
ACCEPTED VERSION

Li, Xi; Shen, Chunhua; Dick, Anthony Robert; van den Hengel, Anton
Learning compact binary codes for visual tracking
Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition, held in
Portland, Oregon, June 25-27, 2013: InPress

© IEEE

http://hdl.handle.net/2440/77412

PERMISSIONS

http://www.ieee.org/documents/ieeecopyrightform.pdf

Author Online Use

6. Personal Servers.

Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted articles on their own personal

servers or the servers of their institutions or employers without permission from IEEE, provided that the posted version includes a

prominently displayed IEEE copyright notice and, when published, a full citation to the original IEEE publication, including a link to

the article abstract in IEEE Xplore. Authors shall not post the final, published versions of their papers.

3rd May 2013

http://hdl.handle.net/2440/77412
http://hdl.handle.net/2440/77412
http://www.ieee.org/documents/ieeecopyrightform.pdf

Learning Compact Binary Codes for Visual Tracking

Xi Li, Chunhua Shen, Anthony Dick, Anton van den Hengel
Australian Centre for Visual Technologies, The University of Adelaide, SA 5005, Australia

Abstract

A key problem in visual tracking is to represent the ap-
pearance of an object in a way that is robust to visual
changes. To attain this robustness, increasingly complex
models are used to capture appearance variations. How-
ever, such models can be difficult to maintain accurately
and efficiently. In this paper, we propose a visual tracker
in which objects are represented by compact and discrimi-
native binary codes. This representation can be processed
very efficiently, and is capable of effectively fusing infor-
mation from multiple cues. An incremental discriminative
learner is then used to construct an appearance model that
optimally separates the object from its surrounds. Further-
more, we design a hypergraph propagation method to cap-
ture the contextual information on samples, which further
improves the tracking accuracy. Experimental results on
challenging videos demonstrate the effectiveness and ro-
bustness of the proposed tracker.

1. Introduction
As a fundamental problem in computer vision, visual

tracking underpins a wide range of applications such as
visual surveillance, human-computer interaction, object
recognition, event detection, and action recognition. Most
state of the art trackers use a sampling approach, in which
the object location is selected from a pool of candidate sam-
ples at each frame. This provides robustness to unpredicted
or ambiguous motion but leads to the question of how these
samples are evaluated or scored. Ideally, the highest scor-
ing sample should be the one which best aligns with the
object, and sample scores should decrease with the amount
of object overlap, while all background samples should be
scored lower than any sample containing at least part of the
object. This is made more challenging as the scoring func-
tion must be robust to object and background appearance
changes, and be computed and updated in real time.

Scoring functions are typically based on a model of ob-
ject appearance (e.g., linear regression [16,19,21,34], prin-
cipal component analysis [15, 24], discrete cosine trans-
form [17], random forest [25], support vector machine [3,
11], and boosting [2, 9]), which is in turn based on a robust

image feature (e.g., attentional regions [6], covariance fea-
tures [22, 31], feature learning [10, 33], and multi-feature
kernels [11, 20]). Many state of the art trackers construct
appearance models from a collection of different feature
types to cope with object appearance variations. A basic ap-
proach to feature fusion is to directly concatenate weighted,
normalized features into a unified feature vector. However,
the resulting feature vector is often high-dimensional and
redundant, making it difficult to separate object and back-
ground samples. To alleviate this issue, dimensionality re-
duction is generally applied, but may result in the loss of
the intrinsic structural information from samples [7] or high
computational cost [20, 28].

We propose a hashing method to perform feature fusion
by reducing multiple feature descriptors to a single binary
code vector. The proposed hash function is based on ran-
domized decision trees, each of which is efficiently built by
a sequence of simple operations on samples and their asso-
ciated features. As a result, the problem of feature fusion
is converted to that of randomized decision tree growing.
Using the learned hash function, we can explicitly formu-
late the binary code corresponding to a sample by aggre-
gating the posterior distributions of the leaf nodes reached
in all randomized decision trees. These binary codes cap-
ture hierarchical discriminative information from different
feature modalities in a decision-tree-growing manner, lead-
ing to a discriminative image representation. Since they
are individually learned over randomly sampled subsets, the
learned hash functions are almost uncorrelated with each
other. Because of this, a compact image representation can
be achieved. Due to taking binary values as feature ele-
ments, our image representation also has low memory us-
age.

Given the compact and discriminative binary codes rep-
resenting samples, an object appearance model is typi-
cally required to maximize the separation of foreground and
background samples. Among existing appearance models,
the linear support vector machine (SVM) has proved to be a
simple yet effective choice. Compared to the standard linear
SVM using the hinge loss, the linear SVM with least square
loss (referred to as LS-SVM) can be a better choice for real-
time tracking because of its closed-form solution [32]. In
terms of online learning, the LS-SVM can be efficiently up-

A B C D E F G H I J K L M N O P Q R S T

B

P L

G D Q I

M A O E

K

P G

L M C

T

J

E

R

N

-1 1 -1 1 1 -1

Tree 1 Tree M

1 -1 1 -1

1 -1-1

Feature 1 Feature 2 Feature 3 Feature 4

Binary code

Random forest hashing

Figure 1: Illustration of our compact binary code learning method for multi-modal
feature fusion.

dated by incrementally computing the inverse of its regular-
ized covariance matrix (shown in Sec. 2.2) as new data ar-
rive. Empirical studies [27] have demonstrated that the LS-
SVM can achieve comparable generalization performance
to the standard linear SVM.

Learning the LS-SVM on the binary codes ensures a
max-margin hyperplane separating the foreground from the
background. However, due to the precision loss incurred by
hashing, the LS-SVM classification scoring function may
not be able to accurately localize the object (i.e., determine
which of the foreground samples best represents it). To fur-
ther refine the scoring function, we note that sample con-
fidence scores are not only determined by their own ap-
pearance features but also constrained by their contextual
dependencies. In other words, if two test image regions
have a similar binary code, their confidence scores ought
to be close; otherwise, their confidence scores may greatly
differ from each other. In order to model such a depen-
dency, we use hypergraph analysis, which is a useful tool
for capturing the contextual interaction between graph ver-
tices [13,35]. In hypergraph analysis, the problem of depen-
dency modeling is converted to that of building a set of hy-
peredges, which correspond to vertex communities. In each
vertex community, the vertices have some common proper-
ties (e.g., the same weak labels obtained by compact binary
code learning in our case), and pass support messages to
each other. Therefore, the hypergraph propagation method
can refine the sample scores to be consistent with their bi-
nary codes, leading to more accurate object localization.

In summary, we propose a robust visual tracker that in-
corporates three measures to improve the accuracy and ro-
bustness of the sample scoring function while maintaining
its required computational efficiency. The main contribu-
tions of this work are as follows.

1. We propose a novel compact binary code learning
method based on random forest hashing, which learns
to produce compact and discriminative binary codes
representing samples. To our knowledge, it is the first
time that the compact binary code learning method is

proposed to build a robust image representation for vi-
sual tracking.

2. We build an appearance model based on these binary
codes using an incremental closed-form LS-SVM,
which can online learn a hyperplane that separates the
foreground samples from the background samples.

3. We present a hypergraph propagation method that fur-
ther refines the appearance model by capturing contex-
tual similarity information from samples. Using such
information, the method is able to obtain more accu-
rate object localization.

2. The proposed visual tracker
The workflow of our tracking system is summarized in

Algorithm 1. Like most sampling based trackers, at each
frame the method generates a sample set, scores each sam-
ple, and updates its estimated target location based on the
highest scoring sample. In this section, we focus on the con-
struction and update of the sample scoring function. This is
based on three techniques: i) compact binary code learn-
ing; ii) incremental LS-SVM learning; and iii) hypergraph
propagation.

For i), we focus on learning a set of random forest hash
functions for feature fusion, as described in Sec. 2.1. For ii),
the LS-SVM classifier (with a closed-form solution) is in-
crementally learned for object/non-object classification by
computing Eq. (8) and Eq. (10), as shown in Sec. 2.2. For
iii), a weakly supervised hypergraph is created by explor-
ing a set of hashing-bit-specific communities, as shown in
Sec. 2.3. According to Eq. (14), hypergraph propagation is
performed to diffuse the LS-SVM classification scores on
the weakly supervised hypergraph, resulting in more accu-
rate object localization. After object localization, we collect
some new foreground and background training samples us-
ing a spatial sampling scheme [2, 33]. These training sam-
ples are used at regular intervals to update the random for-
est and and LS-SVM classifier, as explained in Secs. 2.1
and 2.2.

2.1. Compact binary code learning

Given multiple types of visual features, we design a
hashing method to form a compact and discriminative fused
feature. In principle, the hashing method needs to satisfy the
following two conditions: i) each individual hash function
is balanced such that:∫

h(u)=1

Pr(u)du =

∫
h(u)=−1

Pr(u)du =
1

2
, (1)

where u is a test sample (represented by a concatenation
of different visual features), Pr(·) is a probability density
function, and h(·) is the hash function; ii) the hash func-
tions are mutually independent. To achieve these two goals,

Algorithm 1 Compact binary code learning based tracker
Input: New video frame.

1. Crop out a set of image regions {ui}Ki=1 using the sliding-window-
sampling scheme [2, 33] and extract their associated visual features;

2. Compute the corresponding binary codes {xi}Ki=1 by compact binary
code learning (Sec. 2.1);

3. Perform LS-SVM classification on the binary codes to produce the
initial confidence score vector s0 (Sec. 2.2);

4. Perform hypergraph propagation (Sec. 2.3) to obtain the final confi-
dence score vector s;

5. Update the tracker location to {uk|k = argmaxi si}.
6. Add new foreground and background samples to sample buffer. If the

buffer limit is exceeded, discard oldest training samples.
7. Update the random forest hash functions (Algorithm 2) and the LS-

SVM classifier (Sec. 2.2) based on sample buffer every few frames.

the training samples for each hash function are randomly
selected from the entire training dataset, and equally dis-
tributed between positive and negative samples. To capture
the discriminative information from inter-class samples, the
hash function is typically formulated as a binary classifier:

h(u) = sgn
(
κ(u, {u+

i })− κ(u, {u
−
j })
)
, (2)

where sgn(·) is the sign function, κ(·, ·) is a similarity func-
tion, {u+

i } and {u−j } are respectively the positive and neg-
ative training samples. Now, the remaining problem is how
to design an efficient and discriminative similarity func-
tion κ. We make use of randomized trees to construct the
similarity function due to their effectiveness and efficiency
in discriminative learning. The process of growing each
randomized tree enables our hashing method to effectively
combine the discriminative information from different fea-
ture modalities in a top-down manner, as shown in Fig. 1.
Each internal node of these randomized trees contains a bi-
nary test that best splits the space of a randomly sampled
subset of training data along a randomly chosen feature di-
mension:

sp(ui) =
{

left child, if ui ≥ γ,
right child, otherwise, (3)

where ui corresponds to the i-th feature dimension (chosen
at random) of u and γ is a threshold determined by optimiz-
ing an entropy-based information gain criterion [4]. Such
random sample selection and random internal node split en-
sure the high efficiency of our hashing method. Using the
aforementioned tree growing scheme (3), we construct a
random forest T comprising a set of randomized trees. For
descriptive convenience, let C ∈ {1,−1} be the set of all
classes and Lt be the set of all leaves for a given randomized
tree t ∈ T. The posterior probability Prt,l(c) for each class
c ∈ C at each leaf node l ∈ Lt needs to be learned during
the training stage. Mathematically, Prt,l(c) is calculated as
the ratio |Qt,l,c|

|Qt,l| , where Qt,l is the set of training samples
reaching the leaf node l in the randomized tree t, and Qt,l,c
is the set of class-c training samples in Qt,l.

Algorithm 2 Learning random forest hash functions
Input: Training sample set {ui, yi}Ni=1 with yi ∈ {1,−1}, binary code

length `, and randomized tree number M .
Output: Random forest hash functions {hTj

(·)}`j=1.
for j = 1 to ` do

for m = 1 to M do
• Randomly sample {ui, yi}Ni=1 to generate a training sample
subset {ujk , yjk}Fk=1 with equal representation from positive
and negative samples;
• Use {ujk , yjk}Fk=1 to construct a randomized tree tm by ran-
dom internal node split (Eq. (3)).

end
• Obtain random forest Tj = {t1, . . . , tM} and output the hash func-
tion hTj

(·) by Eq. (4).
end

Based on the random forest T, we define the sim-
ilarity function (Eq. (2)) as κ(u, {Qt,ltu,c|t ∈ T}) =∑
t∈T Prt,ltu(c), where ltu denotes the leaf node reached by

the test sample u in the randomized tree t. For each test
sample u, its corresponding binary code hT(u) ∈ {1,−1}
w.r.t. the random forest T is obtained by the following three
steps. First, pass the test sample down each randomized tree
until reaching a leaf node; second, aggregate all the corre-
sponding posterior probabilities of the reached leaf nodes
from T; finally, output the binary code such that

hT(u) = sgn(
∑
t∈T

Prt,ltu(c = 1)−
∑
t∈T

Prt,ltu(c = −1)). (4)

Algorithm 2 shows the detailed workflow of learning
the random forest hash functions. Suppose that there
are ` learned random forests (denoted as {Tj}`j=1) cor-
responding to ` hash functions in our hashing method.
As a result, for any test sample u, we have an associ-
ated `-dimensional binary feature vector denoted as x =
(hT1

(u), hT2
(u), . . . , hT`

(u))>.

2.2. Incremental LS-SVM

To classify binary features as object/non-object, we build
an online discriminative appearance model based on incre-
mental LS-SVM learning. Given a set of training samples
{xi, yi}Ni=1 with xi ∈ R` and yi ∈ {−1,+1}, the LS-SVM
optimizes the following objective function [32]:

min
w,b

N∑
i=1

‖f(xi)− yi‖22 + C‖w‖22, (5)

where ‖·‖2 is the L2 norm, f(x) = w>x+b is the classifier
to learn, andC is the trade-off control parameter. For conve-
nience, let 1 be an all-one vector, X = (x1,x2, . . . ,xN) be
the data matrix, N+ (N−) be the positive (negative) sample
size such thatN++N− = N , µ+ (µ−) be the sample mean
of the foreground (background) class, and µ be the mean of
all the training samples such that µ = N+

N µ+ + N−
N µ−.

Then, the closed-form solution to (5) is formulated as:

w = 2N+N−
N2

(
S+ C

N I
)−1

(µ+ − µ−),

b = N+−N−
N − µ>w,

(6)

where I is an identity matrix and S is the covariance ma-
trix defined as: S = 1

N (X − µ1>)(X − µ1>)>. In
terms of online learning, the key factor is the incremen-
tal computation of

(
S+ C

N I
)−1

with respect to new sam-
ples δX = (δx1, δx2, . . . , δxδN). Let δµ be the sample
mean of δX, N ′ be the total number of samples such that
N ′ = N + δN , and µ′ be the sample mean of (X, δX)
such that µ′ = N

N ′µ+ δN
N ′ δµ. Then, the updated covariance

matrix S′ can be calculated as:

S′ = N
N ′S+ 1

N ′ [
∑δN
i=1(δxi − δµ)(δxi − δµ)>

+N(µ− µ′)(µ− µ′)> + δN(δµ− µ′)(δµ− µ′)>].
(7)

Defining A as 1
N ′ [
∑δN
i=1(δxi − δµ)(δxi − δµ)> + N(µ −

µ′)(µ − µ′)> + δN(δµ − µ′)(δµ − µ′)>], we obtain the
following relation:

S′ +
C

N ′
I =

N

N ′
(S+

C

N
I+

N ′

N
A). (8)

As a result, we have (S′+ C
N ′ I)

−1 = N ′

N (S+ C
N I+N ′

N A)−1.
Therefore, the key factor of efficiently computing (S′ +
C
N ′ I)

−1 is to incrementally update (S + C
N I + N ′

N A)−1

when (S + C
N I)−1 is given. Since N ′

N A is formed by
the sum of rank-one matrices, it can be decomposed as:
N ′

N A =
∑δN+2
k=0 qkq

>
k such that

qk =

0, k = 0,

1√
N
(δxk − δµ), 1 ≤ k ≤ δN,
µ− µ′, k = δN + 1,√
δN
N (δµ− µ′), k = δN + 2.

(9)

According to the theory of [12,23], (S+ C
N I+ N ′

N A)−1 can
be recursively computed by:

(Jm + qm+1q
>
m+1)

−1 = J−1m −
J−1m qm+1q

>
m+1J

−1
m

1 + q>m+1J
−1
m qm+1

,

(10)
where Jm = S+ C

N I+
∑m
k=0 qkq

>
k and 0 ≤ m ≤ δN +1.

2.3. Hypergraph propagation

The goal of hypergraph propagation is to refine the confi-
dence score s0i obtained from the LS-SVM for each sample,
taking into account contextual information from surround-
ing samples. This is necessary because the score is based on
binary codes which have sufficient precision to distinguish
foreground from background, but not to locate the object
reliably among foreground samples.

Given a set of samples {ui}Ki=1, we have computed
the corresponding binary codes {xi}Ki=1 such that xi =
(hT1(ui), . . . , hT`

(ui))
>. Based on {xi}Ki=1, we create a

weakly supervised hypergraph G = (V,E, w), where V =
{vi}Ki=1 is the vertex set corresponding to {ui}Ki=1, E is

Algorithm 3 Hypergraph propagation
Input: Binary codes {xi}Ki=1 and maximum iteration number τ .
Output: Confidence score vector s for object localization.
• n← 0;
• Compute the LS-SVM classification score vector s0 for {xi}Ki=1;
repeat

• Construct the hypergraph G = (V,E, w) in Sec. 2.3;
• Calculate the transition probability matrix P in Eq. (13);
• Perform the hypergraph propagation procedure in Eq. (14);
• n← n+ 1;

until sn converges or n ≥ τ ;
• s← sn.

the hyperedge set comprising a family of subsets of V such
that

⋃
e∈E = V, and w is the hyperedge weight [13, 35].

These hyperedges are obtained by using the bit-specific bi-
nary code to weakly classify {ui}Ki=1 into bit-specific posi-
tive and negative communities. If hTk

(ui) = 1, ui is added
to the bit-k positive community; otherwise, it belongs to the
bit-k negative community. In other words, each bit-specific
community corresponds to a hyperedge.

The hypergraphG is represented by a |V|×|E| incidence
matrix H = (H(vi, ej))|V|×|E|:

H(vi, ej) =

{
1, if vi ∈ ej ,
0, otherwise. (11)

The degree of any vertex v ∈ V is defined as
d(v) =

∑
e∈E w(e)H(v, e) where w(e) is a positive weight

(w(e) = 1 in our case). Correspondingly, the degree of any
hyperedge e ∈ E is defined as δ(e) =

∑
v∈VH(v, e). Let

W, Dv , and De denote the diagonal matrices whose diag-
onal elements are associated with w(e), d(v), and δ(e), re-
spectively. The process of random walk on the hypergraph
G [35] is governed by the following transition probability
matrix P = (pij)K×K whose entry is defined as:

pij =
∑
e∈E

w(e)
H(vi, e)

d(vi)

H(vj , e)

δ(e)
. (12)

Its corresponding matrix form can be written as:
P = D−1v HWD−1e H>. (13)

Based on this transition probability matrix, the process of
hypergraph propagation is formulated as follows:

sn+1 = αPsn + (1− α)s0, (14)
where α is a trade-off control factor such that 0 < α < 1,
s0 = (s01, s

0
2, . . . , s

0
K)> is the initial LS-SVM confidence

score vector (i.e., s0i = f(xi)) and sn is the confidence
score vector after propagation at the n-th iteration. Through
a sequence of transformations, Eq. (14) is further converted
to:

sn = (αP)ns0 + (1− α)
n−1∑
j=0

(αP)js0. (15)

Since pij ≥ 0 and
∑
j pij = 1, the spectral radius of

P is not greater than one (see the theorem of Perron-
Frobenius [8]), leading to the fact that lim

n→∞
(αP)n = 0

and lim
n→∞

(1− α)
∑n−1
j=0 (αP)js0 = (1− α)(I− αP)−1s0.

Therefore, Eq. (14) will converge to (1− α)(I− αP)−1s0

after a sufficient number of iterations. When K is large,
the cost of computing (I − αP)−1 is high. For compu-
tational efficiency, the final confidence score vector s =
(s1, s2, . . . , sK)> is obtained by iterating Eq. (14) until con-
vergence. The complete procedure of hypergraph propaga-
tion is summarized in Algorithm 3.

3. Experiments
3.1. Experimental setup

In the experiments, eighteen publicly available video se-
quences are used for tracking performance evaluation. Cap-
tured in different scenarios, these video sequences con-
tain diverse events such as occlusion, object pose variation,
lighting changes and out-of-plane rotation. Like the multi-
instance tracker [2], the proposed tracker performs object
localization using a sliding-window-search scheme with a
search radius of 30 pixels. The average running time of our
Matlab implementation is about 0.1 second per frame on a
workstation with an Intel Core 2 Duo 2.66GHz processor
and 3.24G RAM. For each image region, we extract four
types of visual features: intensity histogram, local binary
pattern (LBP), histogram of gradient (HOG), and Haar-like
wavelets. More specifically, both the intensity histogram
and LBP features are extracted by dividing an image re-
gion into 4 × 4 cells, each of which is associated with a
16-dimensional histogram vector. The HOG feature is com-
posed of 3 × 3 cells, with each cell represented by a 9-
dimensional histogram vector, in five spatial block-division
modes (like [18]), resulting in a 405-dimensional feature
vector. The Haar-like feature is extracted in the same way as
the CT tracker [33], resulting in a 100-dimensional feature
vector. By concatenating the above four visual features, we
have in total a 1017-dimensional real-valued feature vector
for each image region. After random forest hashing, the bi-
nary code length ` in Algorithm 2 is chosen as 100. The
training sample sizes N and F in Algorithm 2 are set to
1000 and 100, respectively. Each random forest hash func-
tion is associated with a random forest comprising 10 ran-
domized decision trees (i.e., M = 10 in Algorithm 2) with
25 layers. The random forest hash functions in Algorithm 2
are updated every 10 frames. The LS-SVM classifier is in-
crementally updated every 5 frames. The trade-off control
factor α in Eq. (14) is set to 0.1. The maximum iteration
number τ in Algorithm 3 is chosen as 50. Note that the
aforementioned parameters are fixed throughout all the ex-
periments.

For quantitative performance comparison, two popular
evaluation criteria are used: center location error (CLE) and
VOC overlap ratio (VOR) between the predicted bound-
ing box Bp and ground truth bounding box Bgt such that

Ours CT ORF Struck Frag MIT OAB IVT L1T
Cyclist 4.19 91.79 34.22 5.22 11.09 93.74 84.04 76.24 65.85
distortion 2.49 3.39 5.14 3.07 12.71 3.66 4.82 23.93 5.95
football 3.36 11.60 9.48 3.67 16.89 6.59 7.31 42.50 48.63
PedCross 3.74 64.54 73.78 138.07 137.73 126.88 69.31 73.65 70.50
animal 3.18 10.54 4.06 3.84 50.38 55.60 38.14 5.60 140.54
Jumper 9.90 36.24 26.13 35.26 24.74 66.49 36.83 76.49 101.76
Trellis 3.32 45.67 36.10 5.67 29.84 60.85 68.72 30.92 89.89
Walker 5.05 31.79 53.30 32.27 88.03 32.33 34.05 54.56 89.67
cubicle 2.94 17.90 19.09 19.96 30.28 12.06 35.77 49.28 22.73
David 4.79 9.51 5.92 5.26 24.70 21.69 25.37 8.44 43.54
Tiger1 6.41 8.27 9.45 6.35 33.22 9.20 68.73 38.89 36.58
Tiger2 6.72 9.95 26.52 9.18 37.15 8.44 30.25 47.89 32.42
Girl 12.24 29.46 16.13 10.80 21.75 35.44 36.95 23.58 18.83
Coke 6.85 22.20 9.93 5.75 32.33 18.94 56.55 61.51 62.32
Faceocc1 5.54 19.86 16.22 9.91 4.63 19.21 52.63 16.30 6.26
Faceocc2 6.67 16.58 14.84 8.64 18.66 17.53 16.48 13.15 37.50
Sylv 4.89 6.44 8.85 6.23 20.43 10.70 35.02 48.79 76.88
Surfer 4.82 48.88 9.27 7.23 21.27 5.03 31.57 10.09 45.15

Table 1: The quantitative comparison results of the nine trackers over the eighteen
video sequences. The table reports their average CLEs over each video sequence.

Ours CT ORF Struck Frag MIT OAB IVT L1T
Cyclist 0.85 0.24 0.56 0.82 0.67 0.21 0.22 0.23 0.28
distortion 0.86 0.82 0.76 0.84 0.52 0.82 0.75 0.32 0.73
football 0.80 0.46 0.67 0.77 0.38 0.64 0.62 0.30 0.11
PedCross 0.82 0.37 0.36 0.36 0.30 0.35 0.32 0.35 0.36
animal 0.92 0.76 0.89 0.90 0.37 0.40 0.52 0.85 0.07
Jumper 0.76 0.43 0.54 0.49 0.56 0.27 0.49 0.24 0.11
Trellis 0.86 0.31 0.46 0.79 0.40 0.28 0.16 0.48 0.25
Walker 0.79 0.54 0.38 0.53 0.09 0.54 0.53 0.43 0.10
cubicle 0.81 0.59 0.55 0.54 0.40 0.56 0.33 0.27 0.57
David 0.88 0.77 0.84 0.86 0.55 0.56 0.53 0.79 0.45
Tiger1 0.70 0.64 0.61 0.70 0.27 0.61 0.13 0.21 0.23
Tiger2 0.66 0.57 0.23 0.56 0.15 0.59 0.22 0.13 0.24
Girl 0.78 0.55 0.72 0.79 0.65 0.52 0.48 0.69 0.72
Coke 0.64 0.30 0.53 0.68 0.16 0.34 0.06 0.10 0.16
Faceocc1 0.90 0.74 0.76 0.83 0.92 0.72 0.40 0.76 0.89
Faceocc2 0.86 0.70 0.72 0.81 0.68 0.69 0.68 0.74 0.55
Sylv 0.80 0.75 0.67 0.76 0.58 0.62 0.39 0.43 0.30
Surfer 0.72 0.06 0.52 0.62 0.31 0.71 0.25 0.49 0.06

Table 2: The quantitative comparison results of the nine trackers over the eighteen
video sequences. The table reports their average VORs over each video sequence.

VOR =
area(Bp

⋂
Bgt)

area(Bp
⋃
Bgt)

.

3.2. Empirical comparison of trackers

We compare the proposed tracker with several state-of-
the-art trackers both qualitatively and quantitatively. These
trackers are referred to as ORF (online random forest
tracker [25]), CT (compressive tracker [33]), Struck (struc-
tured learning tracker [11]), Frag (Fragment-based tracker
[1]), MIT (multiple instance tracker [2]), OAB (online Ad-
aBoost tracker [9] that is implemented with the same con-
figuration as OAB1 in [2]), IVT (incremental subspace
tracker [24]), L1T (`1 minimization tracker [21]). In the
experiments, the following trackers are implemented using
their publicly available source code: ORF, CT, Struck, Frag,
MIT, OAB, IVT, and L1T.

We evaluate the CLE and VOR performance of all the
nine trackers on eighteen video sequences. Fig. 2 shows
the qualitative tracking results of the nine trackers over sev-
eral representative frames of eight video sequences. Fig. 3
plots the frame-by-frame CLEs (highlighted in different
colors) obtained by the nine trackers for the fifteen video
sequences. Tabs. 1-2 report the average CLEs and VORs
of the nine trackers on each of all the eighteen video se-
quences. From Fig. 3 and Tabs. 1-2, we observe that the
proposed tracker achieves the best tracking performance on
most video sequences. In particular, the proposed tracker
obtains the more robust tracking results in the presence
of complicated appearance changes (caused by occlusion,
drastic pose variation, background clutter, image distortion
and blurring, etc.). An example of severe occlusion and
background distraction is the “PedCross” sequence, shown
bottom left of Fig. 2. The tracked pedestrian, moving right
to left, is lost by all other trackers at frame 78 as he overlaps

Figure 2: Qualitative tracking results of the nine trackers over several representative frames of the eight video sequences (i.e., “Walker”, “Cyclist”, “Girl”, “Trellis”, “Surfer”,
“Jumper”, “PedCross”, and “Sylv”) that are respectively aligned from left to right and from up to down.

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

160

180

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Cyclist

Ours
CT
ORF
Struck
Frag
MIT
OAB
IVT
L1T

0 50 100 150
0

5

10

15

20

25

30

35

40

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

distortion

Ours
CT
ORF
Struck
Frag
MIT
OAB
IVT
L1T

0 50 100 150
0

20

40

60

80

100

120

140

160

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

football

Ours
CT
ORF
Struck
Frag
MIT
OAB
IVT
L1T

0 50 100 150
0

50

100

150

200

250

300

350

400

450

500

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

PedCross

Ours
CT
ORF
Struck
Frag
MIT
OAB
IVT
L1T

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

160

180

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Jumper

Ours
CT
ORF
Struck
Frag
MIT
OAB
IVT
L1T

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Trellis

Ours
CT
ORF
Struck
Frag
MIT
OAB
IVT
L1T

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Walker

Ours
CT
ORF
Struck
Frag
MIT
OAB
IVT
L1T

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

cubicle

Ours
CT
ORF
Struck
Frag
MIT
OAB
IVT
L1T

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

120

140

160

180

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

David

Ours
CT
ORF
Struck
Frag
MIT
OAB
IVT
L1T

0 50 100 150 200 250 300 350
0

50

100

150

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Tiger2

Ours
CT
ORF
Struck
Frag
MIT
OAB
IVT
L1T

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Girl

Ours
CT
ORF
Struck
Frag
MIT
OAB
IVT
L1T

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Faceocc1

Ours
CT
ORF
Struck
Frag
MIT
OAB
IVT
L1T

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Faceocc2

Ours
CT
ORF
Struck
Frag
MIT
OAB
IVT
L1T

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

180

200

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Sylv

Ours
CT
ORF
Struck
Frag
MIT
OAB
IVT
L1T

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Surfer

Ours
CT
ORF
Struck
Frag
MIT
OAB
IVT
L1T

Figure 3: Quantitative comparison of the nine trackers in CLE on the fifteen video sequences.

with other pedestrians. The other trackers lock onto differ-
ent pedestrians, so their error increases for the rest of the se-
quence, as shown in Fig. 3. The “Cyclist” video sequence,
top right of Fig. 2, contains drastic pose variation followed
by partial occlusion. MIT, IVT, OAB, and CT break down
after the 30th frame due to the change in body pose. L1T
and ORF lose the target after the 47th frame and the 69th
frame, respectively, due to occlusion by the railing. Frag is
able to keep track of the target, but also includes some back-
ground. In contrast, both Struck and our tracker are robust

to the body pose variations and partial occlusions encoun-
tered throughout the entire video sequence. The “Trellis”
video sequence, second row right of Fig. 2, contains sig-
nificant illumination changes. L1T, OAB, and MIT begin
to drift away from the target after the 195th frame because
of the changing lighting conditions. Due to the combina-
tion of lighting and changing head pose, IVT, ORF, Frag,
and CT fail to track the target after the 367th frame. Both
our tracker and Struck successfully track the target across
the whole video sequence, although our tracker locates the

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

160

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Cyclist

CodeLen=5
CodeLen=50
CodeLen=100
CodeLen=150
CodeLen=200

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Jumper

CodeLen=5
CodeLen=50
CodeLen=100
CodeLen=150
CodeLen=200

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Index

V
O
C

O
v
e
rl
a
p

R
a
ti
o

Cyclist

CodeLen=5
CodeLen=50
CodeLen=100
CodeLen=150
CodeLen=200

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Index

V
O
C

O
v
e
rl
a
p

R
a
ti
o

Jumper

CodeLen=5
CodeLen=50
CodeLen=100
CodeLen=150
CodeLen=200

Figure 4: Quantitative evaluation of using different binary code lengths in CLE and
VOR on the “Cyclist” and “Jumper” video sequences.

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

animal

Our RFH
LDAH
SSH
LSH
SPH
SVMH

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

160

180

200

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Cyclist

Our RFH
LDAH
SSH
LSH
SPH
SVMH

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Walker

Our RFH
LDAH
SSH
LSH
SPH
SVMH

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Index

V
O
C

O
v
e
rl
a
p

R
a
ti
o

animal

Our RFH
LDAH
SSH
LSH
SPH
SVMH

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Index

V
O
C

O
v
e
rl
a
p

R
a
ti
o

Cyclist

Our RFH
LDAH
SSH
LSH
SPH
SVMH

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Index

V
O
C

O
v
e
rl
a
p

R
a
ti
o

Walker

Our RFH
LDAH
SSH
LSH
SPH
SVMH

Figure 5: Quantitative evaluation of using different hashing methods in CLE and
VOR on the “animal”, “Cyclist”, and “Walker” video sequences.

head more accurately. The “Girl” video sequence, second
row left of Fig. 2, contains out-of-plane rotations followed
by partial and severe occlusions. As shown in Fig. 3, both
Struck and our tracker obtain more accurate tracking results
than the other trackers.

3.3. Discussion and analysis

In this section, we evaluate each component to show its
contribution to the overall performance of the tracker and
its sensitivity to parameter settings. The effect of each com-
ponent varies for each sequence, so we show a different but
representative subset for each evaluation.

Binary code length We quantitatively evaluate the per-
formance of the proposed tracker for five different binary
code lengths. Fig. 4 shows the quantitative CLE and VOR
performance on two video sequences. Clearly, it is seen
from Fig. 4 that the CLE (VOR) performance improves
as code length increases, and plateaus with approximately
more than 100 hashing bits. This is a desirable property be-
cause we do not need a high-dimensional binary feature to
achieve promising tracking performance.

Comparison of hashing methods Different hashing
methods generate different binary codes, encoding various

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Cyclist

RF Hashing Fusion
Normalized Feature Concatenation

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Jumper

RF Hashing Fusion
Normalized Feature Concatenation

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Walker

RF Hashing Fusion
Normalized Feature Concatenation

0 10 20 30 40 50 60 70 80 90
0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Index

V
O
C

O
v
e
rl
a
p

R
a
ti
o

Cyclist

RF Hashing Fusion
Normalized Feature Concatenation

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Index

V
O
C

O
v
e
rl
a
p

R
a
ti
o

Jumper

RF Hashing Fusion
Normalized Feature Concatenation

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Index

V
O
C

O
v
e
rl
a
p

R
a
ti
o

Walker

RF Hashing Fusion
Normalized Feature Concatenation

Figure 6: Quantitative evaluation of using different feature fusion methods in CLE
and VOR on the “Cyclist”, “Jumper”, and “Walker” video sequences.

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

45

50

Frame Index
C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Cyclist

LS SVM
Standard SVM

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

animal

LS SVM
Standard SVM

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Index

V
O
C

O
v
e
rl
a
p

R
a
ti
o

Cyclist

LS SVM
Standard SVM

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Index

V
O
C

O
v
e
rl
a
p

R
a
ti
o

animal

LS SVM
Standard SVM

Figure 7: Quantitative evaluation of the proposed tracker with different SVMs in
CLE and VOR on the “Cyclist” and “animal” video sequences.

discriminative information on object appearance. Here, we
aim to evaluate different hashing methods applied to the
task of feature fusion, including LDAH (linear discrimi-
nant analysis hashing [26]), SSH (semi-supervised hash-
ing [29]), LSH (locality sensitive hashing [5]), SPH (spec-
tral hashing [30]), SVMH (support vector machine hash-
ing [14]), and our RFH (random forest hashing). As shown
in Fig. 5, our RFH used in the proposed tracker achieves the
better CLE and VOR performance than the other hashing
methods in most cases.

Evaluation of feature fusion methods In order to verify
the effectiveness of our feature fusion method, we compare
it to a direct concatenation of normalized feature vectors
into a unified feature vector. Fig. 6 displays the quantitative
CLE and VOR performance of the proposed tracker with
different feature fusion methods. Clearly, we see that our
feature fusion method outperforms the standard feature fu-
sion method in most cases.

Comparison of SVMs To justify the effectiveness of the
LS-SVM, we compare it to the standard SVM. Fig. 7 shows
the quantitative CLE and VOR tracking results on two video
sequences. From Fig. 7, we clearly see that the proposed

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

animal

With Hypergraph
W/O Hypergraph

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

45

50

Frame Index
C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Jumper

With Hypergraph
W/O Hypergraph

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Trellis

With Hypergraph
W/O Hypergraph

0 10 20 30 40 50 60
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Frame Index

V
O
C

O
v
e
rl
a
p

R
a
ti
o

animal

With Hypergraph
W/O Hypergraph

0 10 20 30 40 50 60 70 80 90

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Index

V
O
C

O
v
e
rl
a
p

R
a
ti
o

Jumper

With Hypergraph
W/O Hypergraph

0 50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Index

V
O
C

O
v
e
rl
a
p

R
a
ti
o

Trellis

With Hypergraph
W/O Hypergraph

Figure 8: Perform comparison of the proposed tracker with and without hypergraph
propagation in CLE and VOR on the “animal”, “Jumper”, and “Trellis” video se-
quences.

tracker using the LS-SVM achieves close but slightly supe-
rior tracking performance to the standard SVM.

Performance with and without hypergraph propaga-
tion The task of hypergraph propagation is to refine the
confidence scores by random walk on the object/non-object
community hypergraph. Fig. 8 exhibits the quantitative
CLE and VOR tracking results of the proposed tracker
with and without hypergraph propagation on three video
sequences. It is clearly seen from Fig. 8 that hypergraph
propagation gives rise to performance gain.

4. Conclusion
In this paper, we have proposed a robust visual tracker

that learns compact and discriminative binary codes for an
effective image representation. To obtain this representa-
tion, we develop a random forest hashing method, which
efficiently constructs a set of hash functions by learning
several randomized decision trees. To perform object/non-
object classification, we build a discriminative appearance
model based on incremental LS-SVM, which can be solved
extremely efficiently in closed-form. Compared with the
standard linear SVM, we have empirically shown that incre-
mental LS-SVM has a simpler implementation with com-
parable accuracy. To further improve the accuracy of object
localization, we present a hypergraph propagation method
to capture the interaction information from samples and
their contexts. Compared with several state-of-the-art track-
ers on eighteen challenging sequences, we empirically show
that our tracker is able to achieve more accurate and robust
tracking results in challenging conditions.

Acknowledgments This work was in part supported by
ARC grants DP1094764 and FT120100969.

References
[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using

the integral histogram. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages
798–805, 2006.

[2] B. Babenko, M. Yang, and S. Belongie. Visual tracking with online multiple
instance learning. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 983–
990, 2009.

[3] Y. Bai and M. Tang. Robust tracking via weakly supervised ranking svm. In
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 1854–1861, 2012.

[4] A. Bosch, A. Zisserman, and X. Muoz. Image classification using random
forests and ferns. In Proc. IEEE Int. Conf. Comp. Vis., pages 1–8, 2007.

[5] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive hash-
ing scheme based on p-stable distributions. In Proc. ACM Ann. Symp. Comp.
Geometry, pages 253–262, 2004.

[6] J. Fan, Y. Wu, and S. Dai. Discriminative spatial attention for robust tracking.
In Proc. Eur. Conf. Comp. Vis., pages 480–493, 2010.

[7] Y. Fu, L. Cao, G. Guo, and T. Huang. Multiple feature fusion by subspace
learning. In Proc. ACM Int. Conf. Content-based Image & Video Retrieval,
pages 127–134, 2008.

[8] G. Golub and C. Van Loan. Matrix computations, volume 3. Johns Hopkins
University Press, 1996.

[9] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boost-
ing. In Proc. British Machine Vis. Conf., pages 47–56, 2006.

[10] M. Grabner, H. Grabner, and H. Bischof. Learning features for tracking. In
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 1–8, 2007.

[11] S. Hare, A. Saffari, and P. Torr. Struck: Structured output tracking with kernels.
In Proc. IEEE Int. Conf. Comp. Vis., 2011.

[12] A. S. Householder. The theory of matrices in numerical analysis. Blaisdell
Publishing Co.: New York, 1964.

[13] Y. Huang, Q. Liu, S. Zhang, and D. Metaxas. Image retrieval via probabilis-
tic hypergraph ranking. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages
3376–3383, 2010.

[14] A. Joly and O. Buisson. Random maximum margin hashing. In Proc. IEEE
Conf. Comp. Vis. Patt. Recogn., pages 873–880, 2011.

[15] J. Kwon and K. M. Lee. Visual tracking decomposition. In Proc. IEEE Conf.
Comp. Vis. Patt. Recogn., pages 1269–1276, 2010.

[16] H. Li, C. Shen, and Q. Shi. Real-time visual tracking with compressive sensing.
In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2011.

[17] X. Li, A. Dick, C. Shen, A. van den Hengel, and H. Wang. Incremental learn-
ing of 3d-dct compact representations for robust visual tracking. IEEE Trans.
Pattern Anal. Mach. Intell., 2013.

[18] X. Li, W. Hu, Z. Zhang, X. Zhang, M. Zhu, and J. Cheng. Visual tracking via
incremental log-euclidean riemannian subspace learning. In Proc. IEEE Conf.
Comp. Vis. Patt. Recogn., pages 1–8, 2008.

[19] X. Li, C. Shen, Q. Shi, A. Dick, and A. van den Hengel. Non-sparse linear
representations for visual tracking with online reservoir metric learning. In
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 1760–1767, 2012.

[20] H. Lu, W. Zhang, and Y. Chen. On feature combination and multiple kernel
learning for object tracking. Proc. Asian Conf. Comp. Vis., pages 511–522,
2011.

[21] X. Mei and H. Ling. Robust visual tracking and vehicle classification via sparse
representation. IEEE Trans. Pattern Anal. Mach. Intell., 2011.

[22] F. Porikli, O. Tuzel, and P. Meer. Covariance tracking using model update based
on lie algebra. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., volume 1, pages
728–735, 2006.

[23] M. J. D. Powell. A theorem on rank one modifications to a matrix and its
inverse. Computer Journal, 12(3):288–290, 1969.

[24] D. A. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning for robust visual
tracking. Int. J. Comp. Vis., 77(1):125–141, 2008.

[25] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-line random
forests. In Proc. IEEE Int. Conf. Comp. Vis. Workshops, pages 1393–1400,
2009.

[26] C. Strecha, A. Bronstein, M. M. Bronstein, and P. Fua. LDAHash: Improved
matching with smaller descriptors. IEEE Trans. Pattern Anal. Mach. Intell.,
34(1):66–78, 2012.

[27] T. Van Gestel, J. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene,
B. De Moor, and J. Vandewalle. Benchmarking least squares support vector
machine classifiers. Machine Learn., 54(1):5–32, 2004.

[28] M. Varma and D. Ray. Learning the discriminative power-invariance trade-off.
In Proc. IEEE Int. Conf. Comp. Vis., pages 1–8, 2007.

[29] J. Wang, S. Kumar, and S. Chang. Semi-supervised hashing for large scale
search. IEEE Trans. Pattern Anal. Mach. Intell., 2012.

[30] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Proc. Adv. Neural
Inf. Process. Syst., 2008.

[31] Y. Wu, J. Cheng, J. Wang, H. Lu, J. Wang, H. Ling, E. Blasch, and L. Bai.
Real-time probabilistic covariance tracking with efficient model update. IEEE
Trans. Image Proc., 21(5):2824–2837, 2012.

[32] J. Ye and T. Xiong. Svm versus least squares svm. In Proc. Int. Conf. Artificial
Intelligence & Stat., pages 640–647, 2007.

[33] K. Zhang, L. Zhang, and M. Yang. Real-time compressive tracking. In Proc.
Eur. Conf. Comp. Vis., 2012.

[34] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual tracking via multi-
task sparse learning. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages
2042–2049, 2012.

[35] D. Zhou, J. Huang, and B. Scholkopf. Learning with hypergraphs: Cluster-
ing, classification, and embedding. In Proc. Adv. Neural Inf. Process. Syst.,
volume 19, 2007.

