Reichel, Michael Philipp; Ayanegui-Alcerreca, M. Alejandra; Gondim, Luis Fernando Pita; Ellis, John T.

What is the global economic impact of Neospora caninum in cattle - the billion dollar question

International Journal for Parasitology, 2013; 43(2):133-142

© 2012 Elsevier Inc. All rights reserved.

PERMISSIONS

http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy#pre-print

Elsevier’s Policy: An author may use the preprint for personal use, internal institutional use and for permitted scholarly posting.

In general, Elsevier is permissive with respect to authors and electronic preprints. If an electronic preprint of an article is placed on a public server prior to its submission to an Elsevier journal or where a paper was originally authored as a thesis or dissertation, this is not generally viewed by Elsevier as “prior publication” and therefore Elsevier will not require authors to remove electronic preprints of an article from public servers should the article be accepted for publication in an Elsevier journal.

However, please note that Cell Press and The Lancet have different preprint policies and will not consider articles that have already been posted publicly for publication. This is a rule agreed upon by The International Committee of Medical Journal Editors. Information on Cell Press policy on preprints is available, as is The Lancet preprint policy.

Permitted scholarly posting

Voluntary posting by an author on open websites operated by the author or the author’s institution for scholarly purposes, as determined by the author, or (in connection with preprints) on preprint servers.

21 August 2013

http://hdl.handle.net/2440/78963
Bullet points

- A systematic review of literature conducted after Pubmed search for *Neospora* and *cattle*
- Modelling after review suggests that the cost of *N caninum* globally exceeds one billion dollars
- Approximately two thirds of the costs of *N caninum* are incurred by dairy industries world-wide
- Analysis of the regional distribution of global costs of *N caninum* highlights the cattle industries of the North American as incurring two thirds of the overall global cost
- At the farm level, costs only exceed US$ 2,000 in four countries
Invited review

What is the global economic impact of Neospora caninum in cattle – the billion dollar question

Michael P Reichel*, a, b, M. Alejandra Ayanegui-Alcérreca c, Luís F P Gondim d, and John T Ellis b, e

* School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy SA 5371, Australia
b School of Medical and Molecular Biosciences, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
c Medtronic México, S de R.L de C.V. Paseo de Cucapah 10510, El Lago, CP22210, Tijuana, Baja California Norte, Mexico; alejandra.ayanegui@medtronic.com
d Departamento de Patologia e Clínicas, Escola de Medicina Veterinária, Universidade Federal da Bahia, Salvador, Bahia, Brazil; pitagondim@gmail.com
e i3 Institute, University of Technology Sydney, Broadway, Australia; john.ellis@uts.edu.au

* Email: michael.reichel@adelaide.edu.au, ph: +61-8-8303 7882, fax: +61-8-8313 7956
Abstract

Neospora caninum is regarded as one of the most important infectious causes of abortions in cattle world-wide, yet the global economic impact of the infection has not been established.

A systematic review of the economic impact of *N. caninum* infections/abortions was conducted, searching PubMed with the terms cattle and *Neospora*. This yielded 769 publications whose abstracts were screened for economically relevant information (e.g. abortion prevalence and risk, serological prevalence). Further analysis was restricted to countries with at least 5 relevant publications. In total, 99 studies (12.9%) from ten countries contained data from the beef industry (25 papers (25.3%)) and 72 papers (72.8%) from the dairy industry (with the remainder two papers (2.0%) describing general abortion statistics).

The total annual cost of *N. caninum* infections/abortions was estimated to range from a median US $1.1 million in the New Zealand beef industry to an estimated median total of US$ 546.3 million impact *per annum* in the US dairy population. The estimate for the total median *N. caninum*-related losses exceeded US$ 1.298 billion *per annum*, ranging as high as US$ 2.380 billion. Nearly two thirds of the losses were incurred by the dairy industry (US$ 842.9 million). Annual losses on individual dairy farms were estimated to reach a median of US$ 1,600.00, while on beef farms these costs amounted to just US$ 150.00. Pregnant cows and heifers were estimated to incur, on average, a loss due to *N. caninum* of less than US$20.00 for dairy, and less than US$ 5.00 for beef. These loss estimates, however rose to ~US$ 110.00 and US$ 40.00, respectively for *N. caninum*-infected pregnant dairy and beef cows. This estimate of global losses due to *N. caninum*, with the identification of clear target markets (countries, as well as cattle industries), should provide incentive to develop treatment options and/or vaccines.

Keywords: *Neospora caninum*, abortion, cattle, costs, economics, dairy, beef
1. Introduction

Neospora caninum is recognised world-wide as an important infectious cause of abortion in primarily cattle, and of clinical disease in dogs (Dubey and Schares, 2011).

Infection with *N caninum* is frequent in canid populations (Barber et al., 1997; Reichel, 1998); also recently reviewed by Al-Qassab et al. (2010)) yet clinical cases in dogs are rarely reported (Barber and Trees, 1996; Gasser et al., 1993; McInnes et al., 2006; Munday et al., 1990; Patitucci et al., 1997; Reichel et al., 1998; Ruehlmann et al., 1995). Clinical cases of neosporosis in dogs can be treated, although often with limited success (Reichel et al., 2007).

Although there is a cost to that treatment which has to be borne by the owner, these canine cases tend to be mostly singular in nature and thus costs are usually contained.

In cattle, *N caninum* is generally viewed as primarily an abortifacient, and abortions follow three main patterns (sporadic, endemic and epidemic abortions). The epidemic, “storm-like” pattern is the most devastating, and costly, with a large proportion (>10%) of at risk (“in-calf”) cows aborting over a short period of time (Dubey et al., 2007). These abortion storms are generally viewed as very costly (and sometimes devastating in the extreme) to the primary producer. Endemic abortions, however, can also be costly (Hall et al., 2005). There have also been reports of *N caninum* infection effects on milk production; in some publications the infection with *N caninum* is shown to be associated with a decrease in milk production (Thurmond and Hietala, 1997b), in other reports, however, milk production increases in sero-positive cows (Hall et al., 2005; Pfeiffer et al., 2002). A reduction in neonatal mortality in congenitally *N caninum*-infected calves has also been reported and may be a potential benefit (Paré et al., 1996). Earlier culling of sero-positive cattle has been reported (Thurmond and Hietala, 1996), as have increased costs of veterinary medical treatment (Barling et al., 2000) and a reduction in growth rates (Barling et al., 2001a; Barling et al., 2000). Thus, while some of the above reported effects of *N caninum*
infection cost primary producers money, some of the information is equivocal; the majority of reports however describe abortions as the main impact of infection, and this will be the focus of this review.

Control options for *N. caninum* infection in cattle have been discussed previously (Reichel and Ellis, 2002). The costs of these control options have also been modelled, and threshold levels of *N. caninum* infection that make intervention economically preferable over living with the disease, defined (Reichel and Ellis, 2006). The treatment option (with toltrazuril (Kritzner et al., 2002)) has been identified as expensive in cattle and is potentially fraught with issues of milk and meat residues. Vaccines appear to be the favoured control option and the subject of a considerable body of research (Liddell et al., 1999; Miller et al., 2005). The different approaches to *N. caninum* vaccines have recently been comprehensively reviewed (Reichel and Ellis, 2009). However, after the withdrawal from world-wide sales of the only commercial *N. caninum* vaccine (Neoguard®), a vaccine which had demonstrated little more than 60% efficacy at best, and whose efficacy may have been as low as 25% (Weston et al., 2012), there are now only few management options available.

One option available, apart from living with the disease, is to test, and then cull *N. caninum*-infected cattle from the herd. This approach has been found to be quite efficacious (Hall et al., 2005), but is also costly, and the cost of this approach needs to be put into the perspective of the cost of the disease. Variations to this option might include selective breeding from only sero-negative cows, breeding of sero-positives only to beef, and the culling of those cows that have actually aborted. Herds with reduced, or reducing sero-prevalence of *N. caninum* infection also need to be protected from subsequent infection (although, in general, the published literature reports very low post-natal infection rates (Davison et al., 1999b; Paré et al., 1996; Thurmond and Hietala, 1997a)), thus enhanced biosecurity measures (fencing, the exclusion of canine faeces from feed and water, and
prevention of access for canids to bovine material (carcasses, placentas, aborted foetuses) would need to be instituted, at some cost. “Test-and-cull” would essentially incur the cost of testing all cattle, additionally incur the cost of culling all infected cattle (i.e. the replacement cost with non-infected, tested cattle) against the long-term benefit of the reduced cost of abortions. The cost of \(N \text{caninum} \) abortions at farm, industry, national and world-wide level are hitherto ill-defined and the present review is aimed at establishing these costs based on the published literature.

2. Materials and methods

2.1. Cost of an abortion in cattle

In order for the specific contribution and cost of \(N \text{caninum} \) to abortions to be measured, the baseline rate of abortions (those that are not caused by \(N \text{caninum} \)) needs to be established. Thereafter, the relative (increased) risk of abortion caused specifically by \(N \text{caninum} \) needs to be established.

Female \(N \text{caninum} \)-infected and pregnant cattle (generally, annual pregnancy rates of 90% of all breeding-age dairy female cattle and 75% of all breeding-age female beef cattle were assumed, unless country-specific data were available) are at risk of aborting, thus sero-prevalence data for \(N \text{caninum} \) for pregnant cattle (see above), multiplied by the specific \(N \text{caninum} \) risk of abortion, will result in the average expected number of \(N \text{caninum} \) abortions to be calculated.

\(N \text{caninum} \) abortions usually occur between 5-7 months of gestation (Dubey et al., 2006), and aborted cows can be expected to miss one lactation, thus the cost of a \(N \text{caninum} \) abortion (in dairy cattle) is essentially the cost of replacing that cow with an identical, similar stage of lactation cow that will go on to produce a calf and milk. In beef cattle, the cost of \(N \text{caninum} \) abortions is the cost of a replacement calf.
2.2. *Database search*

A search was conducted on PubMed, using *cattle* and *Neospora* as search terms. As of January 31, 2012, this search yielded 769 publications whose abstracts were screened individually initially for the reporting of economic relevant information (abortion incidence, prevalence and risk, serological data, impact on milk production and reproductive parameters) (Figure 1).

Published papers with relevant information originated from just nine countries (Australia and New Zealand, the US and Canada, Argentina, Brazil, Mexico, Spain and the United Kingdom) were then subjected to further analysis, once countries with fewer than five publications with economically relevant data were excluded to allow for a more robust data range for individual countries.

2.3. *Baseline data for abortions*

Abortions occur frequently in cattle, for a variety of reasons, and not all of them are caused by infectious agents, however baseline data (i.e. the prevalence of those abortion that are not caused by *N. caninum*) are difficult to obtain. In New Zealand, the overall loss rate has been estimated to be 6.4% of pregnancies in one publication (McDougall et al., 2005), in others however as high as 25% (Thornton et al., 1994), with the median value for abortion losses being 2.9%. In Australia, the median value for abortions is 2.5% (ranging from 2.4% to 21.3% in some reports (Atkinson et al., 2000; Hall et al., 2005; Quinn et al., 2004)) (further details, see Table 1). Where baseline data for a specific cattle industry were unobtainable, a baseline figure of 3% of pregnant cattle aborting was assumed.
2.4. Cost of abortion

The cost of abortion in each country that qualified for further economic evaluation (i.e., where at least five peer-reviewed publications with economically relevant data was available) was calculated from the relative risk of abortion, specific to *N* caninum multiplied by the sero-prevalence (where reported) of *N* caninum in the cattle population times the loss/cost incurred by that abortion, in large parts as previously described (Reichel and Ellis, 2006).

As an example, the cost of *N* caninum in Argentina was calculated as the cost of a replacement pregnant dairy cow (US$ 2,400.00) from which the slaughter (salvage) value of an empty cow (US$ 900.00) was subtracted to arrive at an estimate of the loss from one abortion (US$1,500.00). In beef cattle, the cost was calculated as the loss of a calf and the differential between replacement and slaughter value (US $830.00). These respective values were multiplied by the number of cows and heifers at risk of abortion (total number of beef (75%) cows and dairy (80%) cows pregnant, times the overall risk of abortion (4.5%, or 8%, respectively) multiplied by the specific median contribution of *N* caninum to abortions in Argentina from available abortion statistics (Table 1).

Where sero-prevalence, and *N* caninum-specific risk (odds or relative risk) of abortion data were available, the cost of *N* caninum abortions was calculated as follows: total number of cows at risk (as above), times the specific median sero-prevalence for *N* caninum, multiplied by *N* caninum-specific abortion risk (or “background” abortion risk times the odds increased by *N* caninum infection), as in the case of the calculation for the New Zealand dairy situation (Table 1), multiplied by the cost of an abortion.
Cattle population statistics and values for cattle in the respective countries were
procured from publicly available databases and sources. Results were converted to US
dollars at the prevailing exchange rates in early May 2012 (www.xe.com).

3. Results

3.1. Literature cited

In total, 99 studies (12.9%) contributed to this review, containing data that pertained to a
total of 221,713 head of cattle, of which 45,863 (20.7%) resided in the beef industry (25 papers (25.3%) and 175,850 (79.3%) in the dairy industry (72 papers (72.8%)) with the
remainder two papers (2.0%) describing general abortion statistics.

3.2 Sero-prevalence and N caninum abortion risk

An overview of the sero-prevalence data for the ten countries and their industries, i.e.
where the numbers of peer-reviewed publications reached the threshold, suggests that the
level of N caninum infection generally is about 50% higher in dairy cattle (median sero-
prevalence 16.1%) than in beef cattle (median sero-prevalence 11.5%). The N caninum
specific abortion risk in dairy cattle reached a median of 14.3% across all nine countries,
with a wide range from 0.6% to 39.4% being reported. The increase in risk of N caninum
causing abortions reached a median value of 3.5 (ranging from 1.3 to 40.0) in dairy cattle,
while in beef cattle the median value was 9.0 (5.7 to 23.3) (which however could only be
calculated from two countries).
3.3. Country-specific literature search statistics

3.3.1. Argentina

The Pubmed search, and subsequent evaluation revealed that there were five publications from Argentina with economically relevant information, three covering the dairy (Moore et al., 2002; Moore et al., 2009; Venturini et al., 1999) reporting on studies that included in excess of 4,000 cattle (n=4,280) and three from the beef industry (Moore et al., 2003; Moore et al., 2002; Moore et al., 2009) (n=3,241), with one publication reporting on abortion statistics with specific reference to *N caninum* (Moore et al., 2008) (n=666).

3.3.2. Australia

The database search recovered eight relevant publications for Australia, with six describing the dairy situation in relation to *N caninum* (Atkinson et al., 2000; Boulton et al., 1995; Hall et al., 2005, 2006; Nasir et al., 2012; Obendorf et al., 1995; Quinn et al., 2004) (n= 1,246) and only two the beef situation (Nasir et al., 2012; Stoessel et al., 2003) (n= 2,483).

3.3.3. Brazil

In Brazil, six publications contained relevant data on *N caninum* in the dairy industry (Aguiar et al., 2006; Corbellini et al., 2006; Gondim et al., 1999; Guimaraes et al., 2004; Locatelli-Dittrich et al., 2001; Minervino et al., 2008) (n=3,842), three in the beef industry (Aguiar et al., 2006; Marques et al., 2011; Minervino et al., 2008) (n= 863), and one abortion statistics in general (Pescador 2007) (n=258).
3.3.4. Canada

From Canada, 11 publications described mostly sero-prevalence data from 36,072 dairy cattle (Bildfell et al., 1994; Chi et al., 2002; Cramer et al., 2002; Hobson et al., 2005; Keefe and VanLeeuwen, 2000; Pan et al., 2004; Paré et al., 1998; Peregrine et al., 2006; Tiwari et al., 2009; VanLeeuwen et al., 2005; Wapenaar et al., 2007) and in five publications studies data from beef cattle (Waldner et al., 2004; Waldner, 2005; Waldner et al., 2001; Waldner et al., 1999; Waldner et al., 1998) (n=7,324).

3.3.5. Mexico

Three publications described *N. caninum* in dairy cattle (Garcia-Vazquez et al., 2002; Garcia-Vazquez et al., 2005; Morales et al., 2001b) (n=2,003) and one study the beef situation (Garcia-Vazquez et al., 2008) (n=596), as well as one study that described abortion statistics in the dairy industry (Morales et al., 2001a) (n=211).

3.3.6. Netherlands

Five publications from the Netherlands described the impact in dairy cattle (n=11,767) (Bartels et al., 2006a; Bartels et al., 2006b; Dijkstra et al., 2003; Moen et al., 1998; Wouda et al., 1998)

3.3.7 New Zealand

For New Zealand, reports with relevant information were able to be obtained from 12 publications, 11 for dairy cattle (Cox et al., 1998; Faria et al., 2010; Patitucci et al., 1999; Pfeiffer et al., 2002; Reichel, 1998; Reichel and Pfeiffer, 2002; Scharres et al., 1999; Thobokwe and Heuer, 2004; Thornton et al., 1994; Thornton et al., 1991; Weston et al., 2005) (n= 6,636) and one for the beef industry (Tennent-Brown et al., 2000) (n=499).
3.3.8. Spain

From Spain there were six publications describing the situation in the dairy industry (Bartels et al., 2006a; Eiras et al., 2011; Gonzalez-Warleta et al., 2008; Gonzalez-Warleta et al., 2011; Mainar-Jaime et al., 1999; Quintanilla-Gozalo et al., 1999) (n=48,790) and four publications describing the contribution of N caninum to economic losses in the beef industry (Armengol et al., 2007; Bartels et al., 2006a; Eiras et al., 2011; Quintanilla-Gozalo et al., 1999) (n=26,083).

3.3.9. United Kingdom

Seven studies from the British dairy industry reported N caninum related information (Brickell et al., 2010; Crawshaw and Broklehurst, 2003; Davison et al., 1999a; Davison et al., 1999c; Trees et al., 1994; Williams et al., 1999; Woodbine et al., 2008) (n=23,007).

3.3.10. United States of America

For the US, eleven published papers described the situation in the dairy industry (Anderson et al., 1995; Dubey et al., 1997; Dyer et al., 2000; Hernandez et al., 2002; Hietala and Thurmond, 1999; Jenkins et al., 2000; McAllister et al., 1996; Paré et al., 1997; Rodriguez et al., 2002; Thurmond and Hietala, 1997a; Thurmond et al., 1997) (n=38,207) and five papers the impact of N caninum in beef cattle (Barling et al., 2001b; Barling et al., 2000; McAllister et al., 2000; Sanderson et al., 2000; Thurmond et al., 1997) (n=4,774).
3.4. Economic impact calculation

Once the specific contribution of \textit{N caninum} to abortion in these nine countries had been ascertained (i.e. the number of abortions that were likely to be caused by \textit{N caninum} calculated for each country), the cost of abortion could be calculated per industry and country (Table 2). Where several publications reported differing figures for \textit{N caninum} abortion risk or sero-prevalence, median values were calculated, and the estimates ranged through the lowest and highest estimate for either or both (risk or prevalence, as available).

3.5. Global economic impact assessment

Globally, the estimated median losses due to \textit{N caninum}-induced abortions were estimated to be in excess of US$ 1,298.3 million (range US$ 633.4 million to US$ 2,380.1 million), with approximately two thirds of the losses, US$ 842.9 million (range US$ 341.1 million to US$ 1,739.3 million) losses incurred by the national dairy industries in the ten countries included, and over a one third at US$ 455.4 million (range US$ 292.3 million to US$ 640.8 million) in the respective eight beef industries (summarised in Table 2). Close to two thirds of the global costs of US$ 1,298 million \textit{per annum} are estimated to occur in North America (US$ 852.4 million (65.7%)), followed by South America (US$ 239.7 million (18.5%)) and Australasia, which incurs 10.6% of the global losses at a median value of US$ 137.5 million annually. Losses due to \textit{N caninum} abortions in Europe only accounted for 5.3% of the global losses or an estimated US$ 68.7 million.

As 46.4 million cows were at annual risk of abortion (i.e. pregnant) in the ten countries included in the calculation for the dairy cattle industry, the cost per individual cow can be estimated to be, on average US$ 18.16 (range US$ 7.35 to US$ 37.48). For the 102.2 million
beef cattle at risk (i.e. pregnant) in eight countries the average loss per cow was estimated to be just US$ 4.46 (ranging from US$ 2.86 to US$ 6.27).

At the farm level, the median loss per farm was estimated to be US$1,600.00 (range <US$100 to US$ 68,000.00) in the dairy industry, and just US$ 150.00 (range <US$100 to US$2,800.00)

3.6. Country and industry-specific economic impact assessment

3.6.1. Argentina

In Argentina, the economic impact for the whole country was estimated to be a US$ 87.4 million per annum, with US$38.5 million incurred by the dairy industry (ranging in estimates from US$ 29.2 million to US$ 85.3 million) and US$ 48.9 million (range US$ 22.6 million to US$57.6 million) by the beef industry. At the farm level, dairy farmers were likely to incur a median *N caninum* loss of close to US$ 4,000 (ranging from close to US$ 2,993.41 to US$ 8,740.75) and beef farmers of approximately US$ 550.00 (ranging from US$ 256.66 to US$ 654.06).

3.6.2. Australia

Australian dairy farmers were calculated to incur a median annual loss of US$ 26.6 million (range US$ 7.1 million to US$ 54.0 million) at the national level, and US$ 9,300 (range US$ 2,500 to US$ 18,800) at the herd level. The beef industry was estimated to lose an annual median US$ 74.1 million (range US$ 27.7 million to US$ 139.5 million), with the losses at the herd level amounting to a median US$ 1,500 (range US$ 600 to US$ 2,800).
3.6.3. **Brazil**

In Brazil, dairy farmers were estimated to incur *N. caninum*-associated losses at the national level of US$ 51.3 million per annum (ranging in estimates from US$ 35.8 million to US$ 111.3 million), while the losses at the farm level were less than US$ 100.00. In the Brazilian beef industry *N. caninum* losses amounted to nationally, US$ 101.0 million (ranging from US$ 63.6 million to US$ 111.7 million), while at the average dairy farm level they didn’t exceed US$ 100.00.

3.6.4. **Canada**

In Canada, the dairy industry was estimated to experience losses related to *N. caninum* at the national level amounting to a median US$ 17.1 million (ranging from US$ 10.0 to US$ 32.1 million), while losses at the individual, average farm were estimated to be median US$ 1,300 (range US$ 800 to US$ 2,500). In the beef industry, losses were estimated to amount to a median annual US$ 14.3 million (range US$ 13.6 million to US$ 14.8 million). At the farm level, beef losses were estimated to reach an annual US 200 only.

3.6.5. **Mexico**

The Mexican dairy industry was expected to incur losses due to *N. caninum* infection/abortion of approaching US$ 68.5 million (ranging from US$ 52.4 million to US$ 403.2 million). Annual losses in the beef industry in Mexico were estimated to be US$ 94.8 million. At the average farm level, the losses did not exceed US$ 100.00 for both, beef and dairy farms.
3.6.6. Netherlands

The Dutch dairy industry was estimated to incur annual median losses due to *N. caninum* infection/abortion of US$ 12.1 million (ranging from US$ 8.3 million to US$ 20.2 million). At the dairy farm level, losses were estimated to attain a median of US$ 700.00 (range from US$ 480.00 to US$ 950.00).

3.6.7. New Zealand

New Zealand dairy farmers were estimated to incur *N. caninum*-related median annual losses of US $35.7 million nationally (range US$ 14.5 to US$ 221 million), while the average dairy farm was expected to incur losses of US$ 11,000 (range US$ 4,500 to US$ 68,000). The national beef industry was thought to lose a median US$ 1.1 million only, with the average farm incurring losses of just US$ 100 annually.

3.6.8. Spain

The Spanish dairy industry nationally, was estimated to incur losses specific to *N. caninum* of a median US$ 19.8 million (range US$ 7.2 million to US$ 57.9 million), with individual farms incurring annual losses of US$ 500 (range US$ 200 to US$ 1,600). The beef industry was expected to incur losses amounting to a median annual figure of US$ 9.8 million (range US$ 4.6 million to US$ 15.6 million), while individual farmers might incur costs of a median of US$ 200 (range US$ 100 to US$ 200).

3.6.9. United Kingdom

In the UK, figures were only available for the dairy industry. Nationally, *N. caninum* abortions were estimated to cost an annual median of US$ 27 million (range US$ 10.8 million to US$ 32.4 million), which translated into annual median cost to the average farm of US$ 1,800 (range US$ 700 to US$ 2,100).
In the US, annual median losses due to *N* caninum were estimated to be around US$ 546.3 million in the dairy industry (range US$ 165.8 million to US$ 721.9 million), while on the average farm the costs were US$ 12,200 (range US$ 3,700 to US$ 16,100). In the beef industry, annual median losses were estimated to be US$ 111.4 million (range (US$ 64.3 million to US$ 205.7 million) nationally, with US$ 100 only (range US$ 100 to US$ 300) being incurred by the individual average farm.

Discussion

The review of the peer-reviewed literature related to *N* caninum-associated abortions in cattle suggests that the median specific risk of abortion due to *N* caninum infection is higher in dairy cattle at 14.3% (range: 0.6% to 39.4%) than it is in beef cattle at 9.1%. Also, the median seroprevalence of *N* caninum world-wide, at 16.1% (range 3.8% to 89.2%) was higher in dairy cattle compared to that prevailing in the beef industries, at 11.5% (range 2.5% to 81.7%). The odds of aborting in *N* caninum-infected animals, however, were almost triple (at 9.0 times) in the beef industry than in the dairy industries (3.5 times higher). The figures give a first global assessment of the risk of infection and abortion of *N* caninum. The background level of abortions that are not *N* caninum-associated appears to be higher in dairy cattle at 2.5%, compared to beef cattle at 1.2%.

The total losses in the cattle industries of the ten countries surveyed, exceeded US$ 1,298 million *per annum*, with approximately two thirds of these losses incurred by dairy industries (US$ 842.9 million; 64.9%) and one third by the beef industries (US$ 455.4 million; 35.1%). The higher assumption for abortion risk for the total cattle industries for abortion risk and sero-prevalence, had the annual global loss to *N* caninum abortions amount to at least US$ 2,380 million (US$ 1,739 million in the dairy industries and US$ 641 million...
in the beef industries, respectively), while the lower estimates suggested that costs are
approaching US$ 633 million in the combined cattle industries (with a minimum of US$ 341.1 million (53.9%) incurred by the dairy industries, and US$ 292.3 (46.1%) incurred by the beef industries). As the estimate of losses was restricted to the ten countries that contributed more than five relevant publications each to the analysis, this estimate is likely to be at the lower end of the total global losses caused by *N caninum* infection in cattle.

Two thirds of the global costs of US$ 1,298 million *per annum* are estimated to be incurred in North America (US$ 852.4 million (65.7%)), followed by South America (US$ 239.7 million (18.5%)) and Australasia US$ 137.5 million (10.6%). Losses in the three countries from Europe included in the analysis only accounted for 5.3% of the global losses or US$ 68.7 million.

At the national level, the total annual costs of *N caninum* abortions for the cattle industries exceeded US$ 100 million *per annum* in Australia, Brazil, Mexico and the United States, which hence appear primary target markets for any control or vaccination effort. In addition, as the individual farm losses on Argentinian and New Zealand farms reach an estimated median of US$ 4,000 and US$ 11,000, respectively, these two countries seem also potential target markets for control methods. At the individual farm level, losses in both, beef and dairy sector rarely exceeded the US$ 2,000 mark. Only on the average dairy farm in Argentina, Australia, New Zealand and in the United States, did the losses exceed an annual estimate of US$ 2,000 and only in the case of the latter two did the estimate, per farm, exceed US$ 10,000 *per annum*. On the average beef farm, only in Argentina (US$ 600) and Australia (US$ 1,500) did the annual, *N caninum*-associated losses exceed US$ 500.00. The median global loss incurred at the farm was only US$1,800 for dairy, and US$ 150.00 for the beef industry.
In the ten countries included in the calculation for the dairy cattle industry, the cost per individual cow was estimated to be less than US$ 20.00 (US$ 18.16 (range US$ 7.35 to US$ 37.48)). In the 102.2 million beef cattle at risk (i.e. pregnant) in eight countries the average loss per cow was estimated to be just less than under US$ 5.00 (US$ 4.46 (ranging from US$ 2.86 to US$ 6.27)).

The losses at the individual cow, and farm level for both beef and dairy cattle seem to be quite low, however they are averaged over all pregnant cows. As globally only 16.1% of dairy cows and 11.5% of beef cows are estimated to be infected with *N. caninum*, the losses incurred by *N. caninum*-infected cows can be expected to be approximately 6 (dairy) or 9 (beef) times higher at ~ US$ 110.00 and ~ US$ 40.00 per animal. These estimates are not dissimilar to estimates for the impact of bovine viral diarrhoea (BVD) virus on cattle farms, which also range from US$10 to US$80 per pregnant cow (Heuer et al., 2007; Houe, 2003). BVD control and country-wide eradication receives a lot of attention, with Germany very recently commencing a BVD control campaign, and Switzerland essentially having just having completed its own eradication effort (Presi et al., 2011). In order to be able to offer a benefit to farmers with control or vaccination strategies (which might be difficult to demonstrate at an “all-cow” level), it would be important to cost-effectively identify infected properties and individual animals and target those specifically. As diagnostic assays are well developed and validated (Ellis, 1998; Pare et al., 1995; Paré et al., 1995; Reichel and Pfeiffer, 2002) the targeted delivery of vaccines or treatment to just infected animals might not pose the problems it might have in the past, and will deliver the benefit-to-cost ratios primary producers desire.

While the global losses incurred by *N. caninum* in the cattle industries of ten countries are estimated to be in excess of a billion dollars annually, it is individual farmers that need to appreciate that the parasite poses a problem and is affecting their profitability. Median losses
on farms are estimated to have the potential to range as high as US$ 68,000, but, in most countries individual farm losses may appear to be low to primary producers. Losses are only likely to exceed $2,000 per each farm/year on dairy farms in four of the countries (Argentina, Australia, New Zealand and the USA) included in the present review. This will continue to present a challenge to vaccine developers and marketers, as producers may choose to “live” with the disease (Reichel and Ellis, 2006). On the other hand, this analysis may provide a starting point, and targets countries where the initial commercialisation of an efficacious vaccine for the prevention of *N caninum* infections and/or abortions would be beneficial (Reichel and Ellis, 2009).

The only previously marketed commercial vaccine against *N caninum* abortions showed low efficacy, likely because it was unable to demonstrate sufficient protection in already infected cattle (Weston et al., 2012). Protecting naïve, uninfected cows might not need to be a priority for vaccination if post-natal infection rates are generally as low as they have been reported in the literature (Davison et al., 1999b; Hall et al., 2005; Paré et al., 1996; Thurmond and Hietala, 1997a), although others have reported post-natal transmission rates as high as 22% annually (Björkman et al., 2003). Here the benefit to cost ratio is also low, as the large majority of animals would have to be inoculated as part of an insurance policy against infection, when actual risk of infection/abortion is low. Preventing vertical transmission and/or abortions would provide far greater benefit/cost ratios as these animals are at demonstrable higher risk of abortion (being already infected). Expected losses at ~US$ 130.00 a cow are higher and more likely to occur. An alternative might be to have two vaccines, one for a naïve population as an insurance policy against primary infection (Innes, 2007; Williams and Trees, 2006). This vaccine would need to be very cheap to give primary producers an incentive to use it with the low average cost of *N caninum* infection in that proportion of the cattle population. Another vaccine should be able to prevent the
References

recrudescence of *N. caninum* and abortion in already infected animals (Trees and Williams, 2005; Williams et al., 2003). Such a vaccine could be more expensive, as *N. caninum*-associated costs in that proportion of the cattle population are estimated to be higher also.

Vaccines that confer long-lasting immunity and protection could arguably be more expensive, as the economic losses presented here per cow are annual costs. A once-only applied vaccine that confers long lasting immunity may still be a better benefit-to-cost proposition in either of the above scenarios than a more traditional vaccine that requires an annual booster. Economic consideration may be just as important as drivers for research into efficacious vaccines against *N. caninum* as technical feasibility and efficacy (Reichel and Ellis, 2009).

5. **Acknowledgments**

We thank A/Prof Milton McAllister, Adelaide and Dr Fraser Hill, Gribbles Veterinary, New Zealand for fruitful discussions and comments on drafts of the manuscript.

Reichel, M.P., Ellis, J.T., 2006. If control of Neospora caninum infection is technically feasible does it make economic sense? Veterinary Parasitology 142, 23-34.

Legends of Figures

Figure 1: Graphical representation of the review process for peer-reviewed literature relevant to the assessment of the economic impact of *N caninum* infections/abortions in cattle world-wide
Table 1: Median background and *N. caninum*-specific abortion risk (and range), odds ratios (and range) and median (and range) of *N. caninum* sero-prevalence in dairy and beef cattle in the cattle industries of ten countries (ND = no data)

<table>
<thead>
<tr>
<th>Country</th>
<th>Median abortion risk in % (range)</th>
<th>Odds ratio</th>
<th>Seroprevalence in % (range)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Background</td>
<td>Nc-specific abortion risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>Dairy</td>
<td>ND</td>
<td>2.1 (1.8 – 2.6)</td>
<td>22.2 (16.6 – 64.5)</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>ND</td>
<td>12.0 (6.2 – 23.3)</td>
<td>11.2 (4.7 – 20.3)</td>
</tr>
<tr>
<td>Australia</td>
<td>Dairy</td>
<td>2.5</td>
<td>6.9 (2.6 – 13.0)</td>
<td>10.9 (3.8 – 23.7)</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>ND</td>
<td>ND</td>
<td>8.7 (2.5 – 14.9)</td>
</tr>
<tr>
<td>Brazil</td>
<td>Dairy</td>
<td>ND</td>
<td>ND</td>
<td>16.1 (14.1 – 34.8)</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>ND</td>
<td>ND</td>
<td>15.1 (9.5 – 16.7)</td>
</tr>
<tr>
<td>Canada</td>
<td>Dairy</td>
<td>2.1</td>
<td>15.8 (7.1 – 18.8)</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>1.2</td>
<td>6.0 (5.7 – 6.2)</td>
<td>11.3 (5.9 – 81.3)</td>
</tr>
<tr>
<td>Mexico</td>
<td>Dairy</td>
<td>ND</td>
<td>1.7 (1.3 – 10)</td>
<td>55.9 (42.0 – 59.0)</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>ND</td>
<td>ND</td>
<td>11.6 (11.6 – 11.6)</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Dairy</td>
<td>ND</td>
<td>2.4 (1.7 – 3.1)</td>
<td>10.4 (9.9 – 10.8)</td>
</tr>
<tr>
<td>New Zealand</td>
<td>Dairy</td>
<td>2.9</td>
<td>6.4 (2.6 – 25.9)</td>
<td>4.2 (1.7 – 26)</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>ND</td>
<td>ND</td>
<td>2.8 (2.8 – 2.8)</td>
</tr>
<tr>
<td>Spain</td>
<td>Dairy</td>
<td>ND</td>
<td>6.2 (3.3 – 9.1)</td>
<td>19.1 (15.7 – 35.9)</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>ND</td>
<td>ND</td>
<td>15.8 (7.4 – 25.1)</td>
</tr>
<tr>
<td>UK</td>
<td>Dairy</td>
<td>14.3 (5.0 – 43.0)</td>
<td>3.5 (2.2 – 5.7)</td>
<td>15.0 (6.0 – 37.7)</td>
</tr>
<tr>
<td>USA</td>
<td>Dairy</td>
<td>18.6 (0.6 – 39.4)</td>
<td>7.2 (1.7 – 40.0)</td>
<td>49.2 (16.1 – 99.2)</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>9.1 (9.1 – 9.1)</td>
<td>ND</td>
<td>13.0 (7.5 – 81.7)</td>
</tr>
</tbody>
</table>

TOTAL

<table>
<thead>
<tr>
<th>Country</th>
<th>Median abortion risk in % (range)</th>
<th>Odds ratio</th>
<th>Seroprevalence in % (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy</td>
<td>2.5</td>
<td>14.3 (0.6 – 39.4)</td>
<td>3.5 (1.3 – 40.0)</td>
</tr>
<tr>
<td>Beef</td>
<td>1.2</td>
<td>9.1 (9.1 – 9.1)</td>
<td>9.0 (5.7 – 23.3)</td>
</tr>
<tr>
<td>Country</td>
<td>Industry</td>
<td>Cows at risk (mill)</td>
<td>National cost (mill US$)</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Argentina</td>
<td>Dairy</td>
<td>8.8</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>1.8</td>
<td>48.9</td>
</tr>
<tr>
<td>Australia</td>
<td>Dairy</td>
<td>1.8</td>
<td>26.6</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>9.7</td>
<td>74.1</td>
</tr>
<tr>
<td>Brazil</td>
<td>Dairy</td>
<td>14.2</td>
<td>51.3</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>29.7</td>
<td>101.0</td>
</tr>
<tr>
<td>Canada</td>
<td>Dairy</td>
<td>1.3</td>
<td>17.1</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>4.3</td>
<td>14.3</td>
</tr>
<tr>
<td>Mexico</td>
<td>Dairy</td>
<td>2.7</td>
<td>68.5</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>30.3</td>
<td>94.8</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Dairy</td>
<td>1.7</td>
<td>12.1</td>
</tr>
<tr>
<td>New Zealand</td>
<td>Dairy</td>
<td>4.8</td>
<td>35.7</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Spain</td>
<td>Dairy</td>
<td>0.9</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>1.7</td>
<td>9.8</td>
</tr>
<tr>
<td>UK</td>
<td>Dairy</td>
<td>2.0</td>
<td>27.0</td>
</tr>
<tr>
<td>USA</td>
<td>Dairy</td>
<td>8.2</td>
<td>546.3</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>23.6</td>
<td>1114</td>
</tr>
<tr>
<td>TOTAL per industry</td>
<td>Dairy</td>
<td>46.3</td>
<td>842.9</td>
</tr>
<tr>
<td></td>
<td>Beef</td>
<td>102.2</td>
<td>455.4</td>
</tr>
<tr>
<td>Total (all cattle)</td>
<td></td>
<td>148.6</td>
<td>1298.3</td>
</tr>
</tbody>
</table>
Figure 1: figure(s)

Pubmed search
Search terms: *Neospora caninum*, cattle

- Yielded 769 publications

Economic relevant data, countries with at least 5 relevant publications

- 99 publications

Information relevant to a particular industry (beef or dairy)

- 25 beef industry
- 72 dairy industry
- 2 general abortion statistics

Analysis of data, calculation of economic impact