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In order to approximate any nonlinear system, not just affine nonlinear systems, generalized T-S
fuzzy systems, where the control variables and the state variables, are all premise variables are
introduced in the paper. Firstly, fuzzy spaces and rules were determined by using ant colony
algorithm. Secondly, the state-space model parameters are identified by using genetic algorithm.
The simulation results show the effectiveness of the proposed algorithm.

1. Introduction

Since the presentation of Takagi-Sugeno (T-S) fuzzy model by Takagi and Sugeno in 1985,
great effort has been devoted to fuzzy modeling, analysis, and design, see for example, [1–
10] and the references therein. A multilayer incinerator was modeled by a T-S fuzzy model,
and it was shown that the model has better accuracy compared to statistical methods in [11].
A process control rig with three subsystems, a heating element, a heat exchanger, and a com-
partment tank, wasmodeled by a T-S fuzzymodel in [12], and it was shown that the proposed
approach provides better modeling when compared with a linear modeling approach.

In identification of fuzzy models, an interdependent procedure for the structure
determination and parameter identification is often concerned, that is, determination of
the premise and consequence variables and identification of the premise and consequence
parameters [13]. Structure identification of the fuzzy model is concerned with the
determination of the number of rules and parameter estimation. Clustering algorithms were
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widely used in the literature. The work in [14] introduced a fuzzy C-means criterion to ant
clustering algorithm and analyze the partitions performance obtained from the ant-based
algorithm with those from randomly initialized Hard C-means. The work in [15] focused
on a global optimization strategy for the optimal clustering in compromise sum-difference
linear arrays based on ant algorithm. Gath-Geva clustering algorithm [16] and subtractive
clustering algorithm [17] have been applied in structure identification and premise parameter
estimation.

The T-S fuzzy model is composed of linear models, and each model is according to a
group of input-output data, divided by the clustering algorithm. The recursive least squares
estimation can be easily used for constructing a linear system as a means for tuning the T-
S fuzzy model [18, 19]. Amine et al. [20] also used T-S fuzzy model with fuzzy clustering
technique to determine both the antecedent and consequent parameters of the fuzzy T-S
rules. Then, recursive weighted least squares algorithm with forgetting factor is used to
adapt consequent parameters. They applied the methods to model the air temperature and
humidity inside the greenhouse. The other researcher, Chang-Ho et al. [21], proposed T-S
fuzzy model to design adaptive fuzzy observer and controller and the proposed method is
applied to the stabilization problem of a flexible joint manipulator in order to guarantee its
performance.

In [22], Petridis et al. introduced a hybrid neural-genetic multimodel parameter
estimation algorithm and applied it to structured system identification of nonlinear
dynamical systems, and the work in [23] presented Genetic-Algorithm-Based Parameter
Estimation Technique for Fragmenting Radar Meteor Head Echoes. The work in [24–27]
brought an optimization methodology by using a genetic algorithm to obtain the parameters
of a soil that can be represented in a multilayer structure. The method uses a curve of
experimental apparent resistivity obtained from measurements made in the soil.

It is shown that a general nonlinear system can be approximated by a T-S fuzzy model
to any degree of accuracy on any compact set [28]. However, it has been argued in [29]
that the commonly used linear or affine T-S fuzzy models, where the control variables are
not included in the premise variables, are only able to approximate affine nonlinear systems
to any degree of accuracy on any compact. So the paper investigated the approximation of
generalized T-S fuzzy systems, where the control variables and the state variables are all
premise variables. This paper proposes application of K-Means ant-clustering algorithm to
optimize the fuzzy membership function in the antecedent part. Genetic algorithm (GA) is
then used in the consequent part to obtain the plant parameters and depends on the values
of the membership functions in antecedent part.

The rest of this paper is structured as follows. Section 2 is devoted to the generalized
T-S fuzzy model; the model description and the design principle of the idea are included. In
Section 3, the algorithm for the best partition of given data and parameter estimation by using
genetic algorithm are presented. Simulation results are provided in Section 4 to demonstrate
the effectiveness of the proposed algorithm. Conclusion is given in Section 5.

2. Generalized T-S Fuzzy Model

Takagi-Sugeno (T-S) models are based on fuzzy rule base structures of IF. . .THEN rules for
reasoning in which antecedents are fuzzy sets and consequents are linear functions in each
rule. In this way a T-S fuzzy model can approximate a complex affine nonlinear system,
general nonlinear systems exist widely in practice can be approximated by generalized T-
S fuzzy model.
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2.1. Model Description

The generalized T-S fuzzy model considered in this paper is as follows.
Rule i: if z1(t) isMi1 and . . . zn(t) isMin; u1(t) is Vi1 and . . . um(t) is Vim, then

ẋ(t) = Aix(t) + Biu(t), (2.1)

where i = 1, 2, . . . , r is the number of IF-THEN rules,Mi1,Mi2, . . . ,Min, Vi1, Vi2, . . . , Vim are the
fuzzy sets, and Z(t) = [z1(t), . . . , zn(t)]

T is the premise variable; xj(j = 1, 2, . . . r) is the system
input, and x(t) ∈ Rn, u(t) ∈ Rm are the state vector and controlled input vector, respectively;
Ai ∈ Rn×n, Bi ∈ Rn×m are the system matrix and input matrix of the i system, respectively.

Using the parallel distributed compensation strategy, the overall fuzzy system of the
model is inferred as

ẋ(t) =
r∑

i=1

hi(z(t))hi(u(t))[Aix(t) + Biu(t)], (2.2)

where

hi(z(t)) =
wi(z(t))∑r
i=1 wi(z(t))

, hi(z(t)) ≥ 0, hi(u(t)) =
wi(u(t))∑r
i=1 wi(u(t))

, hi(u(t)) ≥ 0,

(2.3)

with

r∑

i=1

hi(z(t)) = 1, wi(z(t)) =
n∏

j=1

Mij

(
zj(t)

)
, i = 1, 2, . . . , r

r∑

i=1

hi(u(t)) = 1, wi(u(t)) =
m∏

j=1

Vij

(
uj(t)

)
, i = 1, 2, . . . , r

(2.4)

andMij(zj(t)) is the grade of membership of zj(t) in the fuzzy setMij ; Vij(uj(t)) is the grade
of membership of uj(t) in the fuzzy set Vij .

2.2. Design Principle of Model Identification

The framework of fuzzy system models can be shown in Figure 1. During identification,
fuzzy functions are fixed. The approach first clusters the given data into several overlapping
fuzzy clusters, each of which is used to define a separate decision rule. During structure
identification, the original input variables are used to estimate the local relations of the input-
output data.

Ant-clustering model based on K-Means algorithm is used to search for the best
partition of given data; genetic algorithm (GA) is used to estimate state-space model
parameters. GA has been proved to be a robust approach on estimating the parameters on
the time series and nonlinear functions simultaneously.
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Figure 1: The framework of fuzzy system models.

3. Algorithm Implementation

3.1. The Algorithm for the Best Partition of Given Data

The single ant’s action is very simple, but the group’s action through the cooperation is very
complex; coordinating among a group of ants it is very easy to find the shortest path from the
ant nest to food source. The ants between the individual conduct information by pheromone
which is a substance left by an ant when it transfers through the way. The ant clustering algo-
rithm exactly utilizes swarm intelligence to solve combinatorial optimization problem, which
has smart search, global optimization, robustness, positive feedback, distribute computing,
and so forth. The ant clustering algorithm provided the powerful tool for solving complex
optimization problem for many fields, which has a good effect on the traveling salesman
problem (TSP), the resources, quadratic assignment problem (QAP), and telecom routing
controlling such classical optimization. In addition, the classification ant eggs behavior also
inspired the corresponding clustering algorithm. The core of ant clustering algorithm is
first, selection mechanism: the more pheromone of the path, the greater probability selected;
second, pheromones update mechanism: the shorter path, the faster the increase; third,
cooperation mechanism: In communication between individual through pheromones.

Before introducing the algorithm, some definitions are given. Suppose an ant is put
in the ith data of the nth state, and the data is assigned to the jth cluster centroid zj , j =
1, 2, . . . , k, the pheromone τij is leaved when the ant goes from data i to cluster centroid j,
then the ant i chooses the centroid zj in accordance with the probability

pij =
τij∑n
j=1 τij

. (3.1)

And the pheromone is updated based on the following equation:

τij(t + 1) = ρτij(t) +
Q

dij
, (3.2)

where dij is the distance from the data i to the centroid zj ; ρ is the permanence coefficient of
the pheromone, usually taken about 0.5–0.9; Q is a positive constant, which is represented as
the amount of pheromone from an ant.

The algorithm flow chart is shown in Figure 2. Firstly, we sample input data of
the original system, confirm the number of clusters k for every state, and then initialize
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Start

 Sample input data of the original system

Confirm the number of clusters k 

Initialize the algorithm parameters

Randomly place n ants 

Calculate the distance from n datas to new 

or all ants choose the same path?

Optimal Solution
Output the centroid 

End

Yes

No

update pheromone τjj
calculate selection probability Pij

centroids dij

nc > NC MAX?

Figure 2: The K-means ant algorithm flow chart.

the algorithm parameters Q, ρ iteration counter nc = 0, maximum iterations NC MAX,
the pheromone τij , (i, j = 1, 2 . . . n). We place n ants in n data, each of the ants chooses the
next node in accordance with the probability pij , and update the pheromone τij of every
path. Then the new k centroids are calculated, the distance from n data to the new centroids
dij , i = 1, 2, . . . , n, j = 1, 2, . . . , k are calculated. Repeat like this until nc is greater than the
maximum iterations NC MAX or all ants choose the same path, the optimal clustering can
be given based on the pheromone. Finally, the centers of the Gaussian membership function
are determined on the cluster centroid.

3.2. Parameter Estimation by Using Genetic Algorithm

Genetic algorithm (GA) is a meta-heuristic method used to find a solution based on biological
evolution process. The process includes crossover, natural selection, and mutation to obtain
an individual with the best gen combination. GA begins with determination of chromosome
set (solution set) in terms of binary (1 and 0). Next, the selection is conducted based on the
fitness value. The chromosome with the highest fitness value is retained while the rest are
removed. The selected chromosomes, then, experience reproduction process to be parents.
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As the aim is to minimize the error between the output of fuzzy model and output
data, in the paper, the mean of squared error (MSE) is used as a proper evaluation function.
MSE is given by

MSE =
1
M

M∑

i=1

[
Yi − yi

]2
, (3.3)

where Yi is output from Fuzzy model, yi is output data, and M is number of data pairs.
Since the objective is to minimize MSE value, the fitness function is defined as follows:

Jk = −MSEk +max(MSE), (3.4)

where k is the kth chromosome.
If the normalized fitness function fk(i) is used, it can be calculated by using

fk(i) =
Jk(i)∑n
i=1 Jk(i)

, (3.5)

where Jk(i) is the fitness function for chromosome i.
The algorithm flow chart of the parameter estimation by using genetic algorithm is

shown in Figure 3. Firstly, we sample output data of the original system, write the objective
function based on equation and then initialize the algorithm parameters number individual
NIND, maximum genetic times MAXGEN, number variable NVAR, variable precision
PRECI, generation gap GGAP, and genetic counter GEN. Then the initial population
Â, B̂, i = 1, 2, . . . , k with lines NIND, columns NVAR ∗ PRECI is generated randomly. The
following step is calculating fitness function value for different data in different state,
then select, crossover, mutate, and calculate a new objective function value and track the
performance of the solution. Selection process is used to determine two chromosomes to be
the parents. Crossover is used to produce two new individuals. Generate initial population:
initial solution is a randomly generated digit that has NIND line and NVAR ∗ PRECI
row. We calculate fitness function value under different data in different state, then select,
crossover, mutate and calculate a new objective function value and track the performance
of the solution. Selection process is used to determine two chromosomes to be the parents.
Crossover is used to produce two new individuals. Repeat like this until GEN > MAXGEN
performance index is satisfied. Finally, the optimal Â, B̂, i = 1, 2, . . . , k are obtained.

4. An Illustrative Example

In order to verify the effectiveness of proposed method, an example is given. Consider a
system is composed of three springs and masses, see Figure 4.
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Figure 3: The genetic algorithm flow chart.

m1

x1 x2 x3

m2 m3

F1 F2 F3

Figure 4: Spring mass system.

The dynamic characteristic of the model can be simplified as

m1ẍ1 + (k1 + k2)x1 − k2x2 = F1 sinω1t,

m2ẍ2 − k2x1 + (k2 + k3)x2 − k3x3 = F2 sinω2t,

m3ẍ3 − k3x2 + k3x3 = F3 sinω3t.

(4.1)
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By choosing states Z1 = x1, Z2 = ẋ1, Z3 = x2, Z4 = ẋ2, Z5 = x3, Z6 = ẋ3 and output
variables y1 = Z1, y2 = Z3, y3 = Z5, then the state-space model can be obtained:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ż1

Ż2

Ż3

Ż4

Ż5

Ż6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

−k1 + k2
m1

0
k2
m1

0 0 0

0 0 0 1 0 0
k2
m2

0 −k2 + k3
m2

0
k3
m2

0

0 0 0 0 0 1

0 0
k3
m3

0 − k3
m3

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Z1

Z2

Z3

Z4

Z5

Z6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1
m1

0 0

0 0 0

0
1
m2

0

0 0 0

0 0
1
m3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎣
F1 sinω1t
F2 sinω2t
F3 sinω3t

⎤

⎦,

⎡

⎣
y1

y2

y3

⎤

⎦ =

⎡

⎣
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎤

⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Z1

Z2

Z3

Z4

Z5

Z6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.2)

For the real system, F1 = F2 = F3 = 1500N, ω1 = ω2 = ω3 = 260 rad/s, k1 = k2 = k3 =
2000N/M, and m1 = m2 = m3 = 0.5 kg.

Suppose the input function is sine wave, for each state sample 250 points during half
a cycle, and then cluster the data by using K-means ant cluster algorithm; the parameters are
setting as: the number of cluster centroids k = 3, the number of ants n = 300, the number of
maximum iterations NC MAX = 500, the permanence coefficient of the pheromone ρ = 0.1,
the constant Q = 0.9, then the centroids can be optimized to

⎡

⎣
k1
k2
k3

⎤

⎦ =

⎡

⎣
−1.5 0 1.5
−2.3 0 2.3
−2.7 0 2.7

⎤

⎦. (4.3)

We sample the output data of the original system and the T-S fuzzy model and
calculate T-S fuzzy model consequent parameters using genetic algorithm according to
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Figure 5: Optimization process.

the performance index (3.3). In order to reduce iteration times, the initialization parameters
are chosen through the least square method. The consequent parameters are calculated as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11

a12

a13

a21

a22

a23

a31

a32

a 33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0001 0.0001 0.0001 −1.4329
0.0001 0.0001 0.0001 −2.4251
0.0001 0.0001 0.0001 −2.9370
0.0003 0.0003 0.0003 −0.1127
0.0005 0.0005 0.0005 −0.1574
0.0006 0.0006 0.0006 −0.1703
0.0005 0.0005 0.0005 −0.0734
0.0009 0.0009 0.0009 −0.1475
0.0011 0.0011 0.0011 −0.1965

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.4)

The parameter optimization process of a11 by using the genetic algorithm is shown in
Figure 5. It can be seen from the figure that the parameters become stable when the Genetic
algorithm has had 10 runs. And after a period of input simulation, the states of the original
system and the T-S fuzzy model are shown in Figure 6. From the figures, we can see that the
responses of the fuzzy model can approximate the original system responses very well. And
the model approximation error of different methods are shown in Table 1, we can see from
the table that the method proposed in the paper is more appropriate.

5. Conclusion

This paper considered the identification of T-S fuzzymodel in which the control variables and
the state variables are all premise variables. Ant K-means algorithm and genetic algorithm
were used to determine the number of the rules and the state-space model parameters,
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Table 1: Comparison of different methods.

Methods No. of centers No. of
parameters

MSE

Subtraction clustering algorithm and least squares algorithm 3 12 0.0202

C-means clustering and least squares algorithm 3 12 0.0133

Ant colony algorithm and genetic algorithm 3 17 0.0105

respectively. The simulation results illustrated the effectiveness of the proposed algorithm.
Future work will investigate determination of the optimal cluster number for a certain
amount of data.
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