2(Fu) for all u.

Theorem 3.2. Assume that H is Lipschitz continuous as follows: there exists c ∈ R+

such that for all u ∈ [0, L]

∣∣H(ω, u, Z1
u(·))−H(ω, u, Z2

u(·))
∣∣ ≤ c

∣∣Z1
u − Z2

u

∣∣ . (4)

Then for any FL-measurable terminal condition Q, the BSDE (3) has an adapted

unique solution (Y,Z). (See Shen and Elliott [13].)

4. Optimal design problem

In the following, we focus on an optimal transaction between two economic agents,

respectively denoted by A and B, who exist in an uncertain universe modeled by the

filtered probability space (Ω,F , {Ft}0≤t≤L, µ). In the work of Barrieu and El Karoui

[2], a problem is considered where uncertainty is modeled by a Brownian filtration.

Suppose agent A invests a dollars in a defaultable zero-coupon bond with maturity

T (0 < T < L) at time 0. Agent A is exposed towards a non-hedgeable risk associated

with the possible default. Default might occur at a random time τ , (where τ is defined

on the above probability space (Ω,F , µ) and 0 < τ ≤ L). For t ∈]0, T ], the time-t

value X of the defaultable zero-coupon bond, with maturity T , deterministic interest

rate (r(s); s ≥ 0) and constant rebate δ (0 < δ < 1), is defined as:

• The payment of a exp(
∫

]0,T ]
r(s)ds) at time T if default τ has not occurred before

time T .

• A payment of aδ exp(
∫

]0,T ]
r(s)ds), made at maturity, if the default time τ ≤ T .

That is,

X = a exp

(∫

]0,T ]

r(s)ds

)
(Iτ>T + δIτ≤T ).

Agent A wishes to issue a financial product S(τ) and sell it to agent B for a forward

price paid at time T , denoted by π to reduce his exposure.

74 Chapter 5: Continuous Time



Optimal Design of Dynamic Default Risk Measures 7

4.1. Optimal structure in a static framework

Suppose that both agents assess the risk associated with their respective positions

using an entropic risk measure as defined by (1), denoted respectively eγ and eγ
′
. Here

agent A (resp. B) has risk tolerance γ (resp. γ′).

The issuer, agent A, wants to determine the structure (S, π) as to minimize his

global risk measure

inf
S,π

eγ(X − S + π)

with the constraint

eγ
′
(S − π) ≤ eγ′

(0) = 0.

Using the translatability property in Section 2.1 and binding the constraint at the

optimum, the pricing rule of the S-structure is fully determined by the buyer as

π∗ = −eγ′
(S).

Using again the translatability property, the optimization program simply becomes

inf
S

(
eγ(X − S) + eγ

′
(S)
)
.

4.2. Solving the inf-convolution in a dynamic framework

We extend the notion of static entropic risk measure defined by (1) to a dynamic

one on the filtered probability space (Ω,F , {Ft}0≤t≤L, µ).

For t ∈]0, T ], consider the martingale

Mγ
t = E

[
exp

(
−X − S

γ

)∣∣∣∣Ft
]
,

where the risk tolerance coefficient γ is strictly positive. Define the dynamic entropic

risk measure associated with receiving X and paying S at time T

eγt (X − S) = γ logMγ
t .

We now prove the following result:

Theorem 4.1. (−eγt (X − S), Zγt ) is the solution of the following BSDE

−eγt (X − S) +

∫

]t,T ]

Hγ(ω, u, Zγu(·))d(−Fu) +

∫

]t,T ]

Zγudqu = X − S (5)

where

Hγ(ω, t, Zγt (·)) =
It≤τ
Ft

(
Zγt + γ exp

(
−Z

γ
t

γ

)
− γ
)
.
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Proof. We shall prove −eγt (X − S) is the solution of the BSDE (5).

Clearly, eγT (X − S) = −(X − S).

By the Martingale Representation Theorem for the single jump process ([6], [8]),

there exists a unique ϕγ ∈ L1(µ) , such that for t ∈]0, T ],

Mγ
t = Mγ

0 +

∫

]0,t]

ϕγsdqs.

By the Itô formula ([8]),

eγt (X − S) = γ logMγ
0 + γ

∫

]0,t]

1

Mγ
u−
ϕγu(dpu − dp̃u)

+ γ
∑

0<u≤t
(logMγ

u − logMγ
u− −

1

Mγ
u−
4Mγ

u )

= γ logMγ
0 + γ

(
Iτ≤t

ϕγτ
Mγ
τ−
−
∫

]0,τ∧t]

ϕγu
Mγ
u−

1

Fu
d(−Fu)

)

+ γIτ≤t
(

log

(
1 +

ϕγτ
Mγ
τ−

)
− ϕγτ
Mγ
τ−

)

= γ logMγ
0 − γ

∫

]0,τ∧t]

ϕγu
Mγ
u−

1

Fu
d(−Fu)

+ γ

∫

]0,t]

log

(
1 +

ϕγu
Mγ
u−

)
dpu

= γ logMγ
0 + γ

∫

]0,τ∧t]
log

(
1 +

ϕγu
Mγ
u−

)
1

Fu
− ϕγu
Mγ
u−

1

Fu
d(−Fu)

+ γ

∫

]0,t]

log

(
1 +

ϕγu
Mγ
u−

)
dqu.

Define

Zγu = −γ log

(
1 +

ϕγu
Mγ
u−

)
, (6)

then

ϕγu
Mγ
u−

= exp

(
−Z

γ
u

γ

)
− 1.

For the expression for ϕγ , see Appendix A.
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Hence,

eγt (X − S) = γ logMγ
0 −

∫

]0,τ∧t]

(
Zγu
Fu

+
γ

Fu

(
exp

(
−Z

γ
u

γ

)
− 1

))
d(−Fu)

−
∫

]0,t]

Zγudqu

= γ logMγ
0 −

∫

]0,t]

Iu≤τ
Fu

(
Zγu + γ exp

(
−Z

γ
u

γ

)
− γ
)
d(−Fu)

−
∫

]0,t]

Zγudqu.

Write

Hγ(ω, u, Zγu(·)) =
Iu≤τ
Fu

(
Zγu + γ exp

(
−Z

γ
u

γ

)
− γ
)
,

then

eγt (X − S) = γ logMγ
0 −

∫

]0,t]

Hγ(ω, u, Zγu(·))d(−Fu)−
∫

]0,t]

Zγudqu.

Since

eγT (X − S) = −(X − S)

= γ logMγ
0 −

∫

]0,T ]

Hγ(ω, u, Zγu(·))d(−Fu)−
∫

]0,T ]

Zγudqu,

then

−eγt (X − S) +

∫

]t,T ]

Hγ(ω, u, Zγu(·))d(−Fu) +

∫

]t,T ]

Zγudqu = X − S.

By Theorem 3.2, (−eγt (X − S), Zγt ) is the unique solution of BSDE (5) with terminal

condition X − S. �

We now discuss the inf-convolution of two entropic risk measures.

Similarly to the above, for γ′ define:

Mγ′

t = E
[

exp

(
− S
γ′

)∣∣∣∣Ft
]

and

eγ
′

t (S) = γ′ logMγ′

t .

Then as above there exists a unique ϕγ
′ ∈ L1(µ) , such that for t ∈]0, T ],

Mγ′

t = Mγ′

0 +

∫

]0,t]

ϕγ
′
s dqs.

For the expression for ϕγ′
, see Appendix A.
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Also from Theorem 4.1

−eγ
′

t (S) +

∫

]t,T ]

Hγ′
(ω, u, Zγ

′
u (·))d(−Fu) +

∫

]t,T ]

Zγ
′

u dqu = S, (7)

where

Zγ
′

u = −γ′ log

(
1 +

ϕγ
′
u

Mγ′
u−

)
, (8)

and

Hγ′
(ω, u, Zγ

′
u (·)) =

Iu≤τ
Fu

(
Zγ

′
u + γ′ exp

(
−Z

γ′
u

γ′

)
− γ′

)
.

eγ
′

t (S) is the dynamic entropic risk measure of S when the risk tolerance is γ′.

We now study for any t ∈]0, T ] the inf-convolution of the dynamic entropic risk

measures eγt and eγ
′

t . As in Theorem 2.1 this is defined as

(
eγ�eγ′)

t
(X) = inf

S

(
eγt (X − S) + eγ

′

t (S)
)
.

This quantity describes the optimum minimal total remaining risk for the two investors

if A buys an insurance product of value S from B.

Write Zu = Zγu + Zγ
′

u , then we have

Hγ(ω, u, Zγu(·)) +Hγ′
(ω, u, Zγ

′
u (·))

= Hγ(ω, u, Zu(·)− Zγ′
u (·)) +Hγ′

(ω, u, Zγ
′

u (·)).

Define

Hγ�Hγ′
(ω, u, Zu(·)) = inf

Zγ
′
u

(
Hγ(ω, u, Zu(·)− Zγ′

u (·)) +Hγ′
(ω, u, Zγ

′
u (·))

)
.

We now prove the following theorem:

Theorem 4.2.

Hγ�Hγ′
(ω, u, Zu(·)) = Hγ+γ′

(ω, u, Zu(·)). (9)

Also

(
eγ�eγ′)

t
(X) =

∫

]t,T ]

Hγ+γ′
(ω, u, Zu(·))d(−Fu) (10)

+

∫

]t,T ]

Zudqu −X

=
(
eγ+γ′)

t
(X).
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Proof. Adding (5) and (7), we have

eγt (X − S) + eγ
′

t (S) =

∫

]t,T ]

(
Hγ(ω, u, Zγu(·)) +Hγ′

(ω, u, Zγ
′

u (·))
)
d(−Fu)

+

∫

]t,T ]

(
Zγu + Zγ

′
u

)
dqu −X.

With Zu = Zγu + Zγ
′

u , then

eγt (X − S) + eγ
′

t (S) (11)

=

∫

]t,T ]

(
Hγ(ω, u, Zu(·)− Zγ′

u (·)) +Hγ′
(ω, u, Zγ

′
u (·))

)
d(−Fu)

+

∫

]t,T ]

Zudqu −X.

Consider the functional

Hγ(ω, u, Zu(·)− Zγ′
u (·)) +Hγ′

(ω, u, Zγ
′

u (·)) (12)

=
Iu≤τ
Fu

(
Zu + γ exp

(
−Zu − Z

γ′
u

γ

)
+ γ′ exp

(
−Z

γ′
u

γ′

)
− γ − γ′

)
.

This is a convex function with respect to Zγ
′

u , since the second derivative of (12) with

respect to Zγ
′

u is, for each ω,

Iu≤τ
Fu

(
1

γ
exp

(
−Zu − Z

γ′
u

γ

)
+

1

γ′
exp

(
−Z

γ′
u

γ′

))
≥ 0.

Therefore, for each ω, the minimum of (12) with respect to Zγ
′

u occurs when the

first derivative of (12) with respect to Zγ
′

u is zero. That is when

Iu≤τ
Fu

(
exp

(
−Zu − Z

γ′
u

γ

)
− exp

(
−Z

γ′
u

γ′

))
= 0. (13)

Write Z∗γ
′

u for the value at which the minimum is attained. Clearly, Z∗γ
′

u is unique,

and

Z∗γ
′

u =
γ′

γ + γ′
Zu.

Therefore

Hγ�Hγ′
(ω, u, Zu(·)) = inf

Zγ
′
u

(
Hγ(ω, u, Zu(·)− Zγ′

u (·)) +Hγ′
(ω, u, Zγ

′
u (·))

)
(14)

= Hγ(ω, u, Zu(·)− Z∗γ′
u (·)) +Hγ′

(ω, u, Z∗γ
′

u (·))

=
Iu≤τ
Fu

(
Zu + (γ + γ′)e−

Zu
γ+γ′ − (γ + γ′)

)

= Hγ+γ′
(ω, u, Zu(·)).
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This establishes equation (9).

By (11) and (9), we obtain

eγt (X − S) + eγ
′

t (S) ≥
∫

]t,T ]

(
Hγ+γ′

(ω, u, Zu(·))
)
d(−Fu)

+

∫

]t,T ]

Zudqu −X,

therefore

inf
S

(
eγt (X − S) + eγ

′

t (S)
)
≥
∫

]t,T ]

(
Hγ+γ′

(ω, u, Zu(·))
)
d(−Fu) (15)

+

∫

]t,T ]

Zudqu −X.

Take S∗ = γ′

γ+γ′X. We shall show that

eγt (X − S∗) + eγ
′

t (S∗) =

∫

]t,T ]

(
Hγ+γ′

(ω, u, Zu(·))
)
d(−Fu) (16)

+

∫

]t,T ]

Zudqu −X.

In fact, with S∗ = γ′

γ+γ′X,

X − S∗
γ

=
S∗

γ′
.

Therefore, the martingales

Mγ
t = E

[
exp

(
−X − S

∗

γ

)∣∣∣∣Ft
]

and

M∗γ
′

t = E
[

exp

(
−S
∗

γ′

)∣∣∣∣Ft
]

are equal, as well the integrands ϕγ , ϕ∗γ
′

in their martingale representations. Then

with

Zγu = −γ log

(
1 +

ϕγu
Mγ
u−

)

and

Z∗γ
′

u = −γ′ log

(
1 +

ϕ∗γ
′

u

M∗γ
′

u−

)
,

we have

γZ∗γ
′

u = γ′Zγu .
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With

Zu = Zγu + Z∗γ
′

u

=
γ + γ′

γ′
Z∗γ

′
u ,

we have

Z∗γ
′

u =
γ′

γ + γ′
Zu.

Consequently, as in (9) this Z∗γ
′

u is such that

inf
Zγ

′
u

(
Hγ(ω, u, Zu(·)− Zγ′

u (·)) +Hγ′
(ω, u, Zγ

′
u (·))

)

= Hγ(ω, u, Zu(·)− Z∗γ′
u (·)) +Hγ′

(ω, u, Z∗γ
′

u (·))

= Hγ�Hγ′
(ω, u, Zu(·))

= Hγ+γ′
(ω, u, Zu(·)).

This establishes (10).

We have established that for all t ∈]0, T ], when S = S∗ and Zγ
′

t = Z∗γ
′

t , we have

inf
S

(
eγt (X − S) + eγ

′

t (S)
)

(17)

= eγt (X − S∗) + eγ
′

t (S∗)

=

∫

]t,T ]

inf
Zγ

′
u

(
Hγ(ω, u, Zu(·)− Zγ′

u (·)) +Hγ′
(ω, u, Zγ

′
u (·))

)
d(−Fu)

+

∫

]t,T ]

Zudqu −X

=

∫

]t,T ]

Hγ(ω, u, Zu(·)− Z∗γ′
u (·)) +Hγ′

(ω, u, Z∗γ
′

u (·))d(−Fu)

+

∫

]t,T ]

Zudqu −X.

By Theorem 3.2, (−eγ
′

t (S∗), Z∗γ
′

t ) is the unique solution of BSDE (7) with terminal

condition S∗. We note that for any constant c,

eγt (X − S − c) = eγt (X − S) + c

and

eγ
′

t (S + c) = eγ
′

t (S)− c.

Therefore, S∗ + c is also optimal.
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5. Conclusion

We obtained an optimal solution for the inf-convolution problem of the dynamic

entropic risk measures. This is the minimum remaining risk if investor A buys an

insurance product of value S from B.

Appendix A. The expression for ϕγ and ϕγ′

Clearly, S is FT -measurable, therefore, S is defined as

S = h(τ)Iτ≤T + bIτ>T

where h ∈ L1(µ) and b is constant.

As in Davis’s paper [6], for all t ∈]0, T ], the integrands have the form

ϕγt = exp

(
− 1

γ

(
aδ exp

(∫

]0,T ]

r(s)ds

)
− h(t)

))

− 1

Ft

∫

]t,T ]

exp

(
− 1

γ

(
aδ exp

(∫

]0,T ]

r(s)ds

)
− h(u)

))
d(−Fu)

− FT
Ft

exp

(
− 1

γ

(
a exp

(∫

]0,T ]

r(s)ds

)
− b
))

,

and

ϕγ
′

t = exp

(
−h(t)

γ′

)
− 1

Ft

∫

]t,T ]

exp

(
−h(u)

γ′

)
d(−Fu)− FT

Ft
exp

(
− b

γ′

)
.
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