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We present a new dispersive formulation of the �Z box radiative corrections to weak charges of bound

protons and neutrons in atomic parity violation measurements on heavy nuclei such as 133Cs and 213Ra.

We evaluate for the first time a small but important additional correction arising from Pauli blocking of

nucleons in a heavy nucleus. Overall, we find a significant shift in the �Z correction to the weak charge of
133Cs, approximately 4 times larger than the current uncertainty on the value of sin2�̂W , but with a reduced

error compared to earlier estimates.

DOI: 10.1103/PhysRevLett.109.262301 PACS numbers: 24.80.+y, 12.15.Lk

In the search for physics beyond the Standard Model
one of the most important indirect methods involves a
high precision test of the evolution of the Weinberg angle
with scale. In particular, the comparison between the value

of sin2�̂W measured at the Z pole at LEP and the value
extracted from parity violation in atomic systems has
provided a very strong confirmation of the radiative cor-
rections calculated within the Standard Model. The atomic
system with the most accurate current measurement is the
parity-violating S-S transition in neutral Cs [1,2]. The
predicted enhancement factor of the atomic parity viola-
tion (APV) effect in the S-D transition in Raþ is about
50 times larger [3]. It is critical that the calculations of the
radiative corrections for these systems incorporate the
latest theoretical developments and match the precision
of the experimental data.

Driven by the demand for accurate radiative corrections
for high energy parity-violating electron scattering, nota-
bly the Qweak experiment at Jefferson Lab [4], there have
recently been new evaluations of the �Z box diagram
[5–9]. In particular, Blunden et al. [9] developed a formu-
lation of this correction in terms of dispersion relations and
moments of the inclusive �Z interference structure func-
tions. This approach provides a systematic method for
improving the accuracy of the calculation.

In this Letter we use the dispersive relations methods to
compute a new value for the radiative correction associated
with the �Z box diagram for both protons and neutrons in
133Cs and 213Ra. Compared with previous estimates that
were computed some three decades ago [10], the new cor-
rections give �Z contributions that are 15% smaller for free
nucleons, and 20% smaller for nucleons bound in a heavy
nucleus (due to Pauli blocking). This shifts the theoretical
value ofQWðCsÞ from�73:14ð6Þ to�73:26ð4Þ. This agrees
with the experimental value of�73:16ð29Þexpð20Þth given in
Ref. [2], and is within 1:5� of the value�72:58ð29Þexpð32Þth
given in Ref. [11].

Including radiative corrections, the weak charges of the
proton and neutron can be written as [10,12]

Qp
W ¼ ð�þ�eÞð1� 4�ð0Þŝ2 þ�0

eÞ
þh

p
WW þh

p
ZZ þh

p
�Z; (1)

Qn
W ¼ �ð�þ �eÞ þhn

WWhþn
ZZ þhn

�Z; (2)

with ŝ2 � sin2�̂WðM2
ZÞ ¼ 0:23116ð13Þ in the MS scheme.

�e and �0
e are Zee and �ee vertex corrections, given in

Refs. [10,12], and expressions for the universal parameters
� and �ðQ2Þ are given in Ref. [13].
The proton weak charge Qp

W is sensitive to the running
of the Weinberg angle, as embodied in �ðQ2Þ, whereas the
neutron weak charge Qn

W is primarily sensitive to �. At the
one-loop level, � has a quadratic dependence on the top
quark mass. This dependence is modified by significant
higher-order QCD and electroweak corrections [14], some
of which have been evaluated to four loops.
The correction �ðQ2Þ includes boson self-energy con-

tributions from �Z mixing. In particular, it has a hadronic
uncertainty from the quark contributions to fermion loops,

denoted by ��ð5Þ
had for five quark flavors, which is strongly

correlated with the analogous contribution ��ð5Þ
had to the

running of �ðQ2Þ. A reduction of ��ð5Þ
had to 0.02772 in the

most recent analysis implies a corresponding reduction in

��ð5Þ
had compared with Ref. [12], leading to ��ð5Þ

hadŝ
2 ¼

7:87ð8Þ � 10�3. Using the most recent Standard Model
parameters [15], we obtain � ¼ 1:0006ð2Þ and �ð0Þŝ2 ¼
0:23807ð15Þ, in essential agreement with the values quoted
in Ref. [15].
The remaining terms in Eqs. (1) and (2) arise from the

(numerically dominant) WW, ZZ, and �Z boxes. We take
the expressions for WW and ZZ boxes from Erler et al.
[12], including the leading order QCD correction to the
original expressions of Ref. [10]. The box diagrams with
two heavy bosons are dominated by high momentum scales
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[16]. By contrast, the �Z box diagram contains both high
and low momentum scales, and is therefore sensitive to
hadronic corrections. Following convention we write the
�Z contribution for protons and neutrons in terms of a
parameter BN ,

hN
�Z ¼ 3�

2�
v̂eQNBN; (3)

where v̂e � 1� 4ŝ2 and QN ¼ 5=3ð4=3Þ for the proton
(neutron). A free-quark model gives Bp ¼ lnðM2

Z=m
2Þ þ

3=2, where m is an undetermined hadronic mass scale
(such as a constituent quark mass); however, this does
not adequately describe either the long-range or short-
range behavior of the �Z box. Marciano and Sirlin (MS)
[10] give a more refined estimate by separately modeling
the low and high energy contributions, but an equivalent
logarithmic dependence on the hadronic mass parameterm
remains.

Using Eqs. (1) and (2), we find numerically

Qp
W ¼ 0:0664ð6Þ þ 0:00044Bp; (4)

Qn
W ¼ �0:9922ð2Þ þ 0:00035Bn: (5)

The error in Qp
W (excluding the �Z boxes) arises from

�ð0Þŝ2 (� 0:0006) and the WW boxes (� 0:0001), while
the error in Qn

W arises from � (� 0:0002). The results in
the column labeled MS in Table I use the most recent
estimates of Bp and Bn from Refs. [12,16]. For 133Cs, we
have QWðCsÞ ¼ 55Qp

W þ 78Qn
W . Adding the independent

errors in quadrature (the errors in Bp and Bn are not
independent), we find�73:14ð6Þ. The �Z boxes contribute
�0:052 to this total, while all other errors combined con-
tribute�0:037. (See also the recent review of APV, includ-
ing 133Cs, in Ref. [17].)

To proceed beyond the work of MS [10] we use the
dispersion methods developed in Refs. [5–9], writing the
imaginary part of h�ZðEÞ in terms of structure functions

FN
i;�Z (i ¼ 1, 2, 3) that can be obtained from inclusive

lepton-nucleon scattering. A dispersion integral over en-
ergy then gives the real part of h�ZðEÞ, which contributes

to the weak charge. The energy dependence ofh�ZðEÞwas
evaluated in Refs. [6,9]. At E ¼ 0, relevant for APV, only

the axial-vector ZN coupling involving the FN
3;�Z structure

function gives a nonzero contribution. Performing the disp-
ersion energy integral analytically, the real part ofh�Z can

be written

hN
�Z ¼ 2

�

Z 1

0
dQ2 �ðQ2ÞveðQ2Þ

Q2ð1þQ2=M2
ZÞ

�
Z 1

0
dxFN

3;�Zðx;Q2Þ 1þ 2�

ð1þ �Þ2 ; (6)

where �¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4M2x2=Q2

p
and x ¼ Q2=ðW2 �M2 þQ2Þ,

with W the invariant mass of the intermediate hadronic
state. Following Ref. [9], we include the running with Q2

of �ðQ2Þ and veðQ2Þ � 1� 4�ðQ2Þŝ2 in Eq. (6) due to
boson self-energy contributions. Both quantities vary sig-
nificantly over the relevant Q2 range.
The contributions to h�Z can be split into three kine-

matic regions: (i) elastic, with W2 ¼ M2; (ii) resonances,
with ðMþm�Þ2 � W2 & 4 GeV2; and (iii) deep-inelastic
scattering (DIS), with W2 > 4 GeV2. Contributions from
region (i) depend on the nucleon’s elastic magneticGN

M and

axial-vector GZ;N
A form factors,

FNðelÞ
3;�Z ðx; Q2Þ ¼ �GN

MðQ2ÞGZ;N
A ðQ2Þx�ð1� xÞ: (7)

We setGN
MðQ2Þ¼	NFVðQ2Þ, andGZ;N

A ðQ2Þ¼�gNAFAðQ2Þ,
with 	N the nucleon magnetic moment, and gpA ¼ �gnA ¼
1:267. A dipole Q2 dependence, FV;AðQ2Þ ¼ 1=ð1þQ2=
�2

V;AÞ2, suffices for both V and A form factors, with �V ¼
0:84 GeV, and �A ¼ 1:0 GeV. More sophisticated form
factors give essentially identical numerical results.
For the resonance contributions we use the parametriza-

tions of the transition form factors from Lalakulich et al.
[18], but with modified isospin factors appropriate to �Z.
These form factors have been fit to pion production data
in 
 and �
 scattering, and include the lowest four spin 1=2
and 3=2 states.
For the DIS region, we divide the Q2 integral of Eq. (6)

into a low-Q2 part Q2 <Q2
0, where the structure function

FN
3;�Z is relatively unknown, and a high-Q

2 part (Q2 >Q2
0),

where at leading order the structure function can be expre-
ssed in terms of valence quark distributions [15]. At high
Q2 the �Z contribution can be expanded in powers of
x2=Q2, yielding a series whose coefficients are structure
function moments of increasing rank,

h
ðDISÞ
�Z ¼ 3

2�

Z 1

Q2
0

dQ2 �ðQ2ÞveðQ2Þ
Q2ð1þQ2=M2

ZÞ

�
�
Mð1Þ

3 ðQ2Þ � 2M2

3Q2
Mð3Þ

3 ðQ2Þ þ � � �
�
; (8)

where the nth moment of the F�Z
3 structure function is

MðnÞ
3 ðQ2Þ ¼ R

1
0 dxx

n�1F�Z
3 ðx;Q2Þ. Numerically, the n ¼ 1

moment dominates, with the n � 3 contributions to the
integral of Eq. (8) less than 0.1%.

TABLE I. Weak charges of the proton, neutron, 133Cs and
213Ra, comparing the previous MS estimates [10,16] with our
new results for free and bound nucleons.

MS Free nucleons Bound nucleons

Bp 11.8(1.0) 9.95(40) 9.36(40)

Bn 11.5(1.0) 9.82(40) 9.32(40)

Qp
W 0.0716(8) 0.0708(6) 0.0705(6)

Qn
W �0:9882ð4Þ �0:9888ð2Þ �0:9890ð2Þ

QWðCsÞ �73:14ð6Þ �73:23ð4Þ �73:26ð4Þ
QWðRaÞ �117:22ð10Þ �117:37ð7Þ �117:42ð7Þ
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The lowest moment is in fact the �Z analog of the GLS
sum rule [19] for 
N DIS, which at leading order counts
the number of valence quarks in the nucleon. The corre-
sponding quantity for �Z isQp ¼ P

q2eqg
q
A ¼ 5=3 for the

proton and Qn ¼ 4=3 for the neutron. Including the next-

to-leading order strong interaction correction in the MS
scheme, the n ¼ 1 contribution is

MNð1Þ
3 ðQ2Þ ¼ QN

�
1� �sðQ2Þ

�

�
: (9)

Combined with Eq. (8), this is identical to the high energy
result of MS [10], but with Q0 replacing the arbitrary
hadronic mass parameter m. In our case the scale Q0

corresponds to the momentum above which a partonic
representation of the nonresonant structure functions is
valid, and above which the Q2 evolution of parton distri-
bution functions (PDFs) via the Q2 evolution equations is
applicable. We vary Q2

0 between 1 and 2 GeV2, which

coincides with the typical lower limit of recent sets of
PDFs.

The contribution for Q2 <Q2
0 can in principle be

obtained from data. There is limited information on F3;W

from neutrino scattering, but little or no existing data on
F3;�Z at lowQ2. As in Ref. [9], we use two different models

to smoothly interpolate in Q2 between Q2
0 and 0: one

vanishes in the Q2 ! 0 limit, and the other approaches a
constant. The differences between the models are of the
order of 5% to 15%.

The relation between proton and neutron contributions
from the different kinematic regions is

h
nðelÞ
�Z ¼ �	n

	p h
pðelÞ
�Z ; h

nðresÞ
�Z � h

pðresÞ
�Z ;

h
nðDISÞ
�Z ¼ 4

5
h

pðDISÞ
�Z :

(10)

The near equality of the resonance contributions (within
3%) is due to the dominance of isovector resonances,
which contribute equally for protons and neutrons.

The full results are summarized in Table II. The largest
contributions come from the DIS region. Fortunately, the
results show only a mild sensitivity to the parameter Q0

that separates the model dependent low-Q2 extrapolation
from the high-Q2 partonic region. The main part of the
uncertainty arises from the model dependence of this ex-
trapolation to low Q2. We therefore assign Bp ¼ 9:95ð40Þ,
equal to the average of the four values in Table II, with a
very conservative error given by the DIS contribution from
the regionQ2 < 1 GeV2. This is the value appearing in the
column labeled ‘Free nucleons’ of Table I, together with
the neutron contribution using Eq. (10).
Because the nucleons in a heavy nucleus are bound,

properties such as their weak charge can differ from those
of free nucleons. In particular, for the elastic �Z box
contribution, transitions to occupied states are forbidden
by the Pauli exclusion principle. To estimate this effect of
the nuclear medium on the weak charges, we consider the
expression

h
NðelÞ
�Z ¼ 2�

�
ve	

NgNA

Z 1

0
dQ2FVðQ2ÞFAðQ2ÞfðQ2Þ; (11)

where

fðQ2Þ ¼ 1þ 2�1

Q2ð1þ �1Þ2
; �1 � �ðx ¼ 1Þ: (12)

Here ve is taken at an appropriate low-momentum scale,
and the Q2 dependence of the Z propagator has been
dropped.
Pauli blocking is important because the integrand in

Eq. (11) is heavily weighted towards low Q2,

fðQ2Þ !Q
2!0 1

MQ
� 3

4M2
þ � � �: (13)

Since the form factors introduce corrections of order
Q2=�2, the dominant low-Q2 contribution is largely inde-
pendent of nucleon structure.
To allow for Pauli blocking of the intermediate nucleon

in a heavy nucleus we use the Fermi gas model, where
nucleon states are occupied below the Fermi momentum kF
(typically 	0:25 GeV). This estimate should suffice in a
heavy nucleus like 133Cswith a low surface to volume ratio.
For momentum transfer q to a bound nucleon of momen-
tum p, we must exclude from the integral of Eq. (11) all
intermediate nucleon states of momentum jpþ qj< kF.
Introducing the occupation number np ¼ �ðkF � pÞ, we
therefore have a factor

CðqÞ ¼
R
d3pnpnjpþqjR

d3pnp
(14)

to be folded into the integrand of Eq. (11), with
R
d3pnp ¼

ð4�=3Þk3F. This represents the fractional volume of
occupied states that cannot reach the Fermi surface for a
given value of q. Since k2F 
 M2, the affected states have
nonrelativistic energies, and so Q2 � q2. From simple
geometry, we find

TABLE II. Contributions to Bp from different kinematic re-
gions for two different values of the matching scale Q2

0. The

range of values for the DIS (Q2 <Q2
0) contribution is for the two

models described in Ref. [9].

Q2
0 1 GeV2 2 GeV2

Elastic 1.47 1.47

Resonance 0.59 0.59

DIS

Q2 >Q2
0 7.50 7.05

Q2 <Q2
0 0.42–0.48 0.78–0.82

Total 9.98–10.04 9.89–9.93
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CðqÞ ¼
8<
:
1� 1

2

�
3 q
2kF

�
�

q
2kF

�
3
�
; 0< q< 2kF;

0; q � 2kF

: (15)

The expression 1� CðqÞ is also the Coulomb sum rule for
longitudinal quasielastic scattering in a nonrelativistic
Fermi gas.

The Pauli blocking effect can be introduced as a correc-

tion 1� �ðkFÞ to the value of h
NðelÞ
�Z in Eq. (11), with

�ðkFÞ ¼
R2kF
0 dQ2FVðQ2ÞFAðQ2ÞfðQ2ÞCðQÞR1

0 dQ2FVðQ2ÞFAðQ2ÞfðQ2Þ (16)

representing the fractional contribution from the excluded
states. This correction depends on kF, and has only a weak
dependence on nucleon structure through the form factor
parameters �, with other parameters dropping out in the
ratio. In the numerator, the leading terms are of orderOðkFÞ
andOðk2FÞ, with the form factor corrections only appearing
at order Oðk3FÞ and higher.

The values of kF for protons and neutrons are taken from
Hartree-Fock calculations for 133Cs, which reproduce the
experimental charge density [20]. Fitting the Hartree-Fock
proton and neutron distributions to a standard Woods-
Saxon form �ðrÞ ¼ �0=ð1þ exp½ðr� cÞ=a�Þ, normalized
to Z and N, respectively, leads to the parameters given in
Table III. From these one can compute the Fermi momen-
tum in the local density approximation, � ¼ k3F=ð3�2Þ.
The central and average values of kF are given in
Table III. The latter, which are used in our calculations,
are consistent with those obtained in fits to experimental
quasielastic electron scattering data using a simple Fermi
gas model [21].

We find the Pauli blocking correction factor 1� �ðkFÞ
is approximately linear in kF over the range 0.2–0.3 GeV,
and well approximated by the expression

1��ðkFÞ � 0:83� 1:04kF; (17)

with kF in GeV. Specifically, using the volume-averaged
values of hkFi in Table III, we find a correction factor of

0.61 toh
pðelÞ
�Z and 0.59 tohnðelÞ

�Z . For reasonable values of kF
up to 0.27 GeV in a very heavy nucleus, the Pauli blocking
factors will therefore fall into the narrow range 0.55–0.60,
suggesting a relatively insignificant variation in the total
value of hN

�Z for nuclei beyond 133Cs.

The effect onQWðCsÞ is shown in final column of Table I.
There is a small shift of �0:03 compared to the free
nucleon values, giving �73:26ð4Þ. The individual terms
contributing to the uncertainty are �ð0Þŝ2 (� 0:033), WW
boxes (� 0:006), � (� 0:016), and �Z boxes (� 0:021).
Also included in Table I is our theoretical value for the
weak charge of 213Ra.
In summary, we have computed the effect of �Z ex-

change corrections on the weak charge of heavy nuclei
such as 133Cs and 213Ra, using a recently developed formal-
ism based on dispersion relations and an expansion of the
�Z interference structure function moments. The results
improve earlier estimates based on a quark model descrip-
tion of the �Z box contributions, allowing a significant
reduction in the theoretical uncertainty. Compared with the
pioneering early estimates of Marciano and Sirlin [10], the
new corrections enhance the magnitude of the weak charge
by � 0:16%, which is approximately 4 times larger than

the current uncertainty on sin2�̂W , and will therefore affect
future high-precision determinations of the weak angle.
We thank Jens Erler, Nathan Hall, and Marianna

Safronova for helpful discussions. This work was sup-
ported by NSERC (Canada), DOE Grant No. DE-AC05-
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Council through an Australian Laureate Fellowship.
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