Gastric motor function

in health and diabetes –

implications for incretin hormone

release and postprandial blood glucose

regulation

A thesis submitted by

Dr Jessica Lee Sing Chang

BNutrDiet, BSc(Med), MBBS, FRACP

For the degree of

Master of Philosophy (Medical Science)

Discipline of Medicine

University of Adelaide

January 2012
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
</tr>
<tr>
<td>THESIS SUMMARY</td>
<td>7</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>11</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>12</td>
</tr>
<tr>
<td>PUBLICATIONS ARISING FROM THE THESIS</td>
<td>15</td>
</tr>
<tr>
<td>CHAPTER 1: DIABETIC GASTROPARESIS AND THE COMPLEX</td>
<td></td>
</tr>
<tr>
<td>RELATIONSHIP BETWEEN GASTRIC EMPTYING AND GLYCAEMIA</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>16</td>
</tr>
<tr>
<td>1.2 Physiology of gastric emptying</td>
<td>17</td>
</tr>
<tr>
<td>1.3 Prevalence and natural history of disordered gastric emptying in</td>
<td>19</td>
</tr>
<tr>
<td>diabetes</td>
<td></td>
</tr>
<tr>
<td>1.3.1 A historical perspective</td>
<td>19</td>
</tr>
<tr>
<td>1.3.2 Prevalence of diabetic gastroparesis</td>
<td>20</td>
</tr>
<tr>
<td>1.3.3 Natural history of diabetic gastroparesis</td>
<td>21</td>
</tr>
<tr>
<td>1.4 Diagnosis of disordered gastric emptying</td>
<td>22</td>
</tr>
<tr>
<td>1.4.1 Scintigraphy</td>
<td>23</td>
</tr>
<tr>
<td>1.4.2 Stable isotope breath test</td>
<td>24</td>
</tr>
<tr>
<td>1.4.3 Transabdominal ultrasound</td>
<td>25</td>
</tr>
<tr>
<td>1.4.4 Magnetic resonance imaging (MRI)</td>
<td>25</td>
</tr>
<tr>
<td>1.4.5 Barium meal</td>
<td>26</td>
</tr>
<tr>
<td>1.4.6 Paracetamol (acetaminophen) absorption test</td>
<td>26</td>
</tr>
<tr>
<td>1.4.7 Swallowed capsule telemetry (‘SmartPill®’)</td>
<td>26</td>
</tr>
<tr>
<td>1.4.8 Electrogastrography</td>
<td>27</td>
</tr>
<tr>
<td>1.4.9 Antropyloroduodenal manometry</td>
<td>27</td>
</tr>
<tr>
<td>1.5 Pathogenesis</td>
<td>27</td>
</tr>
</tbody>
</table>
1.5.1 Autonomic (vagal) neuropathy 28
1.5.2 Cellular dysfunction 28
1.5.3 Impact of glycaemia 30

1.6 Significance of upper gastrointestinal symptoms in diabetes and their aetiology 31

1.7 Impact of gastric emptying on incretin hormones and glycaemia 32
1.7.1 ‘Incretin” effect 33
1.7.2 Significance and determinants of postprandial glycaemia 33
1.7.3 Glutamine and GLP-1 release 34
1.7.4 Impact of variation in rate of glucose delivery on glycaemia and incretin hormones 35

1.8 Modulation of gastric emptying to improve glycaemic control 37
1.8.2 Dietary strategies 37
1.8.3 Pharmacological strategies 38

1.9 Management of symptomatic gastroparesis 40
1.9.1 Manipulation of pharmacological treatment for diabetes 40
1.9.2 Dietary manipulation 41
1.9.3 Pharmacological agents 41
1.9.4 Non-pharmacological therapy 42
1.9.5 Surgical therapy 43

1.10 Conclusions 44

CHAPTER 2: METHODOLOGIES

2.1 Introduction 56
2.2 Subjects 56
2.3 Gastric emptying 57
2.4 Intraduodenal infusion and antropyloroduodenal pressure 58
2.5 Autonomic nerve function 60
2.6 Upper gastrointestinal symptoms and appetite 60
2.7 Biochemistry/Hormones 61
 2.7.1 Blood glucose 62
 2.7.2 Plasma GLP-1 62
 2.7.3 Plasma GIP 62
 2.7.4 Serum insulin 63
2.8 Statistical analysis 63
2.9 Conclusions 64

CHAPTER 3: A 25 YEAR LONGITUDINAL EVALUATION OF GASTRIC EMPTYING AND GASTROINTESTINAL SYMPTOMS IN DIABETES MELLITUS

3.1 Summary 65
3.2 Introduction 66
3.3 Methods
 3.3.1 Subjects 67
 3.3.2 Protocol 68
 3.3.3 Measurements 69
 3.3.4 Statistical analysis 71
3.4 Results 72
 3.4.1 Gastric emptying 72
 3.4.2 Glycaemic control 73
 3.4.3 Upper gastrointestinal symptoms 73
5.3.2 Protocol 102
5.3.3 Measurements 104
5.3.4 Statistical analysis 107

5.4 Results 107
5.4.1 Blood glucose concentrations 108
5.4.2 Plasma GLP-1 concentrations 109
5.4.3 Plasma GIP concentrations 110
5.4.4 Serum insulin 111
5.4.5 Isolated pyloric pressure waves (IPPWs) 112
5.4.6 Antral pressure waves 113
5.4.7 Duodenal pressure waves 114
5.4.8 Gastrointestinal sensations 115

5.5 Discussion 115

CHAPTER 6: CONCLUSIONS 135

BIBLIOGRAPHY 139
THESIS SUMMARY

This thesis focuses on gastric motor function in patients with longstanding diabetes, and the role of gastric emptying and gastrointestinal hormones in the regulation of glycaemia in health and patients with type 2 diabetes mellitus.

Diabetes is a common chronic disorder worldwide, with the prevalence of type 2 diabetes escalating due to an increasingly sedentary lifestyle and rising rates of obesity. Diabetes is associated with micro- and macrovascular complications, particularly in the context of poor glycaemic control (1993, 1998). Another complication of type 1 and 2 diabetes is gastroparesis (Horowitz et al., 2001, Horowitz M, 1986, Horowitz et al., 1989, Horowitz et al., 1991) (delayed gastric emptying in diabetes) and there is limited information about the natural history and prognosis of this condition. While the prognosis of diabetic gastroparesis has been assumed to be poor, limited data in a small cohort followed for a mean period of 12 years suggest otherwise, with neither deterioration in the rate of gastric emptying (Jones et al., 2002) nor increased mortality due to the condition itself (Kong et al., 1999).

The study reported in Chapter 3 evaluated the longitudinal progression of gastric emptying in patients with longstanding diabetes over a 25 year period to determine if there is a progressive slowing of gastric emptying or whether
gastric emptying is relatively stable with a good prognosis from the outset, and
to ascertain the potential impact of glycaemic control and/or autonomic
function. The study concludes that gastric emptying and upper gastrointestinal
symptoms are relatively stable over 25 years, while there was a deterioration in
autonomic function and an improvement in glycaemic control. The study
reported in Chapter 4 examined the prognosis of diabetic gastroparesis and its
findings highlight that this condition is neither associated with a poor
prognosis nor a higher rate of mortality.

There is increasing recognition that glycated haemoglobin (HbA1c), which is a
measure of overall glycaemic control, is influenced more by postprandial,
rather than fasting, blood glucose levels in the majority of patients with type 2
diabetes. This makes intuitive sense, because the majority of one’s time is
spent in a postprandial state, digesting the caloric load of the ingested meal,
which in healthy subjects empties from the stomach in a tightly regulated
process at a rate of 1-4kcal/minute (Khoo et al., 2009). Accordingly, good
control of postprandial glucose excursions should be a priority for the
treatment of diabetes. The rate of gastric emptying itself influences the
magnitude of the initial rise in postprandial glycaemia in health as well as type
1 and 2 diabetes (Jones et al., 1996, Horowitz et al., 1993, Horowitz et al.,
1986), whereby slower emptying is associated with diminished postprandial
glucose excursions. The overall rate of gastric emptying is dependent on the
integration of motor activity in each region of the stomach and slower gastric
emptying is associated with suppression of antral and duodenal contractions, and stimulation of phasic and tonic pyloric pressures, with the latter acting as a brake to gastric outflow (Horowitz et al., 1994).

When glucose is given by the oral/enteral route, the stimulation of insulin is markedly greater than with an isoglycaemic intravenous glucose infusion. This phenomenon is known as the ‘incretin effect’ and is mediated by the gastrointestinal hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), which are secreted from the small intestine in response to nutrients (Ma et al., 2009a). GLP-1 and GIP both stimulate insulin secretion from the pancreas in the setting of elevated blood glucose levels, and are responsible for ~70% of the postprandial insulin response in healthy humans (Horowitz and Nauck, 2006). GLP-1 analogues, such as exenatide, are now widely used in the management of type 2 diabetes, in whom the response to exogenous GIP is attenuated markedly (Holst and Gromada, 2004) but the insulin response to GLP-1 remains intact (Elahi et al., 1994). It appears that an important action of GLP-1 analogues in reducing postprandial glycaemia is by retardation of small intestinal motility modulating carbohydrate absorption (Linnebjerg et al., 2008, Little et al., 2006).

An alternative to the use of exogenous GLP-1 analogues in the management of type 2 diabetes is to develop dietary strategies which stimulate endogenous
GLP-1 release. Glutamine, which is widely used as a nutritional supplement, appears to be the most potent amino acid in inducing GLP-1 release (Reimann et al., 2004). It has been reported that 30g glutamine, given in 300mL water, stimulates GLP-1 release in both healthy subjects and patients with type 2 diabetes (Greenfield et al., 2009) and Samocha-Bonet et al (Samocha-Bonet et al., 2011) reported that 15g and 30g glutamine when given as a drink, before an oral glucose load in patients with type 2 diabetes, dose-dependently stimulate GLP-1 and diminish subsequent glycaemic excursion. However, the effect of glutamine on the rate of gastric emptying of glucose could potentially influence the observed effect on glycaemia as it is now appreciated that the rate of gastric emptying itself has a major influence on postprandial glucose levels in healthy subjects and patients with type 1 and 2 diabetes (Chang et al., 2010).

The study reported in Chapter 5 examined the effects of intraduodenal glutamine on GLP-1, GIP and insulin release and the subsequent glycaemic response to an intraduodenal glucose load, in health and type 2 diabetes, of which the intraduodenal route of delivery of glutamine will bypass the stomach, thus, eliminating any influence of glutamine on the rate of gastric emptying of glucose. This study showed that intraduodenal glutamine has minimal effect on the glycaemic response to intraduodenal glucose, despite its ability to stimulate GLP-1, GIP and insulin release, and stimulate phasic pyloric contractions, suggesting that slowing of gastric emptying may play a major role for the glucose lowering effect seen with oral glutamine.
DECLARATION

Name: Jessica Chang Program: Master of Philosophy

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature: Date:
ACKNOWLEDGEMENTS

This thesis is the culmination of 2 years of hard work and occasional tears resulting in an unbelievable accomplishment. It has been a journey of many life lessons learnt - some bitter, some sweet. This thesis would not be a possibility without the guidance of my superb and excellent supervisors as well as my ever-encouraging fellow PhD colleague and my supportive family.

First and foremost, I would like to thank my supervisors, Professor Michael Horowitz, Associate Professor Chris Rayner and Professor Karen Jones who have been very supportive, kind, patient, approachable and encouraging. Thank you for having faith in me and thank you for helping me make the transition from years of clinically orientated medical work to that of medical research and for not making me feel ashamed of my ignorance of many aspects of the latter. What I have learnt is invaluable and will put me in good stead long after I complete this journey as a Master of Philosophy student.

A special thank you to my fellow PhD colleague, Dr Tongzhi Wu, who is a godsend with his constant support, encouragement, motivation and helping me believe in my capabilities throughout my 2 year research journey. Thank you for making every single obstacle encountered become so minuscule with your happy and positive disposition, for being so approachable, helpful, generous
with your time, for being a shoulder to cry on and most of all, for being a friend.

I would also like to thank several colleagues whom I have had the pleasure of working closely with: Ms Antonietta Russo for her assistance with the use of scintigraphy and analysis of gastric emptying data, whose high degree of professionalism and organisational skills are much respected, Ms Judith Wishart and Mr Scott Standfield for hormone assays, Ms Kylie Lange for her advice on statistical methods and Mr Tim Murphy for his assistance with administrative matters.

I would like to thank the many friendly faces within the Discipline of Medicine, namely, Ms Elizabeth Westwood, Ms Melanie Richards, Prof Gary Wittert, Prof Ian Chapman, A/Prof Leonie Heilbronn, Dr Natalie Luscombe-Marsh, Prof Christine Feinle-Bisset, Dr Tanya Little, Mr Laurence Trahair, Ms Amy Ryan, Ms Radhika Seimon, Dr Diana Gentilcore, Mr George Hatzinikolas, Dr Chinmay Maranthe, Dr Victor Chen, Ms Michelle Bound, Ms Helen Checklin, Ms Rachael Tippett, Mr Raj Sardana, Ms Briohny Bartlett and Mr Alex Saies.
To my husband, thank you for the emotional support and putting up with a sometimes intolerable wife as she struggles with the frustration encountered during this research journey. Thank you for being my pillar of support, for your constant encouragement and for believing in me. To my dearest and sacrificial mother, thank you for your support by looking after the kids so that I could actually write this thesis.
PUBLICATIONS ARISING FROM THE THESIS

Chang J, Russo A, Bound M, Rayner CK, Jones KL, Horowitz M. A 25 year longitudinal evaluation of gastric emptying and gastrointestinal symptoms in diabetes mellitus. (Submitted for publication)

Chang J, Rayner CK, Jones KL, Horowitz M. Prognosis of diabetic gastroparesis – a 25 year evaluation. (Submitted for publication)

Chang J, Wu T, Greenfield JR, Samocha-Bonet D, Horowitz M, Rayner CK. Effects of intraduodenal glutamine on incretin hormone release, the glycaemic response to an intraduodenal glucose infusion and antropyloroduodenal motility in health and type 2 diabetes. (Submitted for publication)