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Visual Tracking with Spatio-Temporal
Dempster-Shafer Information Fusion

Xi Li, Anthony Dick, Chunhua Shen, Zhongfei Zhang, Anton van den Hengel, Hanzi Wang

Abstract—A key problem in visual tracking is how to effectively
combine spatio-temporal visual information from throughout a video
to accurately estimate the state of an object. We address this
problem by incorporating Dempster-Shafer information fusion into
the tracking approach. To implement this fusion task, the entire image
sequence is partitioned into spatially and temporally adjacent sub-
sequences. A support vector machine (SVM) classifier is trained for
object/non-object classification on each of these subsequences, the
outputs of which act as separate data sources.

To combine the discriminative information from these classifiers,
we further present a spatio-temporal weighted Dempster-Shafer
(STWDS) scheme. Moreover, temporally adjacent sources are likely to
share discriminative information on object/non-object classification.
In order to use such information, an adaptive SVM learning scheme
is designed to transfer discriminative information across sources.
Finally, the corresponding Dempster-Shafer belief function of the
STWDS scheme is embedded into a Bayesian tracking model. Exper-
imental results on challenging videos demonstrate the effectiveness
and robustness of the proposed tracking approach.
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I. INTRODUCTION

Visual tracking has a wide range of potential applications
including video surveillance for security and traffic manage-
ment, health care, human-computer interaction, robotic vision,
object detection, and multimedia. A popular approach to visual
tracking is to learn a discriminative appearance model for
coping with complicated appearance changes. Typically, this
assumes that the object/non-object discriminative information
from different frames is generated from a temporally homo-
geneous source. However, this assumption may not hold in
practice, as object appearance and environmental conditions
vary dynamically over time. In addition, some intrinsic factors
also affect object appearance, including shape deformation,
pose variation, out-of-plane rotation, etc. In the face of such
challenging factors, fitting a static discriminative model is un-
likely to optimally distinguish an object from its background.

Our approach is to break incoming video into spatially
and temporally adjacent subsequences and to treat each sub-
sequence as a separate, but related, set of data to which a
discriminative model is fitted. In this way, we obtain a se-
quence of discriminative models acting as separate information
sources as visual tracking proceeds. Effectively combining
these information sources plays a critical role in our approach.
Most existing fusion techniques treat the sources equally or
independently, and thus ignore the spatio-temporal differences
and correlations among them. To address this issue, we pro-
pose a spatio-temporal weighted Dempster-Shafer (STWDS)
scheme for combining the discriminative information from
multiple information sources. The proposed STWDS scheme
is capable of capturing both time-related and space-related
discriminative information for object/non-object classification,
leading to robust tracking results. The main contributions of
this paper are three-fold:

o We introduce multi-source discriminative learning into
visual tracking. The problem of visual tracking is con-
verted to that of discriminative learning in a sequence
of spatially and temporally adjacent video subsequences,
each of which is treated as a discriminative information
source for object/non-object classification.

o We present a spatio-temporal weighted Dempster-Shafer
(STWDS) scheme for combining the evidence from both
time-related and space-related discriminative information
sources (as described in Sec. IV-B). The corresponding
Dempster-Shafer belief function of the STWDS scheme is
used as the observation model of a particle filter, resulting
in robust tracking results. We believe this is the first time
that such a fusion method has been adapted to visual
tracking.

e We design an adaptive SVM learning (ASL) scheme
for transferring space-related discriminative information
across time-adjacent sources. To capture time-related
discriminative information, the ASL scheme uses adap-
tive SVM learning for propagating the discriminative
information of the prior SVM classifier into the current
source. After acquiring new discriminative information
in the current source, it seeks to adaptively adjust the
propagation direction, resulting in a new SVM classifier

in the current source.

II. RELATED WORK

This section gives a brief review of the related tracking
approaches using the discriminative learning and information
fusion techniques.

A. Discriminative learning based tracking

Discriminative learning based tracking approaches try to
build a strong classifier for distinguishing a tracked fore-
ground object from background patterns. An online AdaBoost
classifier [5] is employed for discriminative feature selection,
which enables the tracking approach to adapt to appearance
variations caused by out-of-plane rotations and illumination
changes. Following the work of [5], Grabner et al. [6] present a
semi-supervised online boosting approach for visual tracking.
This approach can significantly alleviate the model drifting
problem caused during updating the model for the online
AdaBoost classifier. Avidan [10] constructs a confidence map
by pixel classification using an ensemble of online learned
weak classifiers. Collins et al. [12] propose an online feature
selection approach for visual tracking. This approach tries
to find the most discriminative linear combinations of the
RGB color space in each frame. Liu and Yu [13] propose
an efficient online boosting approach based on gradient-based
feature selection. Babenko er al. [9] present a tracking system
based on online multiple instance boosting, which takes the
uncertainty of object localization into account. Moreover,
Avidan [7] proposes an off-line SVM-based tracking approach
for distinguishing the target vehicle from background. Tian
et al. [8] utilize the ensemble of linear SVM classifiers for
visual tracking. These classifiers can be adaptively weighted
according to their discriminative abilities during different peri-
ods, resulting in the robustness to large appearance variations
during tracking. In order to capture the contextual information
on object samples, Li et al. [11] construct a contextual kernel
based on graph mode seeking, and then embed the contextual
kernel into the SVM tracking process.

In addition, Yang et al. [31] propose a discriminative tracker
that can track non-stationary visual appearances by data-driven
subspace adaptation, which encourages the mutual closeness
of the positive data to their projections and the mutual sep-
arability of the negative data from their projections. Besides,
Fan er al. [32] present a human tracking approach based on
convolutional neural networks, which can effectively learn
spatio-temporal features from image pairs of two adjacent
frames. Recently, discriminative metric learning has also been
successfully applied to visual tracking [34], [35], [36], [33].
It aims to learn a distance metric to capture the correlation
information between different feature dimensions for robust
tracking. Furthermore, Li et al. [39] propose a compact
and discriminative 3D-DCT (3D discrete Cosine transform)
object representation that poses object tracking as a signal
compression and reconstruction problem (solved by the fast
Fourier transform).



B. Information fusion based tracking

In general, information fusion based tracking approaches are
based on two types of techniques: 1) single-modal multi-source
information fusion; and ii) multi-modal information fusion,
which aims to fuse information from different types of sensors
(e.g. [22], [23], [24], [25]). Here, we focus on single modal
techniques, aiming to utilize multiple visual cues obtained
from a visible light camera at different times and locations
to compensate for noisy, partial or missing observations.

For instance, Wu and Huang [16] propose a co-inference
approach for integrating and tracking multiple cues (e.g.,
color and shape), resulting in an accurate and robust state
estimation on the image observations. Hua and Wu [17]
present a part-based visual tracking framework for detect-
ing and integrating inconsistent measurements (i.e., contra-
dictory to the majority of their neighbors). By eliminating
these inconsistent measurements, the presented framework
can achieve promising tracking results. Han and David [20]
develop a tracking approach based on robust fusion, which
is used for estimating the complicated motion parameters. By
fusing individual motion components, the developed tracking
approach is capable of obtaining robust motion parameters
that are immune to outliers. Xu et al. [21] propose a tracking
approach which fuses partial estimates from different sources.
By exploring the connection between the probabilistic data
fusion and computational geometry, the proposed tracking
approach can obtain the global optimal estimation in a high-
dimensional parameter space. Fan et al. [18] develop a mul-
tiple collaborative kernel tracking approach for increasing
the “kernel observability” for articulated objects. Multiple
kernels are utilized to explore the diverse information from
different perspectives. Tang et al. [19] present an online semi-
supervised learning based tracker. The method constructs two
feature-specific SVM classifiers (i.e., color and HOG features)
in a co-training framework, and thus is capable of improving
each individual classifier using the information from other
features. Adam et al. [1] propose a tracking approach based on
a patch-division object representation with a histogram-based
feature description. The final tracking position is determined
by combining the vote maps of all the patches (represented
by grayscale histograms). The combination mechanism can
eliminate the influence of the outlier vote maps caused by
occlusion.

III. TRACKING APPROACH: OVERVIEW

The goal of a visual tracking method is to estimate the
location of a target at each frame, given only the previous
frame data. As is common, we assume that the target motion
is approximated by a Markov model. Let Z; = (X3, Yy, S) de-
note the motion parameters at frame ¢ including & translation,
Y translation, and scaling. Then we estimate:

P(Z|Oy) o p(ot|Zt)/p(Zt|Zt—1)p(Zt—1|Ot—1)dzt—17 (1)

where O; = {01,...,0.} are the observed data, p(o; | Z;)
denotes the observation model, and p(Z; | Z;—1) represents
the state transition model. The motion model between two
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Fig. 1. Illustration of multi-source distribution properties. (a) and (b) show
100 and 500 consecutive object image patches obtained by the proposed
tracker on the “seq-jd” and the “trellis70” video sequences, respectively. While
the appearance of nearby patches is correlated, it changes significantly over
the course of the videos.

consecutive frames is assumed to be a Gaussian distribution:
p(Zt|Zt71) = N(Zt§ Z;_q, Z), 2

where X denotes a diagonal covariance matrix with diagonal
elements: 0%, 03, and ¢%. In this framweork, the optimal
object state Z; at time ¢ is determined by solving the maximum

a posterior (MAP) problem:
Z; = argzmaxp(ZtKQt), (3)

The workflow of the proposed tracking approach is sum-
marized in Algorithm 1. We approximate the distribution
p(Z:]O;) using a pool of samples which is updated at each
frame. Each sample is a translation and scaling of the original
target location and size, and thus represents an image patch in
the current frame. Our main contribution in this paper is the
use of a Dempster-Shafer fusion strategy for the observation
(or likelihood) model p(o:|Z;) used to evaluate each sample,
which is described in the following Section.

IV. DEMPSTER-SHAFER THEORY FOR VISUAL TRACKING
A. Motivation

Dempster-Shafer is a data fusion theory that combines
evidence from different information sources [27], [28], [29],
[30]. Typically, it is applied to the decision-making process
using different information sources with uncertainty.

In this paper, we apply the Dempster-Shafer theory to visual
tracking in order to combine evidence from multiple frames,
and from multiple regions within each frame. This allows us
to include information from other frames and locations in
the video in our implementation of the likelihood function
p(ot|Z:). The key advantage of the Dempster-Shafer theory
over Bayesian formulations is that it allows us to represent
ambiguity and mutual contradiction more explicitly, which in
turn leads to more robust tracking results.

Before describing our tracking approach, we introduce the
following terminologies:

o Mass function. Let © = {61,6,...,0x} denote a set
of mutually exhaustive and exclusive hypotheses. The
power set of O is defined as the set containing all the
2NV possible subsets of ©, denoted as P(0O):

P(G):{mv{el}a s 7{9N}7{91702}7 {91793}7 ey @}7 (4)



Initialization:
-N=1t=1.
— Number of samples V.
— Maximum buffer size W.
— Maximum number of sources Q.
— Manually set initial object state Z7.

— Collect positive and negative samples to form a training set F (see Sec. V-A) and extract features for all the sub-regions such that I € {1, 2, 3,4,5}.

— Train the SVM classifiers {1 }7_, over the features.

At frame t: N
Input: Existing SVM classifiers {{hin};_; },_,, new frame ¢, previous object state Z; ;.
begin

o Sample V candidate object states {Z; }_}/:1 by Eq. (2).
o Extract the features {xij }7_, for each Zy;

o for each Z;; do
— Time-related Dempster-Shafer information fusion.

— Obtain the combined mass function M; (A) in Eq. (16).
— Space-related Dempster-Shafer information fusion.

- Calculate the combined mass function M (A) in Eq. (18).
— Obtain the belief function Bel(A) in Eq. (19).
end

o Update the training sample sets F with F | J Z;r Jz,.
if t mod W = 0 then
e Extract features from samples in F.

end
if N > Q then
‘ {{hin}iy }27:1 is truncated to keep the last @ sources.
end
t=t+ 1.

end

o Determine the optimal object state Zy by the MAP estimation in Eq. (3).
o Collect positive (or negative) samples Z{*’ (or Z,) (referred to in Sec. V-A).

— Compute the normalized SVM confidence score gln(xi .) according to Eq. (14).
- Calculate the time-weighted mass function m;,, (A, ) in Eq. (15).

— Compute the spatial-weighted mass function M (A) in Eq. (17).

o Run adaptive SVM learning over the extracted features and h;n to generate a new SVM classifier hj(n1)-
Create a new source associated with {hl<N+1)}f:1, N=N +1, and F=10.

Output: SVM classifiers {{hln}15=1 }:;1, current object state Z;, and updated training sample sets F.
Algorithm 1: Overview of the tracking algorithm.

where () denotes the empty set. A probability mass func-
tion is introduced to define a mapping: m : P(©) — [0, 1]
which has the following properties:

> m(A) =1, m(0) =0. (5)

AeP(©)

If m(A) > 0, the set A is called a focal element. The
set of all the focal elements corresponds to a body of
evidence.

o Belief function. Given a mass function m, a belief func-
tion is defined as:

Bel(4) = > m(B), 6)

BCA

where Bel(A) reflects the total belief degree of A.

B. Spatio-temporal Dempster-Shafer information fusion

1) Weighted Dempster-Shafer theory: According to the
traditional Dempster-Shafer theory, all the information sources
are equally weighted. However, due to noise or errors, infor-
mation sources may have different properties and confidence
values, so their outputs should have different weights [29],
[38]. Specifically, let h, be an existing information source,
w,, be the confidence weight of h,,, m, be the original mass
function of h,, m) be the weighted mass function of h,,
and P(O) (referred to in Eq. (4)) be the power set of hy,.

Mathematically, m., is defined as:
0, A
1—w,(1-m,(0)), A
Wy My (4), A

0;

€ P(;(a) \ {\,0}.
(7

The proof that m}, is a mass function is given as follows.
According to Eq. (5), we have the following relation:

ma(©)+ Y mu(A) =1 (8)

AeP(©)\©

Based on this relation, the sum of m? over P(©) can be
formulated as:

> my(4) =my(@)+ > my(4)
AeP(0) AeP(©)\O
=1—w,(1=mn(®)+w, > my(4)=1.
AeP(©)\©
€))

2) Application to tracking: In practice, how to effectively
obtain the confidence weights (i.e., w,) of different infor-
mation sources is another key issue to solve. In the field of
visual tracking, the data taken from different frames are likely
to have different statistical properties due to the influence of
the extrinsic environmental conditions (e.g., illumination) and
the intrinsic object-specific factors (e.g., shape deformation,
rotation, or pose variation), as shown in Fig. 1. From Fig. 1, we
see that the image patches from sequential frames usually have
different but correlated appearance properties, as the targets
often move in a continuous, dynamic, and periodical manner.

Even if the data are taken from the same object region but
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Fig. 2. Illustration of the spatial block-division strategy with five sub-regions
(i.e., full, left, right, up, and down) over the ensemble of data samples. The
image regions occluded by the masks are not used during tracking.

different locations, they are also likely to possess different
statistical properties. Thus, we need to consider both space-
related and time-related information about object appearance
for robust visual tracking. These two types of information
should be associated with appropriate confidence weights
according to their spatial or temporal properties. Motivated by
this observation, we propose a weighted information fusion
mechanism for combining the belief evidences from different
spatio-temporal SVMs.

3) Spatio-temporal weighted SVM evidence combination:
During visual tracking, discriminative information from dif-
ferent frames and different spatial regions within each frame
constitutes different sources for object or non-object classi-
fication. As in [3], we divide each sample into five spatially
related sources: {full, left, right, up, down}, as shown in Fig. 2.
Each subdivision is indexed by a number [ € {1,2,3,4,5}.
Clearly, these five sources contain different spatial salience
information of the appearance inside each object sub-region.
In order to capture this discriminative information, a SVM
classifier is learned for each sub-region. Thus, each frame is
associated with five SVM classifiers that act as space-related
discriminative information sources. For a single sub-region,
the corresponding SVM classifiers from different frames can
be considered as a sequence of time-related discriminative
information sources. Thus, we have a set of spatio-temporal
discriminative information sources which we combine using
weighted Dempster-Shafer information fusion. Fig. 3 gives
an intuitive illustration of the proposed spatio-temporal SVM
evidence combination scheme.

At this point we introduce some terminology needed to
describe space and time related information fusion. Suppose
that there are N time-adjacent sub-sequences, each of which
is associated with the five source-specific SVM classifiers
denoted as {h;,} for 1 <1 <5and 1 <n < N. Thus, there
are two dimensions, spatial and temporal, for all the SVM
classifiers. These SVM classifiers work as spatio-temporal
discriminative information sources during visual tracking. As
visual tracking is solved as a binary classification problem,
we define the corresponding power set of the spatio-temporal
discriminative information sources as:

P(@) = {@) {_1}’ {1}7 6}7

where © = {—1,1} denotes both classes, {1} represents
the object class, and {—1} stands for the non-object class.
In order to effectively combine these space-related and time-
related discriminative information sources, we introduce the

(10)
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Fig. 3. Illustration of the spatial-temporal weighted Dempster-Shafer
information fusion.

Dempster’s orthogonal fusion rule:

) = @ma @ Bmx) ()
> (H —1 M )
Np—1 An=A4 :

= 1-K ’ if A#0;

0, otherwise;
a1
where €D is the combination operator, m,, is the corre-
sponding mass function of A, € P(©), K is a probability
mass measuring the degree of the conflict among the N
mass functions (i.e., {m,}"_,), and the term 1 — K is a
normalization factor. K = 0 indicates that there is no conflict
among {m, })_,, while K = 1 implies that {m,, }\_, are
completely contradictory to each other. Mathematically, K can

be formulated as:

N
K = Z (H mn(An)> .
ﬂﬁjzl Ap=0 \n=1

Time-related combination. By concatenating the SVM
classifiers of a particular spatial region along the temporal
dimension, we obtain a set of time-related SVM classifiers de-
noted as {h;, }2_;. Let {my, })_; be the corresponding mass
functions of {h;, })_,. Mathematically, the mass function my,
is defined as:

(12)

0, A, = (Z)
Ca An =
in ) TSI e AR
(1= —gin(x}), An={-1};
where ( is the class uncertainty degree (¢ 0.1 in the

experiments), X. is a candidate sample associated with the I-th
spatial block-division sub-region at time ¢, and g;,,(x!) is the
normalized SVM confidence score defined as:

1

1+ exp(—vhin(xL))

Here, ~ is a scaling factor (v = 0.6 in the experiments), and
hin(xL) is the associated prediction function of the SVM clas-

Gin(x}) = (14)
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Fig. 4. Demonstration of the likelihood evaluation based on spatio-temporal
Dempster-Shafer information fusion using Bel({1}). (a) shows the original
frame; (b) displays a likelihood map, each element of which corresponds to
an image patch in the entire image search space; and (c) exhibits the curve
of the likelihood ranking for all the image patches.

sifier hy,. Note that there is still some uncertainty associated
with a candidate sample even if the normalized confidence
score g;, takes the value of 1.0. Since visual tracking is a
time-varying process, the SVM classifier h;,, is associated with
a time-varying weight defined as: exp(—2~5"). Hence, the
previous discriminative information can be forgotten gradually.
According to Eq. (7), we define the time-weighted mass

function mj,, of my, as:

A

L-exp(-252)(1-¢), A
exp(— ) (1= Ogin(x),  Ap =

exp(—22)(1 - ¢)(1 - A

According to Eq. (11), the combined mass function M; of
{mj }N_, is formulated as:

M (A) = (mj, @mlz D - Dmin)(4)
(l'ln 1M (An ))
NA—1 A"_A
={! - x
Nn=y An=0
0, otherwise;
(16)
where A, Ay, As, ..., Ay € P(©). By extension, we obtain
all the combined mass functions corresponding to the five
spatial sub-regions: {M;(A4)}7_;.

(Hg:1 7n;‘n(An))7 if A # @7

Space-related combination. Following discriminative in-
formation fusion from multiple timesteps, we now aim to
fuse the spatial-related discriminative information from the
combined mass functions {M;(A)}7_;, which can be viewed
as five spatial-related discriminative information sources. We
assign equal weights to these sources because of their similar
spatial configurations. Consequently, the corresponding confi-
dence weights of {M;(A)}?_, are uniform. In this case, we
have the following spatial-weighted mass function M (A) of
MZ(A)Z

0, A= 0
¢ A=0;
(1- Q). A={1}or {-1}.

According to Eq. (11), the final combined mass function

M (A) = (17)

M(A) of {M;(A)}?_, is formulated as:
M

(A) =M DM;D - PM;)(A4)
> (M= M7 (A))

NPy A=A
- (s

Np_, A;=0
0, otherwise;
(18)
where A, A1, As, ..., As € P(©). According to Eq. (6), the
belief function Bel(A) associated with M(A) is defined as:

if A#0;

M (A1)’

Bel(A) = ZBQA M(B) P
0, =¥
M{-1}) + M({1}) + M(©), A=6;
M({1}), A={1}
M({-1}), A={-1}.

According to Dempster-Shafer, Bel(A) reflects the degree
of belief when the decision A is made, in the interval [0, 1].
Bel({1}) is the belief that the test sample belongs to the
object class. Therefore, Bel({1}) is used for evaluation of the
likelihood p(0;|Z;) in Eq. (1), taking into account weighted
discriminative information from N frames and five spatial sub-
divisions.

Fig 4 illustrates the effectiveness of Bel({1}) as a likelihood
function. As shown in Fig. 4(a), a bounding box highlighted
in red is shifted pixel by pixel from left to right and from
top to bottom. After calculating the normalized likelihood

.score using Eq. (19) at each location, we have a likelihood

map which is shown in Fig. 4(b). From Fig. 4(b), we see
that the likelihood map has an obvious peak, which indicates
that the proposed observation model is able to discriminative
the object of interest from the rest of the image. For an
intuitive illustration, we compute the corresponding likelihood
scores of all the rectangular image patches, then sort them
in a descending order, and finally show them in Fig. 4(c).
Clearly, the larger the likelihood score is, the more likely the
rectangular image patch belongs to the foreground object class.

C. Adaptive SVM learning across sources

In general, the time-adjacent sources for visual tracking are
temporally correlated with each other. We design an adaptive
SVM learning scheme in order to make use of this correlation
by transferring discriminative information between the SVM
classifiers that occur in adjacent sources.

To describe the ASL scheme, we introduce the following
notations. Let D!,_; denote the previous source associated
with the SVM classifier hy(,,_1(x). Corresponding to D, _,,
the training data generaged from the current source D!, are
denoted as {(x};, ym)};] 1» where x!,; is the i-th data vector,
yt. € {—1,1} is its binary label, and J! is the training
data size. The ASL scheme tries to effectively learn a corre-
sponding SVM classifier Ay, (x) of D! using fy(,—1)(x) and

{(Xﬁu,ym)}7 . In other words, the learned SVM classifier
hin(x) needs to not only account for the historical discrimina-
tive information from h;(,,_1)(x) but also adapt to the current

l
training data {(x!,;, ym)};;];l. Mathematically, the ASL scheme
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Fig. 5. TIllustration of training sample selection. The left subfigure plots
the bounding box corresponding to the current tracker location; the middle
subfigure shows the selected positive samples; and the right subfigure displays
the selected negative samples. Different colors are assoicated with different
samples.

can be formulated as the following optimization problem:

T (1= M) — L5 S ook b K(xL X
mg'XZizl( l)al QZizlzjzlalajyniynj (X,m-,an

S.t. 0< o < C, Vi
(20)
where \; = ! hin—1)(x,;), C is a regularization factor, and
K(x,x') is a kernel function. The optimization problem (20)
can be efficiently solved by using the iterative parameter
learning approach [14], which first chooses working variables
and then optimizes them until convergence. As a result, we

have the SVM classifier Ay, (x) = 327, aiyl K (x,xL).

) Ang

D. Feature description

The kernel function K (x,,x;) (referred to in Eq. (20)) is
defined as:

K (xq,%,) = exp(=B|[F(Oa) —=F(Op)|I*), @)

i.e. a Gaussian RBF kernel, where || - || is the £ norm, 3 is a
scaling factor, and F is a feature descriptor.

In our implementation, the feature descriptor F is associated
with a Radon matrix [15], but other features may equally
be used. The Radon matrix 7z can be derived by directly
applying the Radon transform [15] to an image patch O after
affine warping and histogram equalization:

+oo —+oo
Tn(p,0) = / / Ogyé(zcosf + ysinb — p)dxdy,

where §(-) is the Dirac delta-function, § € [0,7], and
p € [—00,+00]. Tr(p,d) is the integral of O over the line
p = xcosf + ysinf. Consequently, the Radon matrix T
encodes the spatial integral information of O in different
directions. In practice, the angle 6 takes several discrete
values which are uniformly sampled from the interval [0, ]
(0 € {57}%_, in the experiments), and the radial coordinate
p lies in a particular interval [pmin, Pmax] determined by the
image size. In this case, we obtain a Radon feature vector for
the image region O, i.e., Fr(O) = U(T,) with U(-) being
a row flattening operator. A separate feature is calculated for
each spatial subdivision of the image patch.

V. EXPERIMENTS
A. Data description and implementation details

In the experiments, we evaluate the proposed tracker (re-
ferred to as STWDS) on twenty video sequences, which are

taken in different scenes and composed of 8-bit grayscale
or 24-bit color images. In these videos, several complicated
factors cause drastic appearance changes of a tracked ob-
ject, including illumination variation, occlusion, out-of-plane
rotation, background distraction, small target size, motion
blurring, pose variation and so on. In order to demonstrate
the effectiveness of the proposed tracker on these videos, a
number of experiments are conducted. Such experiments have
two main purposes: to verify the robustness of the proposed
STWDS in various challenging situations, and to evaluate the
ability of STWDS to adapt to complex appearance changes.
As mentioned in Section III, tracking is based on a pool
of samples that is updated at each frame. Like [9], we take
a spatial distance-based strategy for training sample selection.

)Namely, the image regions from a small neighborhood around

the object location are selected as positive samples, and the
negative samples are generated by selecting the image regions
which are relatively far from the object location. Specifically,
we draw a number of samples Z; from Eq. (2), and then an
ascending sort for the samples from Z; is made according to
their spatial distances to the current object location, resulting
in a sorted sample set Z;. By selecting the first few samples
from Z7, we have a subset Z; that is the final positive sample
set, as shown in the middle part of Fig. 5. The negative sample
set Z, 1is generated in the area around the current tracker
location, as shown in the right part of Fig. 5. In the first frame,
the object location is manually labeled.

The proposed STWDS is implemented in Matlab on a
workstation with an Intel Core 2 Duo 2.66GHz processor
and 3.24G RAM. The average running time of the proposed
STWDS is about 0.3 second per frame. The number of samples
in each frame (i.e., V) is set to 200. The parameters W and )
in Algorithm 1 are set to 6 and 10, respectively. The scaling
factor 8 defined in Eq. (21) is set to 0.01. These parameters
remain the same throughout all the experiments.

B. Competing trackers

We compare STWDS with several state-of-the-art trackers
both qualitatively and quantitatively. These trackers are all
recently proposed, and have had significant impact on the vi-
sual tracking community. For descriptive convenience, they are
respectively referred to as FragT (Fragment-based tracker [1]),
MILT (multiple instance boosting-based tracker [9]), VTD
(visual tracking decomposition [26]), OAB (online AdaBoost
[5]), IPCA (incremental PCA [2]), LIT (¢; minimization
tracker [4]), and CSVM (conventional SVM tracker without
multi-source discriminative learning). In implementation, we
directly use the publicly available source codes of FragT,
MILT, VTD, OAB, IPCA, and L1T. In the experiments, there
are two different versions for OAB, i.e., OAB1 and OABS.
They use two different search radiuses (i.e., r=1 and r=5
selected in the same way as [9]) to generate the training
samples for learning AdaBoost classifiers, respectively. In
implementation, the proposed STWDS adopts the same ini-
tialization strategy (i.e., manual annotation with a bounding
box) as the competing trackers.

The reasons for selecting these competing trackers are as
follows. CSVM is close to STWDS but does not use Dempster



Shafer information fusion to fuse multiple SVM outputs,
instead using a self-learning strategy to train and update
the SVM classifiers in a single source. MILT is a recently
proposed discriminant learning-based tracker, which uses mul-
tiple instance boosting for object/non-object classification. In
comparison, OAB utilizes online boosting for object/non-
object classification. Thus, comparing STWDS with MILT
and OAB can demonstrate the discriminative capabilities of
STWDS in handling large appearance variations. FragT is a
fragment-based visual tracker using the integral histogram.
By combining the vote maps of the multiple patches, FragT
captures the spatial layout information of the object region,
resulting in the robustness to partial appearance changes. IPCA
uses incremental principal component analysis to construct
the eigenspace-based observation model for visual tracking.
LI1T treats visual tracking as a sparse approximation problem
using ¢;-regularized minimization. VTD uses sparse principal
component analysis to decomposes the observation (or motion)
model into a set of basic observation (or motion) models,
each of which covers a specific type of object appearance (or
motion). Thus, comparing STWDS with FragT, IPCA, LIT,
and VTD can show their capabilities of tolerating complicated
appearance changes.

C. Quantitative evaluation criteria

The object center locations of the eighteen video sequences
are manually labeled and used as the ground truth. Hence, we
can quantitatively evaluate the tracking performances of the
nine trackers by computing their corresponding pixel-based
tracking location errors (TLEs) with respect to the ground truth
of the twenty video sequences.

To measure the tracking accuracy of each tracker, we
define a quantitative evaluation criterion: TLEWH =
TLE/max (W, H). Here, TLE is the above-mentioned pixel-
based tracking location error with respect to the ground truth,
W is the width of the ground truth bounding box for object
localization, and H is the height of the ground truth bounding
box. For quantitative comparison, we compute the average
TLEWH of each tracker on each video sequence. The smaller
the average TLEWH, the more accurate tracking results the
tracker achieves.

In order to better evaluate the quantitative tracking perfor-
mance of each tracker, we introduce a per-frame criterion to
judge whether a tracker succeeds in object tracking. Namely,
if TLEWH is smaller than 0.25, the tracking result for each

frame is considered to be successful. We compute the tracking

success rate (defined as %) for each video

sequence to quantitatively evaluate the performance of each
tracker.

D. Evaluation of features and information fusion methods

In order to evaluate the effect of feature description, we
embed 3 different visual features into our tracking approach:
the raw pixel feature, the intensity histogram feature, and
the Radon feature. Fig. 6 shows the tracking error curves
of the tracking approaches using different visual features on
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Fig. 6. Quantitative tracking performances of the tracking approaches using
different visual features on the three video sequences. Clearly, the tracking
approach using the Radon feature achieves the best tracking results.
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Fig. 7. Quantitative tracking performances of the tracking approaches
using different information fusion methods on the three video sequences,
including Dempster-Shafer (DS) fusion, Dezert-Smarandache (DSm) fusion,
Prod fusion, Min fusion, Max fusion, and Mean fusion. Clearly, the tracking
approaches using DS fusion and DSm fusion achieve better tracking perfor-
mances. Moreover, the tracking results obtained by DS fusion is on par with
those obtained by DSm fusion.

the three video sequences (i.e., “girl”, “seq-jd”, and ‘“seq-
simultaneous”). From Fig. 6, we see that the tracking approach
using the Radon feature achieves better tracking performance,
particularly in the presence of large rotation.

We also conduct an experiment comparing six different
information fusion methods including Dempster-Shafer (DS)
information fusion, Dezert-Smarandache (DSm) information
fusion [37], and simple information fusion methods (i.e., the
maximum, minimum, average, and product of the confidence
scores from different information sources). By embedding
these information fusion methods into our tracking approach,
we can evaluate their quantitative tracking performances on
the three video sequences (i.e., “animal”, “cubicle”, “girl”), as
shown in Fig. 7. Clearly, it is seen from Fig. 7 that the tracking
approaches using Dempster-Shafer and Dezert-Smarandache
information fusion obtain better tracking results than those
using the simple information fusion methods. In addition,
the tracking performance achieved by Dempster-Shafer in-
formation fusion is on par with that by Dezert-Smarandache
information fusion. As an extension of the Dempster-Shafer
theory, the Dezert-Smarandache theory mainly focuses on
the fusion of uncertain, highly conflicting, and imprecise
quantitative or qualitative sources of evidence. In our case,
the spatio-temporal sources of evidence for visual tracking
are mutually correlated and lowly conflicting. As a result, the
Dezert-Smarandache theory for information fusion performs
comparably to the Dempster-Shafer theory during tracking.

E. Comparison with and without adaptive SVM learning

We compare the quantitative tracking performance of our
approach with and without using adaptive SVM learning.
These two variants make use of the same multi-source discrim-
inative learning scheme. The only difference between them is
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Fig. 8. Quantitative tracking performances of the tracking approaches with
and without adaptive SVM learning (ASL) on the three video sequences.
Clearly, the tracking approach with ASL achieves better tracking results.

Fig. 9. The tracking results of the nine trackers over the representative frames
(191, 239, 275, 295, 311, 347, 376, 436) of the “trellis70” video sequence in
the scenarios with drastic illumination changes and head pose variations.

that the former utilizes adaptive SVM learning to generate
the multi-source discriminative information while the latter
takes advantage of standard SVM learning. Fig. 8 shows the
frame-by-frame center location error curves of the two tracking
approaches (i.e., with and without adaptive SVM learning)
on the three video sequences. From Fig. 8, we see that the
tracking approach using adaptive SVM learning obtains more
accurate tracking results, especially for later frames in each
video.

FE. Qualitative comparison results with competing trackers

Due to the space limit, we provide the corresponding track-
ing results of the nine trackers (highlighted by the bounding
boxes in different colors) over the representative frames of the
four video sequences, as shown in Figs. 9-12. The complete
tracking results for all the video sequences can be found in
the supplementary file.

1) IHllumination changes: Video sequences “trellis70”
(Fig. 9), “carl!l”, “card”, and “shaking” demonstrate tracker
performance in the presence of drastic illumination changes.

As a representative example, in “trellis70”, VTD and OABS
begin to lose the face after shadowing at frame 170 while
OABI, IPCA, MILT, and FragT fail to track the face after
further lighting changes at frames 182, 201, 202, and 205
respectively. L1T begins to lose the face from frame 252. After
frame 123, CSVM greatly drifts away from the true location
of the face. Only the proposed STWDS successfully tracks the
face throughout each of these sequences.

2) Pose and viewpoint changes: Video sequences ‘“seq-
simultaneous” (Fig. 10), “animal”, “football2”, and “girl” test
tracker performance for rapid object rotation and translation,
sometimes in combination with other factors such as occlusion
or motion blur.

Fig. 10. The tracking results of the nine trackers over the representative
frames (1, 5, 15, 21, 28, 34) of the “seq-simultaneous” video sequence in the
scenarios with partial occlusion, out-of-plane rotation, and head pose variation.
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Fig. 11. The tracking results of the nine trackers over the representative
frames (3, 11, 23, 29, 40, 48) of the “cubicle” video sequence in the scenarios
with partial occlusion, out-of-plane rotation, and head pose variation.

For example, in “seq-simultaneous”, IPCA, VTD, and MILT
lose the head of the person thoroughly after frames 19, 20,
and 27, respectively. In comparison, L1T, MILT, and OABS5
achieve inaccurate tracking results from early in the video.
Before frame 26, CSVM tracks the head inaccurately, and then
loses the head entirely after frame 26. Suffering from out-
of-plane rotation and occlusion, OAB1 and FragT drift away
multiple times. However, the proposed STWDS succeeds in
tracking the head throughout this video sequence and others
involving significant pose change.

3) Occlusion: Video sequences ‘“‘cubicle” (Fig. 11),
“woman”, “seq-jd”’, and “girl” demonstrate tracker perfor-
mance in the face of severe occlusion, again in conjunction
with other factors such as blur and pose variation.

For example, in “cubicle”, the target head is partially oc-
cluded for most frames. IPCA, FragT, L1T, MILT, and OAB1
fail to track the head of the man after frame 38, 38, 39, 15, and
16, respectively. OABS and VTD achieve inaccurate tracking
results throughout the video sequence. CSVM begins to lose
the head after frame 41. However, the proposed STWDS
successfully tracks the head in all frames over this and the
other sequences.

4) Blur, clutter, and low video quality: Video sequences
“video-car” (Fig. 12), “animal”, and “shaking” test perfor-
mance in cases where the depiction of the target is of low
quality, either due to motion blur or small size.
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Fig. 12. The tracking results of the nine trackers over the representative
frames (212, 280, 319) of the “video-car” video sequence in the scenarios
with small target size and background clutter.
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Fig. 13. The tracking location error plots obtained by the nine trackers over
the first twelve videos. In each sub-figure, the x-axis corresponds to the frame
index number, and the y-axis is associated with the tracking location error.

For example, the sequence “video-car” is a cross-road traffic
scene from a top-down viewpoint. In this sequence, we track
a car that occupies a small number of pixels, is densely
surrounded by other cars, and is quite blurred. Due to the
influence of the background distraction and the small target
size, MILT, OABS, FragT, OABI1, VTD, and LIT start to
lose the car from frames 69, 160, 190, 196, 246, and 313,
respectively. On the contrary, IPCA, CSVM, and STWDS can
track the car persistently. Among these three trackers, STWDS
is able to locate the car most accurately in all frames.

G. Quantitative comparison results with competing trackers

Fig. 13 shows the tracking location error plots obtained
by the nine trackers (highlighted in different colors) for the
first twelve video sequences. We also compute the mean
and standard deviation of the tracking location errors in the
experiments, and report the results in Fig. 14. From Fig. 13

and Fig. 14, we see that the proposed STWDS achieves the
most robust and accurate tracking performance on most video
sequences.

Table I shows the average TLEWHs of the nine trackers on
the total twenty video sequences. It is clear that the proposed
STWDS achieves the best tracking performances on most
video sequences. Table II reports the quantitative tracking
results of the nine trackers in the tracking success rate on the
total twenty video sequences. From Table II, we can see that
the proposed STWDS achieves the best tracking performances
on most video sequences.

VI. CONCLUSION

In this paper, we have proposed a spatio-temporal weighted
Dempster-Shafer (STWDS) scheme for combining discrim-
inative information from different sources. In the STWDS
scheme, we introduce multi-source discriminative learning to
capture the spatio-temporal correlations among different dis-
criminative information sources. Thus, the problem of visual
tracking is converted to that of discriminative learning in a
sequence of space-related and time-adjacent sources, each of
which is associated with a discriminative information source
for object/non-object classification. Furthermore, an adaptive
SVM learning scheme is designed to transfer discriminative
information across time-adjacent sources, which are assumed
to have some correlation. Based on the associated Dempster-
Shafer belief function of the STWDS scheme, an observation
model is constructed and embedded into a visual tracking
method. Compared with several state-of-the-art trackers, the
proposed tracker is shown to be more robust to illumina-
tion changes, pose variations, partial occlusions, background
distractions, motion blurring, as well as other complicated
appearance changes.

In the future, we plan to extend the method to deal with
multiple targets simultaneously by using a multi-class SVM
to discriminate between each object and the background.
Dempster-Shafer fusion extends naturally to accommodate this
by adding extra labels into the set O.
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TABLE I
THE QUANTITATIVE COMPARISON RESULTS OF THE NINE TRACKERS IN AVERAGE TLEWHS ON THE TWENTY VIDEO SEQUENCES.

| FragT [ VID | MILT | OABI [ OAB5 [ IPCA | LIT | CSVM [STWDS
trellis70 1.2141 ] 0.8257 | 0.9667 | 1.7182 | 2.0395 | 0.7493 | 0.4465 | 1.5802 | 0.0982
carll 0.8796 | 0.6891 | 0.9613 | 0.4784 | 0.2439 | 0.0636 | 0.5561 | 0.8228 | 0.0795
animal 0.5744 | 1.1982 | 0.2551 | 0.5009 | 0.3388 | 1.0205 | 0.2466 | 0.4680 | 0.0134
cubicle 0.7460 | 0.5106 | 1.9058 | 1.5001 | 0.4650 | 1.0906 | 0.8558 | 0.9352 | 0.2968
woman 1.4729 | 1.6843 | 1.7781 | 1.5739 | 1.5724 | 1.5685 | 1.7375 | 1.4374 | 0.0413

seq-simultaneous || 0.2168 | 1.0770 | 0.5538 | 0.2454 | 0.4836 | 1.1447 | 0.2804 | 0.2862 | 0.1138
video-bus2 2.3276 | 2.0346 | 5.4240 | 2.4682 | 6.1899 | 0.0990 | 0.4065 | 0.4726 | 0.0248

football2 0.1258 | 1.4699 | 0.1279 | 0.1444 | 3.1110 | 0.0535 | 0.5650 | 3.0895 | 0.0357
seq-jd 0.2218 | 0.2266 | 0.6471 | 0.7800 | 0.3935 | 0.8328 | 0.7256 | 1.1010 | 0.1138
girl 0.2320 | 0.1041 | 0.3443 | 0.4621 | 0.5990 | 0.2010 | 0.1156 | 0.2771 | 0.1028
car4 0.3046 | 0.6611 | 0.1431 | 0.2067 | 0.8936 | 0.0523 | 0.0658 | 0.4978 | 0.0564
shaking 1.5942 | 3.3748 | 0.1422 | 0.1683 | 0.3764 | 2.3024 | 3.7228 | 1.2529 | 0.1368
pktest02 1.9902 | 0.1113 | 0.0816 | 0.1317 | 1.5471 | 0.0897 | 0.1192 | 0.2741 | 0.1391
surfer 22915 | 1.7367 | 0.0559 | 0.4735 | 2.5624 | 1.0473 | 0.6792 | 0.8806 | 0.0301
singer2 0.2579 | 0.0860 | 0.2041 | 0.6139 | 1.0540 | 0.0726 | 0.2936 | 0.3236 | 0.0875
CamSeq01 0.1090 | 0.0775 | 0.1635 | 0.1052 | 0.1297 | 0.1574 | 0.4693 | 0.2253 | 0.1650

davidin300 0.7871 | 0.3030 | 0.2137 | 0.5370 | 0.5303 | 0.0623 | 0.1741 | 0.3749 | 0.0754
pedxing-seq2 0.8350 | 0.0751 | 0.0795 | 0.0610 | 0.1863 | 0.0468 | 0.0716 | 0.0934 | 0.0614

Distortion 0.3852 | 0.6536 | 0.0503 | 0.0600 | 0.4559 | 0.3829 | 0.1982 | 0.4015 | 0.0245

Pedestrians 0.0403 | 0.2868 | 0.2941 | 0.2870 | 0.3668 | 0.2945 | 0.2919 | 0.3117 | 0.0423

Mean 0.8303 | 0.8593 | 0.7196 | 0.6258 | 1.1770 | 0.5666 | 0.6011 | 0.7553 | 0.0869

Std 0.7242 | 0.8343 | 1.2021 | 0.6481 | 1.4097 | 0.6153 | 0.8063 | 0.6817 | 0.0640
TABLE I

THE QUANTITATIVE COMPARISON RESULTS OF THE NINE TRACKERS IN TRACKING SUCCESS RATES ON THE TWENTY VIDEO SEQUENCES.

| FragT [ VID | MILT | OABI [ OAB5 [ IPCA [ LIT | CSVM [STWDS

trellis70 0.2974 [ 0.4072 | 0.3493 | 0.2295 | 0.0339 | 0.3593 [ 0.4591 [ 0.0519 | 0.9581
carll 0.4020 | 0.4326 | 0.1043 | 0.3181 | 0.2799 | 0.9211 | 0.5700 | 0.1018 | 0.9389
animal 0.1408 | 0.0845 | 0.6761 | 0.3099 | 0.5352 | 0.1690 | 0.5352 | 0.4507 | 1.0000
cubicle 0.7255 | 0.9020 | 0.2353 | 0.4706 | 0.8627 | 0.7255 | 0.6863 | 0.6863 | 0.9608
woman 0.2852 | 0.2004 | 0.2058 | 0.2148 | 0.1859 | 0.2148 | 0.2509 | 0.3755 | 1.0000
seq-simultaneous || 0.6829 | 0.3171 | 0.2927 | 0.6829 | 0.6585 | 0.3171 | 0.5854 | 0.6098 | 0.9268
video-car 0.4711 | 0.6353 | 0.1550 | 0.4225 | 0.0578 | 1.0000 | 0.9058 | 0.9574 | 1.0000
football2 0.7667 | 0.4667 | 0.6233 | 0.6667 | 0.0467 | 0.9967 | 0.3633 | 0.2900 | 1.0000
seq-jd 0.8020 | 0.7723 | 0.5545 | 0.5446 | 0.3168 | 0.6634 | 0.2277 | 0.2178 | 0.9406
girl 0.6335 | 0.9044 | 0.2211 | 0.1773 | 0.1633 | 0.8466 | 0.8845 | 0.4303 | 0.9462
card 0.6793 | 0.6210 | 0.7959 | 0.7464 | 0.3819 | 1.0000 | 1.0000 | 0.4227 | 1.0000
shaking 0.1534 | 0.2767 | 0.9918 | 0.9890 | 0.8438 | 0.0110 | 0.0411 | 0.2959 | 0.9918
pktest02 0.1667 | 1.0000 | 1.0000 | 1.0000 | 0.2333 | 1.0000 | 1.0000 | 0.7667 | 1.0000
surfer 0.2128 | 0.4149 | 0.9894 | 0.3112 | 0.0399 | 0.4069 | 0.2766 | 0.4309 | 0.9920
singer2 0.9304 | 1.0000 | 1.0000 | 0.3783 | 0.2087 | 1.0000 | 0.6739 | 0.8217 | 1.0000
CamSeq01 1.0000 | 0.9901 | 0.9703 | 1.0000 | 0.9703 | 0.9901 | 0.5446 | 0.8713 | 1.0000
davidin300 0.4545 | 0.7900 | 0.9654 | 0.3550 | 0.4762 | 1.0000 | 0.8550 | 0.5887 | 1.0000
pedxing-seq2 0.2975 | 1.0000 | 1.0000 | 1.0000 | 0.7911 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Distortion 0.1969 | 0.1890 | 1.0000 | 1.0000 | 0.3228 | 0.2677 | 0.7638 | 0.1969 | 1.0000
Pedestrians 1.0000 | 0.5065 | 0.4870 | 0.5065 | 0.4416 | 0.4935 | 0.5065 | 0.4805 | 1.0000
Mean 0.5149 | 0.5955 | 0.6309 | 0.5662 [ 0.3925 [ 0.6691 | 0.6065 | 0.5023 | 0.9828
Std 0.2875 | 0.2990 | 0.3383 | 0.2900 | 0.2899 | 0.3417 | 0.2765 | 0.2717 | 0.0255
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