ORAL AND SMALL INTESTINAL SENSITIVITY
TO FATS IN LEAN AND OBESE HUMANS:
IMPLICATIONS FOR ENERGY INTAKE REGULATION IN OBESITY

A thesis submitted by

Radhika Seimon

For the degree of

Doctor of Philosophy

Discipline of Medicine

School of Medicine

The University of Adelaide

March 2012
Chapter 1: Thesis Overview

Chapter 2: Oral and Gastrointestinal Factors Involved in the Regulation of Appetite and Energy Intake

2.1 Introduction

2.2 Anatomy and function of the oral cavity and the gastrointestinal tract

2.3 Fasting and nutrient-induced, postprandial gastrointestinal motility

2.3.1 Fasting motor patterns

2.3.2 Postprandial motor patterns

2.3.2.1 Gastric emptying

2.4 Effects of nutrients on gastrointestinal hormones

2.4.1 Cholecystokinin

2.4.2 Peptide tyrosine tyrosine

2.4.3 Ghrelin

2.4.4 Glucagon-like peptide-1 (GLP-1)

2.4.5 Glucose-dependent insulinotropic polypeptide

2.4.6 Insulin

2.5 Effect of gastrointestinal hormones on gastrointestinal motility and blood glucose control

2.5.1 CCK

2.5.2 PYY

2.5.3 Ghrelin

2.5.4 GLP-1

2.5.5 GIP

2.6 Effect of nutrients on appetite and energy intake, and the interrelation with gastrointestinal function

2.6.1 Effects of nutrients on appetite and energy intake

2.6.2 Role of gastrointestinal hormones in the regulation of appetite and energy intake

2.6.2.1 CCK

2.6.2.2 PYY

2.6.2.3 GLP-1
2.6.2.4 Ghrelin .. 25
2.6.3 Role of gastrointestinal motility on appetite and energy intake 26
2.7 Nutrient tasting in the oral cavity .. 27
2.7.1 Oral free fatty acid detection .. 28
2.7.2 Physiological responses induced by oral fat exposure 29
2.8 Conclusion .. 30

Chapter 3: Effects of Dietary Excess and Restriction on Gastrointestinal
Function and Energy Intake in Obesity ... 31
3.1 Definition of obesity .. 31
3.2 Prevalence of obesity .. 32
3.3 Significance of obesity .. 33
3.4 Current therapies for obesity .. 33
3.5 Gastrointestinal function in obesity ... 36
3.5.1 Gastrointestinal motility in obesity 36
3.5.2 Gastrointestinal hormones in obesity 37
3.6 Role of high dietary fat intake in the development of obesity 40
3.7 Previous patterns of dietary intake in the modulation of gastrointestinal
function ... 41
3.7.1 Effect of dietary excess on gastrointestinal motor function 41
3.7.2 Effect of dietary excess on gastrointestinal hormone secretion .. 43
3.7.3 Effect of dietary excess on appetite and energy intake 45
3.7.4 Effect of dietary excess on oral fat sensitivity 46
3.7.5 Effects of energy restriction on gastrointestinal function, appetite and
energy intake .. 47
3.7.5.1 Effects of acute energy restriction on gastrointestinal function,
appetite and energy intake .. 48
3.7.5.2 Effects of long-term energy restriction on gastrointestinal function ... 49
3.8 Conclusion ... 51

Chapter 4: Subjects and Methodologies ... 53
4.1 Introduction ... 53
4.2 Subjects ... 53
4.2.1 Study subjects ... 53
4.2.2 Subject recruitment ... 54
4.2.3 Exclusion criteria .. 54
4.3 Ethics committee approval ... 55
4.4 Assessment of gastrointestinal motor function 56
4.4.1 High resolution manometry ... 56
4.4.2 Scintigraphy ... 59
4.5 Assessment of plasma hormone and blood glucose concentrations 61
4.5.1 Plasma cholecystokinin .. 61
4.5.2 Plasma peptide tyrosine tyrosine ... 62
4.5.3 Plasma ghrelin .. 63
4.5.4 Plasma glucagon-like peptide-1 (GLP-1) 64
4.5.5 Plasma glucose-dependent insulinotrophic polypeptide 64
4.5.6 Plasma insulin ... 65
4.5.7 Blood glucose concentrations ... 65
4.6 Assessment of appetite perceptions ... 65
4.7 Assessment of dietary intake ... 66
 4.7.1 Buffet meal ... 66
 4.7.2 Dietary questionnaire for epidemiological studies 69
 4.7.3 Diet diaries ... 69
 4.7.3.1 Two-day diet recalls .. 69
 4.7.3.2 Five-day diet diary ... 70
 4.7.3.3 Data analysis ... 70
4.8 Dietary restriction .. 70
 4.8.1 70% VLCD .. 70
 4.8.2 30% energy-restricted diet ... 71
4.9 Assessment of oral fatty acid detection thresholds 72
4.10 Evaluation of gastrointestinal and appetite responses to oral and
 intraduodenal nutrients .. 73
 4.10.1 Oral test meal ... 74
 4.10.2 Intraduodenal infusions ... 74
 4.10.2.1 Triglyceride emulsion ... 74
 4.10.2.2 Sodium oleate solution ... 74
4.11 Statistical analysis ... 75

Chapter 5: Pooled-Data Analysis Identifies Pyloric Pressures and Plasma CCK
Concentrations as Major Determinants of Acute Energy Intake in Healthy
Lean Males ... 76
 5.1 Summary .. 76
 5.2 Introduction ... 77
 5.3 Methods .. 79
 5.3.1 Subjects .. 79
 5.3.2 Study design ... 80
 5.3.3 Study protocols ... 80
 5.3.4 Data analysis ... 81
 5.3.5 Statistical analysis ... 82
 5.4 Results ... 87
 5.4.1 Bivariate correlation analyses .. 87
 5.4.2 Multivariable mixed effects models 88
 5.5 Discussion .. 94

Chapter 6: Gastric Emptying, Oro-caecal Transit, Blood Glucose, Gut
Hormones, Appetite and Energy Intake Responses to a Nutrient Liquid Drink
in Lean, Overweight and Obese Males ... 99
 6.1 Summary .. 99
 6.2 Introduction .. 100
 6.3 Materials and methods .. 103
 6.3.1 Subjects .. 103
 6.3.2 Study protocol .. 103
 6.3.3 Data analysis .. 104
 6.3.3.1 Gastric emptying, intragastric distribution and mouth-to-caecum
 transit .. 104
 6.3.3.2 Blood glucose and plasma GLP-1, GIP and insulin concentrations 104
Chapter 9: Effects of Acute and Longer-Term Dietary Restriction On Antropyloroduodenal Motility, Gut Hormones, Appetite and Energy Intake Responses To Duodenal Lipid, and on Oral Fat Perception, in Lean and Obese Males

9.1 Summary .. 165
9.2 Introduction .. 165
9.3 Methods .. 166
 9.3.1 Subjects .. 166
 9.3.2 Study outline .. 169
 9.3.3 Determination of energy requirements and diet plans ... 170
 9.3.4 Dietary intervention ... 170
 9.3.5 Study protocol ... 170
 9.3.6 Study day protocol for visits 1–4 ... 171
 9.3.7 Data analysis .. 172
 9.3.7.1 Antropyloroduodenal pressures .. 172
 9.3.7.2 Gastrointestinal hormone concentrations ... 172
 9.3.7.3 Appetite, energy intake and habitual dietary intake 172
 9.3.8 Statistical analysis ... 172
9.4 Results ... 174
 9.4.1 Habitual energy intake and macronutrient distribution .. 174
 9.4.2 Part 1: Effects of acute dietary restriction in the lean and obese 174
 9.4.2.1 Body weight and waist circumference ... 174
 9.4.2.2 Antropyloroduodenal pressures ... 174
 9.4.2.3 Gastrointestinal hormones ... 175
 9.4.2.4 Appetite perceptions .. 176
 9.4.2.5 Energy and macronutrient intake ... 177
 9.4.3 Part 2: Effects of prolonged dietary restriction in the obese 178
 9.4.3.1 Body weight and waist circumference ... 178
 9.4.3.2 Antropyloroduodenal pressures ... 179
 9.4.3.3 Gastrointestinal hormones ... 179
 9.4.3.4 Appetite perceptions .. 180
 9.4.3.5 Energy and macronutrient intake ... 180
List of Figures

Figure 2.1: Basic anatomy of a taste bud ... 6
Figure 2.2: Basic anatomy of the stomach and small intestine 7
Figure 2.3: Motor patterns associated with normal gastric emptying (Rayner and Horowitz 2005) .. 11

Figure 3.2: Gastric emptying (A) and mount-to-caecum transit (B) of a high fat test meal (1.4 MJ) following a 14-day consumption of a low fat (9 MJ/day) or high fat (19.3 MJ/day) diet in healthy male subjects (n = 12). * vs low fat, P < 0.05 (Cunningham et al. 1991a) ... 42

Figure 3.3: Average daily energy intake over two weeks in response to covert manipulations of the fat content of the diet in healthy female subjects (n = 24). * vs 15–20% and the 30–35% fat diet, P < 0.001 (Lissner et al. 1987) ... 46

Figure 3.4: Gastric emptying of 75 g of a glucose load (320 mL), in lean (n = 12) and obese (n = 11) subjects on a four-day fast versus an overnight fast. * vs overnight fast, P < 0.05 (Corvilain et al. 1995) 48

Figure 4.1: Schematic representation of the manometric catheter incorporating six antral and seven duodenal side-holes, a pyloric sleeve sensor and duodenal infusion port .. 57

Figure 6.1: Total (A), distal (B) and proximal (C) stomach retention following oral ingestion of 500 ml (532 kcal) of Ensure® test meal in lean, overweight and obese subjects. Repeated-measures ANOVA with time as factors were used to determine statistical difference. If ANOVAs revealed significant effects, pairwise comparisons were performed. Data are means ± SEM (n = 20 lean, 20 overweight and 20 obese) 113

Figure 6.2: Blood glucose concentrations (A), plasma GLP-1 (B) GIP (C) and insulin (D) following oral ingestion of 500 ml (532 kcal) of Ensure® test meal in lean, overweight and obese subjects. Repeated-measures ANOVA with time as factors were used to determine statistical difference. If ANOVAs revealed significant effects, pairwise comparisons were performed. Data are means ± SEM (n = 20 lean, 20 overweight and 20 obese). * vs lean, P < 0.05; # vs overweight P < 0.05 ... 114

Figure 7.1: Number (mean ± SEM) of IPPW during 90-min intraduodenal infusions of either saline or oleic acid (C18:1) (0.78 kcal/min). Repeated-measures ANOVA, with treatment, subject group and time as factors, was used to determine statistical difference. If ANOVAs revealed significant effects, pairwise comparisons were performed.
Treatment x group interaction: \(P < 0.01; \) * \(P < 0.05 \) for overall curve, Lean-C18:1 vs Lean-Saline. Data are absolute values, \(n = 8 \) lean and 11 overweight/obese subjects.

Figure 7.2: Plasma CCK (A) and PYY (B) concentrations (mean ± SEM) during 90-min intraduodenal infusions of either saline or oleic acid (C18:1) \((0.78 \text{ kcal/min}) \). Repeated-measures ANOVA, with treatment, subject group and time as factors, was used to determine statistical difference. If ANOVAs revealed significant effects, pairwise comparisons were performed. (A) Treatment x group interaction: \(P < 0.01; \) Treatment x time interaction: \(P = 0.076, \) * \(P < 0.05 \) for overall curve, Lean-C18:1 vs Lean-Saline, \# \(P < 0.05 \) for overall curve, Overweight/obese-C18:1 vs overweight/obese-Saline, (B) Treatment x time interaction: \(P < 0.01; \) § \(P < 0.05 \) for time points \(t = 60, 75 \) and 90 min, C18:1 vs Saline treatments. Data are absolute values, \(n = 8 \) lean and 11 overweight/obese subjects.

Figure 7.3: Relationship between oral detection thresholds for oleic acid (C18:1) and total number of IPPW during 90-min intraduodenal infusion of saline and oleic acid (C18:1) \((0.78 \text{ kcal/min}) \). For IPPW, data obtained during saline infusion were subtracted from those obtained during C18:1 infusion, and resulting values used for calculation of the correlations by Pearson correlations: \(r = -0.515, P < 0.05. \) \(n = 8 \) lean and 11 overweight/obese subjects.

Figure 8.1: Basal pyloric pressure (A) and number (B), and amplitude (C), of IPPW during 120-min intraduodenal infusion of 10% Intralipid® \((2.86 \text{ kcal/min}) \) before (visit 1) and after (visit 2) a four-day VLCD. * \(P < 0.05 \) vs visit 1. Data are mean ± SEM \((n = 8). \) *Please, note that the data shown in this figure refer to means at defined time points, while the peak data reported in the text are based on actual peak values in individuals, which did not necessarily occur at the same time points across individuals, thus the maximum values in the figure do not reflect actual peak values.

Figure 8.2: Number of PWS during 120-min intraduodenal infusion of 10% Intralipid® \((2.86 \text{ kcal/min}) \) before (visit 1) and after (visit 2) a four-day VLCD. * \(P < 0.05 \) vs visit 1. Data are mean ± SEM \((n = 8). \)

Figure 8.3: Plasma CCK (A), PYY (B) and ghrelin (C) during 120-min intraduodenal infusion of 10% Intralipid® \((2.86 \text{ kcal/min}) \) before (visit 1) and after (visit 2) a four-day VLCD. * \(P < 0.05 \) vs visit 1. Data are mean ± SEM \((n = 8). \)

Figure 8.4: Scores for hunger (A) and nausea (B) during 120-min intraduodenal infusion of 10% Intralipid® \((2.86 \text{ kcal/min}) \) before (visit 1) and after (visit 2) a four-day VLCD. * \(P < 0.05 \) vs visit 1. Data are mean ± SEM \((n = 8). \)

Figure 9.1: Schematic representation of the study protocol for lean and obese subjects. Obese subjects attended the laboratory on four occasions: day
0, before starting the diet (visit 1), day 5 (visit 2), day 29 (visit 3) and day 85 (visit 4). They also attended the laboratory each fortnight (days 13, 27, 41, 55 and 69) during the study for a meeting with a dietician to review their diet and record their body weight. Lean subjects attended the laboratory on two occasions: day 0 (visit 1), and day 5 (visit 2). During each study visit the effects of acute dietary restriction on GI function and energy intake in response to 120-min intraduodenal infusions of 10% Intralipid (2.86 kcal/min) were evaluated.

Figure 9.2: Plasma CCK and ghrelin concentrations during 120-min intraduodenal infusions of 10% Intralipid (2.86 kcal/min) on day 0 (visit 1) and day 5 (visit 2) (A and B), on a four-day (acute), in lean and obese, and on day 1 (visit 1), day 29 (visit 3) and day 85 (visit 4) (C and D), on a 12-week (prolonged), in obese, 30% energy-restricted diet. * P < 0.05 vs visit 1 in lean; # vs visit 1 in obese; § vs visit 2 in obese. Data are mean ± SEM. (n = 12 lean and 12 obese).

Figure 9.3: Desire to eat and hunger scores during 120-min intraduodenal infusions of 10% Intralipid (2.86 kcal/min) on day 0 (visit 1) and day 5 (visit 2) (A and B), on a four-day (acute), in lean and obese, and on day 0 (visit 1), day 29 (visit 3) and day 85 (visit 4) (C and D), on a 12-week (prolonged), in obese, 30% energy-restricted diet. * P < 0.05 vs visit 1 in lean, # vs visit 1 in obese. Data are mean ± SEM. (n = 12 lean and 12 obese).
List of Tables

Table 4.1: Composition of the buffet meal ...68
Table 5.1: Subject and protocol details for each study included in the data analyses ...84
Table 5.2: Parameters measured in each study ..86
Table 5.3: Within-subject correlations between energy intake and gastrointestinal
motor, hormone and perception variables ..90
Table 5.4: Results of mixed effects multivariable models for determination of
independent predictors of energy intake ..92
Table 6.1: Energy intake and macronutrient distribution at the buffet meal
following ingestion of 500 ml (532 kcal) of Ensure® test meal in lean, overweight
and obese subjects ..111
Table 6.2: Habitual energy and macronutrient distribution of lean, overweight and
obese subjects, quantified using validated dietary questionnaires112
Table 7.1: Antral and duodenal motility indices during 90-min intraduodenal
infusions of saline or oleic acid (C18:1) ...131
Table 7.2: Energy and macronutrient intake from the buffet meal following 90-min
intraduodenal infusions of saline or C18:1 ...132
Table 7.3: Recent energy and macronutrient consumption of lean and
overweight/obese subjects ..133
Table 8.1: Total number and mean amplitude of antral and duodenal pressure
waves during 120-min intraduodenal infusion of 10% Intralipid® (2.86
kcal/min) before (visit 1) and after (visit 2) a four-day VLCD 2154
Table 8.2: Energy intake at a buffet meal immediately following 120-min
intraduodenal infusion of 10% Intralipid® (2.86 kcal/min) before (visit 1)
and after (visit 2) a four-day VLCD 2 ...155
Table 9.2: Antral and duodenal motility indices during 120-min intraduodenal
infusion of 10% Intralipid (2.86 kcal/min) on day 0 (visit 1), day 5 (visit 2)
(lean and obese), day 29 (visit 3) and day 85 (visit 4) (obese only), on
a four-day, for lean, and 12-week, for obese, 30% energy-restricted diet 3183
Table 9.3: Energy and macronutrient intake from the buffet meal following a 120-
min intraduodenal infusion of 10% Intralipid (2.86 kcal/min) on day 0
(visit 1), day 5 (visit 2) (lean and obese), day 29 (visit 3) and day 85
(visit 4) (obese only), on a four-day, for lean, and 12-week, for obese,
30% energy-restricted diet 1 ...184
The research presented in this thesis focuses on the complex and interrelated oral and gastrointestinal mechanisms involved in the regulation of appetite and energy intake in lean and obese individuals. The three broad areas of research that have been investigated in the thesis include: i) the gastrointestinal motor and hormonal functions involved in the regulation of energy intake in healthy individuals; ii) the effects of oral and intraduodenal nutrients on gastrointestinal motility and hormone release, appetite and energy intake in obese compared with lean individuals; and iii) the effects of acute and prolonged energy restriction on gastrointestinal function, appetite and energy intake.

Following ingestion of a meal, the interaction of nutrients with receptors in the small intestinal lumen modulates gastropyloroduodenal motility, stimulates the release of gastrointestinal hormones, and suppresses appetite and energy intake. It appears that modulation of gastrointestinal functions, that is, gastrointestinal motility and hormone release/suppression, mediate the regulation of appetite and acute energy intake in humans, at least in part. Changes in motility and hormone secretion occur concurrently with changes in appetite; however, there is little information regarding which, if any, of these factors are independent determinants of energy intake. In the study presented in Chapter 5, we determined independent predictors of energy intake and identified specific changes in gastrointestinal motor and hormone functions (i.e. stimulation of
Abstract

pyloric pressures and plasma cholecystokinin) that are associated with the suppression of acute energy intake in healthy lean males.

The incidence of obesity is rapidly increasing and, currently, the therapies used for the prevention and management of obesity have limited long-term benefits. In addition, the available therapies have largely ignored the pivotal role of the gastrointestinal tract in the regulation of appetite. There is evidence that gastrointestinal function in obesity is modified, which may be the result of the eating habits of obese individuals and, in turn, may also contribute to the maintenance of obesity by causing insufficient suppression of energy intake. However, much of the literature relating to gastrointestinal function in the obese is inconclusive and controversial. A better understanding of any adaptations that occur in obesity is important, particularly in regards to treatment approaches for weight loss.

There is also evidence that previous patterns of energy intake, in excess or in restriction, even when sustained for short periods, have the capacity to modify gastrointestinal function and energy intake. For example, in humans following a high fat diet for two weeks, gastric emptying and mouth-to-caecum transit in response to a high fat test meal were faster. In contrast, fasting had the opposite effect and a four-day fast slowed gastric emptying of a glucose drink in both lean and obese subjects, suggesting that a reduction in nutrient exposure may increase the sensitivity of gastrointestinal responses to nutrients in the obese.
Abstract

Although many studies have addressed aspects of gastrointestinal function in the obese, there is a lack of studies that have evaluated gastric emptying and gastrointestinal hormone release specifically GLP-1 and GIP, given the risk of diabetes in obesity, as well as previous patterns of nutrient intake concurrently. In the study presented in Chapter 6, we evaluated the effects of oral ingestion of a nutrient liquid on gastric emptying, oro-caecal transit, plasma GLP-1 and GIP, appetite and energy intake, as well as, habitual energy and fat intake in lean, overweight and obese individuals. We reported no differences in gastric emptying, intragastric distribution or oro-caecal transit between the lean, overweight and obese groups. After the drink, blood glucose and plasma insulin were greater in the obese, when compared with both the lean and overweight groups, however, there were no differences in plasma GLP-1 or GIP concentrations, appetite and energy intake at the buffet meal or habitual energy intake between the groups. In the obese, the magnitude of the rise in blood glucose was inversely related to the gastric emptying, suggesting that obesity per se, in the absence of differences in habitual energy intake, has no effect on gastric emptying or incretin hormone release and that gastric emptying influences postprandial blood glucose in the obese.

In Chapter 7, we investigated the hypothesis that gastrointestinal and oral sensitivity to fat is compromised in the obese and directly related to their high fat/energy consumption. For this purpose, we investigated the effects of an intraduodenal infusion (to bypass gastric emptying), of a fatty acid (oleic acid) on gastrointestinal function, appetite and energy intake, and relationships with habitual energy intake and oral fatty acid detection threshold in lean and obese individuals. We report that pyloric pressure,
which plays a major role in the regulation of gastric emptying, was lower in response to intraduodenal oleic acid infusion, with trends for reduced cholecystokinin stimulation and energy intake responses in the obese compared with lean. Oral fatty acid detection thresholds were higher in obese compared with lean subjects, and obese subjects also had greater habitual energy and fat intakes than lean subjects. The results suggest that the ability to detect fats both orally and within the gastrointestinal tract is compromised in obese males, probably due to their increased fat consumption.

In the study presented in Chapter 8, we evaluated the hypothesis that in obese individuals, the effects of duodenal fat on gastrointestinal motor and hormone function, and appetite would be enhanced by a short period on a very low calorie diet. We demonstrated that following a 70% four-day very low calorie diet there was a significant increase in pyloric pressure and the stimulation of PYY and suppression of ghrelin was greater during an intraduodenal lipid infusion. In addition, following the four-day very low calorie diet, appetite perceptions and energy intake in response to intraduodenal lipid were reduced, indicating that gastrointestinal function, appetite and energy intake in obese can be enhanced over a short period.

Given that gastrointestinal function is sensitive to changes even over short periods of dietary restriction, it is important to determine whether these changes are maintained in the long term in order to determine the efficacy of energy restriction therapies for obesity. To maintain dietary restriction and weight loss in the longer term, we used a 30%, as opposed to 70%, energy-restricted diet. In the study presented in Chapter 9, we evaluated the effects of an acute (in lean and obese) and prolonged (in obese only)
Abstract

30% energy restriction on gastrointestinal function and appetite in response to an intraduodenal lipid infusion. In contrast to the previous 70% very low calorie diet study, there were no differences in gastrointestinal motor or hormonal function in the obese following the acute or prolonged 30% dietary restriction period, although there was a trend for energy intake to be reduced. However, in the lean, there was a decrease in plasma CCK and an increase in ghrelin concentrations following the acute period of dietary restriction with no differences in gastrointestinal motility or energy intake, suggesting that a 30% energy-restricted diet diminishes gastrointestinal hormone responses in lean, but not obese, which may suggest that obese are less sensitive to this caloric restriction.

These observations will contribute to the advances in basic appetite physiology and will have clinical implications for further development of dietary interventions for the treatment of obesity.
Declaration of Originality

I, Radhika Seimon, certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Radhika Seimon

March 2012
Publications Arising from This Thesis

The data presented in this thesis have formed the basis for the publications listed below:

Dedication

To my late mother and to my father.

For your unconditional love and sacrifices,

For your continual support and encouragement, and

For your selflessness,

I am forever grateful.
Acknowledgements

The studies reported in this thesis were performed in the Discipline of Medicine, University of Adelaide and the Department of Nuclear Medicine, PET and Bone Densitometry at the Royal Adelaide Hospital. While conducting this research, I was financially supported by a Dawes Postgraduate Research Scholarship (2009–2012), jointly provided by the Royal Adelaide Hospital and the University of Adelaide.

First and foremost, I would like to thank my principle supervisor, Professor Christine Feinle-Bisset. I am ever so grateful for your continual support, encouragement, wisdom and friendship. Thank you for the time you spent on this thesis and for your patience with it all. I am so privileged to have had the opportunity to work and be mentored by you. Thank you also for the opportunities to travel overseas and attend conferences to present my work.

To the Christine Feinle-Bisset group, thank you for your help and support - it has been a pleasure working with you all. Special thank you to Tanya Little and Natalie Luscombe-Marsh for all the advice, encouragement and support. Briohny Bartlett and Asimina Kallas, thank you so much for your friendship and for all the laughs. Thank you for the invaluable contributions to the studies presented within this thesis and for giving up your weekends to come in to help.
To Diana Gentilcore, Amy Ryan, Gabrielle Heruc, Tongzhi Wu and Laurence Trahair, it has been great sharing an office with you all. Thank you for the laughs, chats and the many welcomed distractions.

To all other staff and students in the Discipline of Medicine and the Department of Nuclear Medicine, PET and Bone Densitometry, thank you for being so supportive throughout my candidature and thank you for all your help with the studies presented in this thesis. To Antonietta Russo, Professor Karen Jones and Max Bellon, thank you for your help with the gastric emptying study. Thank you to Professor Michael Horowitz for the support and encouragement through the years. Thank you to Judith Wishart, Scott Standfield and Bärbel Otto for the hormone analysis and Kylie Lange for help with the statistical analysis.

A special thank you to all the individuals who volunteered their time to participate in the studies presented in this thesis.

Thank you to all my friends for your love and encouragement. A special thank you to my friends Nadine Matti and Priya Jeyakumar, I am so blessed to have you in my life. Thank you for everything - your friendship and continuous love and support. Lisa Lines and Nick Brandenburg, thank you so much for your friendship and advice and a huge thank you for taking the time to proof read my thesis.
Last, but not least, my beautiful family, my father, and my brothers, Yohan and Yolan. Thank you so much for all that you have done for me, your unconditional love, support and encouragement throughout the years. I am truly blessed and forever grateful.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>APD</td>
<td>antropyloroduodenal</td>
</tr>
<tr>
<td>AUC</td>
<td>area under the cure</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>CCK</td>
<td>cholecystokinin</td>
</tr>
<tr>
<td>CHO</td>
<td>carbohydrates</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>DMNV</td>
<td>dorsal motor nucleus of the vagus</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>GIP</td>
<td>glucose-dependent insulino tropic polypeptide</td>
</tr>
<tr>
<td>HOMA</td>
<td>homeostasis model assessment</td>
</tr>
<tr>
<td>IPPW</td>
<td>isolated pyloric pressure waves</td>
</tr>
<tr>
<td>LHA</td>
<td>lateral hypothalamic areas</td>
</tr>
<tr>
<td>MI</td>
<td>motility index</td>
</tr>
<tr>
<td>MMC</td>
<td>migrating motor complex</td>
</tr>
<tr>
<td>MSG</td>
<td>monosodium glutamate</td>
</tr>
<tr>
<td>PVN</td>
<td>paraventricular nuclei</td>
</tr>
<tr>
<td>PW</td>
<td>pressure waves</td>
</tr>
<tr>
<td>PWS</td>
<td>pressure wave sequences</td>
</tr>
<tr>
<td>PYY</td>
<td>peptide tyrosine tyrosine</td>
</tr>
<tr>
<td>TEI</td>
<td>total energy intake</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>TMPD</td>
<td>transmucosal potential difference</td>
</tr>
<tr>
<td>VAS</td>
<td>visual analogue scale</td>
</tr>
<tr>
<td>VLCD</td>
<td>very low calorie diet</td>
</tr>
</tbody>
</table>