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Abstract 

Many rocks and layered/fractured sequences have a clearly expressed electrical anisotropy, 
although it is rare in practice to incorporate anisotropy into the interpretation of electrical 
resistivity survey data. This thesis comprises a series of journal papers directed at increasing 
understanding of electrical anisotropy in resistivity investigations. Particular attention is given 
to how anisotropy affects both forward modelling and the resistivity inverse problem. 

Chapter 2 derives the analytic solutions for the electric potential, current density and Fréchet 
derivatives inside a 3D tilted transversely isotropic medium. The solutions hold for a surface 
current source above an anisotropic but otherwise homogeneous medium. Profiles for 
potential, current density and sensitivity are presented for various strike and dip orientations 
of the axis of symmetry. Equipotentials exhibit an elliptical pattern and are not orthogonal to 
the current density vectors. Sensitivity patterns are strongly asymmetric compared to the 
isotropic case, with strong dependence on the axis of symmetry direction. 

Chapter 3 presents a general numerical formulation for calculating the electric potential and 
Fréchet derivatives in an arbitrary 3D anisotropic heterogeneous medium. It is based on a new 
Gaussian quadrature grid formulation for calculating the 3D Green’s functions. Explicit 
expressions for the Green’s functions and their gradients are developed. A critical factor in the 
equations is the derivative of the conductivity tensor with respect to the principal conductivity 
values and angles defining the axes of symmetry. Special cases such as an isotropic earth and 
tilted transversely isotropic media emerge from the general solutions.  

Chapter 4 makes use of the given analytic and numerical sensitivity formulations to examine 
the various sensitivity patterns which emerge for different uniform anisotropic media and for 
various surface electrode array configurations. Pole-pole, pole-dipole, Wenner and square 
arrays produce distinctive patterns, valuable in assessing resolution. It was found that 
sensitivity patterns vary greatly for different anisotropic model parameters in terms of 
strength and shape, depending on the nature of the anisotropy.  

Chapter 5 presents a reformulation for the description of anisotropic media in terms of the 
coefficient of anisotropy and the geometric mean (average) conductivity . Sensitivity 
functions are plotted and described for these parameters. Also comparison of sensitivity 
patterns for isotropic, homogeneous models with those for equivalent transversely isotropic 
medium parameters is given by plotting the ratios of the Fréchet derivatives of the anisotropic 
to the isotropic values. Prominent differences in both sign and magnitude are observed, 
especially for steep dips and strong anisotropy. The plots highlight the dangers of an isotropic 
assumption. Even for mildly anisotropic rock (< 1.2), there is potential for error in 
interpretation. 

Chapter 6 presents 2.5D synthetic inversion experiments for various electrode configurations 
and anisotropic models. The experiments compare image reconstructions obtained using the 
correct anisotropic inversion code and those obtained using the false but widely used isotropic 
assumption. Superior reconstruction in terms of reduced data misfit, true anomaly shape and 
position is obtained when the correct anisotropic assumption is employed. When an isotropic 
inversion algorithm is used to invert anisotropic data, the images are dominated by patterns of 
banded artefacts and high data misfits. Various data sets were investigated and evaluated for 
the accuracy of the inversion result, the corresponding eigenspectra (information content) of 
the pseudo Hessian matrix and the relative resolution plots. An effective data selection 
strategy based on high sensitivity measurements is presented. It drastically reduces the 
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number of data to be inverted but still produces comparable results to that obtained from the 
comprehensive data set. Inversion was carried out using transversely isotropic model 
parameters described in two different co-ordinate frames for the conductivity tensor: 
Cartesian versus natural or eigenframe. The Cartesian frame provided a more stable inversion 
product. This can be explained by the differing magnitudes of the eigenspectra of the pseudo-
Hessian matrix for the two model descriptions. 
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Chapter 1:  Introduction 

Exploration geophysics is a well established discipline that seeks to image the Earth’s interior 
by exploiting natural physical field variations (e.g., gravity, magnetic, heat flow, telluric 
currents, radioactivity) or artificially created ones (seismic, electrical, electromagnetic). It 
relies on variations in certain physical subsurface properties (e.g., density, magnetic 
susceptibility, electrical conductivity, dielectric constant, elastic constants) to cause variations 
in the fields which can then be sensed and the data variations interpreted in terms of 
subsurface structure and constitution. Geophysics is widely practiced in areas such as oil and 
gas exploration, mineral search, geotechnical engineering, hydrological investigations and 
environmental monitoring. This thesis concentrates on the DC electrical resistivity method 
which is an artificial field method routinely applied for high resolution near surface imaging 
in connection with environmental, hydrological and engineering investigations as well as 
mineral exploration. The importance and applicability of the method continues to grow with 
the ever increasing demands on global natural resources, infrastructure and water supplies. 

1.1 Basic Concept and Applications 

Electrical and electromagnetic geophysical techniques which use a controlled impressed 
source field can be broadly categorised according to operating frequency and method of 
coupling to the ground. Signal frequencies can vary from 0 (DC) to GHz (Radar) and the 
coupling can be either galvanic (direct contact via electrodes) or inductive (via coils of wire). 

The resistivity (or geo-electric) method utilizes a DC power source to get current to flow in 
the ground between a source electrode and a sink electrode. The pattern of current flow 
(hence the electric field) depends on the subsurface resistivity distribution. By measuring the 
variations in electric potential between numerous pairs of receiver electrodes placed on the 
surface or in boreholes (also galvanically coupled) one can infer the conductivity distribution. 
The resistivity method is treated comprehensively in many standard textbooks (Kunetz, 1966; 
Keller and Frischknech, 1966; Ward, 1990; Telford et al., 1992; Reynolds, 2011) and so only 
the fundamentals will be reviewed here. Figure 1 shows an example of current flow between 
electrodes A and B and the corresponding equipotential contours for a homogeneous half 
space. Because the medium is isotropic, the equipotentials are perpendicular to the current 
flow lines. For heterogeneous media the pattern would be far more complicated. It is now 
standard practice to convert the collected potential (or voltage) data from mobile receiver 
electrodes M and N for various current electrode (A and B) positions and spacings into a map 
of the subsurface resistivity structure. Subsequent to this a geological interpretation of the 
resultant physical model (resistivity or its inverse, conductivity) is carried out that can be used 
to infer rock/soil type, degree of weathering, water content, etc.  
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Figure 1: Current and potential lines in a homogeneous isotropic half-space (after Van Nostrand and 
Cook, 1966). A and B symbolise current electrodes (sources) with M and N being potential electrodes 
(receivers). 

The method is widely used to delineate and characterise the subsurface across a range of 
disciplines such as geotechnical engineering (Pettifer et al., 2000), hydrogeology (Doetsch et
al., 2010), environmental monitoring (Rucker et al., 2011), archaeological search (Noel and 
Xu, 1991; Papadopolous et al., 2011), landslide research (Travelletti et al., 2011; Cassiani et
al., 2009) and resource exploration (Bibby et al., 1984). Other disciplines outside of 
geophysics, such as medical imaging (Brown, 2003) and materials testing (Kupke et al.,
2001), exploit the same resistivity principle in visualising opaque objects via impedance 
tomography.  

Considerable advances in multi-electrode arrays, automated recording instrumentation, as 
well as computer hardware and software over the last twenty years have enabled 2D and 3D 
resistivity investigations (with associated modelling and inversion code) to become 
commonplace and widely available. Surveys can be carried out quickly and economically 
using multi-electrode acquisition systems. 

1.2 Resistivity of Earth Materials 

Current flow in a resistor is governed by the well known Ohm’s law: 

I = U / R (1) 

where U is potential difference (Volts), R is resistance (Ohms) and I is current (Amps). 
Electrical resistance depends on the size and geometry of the sample. In the case of a cylinder 
of length L and cross sectional area A it is given by: = / (2)

where  (Ohm – metre) is the electrical resistivity of the material. Resistivity is a fundamental 
and intrinsic point property of a material which is a measure of how strongly the material in 
question impedes the flow of electricity. Resistivity is the reciprocal of conductivity, 
(Siemens per metre), and by rearranging (2) for the cylinder we have: 

A 
NOTE:   

     This figure/table/image has been removed  
         to comply with copyright regulations.  
     It is included in the print copy of the thesis  
     held by the University of Adelaide Library. 
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ߩ ൌ ߪ/1 ൌ  (3)         ܮ/ܣܴ
 
Several different current conduction mechanisms are possible in typical Earth materials. In 
very pure metallic minerals, electronic conduction can occur. These materials have very low 
resistivities (൏ 10ି଼ Ohm-m) because high mobility electrons are the charge carriers. Semi 
conduction occurs in igneous rocks and sulphides where the charge carriers are ions (holes). 
Mobility of ions is temperature dependent and lower than that of electrons. Resistivities for 
this type of conduction vary from 10ିଷ to 10ିହ Ohm-m.  
 
Current flow in the subsurface is largely electrolytic in nature. Dissolved salts distributed in 
pores and fractures enable the movement of charge carriers. The relationship between salt 
content, saturation, porosity () and permeability contributes to the overall resistivity of a 
medium. Archie (1942) described the resistivity of a completely saturated whole rock (ߩ௢) 
with a pore fluid resistivity of (ߩ௪) through an empirical relationship, which was later 
extended to the more general form which includes partial saturation (not considered here): 
 
ఘ೚

ఘೢ
ൌ ܨ ൌ ܽ߶ି௠         (4) 

 
where F is the formation factor, a is the tortuosity factor (related to pore shape and 
connectedness) and m is the cementation factor. Typical values for the cementation factor are: 
1.8 - 2.0 for consolidated sandstones to 1.3 for unconsolidated sands; while the tortuoisty 
varies between 0.6 - 1. The salinity of the fluid is considered in the w term. 
 
Texture and sorting also have an influence on resistivity. If there is limited pore space or 
connectivity such as in unweathered basalt there is also limited means for current conduction. 
Figure 2 shows textures of some common rock types. 
 

 
Figure 2:  Various textures of commonly encountered rock (after Ward, 1990). 

Clay mineral content in rocks can provide an extra conduction pathway via an electrical 
double layer that forms at clay water interfaces. The double layer forms as a result of the clay 
minerals absorbing cations and retaining them in an exchangeable state; the clay mineral 
surface then acts as a separate conducting path in addition to the solution path. Waxman and 

A 
NOTE:   

     This figure/table/image has been removed  
         to comply with copyright regulations.  
     It is included in the print copy of the thesis  
     held by the University of Adelaide Library. 
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Smits (1968) investigated the effects on resistivity due to conduction through the double 
layer. 
 
To summarise, the main factors that can decrease the electrical resistivity of a medium are:  

 additional pore-fluid 
 higher salinity fluid 
 increased fracturing (weathering) and interconnection between pores 
 additional clay content 
 increased temperature 

 
Resistivity of earth material increases with: 

 greater levels of compaction (where less pathways become available for electric 
current flow) 

 lithification (where pores are blocked by mineral deposition)  
 
The key advantage of the resistivity method is that the electrical properties of the Earth vary 
over many orders of magnitude. Figure 3 shows a summary of resistivity values for common 
rocks. Other geophysical properties such as seismic velocity, density, and relative permittivity 
vary over a much smaller range (Keller and Frischknecht., 1966).  
 

 
Figure 3: Typical range of electrical resistivities / conductivities of earth materials (after Ward, 1990). 

 
 
 
 

A 
NOTE:   

     This figure/table/image has been removed  
         to comply with copyright regulations.  
     It is included in the print copy of the thesis  
     held by the University of Adelaide Library. 
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1.3 Field Measurements and Equipment 
 
The electric potential U at an electrode M due to a surface point source of current A situated a 
distance rAM away in a homogeneous isotropic half space is given by: 
 
ܷ୑ ൌ  ୅୑         (5)ݎߨ2/ܫߩ
 
Taking into account also the potential due to the current sink (B) located a distance rBM away 
the total potential at M is: 
 

ܷ୑ ൌ
ூఘ

ଶగ
ሾ
ଵ

௥ఽ౉
െ

ଵ

௥ా౉
ሿ         (6) 

 
It is common to measure the potential difference or voltage drop between two receiver 
electrodes M and N. By the principle of superposition, the potential difference U between M 
and N would then be:   
  

ெேܷ߂ ൌ
ூఘ

ଶగ
ቂ
ଵ

௥ఽ౉
െ

ଵ

௥ా౉
െ

ଵ

௥ొఽ
൅

ଵ

௥ొా
ቃ ൌ

ூఘ

௄
      (7) 

 
The quantity K is referred to as the geometric factor which describes the electrode 
configuration geometry. In practice it is common to normalise the potential difference 
measurements for the effect of the current strength I and the geometric factor K to obtain the 
apparent resistivity (ߩ௔): 
 

௔ߩ ൌ ܭ
௱௎

ூ
          (8) 

 
which has the same units as the true resistivity. For a homogeneous Earth the apparent 
resistivity is equal to the true resistivity. Any departures of the Earth from uniform resistivity 
and flat topography are revealed by variations in the apparent resistivity with electrode 
positions. Apparent resistivity data taken in the field for surface measurements are often 
plotted in the form of a pseudo-section (Loke and Barker, 1996). This involves plotting the 
raw data values at a horizontal position equal to the array midpoint and at a depth position 
equal to some fraction of the electrode separation (e.g. for the Wenner array, it is one third of 
the distance between the current electrodes). Contouring of the pseudosections is a valuable 
tool used in preliminary interpretation and data quality control (Dahlin, 1996). Buried 
electrodes used in cross-hole surveys require a more complex consideration of image sources 
to correctly compute apparent resistivity and do not easily lend themselves to display as a 
pseudosection (Marescot et al., 2006). 
 
The relative simplicity of equipment needed for fieldwork is displayed in Figure 4. Most field 
techniques use two current electrodes (a source and sink) and two potential electrodes for a 
single measurement. Low frequency current waveforms are sometimes employed to suppress 
electrode polarization and self potential effects (Dahlin, 2000). It is possible to place one of 
each of the current (sink) and potential (reference) electrodes at a large distance from the 
others to simulate pole-pole measurements. If only one of the current electrodes is located 
remotely then this gives rise to the pole-dipole array. Standard four-electrode arrays 
commonly used are: Schlumberger, Wenner, dipole-dipole and the gradient. A comprehensive 
compilation and discussion of array types can be found in Szalai and Szarka (2008). 
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Figure 4: simple four electrode field setup (from Robinson and Coruh, 1988). 

 
Conrad Schlumberger (Schlumberger, 1920) in Europe and Frank Wenner in the USA 
conducted the original resistivity field experiments (Kunetz, 1966). Since their pioneering 
efforts, numerous field procedures and improvements and have been introduced, such as: 
 

 vertical electric sounding (Barker, 1981)  
 resistivity profiling or traversing (Telford et al., 1990)  
 2D and 3D tomography (Loke and Barker, 1996) 
 Cross-hole (Zhou and Greenhalgh, 2002), bore-hole to surface tomography 

 
Resistivity sounding seeks to determine the vertical variation of resistivity with depth. It 
entails keeping the centre of the electrode array fixed (sounding position) and repeating the 
measurements for varying separations of the electrodes. As a general rule, the depth of current 
penetration increases with electrode separation (Gish and Rooney, 1925). By contrast, 
resistivity profiling provides an indication of how resistivity varies in a horizontal direction. 
This is done by keeping the electrode separations constant while varying the location of the 
spread. The array is moved along a line or a series of profiles in the form of a map. Depth of 
penetration remains approximately constant with this method, so it can be used to delineate 
lateral changes such as faults, dykes, gravel lenses and ore deposits. By combining sounding 
and profiling techniques it becomes possible to obtain data across a 2D subsurface slice that 
represents both vertical and horizontal apparent resistivity variations. 
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Field equipment has greatly advanced since the 1980’s. This is due to the development of 
multi-electrode digital acquisition systems (Barker, 1989; Dahlin, 1989) which were inspired 
by: 
 

 the intensive fieldwork and prohibitive survey time involved using only 4-electrode 
arrays for 2D or 3D surveys 

 improvements in computer control and automated switching  
 the strong trend towards tomographic inversion in other geophysical methods, which 

prompted the need for large redundant data sets (akin to practices in seismic 
exploration) 

 
Multi-electrode acquisition systems involve using multi-core cables with much larger 
numbers of electrodes (up to several hundred) for a survey layout. A central computer (using 
multiplexed or distributed systems) controls the automatic switching through different 
combinations of measurements between the electrodes. These early systems have been 
extended (Stummer, 2002; Blome, 2009; 2011; Wilkinson et al., 2010; Zhe et al., 2007) to 
systems that record across multiple channels in parallel strategies with real-time data displays.  
 

1.4 Anisotropy 
 
Anisotropy of a physical property of a material refers to the directional dependence of the 
measurements. In geoelectrics, this means that conductivity and hence the measured voltage 
(or apparent resistivity) is now a function of the direction of the impressed electric field. 
Therefore the resistivity of the ground varies not only spatially, but with direction. Current 
can flow easier in certain directions than others. This preference can be due to the intrinsic 
crystallographic internal structure of the material or to macroscopic effects such as layering 
(pseudo-anisotropy). Electrical anisotropy in geophysics and has been recognised for a long 
time (e.g., Maillet, 1947; Keller and Frischknect, 1966). It is well documented that many rock 
fabrics (or earth materials) can exhibit anisotropy in other physical properties; for example: 
magnetic (Owens and Bamford, 1976), seismic (Thomsen, 1986), thermal, and dielectric. The 
cause of the directional dependence depends greatly on the scale, and as explained above it 
can be macro or microscopic in nature. Electrical anisotropy is widespread and often 
encountered in the field. 
 
To mathematically describe an anisotropic Earth, it is not sufficient to treat the resistivity  as 
a simple scalar, but as a second rank tensor , which can be written in matrix form as: 
 

࣋ ൌ ൭

௫௫ߩ ௫௬ߩ ௫௭ߩ
௫௬ߩ ௬௬ߩ ௬௭ߩ
௫௭ߩ ௬௭ߩ ௭௭ߩ

൱        (9a) 

 
where indices (x,y,z) signify the Cartesian measurement frame. Chapter 2 gives a complete 
mathematical description of the anisotropic resistivity tensor and how it may be visualized. 
Ohm’s law for current flow in anisotropic media assumes the form: 
 

1, 2,3i ij jE J j          (9b) 

 
where E is the electric field J is the current density and summation through repeated subscript 
j is understood. 
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1.4.1 Micro-anisotropy 

Micro-anisotropy describes directional dependence at the particle, mineral or crystal scale. 
Materials such as shales, slate and clay usually have distinct, intrinsic lineation or platy fabric 
due to the phillosilicate sheet structure which forms the source of micro–anisotropy. It is not 
uncommon to encounter anisotropy in sedimentary strata; many solid particles have flat or 
elongated shapes that settle so that they are oriented parallel to the plane of deposition. This 
results in a pore structure that allows electric current to flow more easily parallel to the 
bedding plane than perpendicular to it.

Mendelson and Cohen (1982) and Rey and Jongmans (2007) examined the effect of 
particulate (or grain) shape on the electrical properties of sedimentary rock, in particular 
through Archie’s law (Archie, 1942). It was found that the presence of highly oblate (disk 
shaped or anisotropic distribution) grains can raise or lower the cementation factor depending 
on the alignment of the grains and tortuosity of the current paths. For anisotropic grains the 
resistivity is described by a tensor with principal values that satisfy a generalized form of the 
well known Archie’s law: 

         (10) 

where  is the jth principal value of the resistivity tensor and  can be expanded as a 
power series in (porosity) with a constant leading term.  

1.4.2 Macro-anisotropy 

Macro-anisotropy is also referred to as structural anisotropy or pseudo-anisotropy and occurs 
at a macroscopic scale. There are two main groupings:  

1) A series of layers or bands of dissimilar isotropic materials behave as a single (bulk), 
equivalent anisotropic unit. The basis of this type of anisotropy is that the electrode 
spacing (measurement length) is greater than the thickness of alternating bands of 
isotropic material. Alternating bands are usually formed in depositional processes such 
as alternating sand – shale laminae and alternating fine and coarse micro-layering. An 
example of this type of anisotropy is shown inFigure 5, where alternating layers of 
sandstone, clay and marl materials are clearly exposed along coastal cliffs around the 
town of Torquay in Victoria, Australia. This type of macro-anisotropy has been 
reported in reservoir environments. Klein and Martin (1997) explored the petrophysics 
of electrically anisotropic reservoirs and found that anisotropy depends greatly on the 
fluid saturation type. 

2) Weathering, fracturing, jointing and cleaving (Skinner and Heinson, 2004) enable 
conduction along preferential electrical (and hydraulic) flow paths. In most hard rocks, 
fractures occur in sets with more or less well-defined preferred orientations (Skjernaa 
and Jorgensen, 1993). An example of this is shown in Figure 6. Anisotropy is often 
observed in karstic geologies (Hart and Rudman, 1997). 
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Figure 5: examples of bulk anisotropic media with alternating layers of clay, sandstone and marl material 
in a sedimentary geology. Photos were taken along the coastline of Torquay, Victoria Australia. 

 
 
 
 
 
 

 
Figure 6: examples of preferential fracture orientations in a rock quarry bench. (Photos care of T. 
O'Shaunessy, GHD Pty Ltd, Melbourne). 

 
 

A 
NOTE:   

     This figure/table/image has been removed  
         to comply with copyright regulations.  
     It is included in the print copy of the thesis  
     held by the University of Adelaide Library. 
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1.4.3 Tilted Transversely Isotropic Media 
 
The widely used tilted transversely isotropic (TTI) model comes from a simplification in 
which resistivity is constant (isotropic) within a specific plane (i.e., the plane of stratification 
or fracture plane), but different in all other directions outside that plane. Many geological 
settings are well described by this simplification. The model is defined by two principal 
resistivities (longitudinal: ߩ௅ and transverse:  ்ߩ) whose directions are orthogonal and an 
angle ߠ଴ defining the orientation (axis of symmetry) of the transverse direction. 
 
 

 
Figure 7: 2D tilted transversely isotropic medium 

 
Resistivity values are generally larger when measured perpendicular to the plane of isotropy 
 Two important quantities are used to .(௅ߩ) compared to values parallel to the plane (்ߩ)
describe TTI media: the average resistivity (geometric mean) ߩ௠ and the coefficient of 
anisotropy . These two quantities may be expressed in terms of the principal resistivities: 
 
௠ߩ ൌ ඥߩ௅(11)          ்ߩ 

 

ߣ ൌ ඥ்ߩ ⁄்ߩ           (12) 
 
Parkhomenko (1967) and Keller and Frishcknecht (1966) provide lists of the coefficients of 
anisotropy for commonly encountered media. Shale and sandstone interbeds have values in 
the range of 1.05 – 1.15, while interbedded anhydrite and shale have reported values of 4.0 – 
7.5. Even alluvium can have anisotropy coefficients of 1.02 – 1.1.  Igneous and metamorphic 
rocks can also have significant anisotropy (Hill, 1972; Asten, 1974). TTI media are described 
in detail in Chapter 2. 
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1.4.4 Principle of Equivalence and the Paradox of Anisotropy 

TTI anisotropy in the subsurface can give rise to ambiguous and unexpected measurements of 
apparent resistivity. Incorrect interpretations arise if isotropy is assumed. 

Surface measurements made on a TTI medium having a vertical axis of symmetry (VTI case) 
such as in horizontally layered sand-shale sequences are invariant, as shown in Figure 8. If 
such anisotropy exists it is undetectable at the surface. Depth estimates made for this situation 
will be in error by a factor of. This follows from the Principle of Equivalence, which states 
that for surface measurements a single anisotropic layer of thickness h and resistivities  and 

 is indistinguishable from an isotropic layer of thickness  and resistivity  (Keller and 
Frischknecht, 1966). Figure 8 displays an example of equivalence in which surface 
measurement of apparent resistivity made on an anisotropic VTI medium (left diagram) 
would result in an identical reading if made on the isotropic medium (right diagram). 

It is important to note that a sequence of thin isotropic layers can in reality appear as a single 
macro-anisotropic layer. The effective longitudinal resistivity of the sequence is obtained by 
considering it to behave like a parallel resistor network, in which current can distribute itself 
through the layers and each layer can be replaced by the resistor = . 1/ . =  = 1/

, where s is conductance (inverse of resistance). The equivalent total resistance is therefore 
given by: = 1/ = . /  = . 1/ (13)

yielding an effective longitudinal resistivity:  = / , where / (14)

Now consider flow in the transverse direction through the layer stack, which behaves like a 
series resistor network in which each layer can be replaced by its resistance = /  = 
= . The total equivalent resistance is: = = . /  = . (15)

yielding an effective transverse resistivity: = / , where = (16)

For example, a sequence of 20 layers each 2 metres thick, alternating in resistivity from 5 to 
100 Ohm – m, has the following effective parameters: = 9.52  m; = 52.5  m; == 22.36  m; = = 2.35; h = 92.8 m. It follows that errors in interpreted 
depths can be appreciable; the true depth in this example is 40 metres, while the apparent 
depth is 92.8 m. 
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The Principle of Equivalence and the Paradox of Anisotropy are well illustrated by the 
example of resistivity measurements made on polar ice (Fujino and Suzuki, 1963). The origin 
of anisotropy in an ice pack comes from formation processes. Conductive brine is present 
which freezes in a preferentially vertical orientation (Ingham et al., 2008). This results in a 
near horizontal axis of symmetry of the TI medium. Many attempts at determining sea ice 
thickness through resistivity soundings have consistently underestimated the ice thickness 
(Buckley et al., 1986; Thyssen et al., 1974; Timco, 1979) due to its anisotropic nature. A 
similar scenario could also be caused by vertical fracturing or steeply dipping beds. 

1.4.5 Detecting Anisotropy 

The literature regarding the detection of electrical anisotropy can be split into two main 
categories: 

1) Azimuthal resistivity surveys (Taylor and Fleming, 1998; Ritzi and Andolsek, 1992; 
Busby, 2000). 

 2) Square array techniques (Habberjam and Watkins, 1967; Habberjam, 1972 and 1975; 
Matias and Habberjam, 1986, Tsokas et al., 1997). 

Azimuthal resistivity surveys use a linear array of electrodes to measure apparent resistivity in 
a variety of directions (e.g., intervals of ten degrees) with a common fixed centre point. Data 
obtained is usually then presented in a polar co-ordinate plot where in the presence of 
anisotropy an apparent anisotropy ellipse is observed. Watson and Barker (1999) highlight the 
problem of differentiating lateral effects and anisotropy from azimuthal surveys and the 
possibility of misinterpretation. They offer an alternative field technique called the Wenner 
offset array to differentiate anisotropy, dipping layers and lateral effects.   

Square array techniques pioneered by Habberjam and further developed by others involve 
making three measurements for each survey point (centre of the square): two along the 
orthogonal sides of the square and one along the diagonal. The square array offers greater 
sensitivity to anisotropy over standard co-linear arrays. Also fewer electrodes need to be 
moved per measurement offering higher practicality for the square array over crossed co-
linear arrays.  

The Principle of Equivalence and the Paradox of Anisotropy that afflict surface measurements 
have far less effect when the source and receiver electrodes are placed beneath the surface. 
Anisotropy can be more readily detected using cross-hole and borehole to surface techniques 
than with simple surface measurements, especially when the axis of symmetry is sub-vertical.  
The emerging trend is for tensor measurements, in which the impressed electric field (from 
the current electrodes) is sequentially applied in two orthogonal directions, and the voltage 
measurements made on two orthogonal sets of potential electrodes. 

1.5 Electrical Resistivity Imaging (ERI) 

Modern electrical resistivity imaging techniques, also referred to as electrical resistivity 
tomography (ERT), have followed advances in other geophysical fields such as seismic and 
potential field methods. ERI utilises geophysical modelling and inversion theory, multi-
channel, multi electrode acquisition systems and now widely available data processing 
software to obtain 2D and 3D tomographic images of the Earth’s resistivity distribution. 
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Modern instruments (Stummer, 2003; Zhe, 2006; Blome, 2009, Wilkinson et al., 2010; Blome 
et al., 2011) are computer controlled multi-electrode systems capable of switching current 
electrodes throughout a linear 1D or areal 2D array while making potential measurements in 
parallel across a number of channels. Massive data sets can be collected efficiently using 
relatively few electrodes. 
 

1.5.1 Forward Modelling 
 
Once a data set is collected in the field a reconstruction process turns the apparent resistivity 
data into an image of 2D or 3D bulk (true) resistivity variations. An important part of the 
reconstruction process is to solve the forward problem which involves deriving a theoretical 
response (synthetic data) for a suite of input parameters (electrode configurations and the 
initial or current resistivity distribution) to compare with the observed data. Because the 
forward modelling must be carried out multiple times for the various model updates, it is 
crucial to have an accurate and fast solver available. For the resistivity problem this means 
solving the differential equation that governs the flow of electrical current in the ground, viz., 
the Poisson equation: 
 
ሬሬԦ׏ ∙ ൫׏ߪሬሬԦܷ൯ ൌ Ԧݎሺߜܫ െ ,Ԧݎ  ,ௌሬሬሬԦሻݎ ௌሬሬሬԦݎ ∈ Ω      (17) 
 
where is the conductivity (isotropic or anisotropic, which varies as a function of position), 
U is the potential, ݎௌሬሬሬԦ ൌ ሺݔ௦, ,௦ݕ  ௦ሻ is the location of the current electrode in  Ω. The governingݖ
equation can be solved analytically or approximately using numerical approaches. Analytic 
solutions may be used for special cases but most often in practical work numerical methods 
are employed. 
 
Numerical solutions for DC forward modelling include finite difference (Dey and Morrison, 
1979), finite element (Zhou and Greenhalgh, 1999), boundary element (Hvozdara and 
Kaikkonen, 1998), spectral element (Patera, 1984), wavelet theory (Plattner, 2011) and the 
Gaussian quadrature grid (GQG) method (M. Greenhalgh, 2008).  
 
A number of developments have evolved resistivity modelling into its current state. Computer 
based interpretation tools started with 1D modelling (Ghosh, 1971) using fast convolution 
techniques and were extended to 2D methods using finite difference (FD) operators. Problems 
are encountered with the FD method for electrode singularity and incorporation of arbitrary 
topography. These difficulties were overcome with the more flexible finite element method 
(FEM) (Coggon, 1971; Pridmore et al., 1981; Zhou and Greenhalgh, 2001; Gunther, 2006). 
The FEM is able to use complicated meshes to incorporate complex models along with 
arbitrary topographic features. The introduction of singularity removal (Lowry et al., 1989; 
Blome, 2009) and improved boundary conditions (Zhang et al., 1995) have greatly increased 
numerical accuracy.  
 
Recently, DC resistivity numerical methods have been developed that incorporate anisotropy 
(Yin and Wiedelt, 1999; Herwanger et al., 2004; Pain et al., 2003; Li and Spitzer, 2005; 
Pervago et al., 2006; Kim et al., 2006; Zhou et al., 2009). This is in addition to a body of 
literature describing analytic solutions for simple anisotropic models. For example, 
Bhattacharya and Patra (1968) give an analytic solution for the potential on the surface of a 
uniform TTI medium. This work has been significantly extended. A thorough review of this 
literature is given in the introduction to Chapter 2. 
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1.5.2 Inverse Modelling 
 
Electrical inversion is the practice of reconstructing the resistivity distribution of the 
subsurface from the collected DC apparent resistivity data.  This is a difficult task because: i) 
the measurement process has associated errors, ii) the inverse problem does not have a unique 
solution; an infinite number of different resistivity models can provide virtually the same 
voltage response, iii) there is often more free model parameters than independent data points, 
making the problem ill-posed. Inversion theory (Tarantola, 1978; Menke, 1989) deals with 
these challenges by implementation of inversion regularization schemes (constraints, 
damping, smoothing) and incorporation of data errors by weighting or other means. The 
levels and type of model parameterization and regularization applied in inversion are 
subjective and need to be chosen by the user. If too much regularization is applied then the 
reconstructed model may not reflect the true subsurface, whereas if too little is applied the 
inversion may become unstable and not converge to a minimum in the data misfit.  
 
Early attempts at resistivity inversion were based on 1D models using sounding data alone. 
The first 2D tomography attempts were reported by Inman (1975) and Tripp et al. (1984). 
These early works were extended to 3D with an inversion scheme for pole-pole data 
developed by Park and Van (1991). Non-linear conjugate gradients methods (Ellis and 
Oldenburg, 1994) and Newton-type schemes (e.g., Li and Oldenburg, 1999) are both 
commonly used approaches today. 
 
The two key components that are at the heart of almost all inversion schemes are: forward 
modelling, and sensitivity calculations. The forward solver or operator (F) predicts a synthetic 
data set (܌୮୰ୣୢ) for a given model parameter vector (m): 
 
୮୰ୣୢ܌ ൌ  ሻ          (18)࢓ሺࡲ
 
The resistivity problem is non-linear because the forward operator depends on the model m 
and cannot be described by a simple matrix-vector multiplication as is possible for some other 
geophysical methods (i.e. gravity, seismic travel time tomography in low contrast media).  
 
The goal of the inversion process is to find an approximation of the true subsurface model 
 :(୭ୠୱ܌) that best fits the set of observed field data (௘௦௧࢓)
 
ୱ୲ୣ࢓ ൌ  ୭ୠୱሻ         (19)܌ଵሺିࡲ
 
Usually the problem is solved iteratively by locally linearizing the forward operator around an 
initial guess for the model vector (࢓଴). Therefore, at each inversion iteration k, a new model 
mk+1 = mk +m can be calculated based on the previous iteration model parameter vector and 
the update vector. A Taylor approximation of first order yields: 
 

௞࢓)ࡲ = ୮୰ୣୢ܌ ൅ ௞ሻ࢓ሺࡲ = (࢓∆ ൅ 
డࡲሺ࢓ೖሻ

డ࢓
࢓∆  ൅…ൎ ௞ሻ࢓ሺࡲ ൅  (20)  ࢓∆ࡶ 

 
where the Jacobian matrix ࡶcontains the sensitivities which give the relation between a 
perturbation in the field measured quantity (voltage or apparent resistivity) in response to a 
perturbation in the medium properties (true resistivity). It changes with each electrode 
configuration and subsurface cell. The Fréchet derivatives which form the elements of the ࡶ 
matrix are 
 

୩ሻ࢓୧୨ሺࡶ ൌ
ப୊౟ሺ࢓ౡሻ

ப࢓ౠ
         (21) 
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The focus of the inversion is to minimise the difference between the measured and predicted 
data (the residuals):  - ( ) = (22)

Hence, the inverse problem now can be formulated as an optimisation (minimisation) problem 
of an objective function ( ) that is usually defined as a combination of data residual  and 
model residual :min ( ) = min( + ) (23)

where  is the damping factor that determines the trade off between the data fit and the a-
priori knowledge. Using an L -norm, the data and model residuals can be defined as:

( ) = ( ) ( ( ) (24)

( ) = (25)

where p is the norm factor and , are the inverse data and model covariance matrices, 
respectively.  

The inverse of the data covariance matrix uses the measured or assumed errors in the set of 
data measurements to apply an importance weight (or reliability factor) to each datum 
residual. The inverse of the model covariance matrix provides means to eliminate some of the 
ambiguity of the inversion problem; this is termed regularisation. Commonly employed 
methods include placing structural constraints on the model parameters (i.e. upper and lower 
bounds) and penalising spatial variations (roughness) between model parameters, also known 
as smoothing (Constable et al., 1987).  

Choosing the level of damping ( ) applied to an inversion significantly effects the end 
product as it controls the balance between data fit and a-priori knowledge (inferences from 
geology, borehole logs etc). Schemes for selection of damping factors (Vogel, 2002; 
Farquharson and Oldenburg, 2004) have been reported in literature such as the L-curve 
method (Hansen and O’Leary, 1993) which is based upon the relationship between  and the 
misfit functions: and . The damping factor can be varied during inversion (Kemna, 
2000) such as decreasing regularization with iterations to lend greater weight to minimization 
of the data misfit as the solution converges to the global minimum. Yi et al., (2003) reported 
an approach named active constraint balancing in which the damping factor is set as a spatial 
variable for each inversion parameter and solved for explicitly in the inversion process.  

The norm factor (p) is often chosen to be 1 (L  - norm) for data sets with non-Gaussian noise 
distributions where large outliers exist; this is termed “robust inversion” (Claerbout and Muir, 
1973) because it is more tolerant of spurious data values. Also widely used is the least squares 
or L - norm, in which the data are assumed to have an almost Gaussian noise distribution.

The damped least squares inversion problem at each iteration k can be cast as the following 
minimization or optimization problem, (Greenhalgh et al., 2006): min{ ( ( ) + ) + ( + ) } (26)
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Setting the derivative of equation (26) to zero and using a Gauss-Newton scheme (Park and 
Van, 1991), the final equation required to update the model parameter vector ࢓௞ାଵ can be 
written as: 
 
௞ାଵ࢓  ൌ ௞࢓   ൅ ࢓   ൌ ௞࢓  ൅ ሺࡰ࡯ࢀࡶ

ି૚ࡶ ൅ ࡹ࡯૛ࢽ
ି૚ሻି૚ࡰ࡯ࢀࡶ

ି૚ሾ൫܌୭ୠୱ െ ܌
୮୰ୣୢ൯ ൅  ௞ሻሿ࢓ࡶ

            
           (27) 
 
The final inversion product (estimated true resistivity model) is obtained when the misfit 
between the synthetic (theoretically computed response of the current model) and the real data 
set converges to a pre-defined acceptable level. There are various criteria for doing this.  
 
It is important to be able to quantify the goodness of the reconstructed inversion image 
(Menke, 1984). This quantification allows comparison and optimization of different choices 
of survey layout and is also a key aid in interpretation of results. Friedel (2003) presented an 
inversion method in which the reconstructed image was supported with estimates of model 
resolution, model covariance and data importance. Model resolution (R) relates the estimated 
model parameters (࢚࢙ࢋ࢓) to the true model parameters (ࢋ࢛࢚࢘࢓): ࢚࢙ࢋ࢓ ൎ  where R isࢋ࢛࢚࢘࢓ࡾ
defined as: 
 
ࡾ ൌ ሺࡰ࡯ࢀࡶ

ି૚ࡶ ൅ ࡹ࡯
ି૚ሻି૚ࡰ࡯ࢀࡶ

ି૚(28)       ࡶ 
 
The diagonal elements of R indicate the resolution of each cell model parameter, with values 
close to zero indicating poor resolution, whereas values close to one indicate well resolved 
parameters. Perfect resolution is obtained when R is the identity matrix, because then mest   = 
mtrue, but this is not possible in practice. For most field experiments resolution values are far 
less than 1 for surface arrays, especially at depth because resolution falls off with distance 
away from the electrodes. Central to the above formal resolution equation (28) is the Jacobian 
matrix, which depends not only on the choices of electrode layout and model 
parameterization, but also on the subsurface model itself. The Jacobian matrix changes during 
the inversions with the iterative model updates. It is normally the final values of J which are 
used in equation (28).  
 
Recently, an important area of research has evolved whereby methods have been proposed to 
optimise the resolution of a survey by selecting electrode configurations that provide 
maximum sub-surface information. Stummer et al. (2004) proposed a sequential design 
strategy in which high information content electrode configurations were successively added 
to an initial data set until the desired model resolution was achieved. This initial scheme was 
improved by Wilkinson et al. (2006) who proposed other methods such as comparing the 
resolution matrix as each new electrode configuration was added to the data set. Loke et al. 
(2010) gives a thorough review of the different methods and also compares their 
computational demands. Loke et al. (2011) explores reducing the computing time required to 
employ the optimisation techniques by using parallel processors. The above techniques could 
be applied to 3D problems when massively parallel computing facilities are available; 
however, this is outside the resources of the average practitioner. Blome et al., (2011) made 
use of parallel recording strategies to record complete data sets as proposed by Xu and Noel 
(1993) and Lehman (1995). It was then shown that comprehensive data sets could be 
reconstructed from the linearly independent complete data sets to greatly improve resolution 
and inversion image results. It was found that in the presence of noise, pole-bipole 
reconstructed data sets outperformed four point reconstructions due to propagation of errors. 
Reconstructing comprehensive data sets from the complete data set is akin to a conditioning 
of the Hessian matrix. 
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1.6 Anisotropic Resistivity Inversion 
 
The literature on anisotropic resistivity inversion is sparse due to: i) the added complexity and 
increased number of model parameters in the forward solver for tensor anisotropic resistivity; 
ii) the lack of knowledge/literature investigating the relationship between measurement 
sensitivity and the various anisotropic parameters; iii) the equivalence principle, which states 
that for particular types of anisotropy,  surface measurements will produce ambiguous results; 
iv) difficulty as to how to regularise the anisotropy in the inversion scheme. 
 
LaBreque et al., (2004) incorporated anisotropy into the finite difference modelling 
formulation of Dey and Morrison (1979), but assumed that the axes of the conductivity 
ellipsoid were aligned with the co-ordinate directions, greatly simplifying the problem. They 
used an Occam-style inversion scheme with an objective function including regularisation 
operators to control smoothness and level of anisotropy permitted.  Pain et al., (2003) used a 
Levenberg-Marquardt type iterative preconditioned conjugate gradient inverse solver and a 
finite element forward solver. Their major contribution was to formulate and incorporate 
penalty functions for anisotropy and subsurface structure within the inversion objective 
function. Simple synthetic models with pole-pole array data sets were used to validate the 
inversion routine and highlight the non-linear nature of the problem. Suites of inversions were 
run to select the optimal penalty functions to minimise data residuals. Herwanger et al., 
(2004) extended the analysis by presenting a case study in which cross-hole resistivity and 
seismic methods were used to independently recover anisotropic model parameters. A good 
agreement of spatial structures with high anisotropy was found between the two techniques. 
Kim et al., (2006) presented a case study in which cross-hole tomography was able to 
delineate subsurface cavities having isotropic properties and situated in a highly anisotropic 
biotite-gneiss background. The orientations of the anisotropy axes were assumed to be in-line 
with the measurement (Cartesian) frame, an often questionable assumption. Anisotropy 
penalty terms were added to the objective function along with spatially varying Lagrange 
multipliers which increased the stability and resolution in the inversion process. 
Unfortunately, precise details on the forward and sensitivity calculations are not provided for 
this case study. Yi et al., (2011) extend the 2D cross-hole anisotropic tomography work of 
Kim et al., (2006) to 3D tomography. A case study is presented investigating the safety of an 
apartment block built over an abandoned mine site using field data collected between a 
number of boreholes. Average resistivity and anisotropy parameter are defined akin to 
Herwanger et al., (2004). These are displayed in image form and constitute the basis for 
interpretation.  
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1.7 Thesis Aims and the Link between Publications 
 
The principal motivation for this thesis project was the importance of electrical anisotropy in 
resistivity surveying yet the paucity of literature dealing with the topic. The assumption of 
isotropy is almost always employed in practice. This research work seeks to provide 
improvements in understanding the influences of electrical anisotropy on resistivity 
interpretations. 
 
Timely factors which encouraged the study include the data acquisition capabilities of modern 
resistivity recording systems which allow vast amounts of data to be captured efficiently in 
the field, and the power of modern computers having multiple processors which allow large 
data sets to be inverted in reasonable amounts of time.  
 
Each chapter concentrates on different aspects of the underlying theme of electrical 
anisotropy within a geophysical context. The thesis is theoretical in nature and approaches 
each of the key aspects that form a standard geophysical inversion scheme. Chapter 2 presents 
a comprehensive introduction and mathematical description of anisotropic resistivity. It 
explains the simplifications and assumptions involved in dealing with a TTI medium. Having 
presented this basis, analytic formulae for electric potential, current density and Fréchet 
derivatives at any interior point within a 3D TTI homogeneous medium are derived. This set 
of formulae provides an excellent way to check the accuracy of numerical code, aid in real-
time numerical design and provide fast initial model inversion of resistivity data. Chapter 3 
presents explicit expressions for the Fréchet derivatives or sensitivity functions in resistivity 
imaging of a heterogeneous and fully anisotropic earth. Such formulations along with forward 
modelling capability form the basis for almost all modern inversion schemes. Chapter 4 
provides an in-depth look at the effect of varying the strength and orientation of anisotropy on 
the sensitivity functions, and what the sensitivities look like for the different anisotropic 
resistivity parameters. Sensitivity patterns for various electrode arrays are also evaluated. 
Chapter 5 provides a comparison between the sensitivities for anisotropic and isotropic media, 
using the geometric mean of the longitudinal and transverse resistivities (equivalent isotropic 
parameter) as a basis for comparison. Alternative descriptions (i.e. parameters) for TTI media 
are given and used to enable comparison. In chapter 6 the thesis culminates in a series of 
anisotropic resistivity inversion experiments. The inversion strategy is based upon sensitivity 
formulations from the previous chapters. Synthetic inversion experiments for various 
electrode configurations and 2D anisotropic models are performed. Image reconstructions 
obtained using the correct anisotropic inversion code and those obtained using the false 
isotropic assumption (widely used in practice) are examined and compared.  
 
Four of the thesis chapters have been published in international journals; the fifth has been 
accepted for publication subject to certain revisions which have now been undertaken. As 
such, the chapters are self contained with an appropriate literature review that frames its 
position in the current field of knowledge. 
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Chapter 2:   Electric Potential and Fréchet Derivatives for a Uniform 
Anisotropic Medium with a Tilted Axis of Symmetry 
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2.1 Statement of Contribution 
 
Electric Potential and Fréchet Derivatives for a Uniform Anisotropic Medium with a 
Tilted Axis of Symmetry. Pure and Applied Geophysics, 166; 673 - 699 
 

Conceptualization 
 
This work came to fruition after literature reviews performed by T. Wiese and M. Greenhalgh 
in the field of resistivity investigations in anisotropic media. All authors were responsible for 
this paper’s conceptualization after identifying the gap in the literature. 
 

Realization 
 
S. Greenhalgh was responsible for the original formulation of the solution which was 
extended by L. Marescot, B. Zhou and T. Wiese. All authors checked the validity of the 
formulations and offered additions and suggestions. Cheifly T. Wiese was responsible for 
coding the formulation and testing the code against numerical solutions. M. Greenhalgh and 
L. Marescot provided valuable additions to the numerical solutions. A variety of different 
model parameters were tested and analysed by T. Wiese.  
 

Documentation 
 
All authors had significant input on the documentation. S. Greenhalgh wrote the majority of 
the first draft, with help and additions from all authors, especially L. Marescot. T. Wiese was 
responsible for figure development and presentation.  
 
The authors hereby certify that the statement of contribution is accurate and give permission 
for the inclusion of the paper in the thesis: 
 

 
 
 

  
                                      NOTE:   
    Statements of authorship appear in the print copy of  
    the thesis held in the University of Adelaide Library.
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Chapter 3:  Explicit Expressions for the Fréchet Derivatives in 3D 
Anisotropic Resistivity Inversion 
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xplicit expressions for the Fréchet derivatives in 3D anisotropic
esistivity inversion
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ABSTRACT

We have developed explicit expressions for the Fréchet de-
rivatives or sensitivity functions in resistivity imaging of a
heterogeneous and fully anisotropic earth. The formulation
involves the Green’s functions and their gradients, and it is
developed from a formal perturbation analysis and by means
of a numerical �finite-element� method.Acritical factor in the
equations is the derivative of the electrical conductivity ten-
sor with respect to the principal conductivity values and the
angles defining the axes of symmetry. The Fréchet derivative
expressions were derived for the 2.5D and 3D problems using
constant-point and constant-block model parameterizations.
Special cases such as an isotropic earth and tilted transversely
isotropic �TTI� media emerge from the general solutions. Nu-
merical examples were investigated for various sensitivities
as functions of dip angle and strike of the plane of stratifica-
tion in uniform TTI media.

INTRODUCTION

The inversion of electrical resistivity data to reconstruct the con-
uctivity distribution of the subsurface requires knowledge of the
réchet derivatives, which form the elements of the Jacobian matrix
f the objective function �Menke, 1989; Lesur et al., 1999�. These
erivatives provide the perturbation in the field quantity �i.e., elec-
ric potential or apparent resistivity� for a given perturbation in a me-
ium’s properties �i.e., conductivity�. They vary spatially through-
ut a medium and must be computed at each subsurface point for
ach electrode configuration. The Fréchet derivatives depend upon
he conductivity and the survey geometry �i.e., electrode positions�.
hey may be viewed as sensitivity functions of the data, indicating
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ensitivity variations with various surveying configurations. Thus,
hey are extremely important in optimizing experiment design and
nderstanding resolution �Stummer et al., 2004; Maurer and Friedel,
006�.

There are various ways to compute the Fréchet derivatives in re-
istivity imaging. McGillivray and Oldenburg �1990� make a com-
arative theoretical study of several methods. Park and Van �1991�
erive an implicit expression for the Fréchet derivative in the 3D
roblem. Smith and Vozoff �1984� and Sasaki �1994� calculate the
réchet derivative by solving the differential equations of the finite-
ifference or finite-element system. Loke and Barker �1995, 1996�
ompute the Fréchet derivatives with a homogeneous half-space
tarting model and Broyden’s �1965� updating procedure. Spitzer
1998� describes four methods and presents plots of the sensitivity
atterns for homogeneous and simple inhomogeneous models, us-
ng common surface and crosshole electrode configurations �pole-
ole, pole-dipole, etc.�.

Zhou and Greenhalgh �1999� show that the most direct and effec-
ive way to compute the Fréchet derivatives is in terms of the Green’s
unctions. They develop explicit expressions and a numerical calcu-
ation scheme for the Fréchet and second derivatives for a heteroge-
eous, isotropic earth using a finite-element approach. Their 2.5D
nd 3D formulations are for the electric potential and apparent resis-
ivity using any electrode array. Only recently have accurate and ef-
cient computational schemes been developed for calculating the
reen’s functions in an anisotropic, inhomogeneous earth �Li and
pitzer, 2005; Zhou et al., 2009�.
In this paper, we extend the earlier analysis to the case of a general

nisotropic, inhomogeneous medium. To the best of our knowledge,
uch expressions have not been given before. Anisotropy is becom-
ng increasingly important in resistivity imaging �Pain et al., 2003;
erwanger et al., 2004�, especially in areas of prominent layering,

tratification, fracturing, cleavage, or other rock foliation. Anisotro-
y can be on a macroscopic or microscopic scale �Bhattacharya and

ptember 2008; published online 10April 2009.
ürich, Institute of Geophysics, Zürich, Switzerland. E-mail: stewart.green-
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atra, 1968; Keller and Frishknecht, 1970�. Failure to incorporate
nisotropy, where it exists, into modeling and inversion can lead to
arge errors in resistivity interpretation �Keller and Frischknecht,
970; Asten, 1974�.

ELECTRIC POTENTIAL AND THE
CONDUCTIVITY TENSOR

The governing equation for the electric potential U�r� from a
oint source in 3D anisotropic, inhomogeneous media may be writ-
en as

D���U � �I� �r � rs� , rs � �, �1�

here the vector � represents the model parameters consisting of the
arious components of the conductivity tensor at each spatial point
nd I is the strength of the point current source located at position
ector r�rs. The differential operator D��� acting on the potential
s defined by

D���U �
�

�xi
�� ij

�U

�xj
� . �2�

n vector/matrix form, this is written as

� · �� � U� � � I� �r � rs� , �3�

here a matrix multiplication is involved inside the divergence op-
rator between the conductivity matrix � and the electric field vector
��� U. In fact, equation 3 is the equation of continuity for cur-

ent density, � · J����� /� t���I.
For a general anisotropic medium, there are up to six independent

omponents of the symmetric electric conductivity tensor �Onsager,
931�. Writing it out as a 3 � 3 symmetric matrix in the geographic
ecording frame �x , y , z�, we have

� � � ij � �� xx � xy � xz

� xy � yy � yz

� xz � yz � zz
� . �4�

By means of an eigendecomposition, this matrix can be diagonal-
zed to yield the principal values or eigenvalues �� 1 , � 2 , � 3�

�� x�x� , � y�y� , � z�z��, which denote values of conductivity along
he axes of the rotated coordinate frame �x� , y� , z��:

�̂ � �� 1 0 0

0 � 2 0

0 0 � 3
� � �� x�x� 0 0

0 � y�y� 0

0 0 � z�z�
� . �5�

These axes �or eigenvectors� are the three axes of the conductivity
llipsoid and represent the natural rock frame referred to above. The
emiaxis lengths are equal to the inverse square roots of the principal
onductivities. In these principal directions, the vectors E and J are
arallel, but for all other directions, this is not true. So for an aniso-
ropic medium, the current direction is not perpendicular to the equi-
otential contours.

Let the unit �eigen� vectors be ex� , ey� , ez�. Defining the rotation
atrix as
Downloaded 02 Sep 2010 to 192.43.227.18. Redistribution subject to 
R � �ex�

ey�

ez�
� , �6�

e can compute the conductivity matrix in the geographic frame as
he product of three matrices:

� � RT�̂R . �7�

his takes us from the natural rock frame to the recording frame.
All eigenvectors are orthogonal; so in addition to the three eigen-

alues, there are just three angles that define the tensor and constitute
n alternative set of six parameters to the six independent Cartesian
omponents given by equation 4. Pain et al. �2003� work with the
ulerian angles � , � , � , which permit a rotation around the axes to
lign the natural frame with the geographic recording frame �see
oldstein �1959, p. 107–109� for a clear picture and explanation of

he rotations and transformation matrices�. The first rotation � is
bout the vertical �z-� axis to align the new x-axis �called 	 �� with the
eologic strike. The second rotation by an amount � is about the 	 �
xis to correspond with the dip and brings the original z-axis into
ew position z�. The final rotation is about the z�-axis by the slant an-
le � to bring the new x- and y-axes �call them x� and y�� into align-
ent with the principal directions in the plane perpendicular to the

ymmetry axis z�.
Let the unit vector of this symmetry axis be ez�� ẑ� direction

with the subscript 3 referring to the above principal values; see
quation 5�. It is defined by the spherical coordinate orientation an-
les ��0�90��, 
 0���, as shown in Figure 1a. This direction
longest axis of the conductivity ellipsoid� corresponds to the direc-
ion of minimum conductivity � 3 �or maximum resistivity �3

1/� 3�. The other two unit vectors, ex� and ey�, for which we denote
he principal conductivities by subscripts 1 and 2 �� 1 , � 2�, lie in a
lane perpendicular to ẑ� �denoted by subscript 3�. The ẑ�-axis
ould, for example, be the normal to a prominent bedding or frac-

ure plane having strike � ��0�90 and dip measured from the
orizontal of � �
 0 �see Figure 1b�. We have from simple trigo-
ometry �see Figure 1a�

ez� � �sin 
 0 cos �0 , sin 
 0 sin �0 , cos 
 0� . �8�

If we now assume that eigenvector ex� has the same azimuth as the
rincipal axis ez�, then we can determine it by adding 90° to 
 0. The
hird eigenvector, ey�, is given by the cross product ez� � ex�. For the

ore general situation referred to above, we need a third Eulerian
ngle � �or, say, the azimuth swing 
 of ex�� to fix all directions in
pace �see Figure 1a�.

Returning to the situation in which ez� and ex� share the same azi-
uth �
 0�
�, we have

ex� � �cos 
 0 cos �0 , cos 
 0 sin �0 , �sin 
 0� ,

ey� � ��sin �0 , cos �0 , 0� . �9�

his reduces the number of independent components of the 3 � 3
onductivity matrix from six to five �three eigenvalues or principal
alues and just two polar angles�. The justification for reducing the
umber of parameters by one is that it is very difficult in practice to
pecify the directions of the two principal axes in the plane perpen-
icular to z�. The dominant plane itself, which may be a fracture
lane or bedding plane, could have an overprinted lineation �e.g.,
SEG license or copyright; see Terms of Use at http://segdl.org/



c
u
e
i
e
a
t
t

t
s
8

p
p
t
t
I
e

t
r
d
w
i
a
s
a
c

i
a

H
t
t
o

w
s
�

f
2

F
n
d
s
�
e
p
p
S
h
l
t
m
v

Anisotropic resistivity sensitivities F33

Chapter 3 53
leating or cleavage� or arbitrary orientation producing the three nat-
ral rock axes. But nearly all of the treatments in the literature on
lectrical anisotropy take the plane orthogonal to z� to be a plane of
sotropy �i.e., the tilted transversely isotropic or TTI situation� with
qual eigenvalues �principal conductivities� in this plane. The third
ngle is therefore often unimportant. Even in the most general aniso-
ropic analysis �e.g., Pain et al., 2003�, the treatment quickly reverts
o the transversely isotropic �TI� case.

Preserving for the moment all three distinct eigenvalues but just
wo angles for the dominant axis of symmetry, the conductivity ten-
or � in the 3D case now has components �by substituting equations
and 9 into equation 7�:

x

z z´

y

3
= 1/�

3
( =

z’z’
)

x´y´
�

1
= 1/�

1
( = �

x’x’
)

�
2

= 1/�
2

( = �
y’y’

)

�

Principal axis

0�

ϕϕ00�0

z´

�t

x

z

y

Stra
tifi

catio
n plane

Strike � = �0 +– 90°

�0
Principal axis

0Dip � �=
�l

�l

a)

b)

� �

igure 1. �a� Geographic recording frame �x , y , z� and the rotated or
atural rock frame �x� , y� , z�� that defines the principal conductivity
irections. The symmetry axis is in the z�-direction �or � 3-direction�,
pecified by polar angles �0 , 
 0. This is the minimum conductivity
maximum resistivity� direction. If the azimuth of the x�-axis 
 is
qual to that of the z� axis �0, then the number of independent com-
onents of the conductivity tensor reduces from six to five �three
rincipal values �� 1 , � 2 , � 3� and two polar angles ��0 , 
 0��. �b�
pecial case of TTI media showing plane of stratification �foliation�
aving strike � ��0�90° and dip from horizontal � �
 0. The
ongitudinal conductivity in the plane of stratification is � l, and the
ransverse conductivity in the direction of the symmetry axis �nor-

al to the plane of stratification� is � t. The longitudinal and trans-
erse resistivities are � �1/� and � �1/� .
l l t t

Downloaded 02 Sep 2010 to 192.43.227.18. Redistribution subject to 
�
� xx

� xy

� xz

� yy

� yz

� zz

�
��

� 1 cos2 
 0 cos2 �0 � � 2 sin2 �0 � � 3 sin2 
 0 cos2 �0

0.5�� 1 cos2 
 0 sin 2�0 � � 2 sin 2�0 � � 3 sin2 
 0 sin 2�0�

0.5��� 1 � � 3�cos �0 sin 2
 0

� 1 cos2 
 0 sin2 �0 � � 2 cos2 �0 � � 3 sin2 
 0 sin2 �0

0.5��� 1 � � 3�sin �0 sin 2
 0

� 1 sin2 
 0 � � 3 cos2 
 0

� .

�10�

The term 2.5D modeling refers to a situation in which medium
roperties vary in only two dimensions �x-z� but the source is still a
oint source. The field �electric potential� therefore depends on all
hree coordinates �x , y , z�. This differs from 2D modeling, in which
he model and potential are only functions of the coordinates x and z.
n 2D modeling, it is implicit that the source be a line source, extend-
d to infinity in the strike �y-� direction.

It is common in 2.5D isotropic modeling to work with Fourier-
ransformed potentials by transforming with respect to the y-di-
ection, the direction in which the model does not change. This is
one for a variety of wavenumber values, and for each wavenumber
e solve a 2D problem. The spatial-domain solution is obtained by

nverse transforming with respect to wavenumber. The potential is
n even function with respect to the y-axis; therefore, a Fourier co-
ine transform and inverse Fourier cosine transform are used. In the
nisotropic situation, the potential is no longer symmetric about the
entral x-z-plane �along the y-axis� when the azimuth of the axis of

symmetry is not 0°. In such situations, the advantages of solving a
2.5D as opposed to a full 3D problem are lost. Furthermore, unless
the y-axis coincides with the natural rock axis y�, the process of tak-
ng the Fourier transform of the original Poisson equation is messy
nd introduces multiple cross terms in the dyadic product:

�2D · ���2DŨ� � ky
2� yyŨ � iky	Ũ� �� xy

�x
�

�� yz

� z
�

� 2� xy
� Ũ

�x
� 2� yz

� Ũ

� z

� �

I

2
· � �r � rs� .

�11a�

ere, the tilde over U implies the Fourier-transformed potential, ky is
he wavenumber �or transform variable�, ��x , z� is the conductivity
ensor, and the gradient operator with the superscript 2D implies
nly the x- and z-components are to be taken.

Therefore, we only advocate 2.5D modeling in the special case
hen one of the principal axes of the conductivity ellipsoid is in the

trike or y�y� direction. Under these circumstances, � xy �� yz

0 in equation 11a, so performing a spatial cosine Fourier trans-
orm of equation 1 with respect to the y-coordinate yields the simple
.5D Helmholtz equation:
SEG license or copyright; see Terms of Use at http://segdl.org/
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· �� � Ũ� � � 2ky
2Ũ � �

I

2
� �x � xs�� �z � zs� . �11b�

e set � 2�� yy as the principal conductivity �or eigenvalue of the
atrix� corresponding to a symmetry axis in the y-direction. The

nly other nonzero values of the conductivity tensor � �matrix� that
ppear on the left side of equation 11a and 11b and that multiply with
Ũ are

� xx � � 1 cos2 
 0 � � 3 sin2 
 0,

� zz � � 1 sin2 
 0 � � 3 cos2 
 0,

� xz � � zx � �� 3 � � 1�sin 
 0 cos 
 0. �12�

hese values are obtained by letting �0�0 in equation 10.
The remaining two eigenvalues � 1 and � 3 are the principal con-

uctivity values corresponding to the two principal directions in the
–z-plane, and 
 0 is the angle that the principal direction �eigenvec-
or ez�� makes with the z-axis. If � 1 corresponds to the longitudinal
onductivity � l and � 3 corresponds to the transverse conductivity
t, then � 2�� � 1� will also be a longitudinal conductivity and the

oefficient of anisotropy defined by ���� l/� t � 1.
For the 3D TTI case shown in Figure 1b, a model of considerable

eologic importance, just four parameters describe the anisotropy:
he longitudinal and transverse resistivities �l and �t, respectively,
nd the strike � and dip � of the plane of stratification/foliation. For
ny direction within this plane, the conductivity is constant �� �� l

1/�l�.
The trace of the original matrix �equation 3� is equal to the sum of

he eigenvalues in the 3D and 2.5D cases, using the entries of equa-
ions 10 and 12:

� xx � � yy � � zz � � 1 � � 2 � � 3. �13�

PERTURBATION ANALYSIS

Instead of potential U, we introduce the Green’s function G
U/I. Equations 1, 11a, and 11b take the form

D���Gs � �
1

c
� �r � rs� , �14�

here Gs� G̃s�r� or Gs�Gs�r� for the 2.5D or 3D case, respective-
y, for which c�2 or c�1, respectively. The tilde above G denotes
patial Fourier transform with respect to the strike or y-direction.
he differential operator is defined by

D���Gs �	� · �� � G̃s� � ky
2� yyG̃s, r � ��x , z�;

� · �� � Gs� , r � ��x , y , z� .



�15�

rom this definition, one can easily show the operator D��� is linear:

D��A � ��B� � D��A� � �D��B� ∀ � � R . �16�

t is also self-adjoint for the integration �Carey and Oden, 1983;
hou and Greenhalgh, 1999�:
Downloaded 02 Sep 2010 to 192.43.227.18. Redistribution subject to 
�
�

W�r�D���Gs�r�d� � �
�

Gs�r�D���W�r�d� �17�

∀W�r� � C1��� .

or any small perturbation � � in the medium properties, we have

D�� � � ���Gs � � Gs� � �
1

c
� �r � rs� . �18�

pplying the linear property and equation 14, we obtain

D���� Gs � �D�� ��Gs � D�� ��� Gs. �19�

To solve equation 19, we use the conjugate Green’s function by
lacing an adjoint source at the receiver �potential electrode� posi-
ion, defined by

D���Gp � �
1

c
� �r � rp� , r , rp � � . �20�

ultiplying � Gs with equation 20 and calculating the integration
ver the domain in terms of the self-adjoint property �equation 17�,
e have

Gs�rp� � �c�
�

Gp�r�D���� Gs�r�d�

� c�
�

Gp�r�D�� ��Gs�r�d� � o�
� �
2� . �21�

ubstituting equation 15 for 21, integrating by parts, and ignoring
he higher-order terms, we obtain the linear relationship between the
hange �perturbation� of the Green’s function and the perturbation in
he medium properties � � for the 2.5D case:

� G̃s�rp� � �2�
�

�� � � G̃s�r� · � G̃p�r�

� ky
2� � yyG̃s�r�G̃p�r��d�

� �2�
�

�� � xx
� G̃s

�x

� G̃p

�x
� � � xz� � G̃s

� z

� G̃p

�x

�
� G̃s

�x

� G̃p

� z
� � � � zz

� G̃s

� z

� G̃p

� z

� ky
2� � yyG̃s�r�G̃p�r��d� . �22�

or the 3D situation, we have
SEG license or copyright; see Terms of Use at http://segdl.org/
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� Gs�rp� � ��
�

�� � � Gs�r� · � Gp�r��d�

� ��
�

�� � xx
�Gs

�x

�Gp

�x
� � � xy� �Gs

� y

�Gp

�x

�
�Gs

�x

�Gp

� y
� � � � xz� �Gs

� z

�Gp

�x
�

�Gs

�x

�Gp

� z
�

� � � yy
�Gs

� y

�Gp

� y
� � � yz� �Gs

� z

�Gp

� y

�
�Gs

� y

�Gp

� z
� � � � zz

�Gs

� z

�Gp

� z
�d� . �23�

ere, we assume that at the boundary of � no perturbation occurs in
he conductivity �� ��0�.

FRÉCHET DERIVATIVES

According to equations 22 and 23 and by applying a model dis-
retization scheme — either constant point � ��r��� �k� �r�rk�,
� � k, or constant block � ��r��� �k, r � � k, where � k are small
ubdomains composing � — we obtain the following results for the
réchet derivatives. For the constant-point approximation 2.5D
ase,

�Gs�rp�

� �� ���k

� ��2Fc
�1�ky

2G̃s�rk�G̃p�rk�� , �� � � � y�

c��Fc
�1� � G̃s

��

� G̃p

��
�

� G̃p

��

� G̃s

��
�

rk

, �� , � � x , z� � .

�24�

or the constant-point approximation 3D case,

�Gs�rp�
� �� ���k

� �c��� �Gs

��

�Gp

��
�

�Gp

��

�Gs

��
�

rk

, �25�

�� , � � x , y , z� .

or the constant-block approximation 2.5D case,

�Gs�rp�

� �� ���k

� ��2wlFc
�1�ky

2�G̃sG̃p�rl
� , �� � � � y , rl � � k�

c��wlFc
�1� � G̃s

��

� G̃p

��
�

� G̃p

��

� G̃s

��
�

rl

, �� , � � x , z ; rl � � k� � .

�26�

or the constant-block approximation 3D case,

�Gs�rp�
� �� ���k

� �c��wl� �Gs

��

�Gp

��
�

�Gp

��

�Gs

��
�

rl

, �27�
Downloaded 02 Sep 2010 to 192.43.227.18. Redistribution subject to 
�� , � � x , y , z , rl � � k� ,

here c�� �1 if � �� and c�� �2 if � � � . The symbol Fc
�1 de-

otes inverse Fourier cosine transformation with respect to wave-
umber ky. The quantity wl is the product of the Gaussian weights in
he various coordinate directions involved in a Gaussian quadrature
pproach to performing the volume integration.

The derivative formulas 24–27 may be used directly for aniso-
ropic resistivity inversion to update the parameter estimates, once
he source and adjoint Green’s functions have been calculated for
ach subsurface point. This is illustrated in Figure 2. For each sub-
urface point k, we can calculate the sensitivities for a given elec-
rode configuration �source s and receiver p� in terms of the two
reen’s functions, Gs�rkS� and Gp�rkP�. For the common four-elec-

rode systems, the sensitivities can be computed from the pole-pole
esponses given above by simple superposition �algebraic addition�.

NUMERICAL METHOD

Applying a numerical method such as the finite-element method
Li and Spitzer, 2005� or the Gaussian quadrature grid method �Zhou
t al., 2009� to the governing equation, one has the following linear
quation system:

M���Gs � bs, �28�

here Gs� �Gsi , i�1,2 , . . . , N� is the vector whose components
re the values of the Green’s function at all nodes, bs� �� is , i

1,2 , . . . , N� is the source vector whose components are zero ex-
ept for the one �� ss�1� at the node coinciding with the source loca-
ion, and M��� is an N � N symmetric matrix, which is calculated
y

Mij���

��2�
�k

�� � li�r� · � lj�r� � ky
2� yyli�r�lj�r��d� , r � � k�x , z�

�
�k

�� � li�r� · � lj�r��d� , r � � k�x , y , z� �
�29�

n terms of the Variational Principle and subdomain or element inte-

s p

r r

Current source
Potential electrode
(adjoint source)

Gaussian point �ij

Green’s
functions

O
rigin

( )sG r ( )pG r

kr
ks k sr r r= −

kp k p
r r r= −

pr

sr

k

s : =

rp : =
r

igure 2. Schematic of Frechet derivatives �or sensitivities� at sub-
urface point k for a true current source at point s and an adjoint
ource at potential electrode position p. The Green’s functions from
oth sources and/or their gradients are required in the formulation.
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ration. Here, li�r� are the Lagrange interpolants or shape functions.
Differentiating equation 28 with respect to �� ���k, we have

M���
�Gs

� �� ���k
� �

�M���
� �� ���k

Gs. �30�

To solve equation 30, we apply equation 28 to multiple source
ectors I� �bs1

, bs2
, . . . , bsN

� and the corresponding Green’s func-
ion matrix GN�N� �Gs1

, Gs2
, . . . , GsN

�. We have the identity

M���GN�N � I . �31�

ultiplying the vector bp
TGN�N

T �Gp
T with equation 29 and applying

he symmetry property of M��� and equation 31, we obtain the de-
ivatives

�Gs�rp�
� �� ���k

� �Gp
T

�M���
��� ���k

Gs. �32�

ubstituting equation 29 for 32 and noting that most components of
he matrix �M���/� �� ���k are zero except for the kth subdomain � k

hat has conductivity tensor �k, equation 32 becomes, for the 2.5D
nd 3D cases, respectively,

�Gs�rp�
� �� ���k

� �Fc
�1	2�

�k

� ��k

� �� ���k
� ��

i

li�r�G̃pi��
· � ��

j

lj�r�G̃sj� � ky
2 �� yy

� �� ���k
��

i

li�r�G̃pi�
���

j

lj�r�G̃sj�d�

� �Fc

�1	2�
�k

� ��k

� �� ���k
� G̃p�r� · � G̃s

� ky
2 �� yy

� �� ���k
G̃sG̃p�d�
 , �33�

�Gs�rp�
� �� ���k

� ��
�k

� ��k

� �� ���k
� ��

i

li�r�Gpi�
· � ��

j

lj�r�Gsj��d�

� ��
�k

� ��k

� �� ���k
� G̃p�r� · � G̃s�d� . �34�

Applying the constant-point � ��r��� �k� �r�rk�, r � � k, or
onstant-block � ��r��� �k, r � � k, model parameterization
chemes to equations 33 and 34, we find they give the same results as
quations 24–27. This means the perturbation method and the nu-
erical method are equivalent, although the former is derived by ap-

lying the self-adjoint differential operator to the perturbation analy-
is and the latter is based on the linear equation of the model discreti-
ation. Both apply for DC resistivity anisotropic inversion.
Downloaded 02 Sep 2010 to 192.43.227.18. Redistribution subject to 
SENSITIVITIES IN TERMS OF PRINCIPAL
CONDUCTIVITY VALUES AND DIRECTIONS

Instead of working with the components of the conductivity ten-
or in the geographic frame, we now consider the derivatives with re-
pect to the principal values �and orientation angles of the symmetry
xis� in the natural rock frame, which are the physically meaning-
ul quantities. Let the model parameters be represented by m�

�� 1 , � 2 , � 3 , 
 0 , �0�. Accordingly, the perturbation of the con-
uctivity tensor can be expressed by � �� ���/�m��� m�. Equa-
ions 22 and 23 become

� G̃s�rp� � � 2�
�

	� ��

�m�

� G̃s�r�� · � G̃p�r�

� ky
2�� yy

�m�

G̃s�r�G̃p�r�
� m�d� �35�

nd

� Gs�rp� � � �
�

	� ��

�m�

� Gs�r�� · � Gp�r�
� m�d� .

�36�

pplying a discretization scheme — either constant point � m��r�
� m�� �r�rk�, r � � k, or constant block � m��r��� m�, r � � k,

here � k are small subdomains composing � — we have for the
.5D constant-point approximation case

�Gs�rp�
�m�

� �Fc
�1	� ��

�m�

� G̃s�r�� · � G̃p�r�

� ky
2�� yy

�m�

G̃s�r�G̃p�r�
 , �37�

m� � �� x�x� , � y�y� , � z�z� , 
 0� .

or the 3D constant-point approximation case,

�Gs�rp�
�m�

� �� ��

�m�

� Gs�r�� · � � Gp�r�� , �38�

m� � �� x�x� , � y�y� , � z�z� , 
 0� .

or the 2.5D constant-block approximation case,

�Gs�rp�
�m�

� �w�Fc
�1	� ��

�m�

� G̃s�r�� · � G̃p�r�

� ky
2�� yy

�m�

G̃s�r�G̃p�r�

�

, �39�

� � �� x�x� , � y�y� , � z�z� , 
 0�.For the 3D constant-block approx-
mation case,

�Gs�rp�
�m�

� �w�	� ��

�m�

� Gs�r�� · � Gp�r�

�

, �40�
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m� � �� x�x� , � y�y� , � z�z� , 
 0 , �0� .

ere, ��/�m� can be calculated by equation 10 or 12, and w� re the
aussian weights. The Cartesian tensor form of equation 38, for ex-

mple, is

�Gs�rp�
� �m��

� �	 �� ij

�m�

�Gs

�xj

�Gp

�xi

 , �41�

here summation is implied in equation 41 through the repetition of
ubscripts i , j�x , y , z and xi , xj�x , y , z. Expanding out in terms
f the various components, the Fréchet derivatives in terms of the
rincipal values can be written as follows for the 3D case:

�Gs�rp�
�m�

� �	 �� xx

�m�

�Gs

�x

�Gp

�x
�

�� yy

�m�

�Gs

� y

�Gp

� y

�
�� zz

�m�

�Gs

� z

�Gp

� z
�

�� xy

�m�
� �Gs

�x

�Gp

� y

�
�Gs

� y

�Gp

�x
� �

�� xz

�m�
� �Gs

�x

�Gp

� z
�

�Gs

� z

�Gp

�x
�

�
�� yz

�m�
� �Gs

� y

�Gp

� z
�

�Gs

� z

�Gp

� y
�
 , �42�

here m� assumes any of the values

� x�x�
��� 1� ,� y�y���� 2� , � z�z���� 3� , 
 0 , �0.

The sensitivity functions can therefore be computed from knowl-
dge of the Green’s functions for the true source Gs �current elec-
rode s� and the adjoint source Gp �potential electrode p�, which are
btained as part of the forward modeling �see Zhou et al., 2009� and
he partial derivatives of the conductivity tensor with respect to each
f the model parameters. The latter can be obtained by differentiat-
ng each of the elements of equation 10; they are simple trigonomet-
ic functions.

In the 2.5D case, � xy �� yz�0 and all derivatives of these quanti-
ies go to zero.Also, � yy �� 2; so �� yy/�� 2�1 and all other deriva-
ives of � yy are zero. The remaining nonzero derivatives to consider
re

�� xx

�� 1
� cos2 
 0 ,

�� xx

�� 3
� sin2 
 0,

�� xx

�
 0
� �� 3 � � 1�sin 2
 0,

�� zz

�� 1
� sin2 
 0 ,

�� zz

�� 3
� cos2 
 0,

�� zz

�
 0
� �� 1 � � 3�sin 2
 0,

�� xz

�� 1
� �sin 
 0 cos 
 0 ,

�� xz

�� 3
� sin 
 0 cos 
 0,

�� xz

�
 0
� 2�� 3 � � 1�cos 2
 0. �43�

n the case of an isotropic medium, we have
Downloaded 02 Sep 2010 to 192.43.227.18. Redistribution subject to 
� xx � � yy � � zz � � and � xy � � xz � � yz � 0.

�44�

All of the cross terms disappear in equation 42, the derivatives
� ii/�m� are all equal to one, and equation 25 reduces to the dot
roduct of the gradients of the two Green’s functions:

�G

��
� � � Gs · � Gp. �45�

his is the same result as that obtained by Zhou and Greenhalgh
1999, p. 449� using an isotropic formulation.

UNIFORM ANISOTROPIC EARTH

The numerical calculations for the Green’s functions based on
quation 28 and the subsequent sensitivity analysis �equations
4–27� are entirely general for the most complex heterogeneous and
nisotropic medium and also apply for buried electrodes �e.g., cross-
ole surveys�. Nevertheless, it is instructive to examine the results
or the special case of a homogeneous anisotropic earth with a point
urrent source rs on the surface and at the origin. Such a model could
e used for applying a boundary value treatment �see Zhou et al.,
009� or for validating numerical solutions.

The Green’s function at some interior point r� �x , y , z� can be
alculated analytically using the formula �Li and Uren, 1998�

s �
C

�rT�r

�
C

��xxx
2 � �yyy

2 � �zzz
2 � 2�xyxy � 2�xzxz � 2�yzyz

,

�46�
here C is a constant� �det �ij�1/2/2� � ��1�2�3�1/2/2� and
�� �� ij��1� is the resistivity tensor, the inverse matrix of the con-
uctivity matrix �or tensor�. The principal resistivities �1 , �2 , �3 are
he reciprocals of the principal conductivities � 1 , � 2 , � 3. The bur-
ed source problem is more difficult to treat and was first considered
y Asten �1974�. The treatment includes considering an image
ource displaced laterally from boundary normal.An in-depth analy-
is is given by Li and Uren �1998�.

Equation 46 can be differentiated with respect to �x , y , z� to ob-
ain analytic expressions for the Fréchet derivatives �G/��ij �see
quation 25�. In the case of a TTI medium having longitudinal resis-
ivity �l�� �1��2�, transverse resistivity �t�� �3�, and angles of
he symmetry axis 
 0 , �0 �i.e., the transverse resistivity direction�,
he components of the resistivity tensor reduce to �see equation 10,
ut interchanging conductivity for resistivity and setting � 1�� 2�,

�
�xx

�xy

�xz

�yy

�yz

�zz

���
�l cos2 
 0 cos2 �0 � �l sin2 �0 � �t sin2 
 0 cos2 �0

0.5��t � �l�sin2 
 0 sin 2�0

0.5��t � �l�cos �0 sin 2
 0

��t � �l�sin2 
 0 sin2 �0 � �l

0.5��t � �l�sin �0 sin 2
 0

�l sin2 
 0 � �t cos2 
 0

� .

�47�

sing these values for the resistivity tensor components in equation
6 and also using equation 38, one can compute the Fréchet deriva-
SEG license or copyright; see Terms of Use at http://segdl.org/



t
e
t
t

t
3
p
n
t
c

w

a

t
t

t
o

T
t
t

H

t
2
s
t
e
u
e
j
b
o
t
o
2
t
a

F
c
t
a
s
s
o

F38 Greenhalgh et al.

Chapter 3 58
ives in terms of the four principal values: �l , �t , 
 0 , �0. Note, how-
ver, that �G/��i���1/�i

2���G/�� i�, with a reversal of sign be-
ween the sensitivities expressed in terms of conductivity and resis-
ivity.

This treatment is for a 3D �uniform� anisotropic model because
he three principal axes of the tensor can take on any orientation in
D space. For the uniform medium 2.5D problem, there is a still
oint source of current, but one principal axis of the resistivity tensor
ow points in the y-direction; hence, the other two axes are confined
o the x-z-plane. It follows that �xy ��yz�0, �yy ��2, all tensor
omponents are spatially invariant, and equation 46 becomes

2 4 6 8 10 12
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−1
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1
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x (distance)
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ss pp

igure 3. Fréchet derivative dG/d� for an isotropic model having a
onductivity of 0.1 S/m. The current source is at �5,0,0� and the po-
ential electrode is at �10,0,0�. �a� The cross-sectional view at y�0
nd two horizontal depth slices at �b� z�0 and �c� z�0.5 depicting
ensitivity variations in plan view are shown. For the z�0.5 depth
lice, the electrode positions �white diamonds� have been projected
nto this plane.
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Gs �

C
��yy

��xxx
2 � 2�xzxz � �zzz

2

� y2

�yy

�
C�

�a � y2
,

�48�

here

C� �
C

��yy

�49�

nd

a �
1

�yy
��xxx

2 � 2�xzxz � �zzz
2�

�
1

�yy
�x , z���xx �xz

�xz �zz
��x

z
� . �50�

Because of the positive definite nature of the resistivity matrix �,
he quantity a � 0 must be positive. According to the Fourier cosine
ransform

�
0

�

cos�kyy�
�a � y2

dy � K0�ky
�a� , �51�

he Fourier-transformed Green’s function can be calculated in terms
f the modified Bessel function of the first kind as follows:

G̃s � C�K0�ky
�a� . �52�

his equation can be differentiated with respect to �x , z� to obtain
he required gradient term in the expression for the Fréchet deriva-
ives �equation 37�:

�G̃s � ��K1�ky
�a�ky

2�aK0�ky
�a�

� a�G̃s. �53�

ere, �a can be calculated from equation 50.

EXAMPLES

The main purpose of this paper is to develop a theoretical formula-
ion for numerical calculation of the Fréchet derivatives in 3D or
.5D anisotropic resistivity inversion. In this section, we illustrate
ome of the sensitivity patterns and how they depend on the aniso-
ropic parameters. This is done for a homogeneous medium to permit
asy comparison with the isotropic case and because not even the
niform medium anisotropic sensitivity functions have been consid-
red in the past. Heterogeneous, anisotropic models will be the sub-
ect of a separate paper. The homogeneous anisotropic medium can
e dealt with analytically, so there is no need to use a finite-element
r similar numerical approach. Should heterogeneous models need
o be considered, then one must use equation 28 as a starting point for
btaining the Green’s functions. In a companion paper �Wiese et al.,
009�, we give a more exhaustive treatment of the sensitivity pat-
erns for various arrays and consider a wide range of parameter vari-
tions.
SEG license or copyright; see Terms of Use at http://segdl.org/
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We first consider, for reference purposes, the simple case of a ho-
ogeneous, isotropic half-space. The current electrode is located at

5,0,0� and the potential electrode is located at �10,0,0�. The ground
onductivity is 0.1 S/m �resistivity is 10 �-m�. Figure 3 shows the
réchet derivatives at two depth slices, z�0 and z�0.5 units, and

n cross section for a profile through both electrodes. Note the sym-
etry of the patterns and the decrease of sensitivity with depth. The

ensitivities are largest in magnitude in the vicinity of the electrodes.
he derivatives actually change sign around the electrodes, being
ositive between the electrodes and negative on either side. An in-
rease in conductivity in a region of positive sensitivity results in a
reater potential being measured, whereas a decrease in conductivi-
y in a positive sensitivity region decreases the measured potential
alue. The opposite applies for the negative sensitivity regions.

Next we consider a homogeneous, anisotropic model having a tilt-
d axis of symmetry. The longitudinal conductivity �0.1 S/m� is four
imes larger than the transverse conductivity �0.025 S/m�, yielding a
oefficient of anisotropy � of two. Again, the current electrode is at
5,0,0� and the potential electrode is at �10,0,0�. In
he first set of plots, the strike of the plane of strat-
fication is held fixed at 90° ��0�0°�. The dip
ngle 
 0 is allowed to vary from 0° �horizontal
eds� to 90° �vertical plane of stratification�.

Figure 4 shows a series of cross sections in the
-z-plane �y�0� for the longitudinal conductivi-
y Frechet derivative dG/d� l. Each plot corre-
ponds to a different dip: 0°, 15°, 45°, 75°, and
0°. The sensitivity pattern for 
 0�0° is very
imilar to the isotropic equivalent; the contours
re concentrated toward the surface and elongat-
d along it. This is confirmed in the plan view
Figure 5�, which shows the sensitivity values at
he surface as a function of position. The positive
ontours are stretched along the line intersecting
he electrodes �x-axis�.

One can also see in Figure 4 that the negative
ensitivity contour sections are extended greatly
long the strike direction �y-axis� and show some
urvature toward the opposite electrode, as a de-
arture from the isotropic pattern. The sensitivity
atterns in the x-z-plane �Figure 4� for all dips
ther than 0° are distinctly asymmetrical, with the
ontours elongated in the plane of stratification.
ensitivity is thus smallest in magnitude along

ines orthogonal to the stratification. All plots ex-
ibit shifts of negative and positive contours of
ensitivity such that they follow the direction of
ighest conductivity �orthogonal to ẑ��. The sur-
ace display �Figure 5� shows that the sensitivity
ecreases markedly with increasing 
 0. For all
ngles, the surface sensitivity pattern is symmet-
ical about the line intersecting the electrodes.
or the vertically dipping beds, the sensitivity
alues are very low in magnitude and entirely
egative.

The corresponding plots for the transverse-re-
istivity Frechet derivatives dG/d� t are given in
igures 6 and 7. For a vertical axis of symmetry

 0�0°�, or the so-called VTI medium� the sen-
itivities are entirely negative, with two regions
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f large negative sensitivity beneath the electrodes and elongated to-
ard each other. The z�0 depth slice �Figure 7� shows no sensitivi-

y at the surface. This is a manifestation of the Paradox of Anisotro-
y, discussed by Keller and Frischknecht �1970�. For dips of 15°,
5°, and 75°, the sensitivity patterns in the x-z-plane are all asym-
etrical �Figure 6�, the contours being elongated in a direction par-

llel to the dip of stratification. The steepness of the pattern increases
ith increasing 
 0. In comparison with the corresponding dG/d� l

atterns �Figure 4�, there is greater sensitivity at depth.Although the
ontours are elongated in a direction parallel to the stratification,
ensitivity is smallest in magnitude along the lines drawn through
eparate electrodes and parallel to the stratification. This is in
arked contrast to dG/d� l, which exhibits greatest sensitivity in this

irection. For the surface �z�0� slices �Figure 7�, the patterns are all
ymmetric about the x-axis and elongated in the strike direction. The
ransverse conductivity sensitivity for a dip of 90° shows a symmet-
ic pattern that resembles the isotropic plot elongated in the vertical
irection �along the plane of stratification�.

3 4 5 6 7 8 9 10 11 12 13

3 4 5 6 7 8 9 10 11 12 13
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ic model having longitudinal conductivity of 0.1 S/m, transverse
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 0 for 0°, 15°, 45°, 75°, and 90°. The pro-
ar to the strike of the plane of stratification. The electrodes are again
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Finally, we show the effect of azimuth of the symmetry axis on the
ensitivity patterns. Figures 8–10 are plots of dG/d� t for the same
nisotropic structure and electrode configuration but this time for a
trike of the symmetry axis of 45° �plane of stratification strike

45°�90°�135°�. From the surface slices �z�0� shown in Fig-
re 9, we can see that the x-axis symmetry is broken as a result of the
edding-plane strike no longer being 90°. If two imaginary lines are
rawn through the electrodes in the strike direction ��0�90°�, the
egions of positive and negative sensitivities do not cross boundaries
efined by these lines and are largest in value orthogonal to the strike
nd close to the electrodes. The cross sections for the x-z-plane �Fig-
re 8� show a progressive tilting of the sensitivity patterns as dip in-
reases. The 
 0�0° plot is entirely negative and symmetrical. All
ther dip angles yield positive and negative sensitivities and are
symmetrical because the cross section is not perpendicular to
trike. Only at a dip of 
 0�90° is the symmetry restored. Interest-
ngly, the sensitivity is actually zero at all points on the surface for a
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ip of 0° �Figure 9�, but for other dips the magnitude of the sensitivi-
y is appreciable and the contours extend to modest depths.

Figure 10 shows the sensitivity variations in plan view at a depth
f z�0.5 units. There is considerable change in the pattern for dips
ver the range 0°–45°, after which the pattern looks very similar.
he contours are elongated in the direction of the strike of the strati-
cation plane �maximum conductivity direction�. The large change
rom null sensitivity in the case of zero dip �Figure 9, surface slice� to
arked sensitivity in the case of zero dip �Figure 10, depth slice
0.5 units� conveys a vital point about survey design:Astrong VTI

nisotropy cannot be characterized unless downhole electrodes are
ncluded in a field survey. More generally, when the observation
lane is perpendicular to the axis of symmetry, the anisotropy cannot
e detected, so full 3D measurements are really required. Further-
ore, the large change in Figure 10 from 0° dip to 15° dip indicates

hat an inversion scheme probably will be unstable unless both
ownhole and surface electrodes are used. In reality, rocks exhibit
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ariable dips for the anisotropic axis, so isolation of an effective dip
ay be difficult.

CONCLUSIONS

We present a general perturbation formulation for computing the
réchet derivatives in 3D and 2.5D resistivity inversion, in which the
odel is heterogeneous and anisotropic. The formulation involves

he Green’s functions for the true current source and the adjoint
ource, which must be computed using a numerical method such as
he finite-element method. The equations also involve the deriva-
ives of the conductivity tensor with respect to the principal conduc-
ivity values and orientation angles of the symmetry axis. We derive
nalytic formulas for computing these derivatives. Examples are
resented, showing the sensitivity patterns in both plan and cross-
ectional view for homogeneous TI models in which the dip and
trike of the symmetry axis are varied. These anisotropic sensitivity
lots show some previously unreported general trends.

For the longitudinal conductivity Fréchet derivative, regions of
ensitivity are located along the lines intersecting the electrodes in
he direction of the stratification plane. Sensitivity decreases with
istance away from this axis �and distance from the electrode�. Per-
endicular to this axis, there is little to no sensitivity. The trend holds
or sensitivities on the surface and at depth, where it is apparent that
he contours are elongated along lines perpendicular to the dip.

For the transverse resistivity Fréchet derivative, there is zero sen-
itivity along the lines intersecting the respective electrodes that run
arallel to the stratification plane. However, the largest sensitivity
egions are centered on a line intersecting the respective electrode
hat runs orthogonal to the stratification. The regions are elongated
long the stratification plane but do not intersect the lines that run
arallel from the electrodes. The examples also show significant dif-
erences in the sensitivities compared to the isotropic pattern. There-
ore, failure to account for anisotropy �where it exists� in an inver-
ion may result in false deductions about the subsurface structure.
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ABSTRACT

Many rocks and layered/fractured sequences have a clearly expressed electrical anisotropy 
although it is rare in practice to incorporate anisotropy into resistivity inversion. In this 
contribution we present a series of 2.5D synthetic inversion experiments for various electrode 
configurations and 2D anisotropic models. We examine and compare the image 
reconstructions obtained using the correct anisotropic inversion code and those obtained using 
the false but widely used isotropic assumption. Superior reconstruction in terms of reduced 
data misfit, true anomaly shape and position, and anisotropic background parameters were 
obtained when the correct anisotropic assumption was employed for medium to high 
coefficients of anisotropy. However, for low coefficient values the isotropic assumption 
produced better quality results. When an erroneous isotropic inversion is performed on 
medium to high level anisotropic data the images are dominated by patterns of banded 
artefacts and high data misfits.Various pole–pole, pole–dipole and dipole–dipole data sets 
were investigated and evaluated for the accuracy of the inversion result, the eigenspectra 
analysis of the pseudo Hessian matrix and the relative resolution plots. Inversion images were 
compared against the true model. We also present a data selection strategy based on high 
sensitivity measurements which drastically reduces the number of data to be inverted but still 
produces comparable results to that of the comprehensive data set. Inversion was carried out 
using transversely isotropic model parameters described in two different co-ordinate frames 
for the conductivity tensor viz. Cartesian versus natural or eigenframe. The Cartesian frame 
provided a more stable inversion product. This can be simply explained from inspection of the 
eigenspectra of the pseudo-Hessian matrix for the two model descriptions.  
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1. INTRODUCTION 

Resistivity tomography is widely used as an effective  underground exploration technique in a 
variety of near-surface applications,  including  mineral search, civil engineering site 
investigations, groundwater hydrology, and contaminant investigations (Butler, 2005; Rubin 
and Hubbard 2005; Reynolds, 2009). Imaging can be conducted either from the surface or 
between boreholes, or a combination approach. Nearly all of the published examples assume 
electrical isotropy of the ground.  This may seem rather surprising given the compelling field 
and laboratory evidence that many rocks have a clearly expressed anisotropy (Maillet, 1947; 
Keller and Frischknecht, 1966; Parkomenko, 1967; Bhattacharya and Patra, 1967). The cause 
of this directional dependence in the resistivity can be microscopic in nature, for instance 
determined by intrinsic material properties such as platy mineral fabric or lineation e.g., clays. 
Anisotropy may also occur on a macroscopic scale whereby a series of layers or bands of 
dissimilar isotropic materials behave as a single, equivalent anisotropic unit. Layering, 
fracturing, jointing or rock cleavage can all produce this type of structural anisotropy. Typical 
values of the coefficient of anisotropy   (square root of the ratio of maximum to minimum 
resistivity - see equation 4) for shale and sandstone interbeds are in the range 1.05 -1.15. Coal 
typically has a value between 1.7 and 2.6 due to cleating, while inter-bedded anhydrite and 
shale have reported values of 4.0 – 7.5. Even alluvium can have anisotropy factors of 1.02-1.1 
(Hill, 1972; Asten, 1974). 

A detailed discussion on how to detect anisotropy from surface DC resistivity measurements 
is beyond the scope of this paper, but may be found in the article by Greenhalgh et al., (2010).
It includes techniques such as azimuthal resistivity surveys (Watson and Barker, 1999; Busby, 
2000), square electrode arrays (Habberjam, 1975; Matias, 2002) and tensor measurements 
(Caldwell and Bibby, 1998; Caldwell and Brown, 2005). The diagnosis is often improved if 
cross-hole resistivity data is available or if electric induction logging can be carried out in 
boreholes (Lu, Alumbaugh and Weiss, 2002). 

There are four principal reasons why anisotropy is seldom incorporated into practical DC 
resistivity investigations: (1) the problem of electrical equivalence, which means that it is 
impossible to distinguish from scalar surface electrical measurements between horizontal 
layering and  macro-anisotropy of the medium, (2) the Paradox of Anisotropy (Keller and 
Frischnecht, 1966), whereby the apparent resistivity is lower in the resistive across-strike 
direction and higher in the conductive in-strike direction, frustrating  attempts by the 
geophysicist to recognise the counter-intuitive effects of anisotropy, (3) the geoelectric field is 
static in nature and limited in resolution capability, especially with increasing distance/depth 
distance from the electrodes, and (4) anisotropy means an increase in the number of 
parameters to be recovered from the data, for what is already an often seriously under-
determined inverse problem.  

By contrast, anisotropy is often incorporated into diffusive (AC) field magnetotelluric 
investigations (Reddy and Rankin, 1971; Loewenthal and Landisman, 1973; Dekker and 
Hastie, 1980; Everett and Constable, 1999; Linde and Pedersen, 2004; Wannamaker, 2005; 
Collins, Everett and Johnston, 2006) and electromagnetic (EM) induction surveying (Le 
Masne and Vasseur, 1981; Yu and Edwards, 1992; Slater, 1998; Yin and Fraser, 2004). A 
similar Paradox of Anisotropy occurs for EM but there are procedures to resolve it (Gianzero, 
1999; Wang and Fang, 2001; Weiss and Newman, 2002; Al-Garnt and Everett, 2003). A list 
of references on numerical modelling procedures for EM in the presence of anisotropy is 
given in the paper by Yin and Fraser, (2004). 

The literature on DC resistivity modelling incorporating anisotropy is comparatively rather 
sparse. The semi-analytic forward solutions for half-spaces, vertical contacts, layered media 
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and prismatic bodies in an anisotropic background are reviewed by Greenhalgh et al., 
(2009a). For general heterogeneous, anisotropic media, three approaches have been used: the 
finite difference method (LaBreque et al. 2004), the finite element method (Pain et al., 2003; 
Li and Spitzer, 2005) and the Gaussian quadrature grid method (Zhou et al., 2009).  
 
There are just a handful of published papers on anisotropic resistivity inversion. LaBreque et 
al., (2004) incorporated anisotropy into the finite difference modelling formulation of Dey 
and Morrison (1979), but assumed that the axes of the conductivity ellipsoid were aligned 
with the co-ordinate directions, greatly simplifying the problem. They use an Occam-style 
inversion scheme with an objective function including regularisation operators to control the 
smoothness and the magnitude of anisotropy permitted.  Pain et al., (2003) used a Levenberg-
Marquardt type iterative preconditioned conjugate gradient inverse solver and a finite element 
forward solver. Their major contribution was to formulate and incorporate penalty functions 
for anisotropy and structure within the inversion objective function. Simple synthetic models 
with pole-pole array data sets were used to validate the inversion routine and highlight the 
non-linear nature of the problem. Suites of inversions were run to select the optimal penalty 
functions to minimise data residuals. Herwanger et al., (2004) extended the analysis by 
presenting a case study in which cross-hole resistivity and seismic methods were used to 
independently recover anisotropic model parameters. A good agreement of spatial structures 
with high anisotropy was found between the two techniques. The other notable inversion 
papers are those of Kim et al., (2006) and Yi et al., (2011), who present a case study in which 
2D and 3D cross-hole tomography was able to delineate cavities with isotropic properties 
situated in a highly anisotropic biotite-gneiss subsurface. The orientations of the anisotropy 
axes were assumed to be in-line with the measurement (Cartesian) frame, an often 
questionable assumption. Anisotropy penalty terms were added to the objective function 
along with spatially varying Lagrange multipliers which increased stability and resolution in 
the inversion process. Unfortunately, precise details on the forward and sensitivity 
calculations are not provided for this case study in either paper.  
 
A key component of any local search minimisation style inversion strategy is the ability to 
compute the Fréchet derivatives or sensitivity functions. Recently, Greenhalgh et al., (2009b) 
presented a general adjoint method for computing the DC resistivity sensitivity kernels in 
2.5D and 3D anisotropic heterogeneous media. In a companion paper (Greenhalgh et al., 
2009a) they give explicit expressions for the various sensitivity functions in homogeneous 
anisotropic media, and in other contributions (Wiese, Greenhalgh and Marescot, 2009; 
Greenhalgh et al., 2010) the anisotropic sensitivities are computed for various electrode arrays 
and compared with the isotropic sensitivities, showing the dangers of making an isotropic 
assumption when the ground is anisotropic. 
 
In this paper we go the next step and perform a series of 2.5D inversion experiments for point 
electrode sources in 2D synthetic anisotropic models.  We examine image recovery for 
isotropic blocks (inclusions) within an anisotropic background, as well as anisotropic blocks 
within an isotropic background, and see what is possible under favourable 3-sided recording 
conditions (i.e., combination cross-hole/ borehole to surface). We also invert the synthetic 
data by falsely assuming medium isotropy everywhere, and contrast these distorted images 
with the proper anisotropic solutions. We investigate the effect of changes in the dip angle of 
the plane of isotropy and changes in the degree of anisotropy. Various pole–pole, pole–dipole 
and dipole–dipole data sets are investigated and evaluated from the accuracy of the inversion 
result, by eigenspectra analysis of the pseudo Hessian matrix and the relative resolution plots. 
We also present a data selection strategy based on high sensitivity measurements which 
produces inversion products comparable to that of comprehensive data sets. Reconstruction 
was attempted on equivalent anisotropic models with model parameters described in different 
co-ordinate frames (Cartesian and the principal axes or eigenframe).  
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2.  BACKGROUND THEORY 
 
2.1. 2D TI Media   
 
In its most general form, electrical anisotropy is described by a symmetric, second rank 
conductivity tensor with 6 independent components (Greenhalgh et al., 2009b). In this paper 
we consider a more specific but prevalent class of anisotropy, that of a 2D tilted transversely 
isotropic (TTI) medium involving just 3 independent components of the tensor (see Figure 
1a). In this model resistivity is constant for all directions within a specific plane termed the 
plane of isotropy (e.g. plane of stratification or foliation) but different in all other directions 
outside that plane. In optics, when dealing with the dielectric or refractive index tensor, this 
particular class of anisotropy is referred to as uniaxial and many minerals conform to it. 
 
Here we will consider 2.5D modelling which entails a point source of current and a 2D model 
in which the resistivity parameters do not change in the y - or strike direction. The TTI model 
properties may be described with reference to either a geographic (measurement) co-ordinate 
frame involving the tensor elements , ,XX XZ ZZ    or a principal axis frame (or eigenaxis 

frame) involving the components 0, ,L T   . Here L  is the longitudinal resistivity, T  is the 

transverse resistivity and 0  is the angle of the symmetry axis relative to the vertical i.e. the 

transverse (uniaxial) direction. The principal axis frame is physically meaningful since the 
eigenvectors are aligned with the natural rock frame. This is illustrated schematically in 
Figure 1b. The semi-major and minor axes of the resistivity ellipse correspond to the two 
eigenvectors, and their lengths a and b are related to the eigenvalues or principal values 
according to the relations: 
 

Ta  and Lb           (1) 

 
 

 
 
 
Figure 1: a) Simplified diagram of anisotropic 2D TTI media, showing axis of symmetry and principal 
resistivities. b) The resistivity ellipse shown in relation to the geographic co-ordinate frame (X, Z), and the 
principal axis frame (or natural rock frame) (X’, Z’). The lengths of the semi major axes are equal to the inverse 
square roots of the principal resistivities (or eigenvalues of the 2x2 resistivity matrix). The directions of the 
principal axes are the corresponding eigenvectors. 
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The Cartesian element components xzyyzzxx  ,,,  obey identical equations to the resistivity 

components of equation (1) if we replace the L  and T  terms by the principal conductivities 

L  and T , respectively. 
 
 
2.2. GQG Forward Modelling  
 
An essential requirement of any inversion scheme is a forward solver to compute the 
theoretical model response. For a point source of current in a 2D medium, the governing 
equations for this so-called 2.5D problem may be written as (Zhou et al., 2009): 

2 1
( ) ( ), ( , ) ,

2

( ) 0, ( , ) ,

y yy sG k G r r r x z

G G r x z

 



        

      

σ

σ n

 

 
    (7) 

 
Here  is the Cartesian symmetric conductivity matrix described above, n is the unit normal 
vector to the boundary ,  is a known function of the spatial coordinates and the conductivity 
and specifies the mixed boundary condition, rs is the current point-source location, ky is the 
wave-number or spatial Fourier transform variable corresponding to the y-direction. The 
quantity G is the spatially Fourier transformed Green’s function, which is equal to the 
impedance (or resistance) U/I. It is simply the voltage response for a unit current injection. 
 
Zhou et al., (2009) presented the Gaussian quadrature grid numerical scheme for 2.5D DC 
resistivity modelling in which the variational principle was applied to (7) to reformulate the 
problem in functional (Ψ) form: 
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222 σ
    (8) 

 
Here SG

~
is the value of the Green’s function at the source position. The model is 

parameterised into sub-domains which are populated with nodes distributed at Gaussian 
quadrature abscissae points and are assigned weights corresponding to their positions (see 
Figure 2). 
 
The abscissa number per dimension in the sub-domain is called the Gaussian quadrature 
order. According to Gaussian quadrature theory the accuracy of integration depends on the 
number of abscissae and converges to a high accuracy with increasing Gaussian order. The 
key step is to calculate the values of the functional at the Gaussian quadrature abscissae, 
which involves sampling the model parameters, the Green’s function and its gradient based on 
the grid. The forward modelling reduces to solving a linear equation system. The main 
advantages of the method are its ability to deal with a complex geological model involving 
anisotropy and an arbitrary surface topography, whilst retaining the computational advantages 
of the spectral element method, yet a complex mesh generator is not needed as in the FEM 
(Greenhalgh, 2008). 
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Figure 2: Blue crosses indicate the Gaussian quadrature grid of Gaussian order 5 used for forward modelling. 
The position of the 64 electrodes in the surface – borehole array is shown by red dots.  
 
 
 
2.3. Fréchet Derivatives 
 
The sensitivity (Fréchet derivative) gives the change in measured potential (or apparent 
resistivity) due to a perturbation of the model parameter in a particular model. It is an 
essential component of any local search minimisation type inversion scheme (Zhou and Green 
2006). In a recent paper (Greenhalgh et al., 2009b) we developed a new formulation for the 
anisotropic sensitivities for both the 3D and the 2.5D problems. For the latter, the result can 
be stated as:  
 

1 2
( )

( ). . ( ) ( ) ( )
s

p yys p s p
c y

G r
F G r G r k G r G r

m m m  

               

σ        (9) 

 
This equation shows that sensitivity can be computed in terms of the source sG (current 
electrode s) and adjoint source pG  (potential electrode p) Green’s functions and their 
gradients, as well as the derivatives of the conductivity tensor with respect to the principal 
model values. Here 1

cF  is the inverse Fourier cosine transform with respect to wavenumber.  
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The model parameter m may assume any of the anisotropic model parameters in either the 

Cartesian or eigen frames, which for the 2.5D TTI problem under consideration comprises 

zzxzxxtl  ,,or  ,, 0 , (Note that yy l  ). Explicit expressions for the derivative term 

/ vm σ  may be found in Greenhalgh et al., (2009b). A comprehensive study into the various 

anisotropic sensitivity functions in homogeneous anisotropic media for various arrays is given 
in Wiese et al., (2009). In a companion paper (Greenhalgh et al., 2010), these sensitivities are 
compared with those for an isotropic medium and the prominent differences in both the sign 
and magnitude of the sensitivities highlighted, showing the dangers of using an isotropic 
assumption when inverting anisotropic data. 
 
Some authors express the isotropic sensitivities in a slightly different form than that used 
above (viz., /G   ), involving apparent resistivity a , or its logarithm log a , or even in 

terms of resistance R e.g. / , log( ) / log( ), / .a a R           Conversion from one form to 

another is simple using implicit differentiation and the basic linking equations: 
 

1,/,  ρσIKUIGU a        (10) 

 
The Jacobian matrix ( ,/ mdJ   where d = U or a ) is traditionally constructed with the 
rows related to the different measurement configurations and the columns corresponding to 
each model cell. The elements of the matrix are sensitivities, which are dependent on the 
electrode configuration for the data point and the location of the model cell. In geo-electrics it 
is well documented that sensitivity decreases with distance from the electrodes because of the 
DC nature of the problem.  Current lines are not straight, even in a homogeneous, isotropic 
medium. 
 
 
2.4. Inversion Approach 
 
2.4.1. Gauss-Newton Solution 
 
Rather than building complicated smoothing and anisotropy penalty functions into the 
objective function, as has been previously done (e.g. Pain et al., 2004), here we concentrate 
on quantifying the effects of using an isotropic assumption to invert anisotropic data 
Comparisons between a (correct) anisotropic inversion with the isotropic reconstruction can 
only be done if the same inversion routine with similar regularisation is used for both. For this 
reason the inversion scheme is chosen to be the well understood, widely used and easily 
implemented Gauss-Newton approach. 
 
Central to any linearized least squares (or Gauss-Newton/Levenberg-Marquardt) inversion 
scheme is the forward operator (F) (GQG, see section 2.2) used to calculate the synthetic or 
predicted data (d pred ) which can be in the form of voltage or apparent resistivity for a given 
model (m): 
 
d pred =F(m)          (11) 
 
The inverse operator (F 1 ) then seeks an estimate of model parameters (mest) that best fit the 
observed data (d obs ): 
 
m est F 1 (d obs d pred )        (12) 
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The inverse operator may be written as an optimisation (minimisation) of an objective 
function (


)}()(min{)}(min{ mmm md          (13) 


 is the damping factor that determines the trade off between the data fit and the a-priori 
knowledge on the model. The latter can be included through structural constraints, closeness 
to a preferred model or smoothing. Selection of the damping factor is discussed in section 
2.4.2.The quantities d and m are the data and model misfit functions (or norms), respectively 
 
߶ௗሺܕሻ ൌ ‖ ௗܹሺ܌

௢௕௦ െ  ሻሻ‖૛       (14)ܕሺ܌
 
߶௠ ൌ ‖ ௠ܹ ሺܕ െܕ૙ሻ‖

૛        (15) 
 
Where m0 is the starting or preferred model, and Wm and Wd are the model and data weighting 
matrices, respectively, for which various choices are available depending on the definition of 
the solution (Greenhalgh et al., 2006).   
 
By calculating the derivatives of the data and model misfit functions we may derive the 
stationary point equation (Greenhalgh et al., 2006): 

)]([)()( 0 mdd
m

d
mm predobsT

pred





       (16) 

 
The stationary point equation may then be solved by an iteratively linearized scheme: 

1 1( ) ( ) [ )]
Tpred

pred pred
k k k k
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d 

 
    
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m
     (17) 

where 










m

d pred

 is the Jacobian matrix (J). The inverse operator can be written in Gauss-

Newton form as: 
 

 1 1( ) ( ( ))est T T obs pred
k 1 m k k  
    m J J C J d d m Jm     (18) 

 
Here ۱࢓

ି૚  is the a-priori model covariance matrix which allows regularization constraints 
such as smoothness (roughness), or minimum variation from some reference model. The 
resulting rectangular system can be solved by a conjugate gradient scheme (Greenhalgh et al., 
2006).  
 
2.4.2. Program Description   
 
The inverse problem requires that regularisation be imposed to stabilise the solution and 
reduce   the inherent non-uniqueness. It also helps to ensure that the inversion does not fall 
into a local minima but rather reaches the global minimum of the objective function. 
 
The damping factor choice specifies the trade-off between the pre-conceived ideas of the true 
model (a-priori knowledge) and data fit. Smoothing was included through a finite difference 
operator that allowed variable weighting so that smoothness could be varied in different 
directions (deGroot-Hedlin and Constable, 1990).  
 
Since the experiments conducted were synthetic in nature the true model was known, making 
it straightforward to visually gauge the success of an inversion. A suite of inversions were 
carried out with various levels of damping. The inversions having the highest damping factor 
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and which still converged to within numerical noise levels (< 2%) were selected for 
presentation. This way we neither over-smooth nor introduce false detail into the image. 
These inversions were the most optimal reconstructions of the true model with the least 
amount of artefacts. The inversion stopping criteria were that the desired data misfit of < 2% 
was reached (which we deemed to be below numerical noise inherent in our program), the 
number of iterations exceeded 20 or the difference between successive iterations produced an 
RMS difference of less than 0.5%. Convergence was calculated as the percentage ratio of the 
initial data misfit over the data misfit of the jth iteration. A flow chart showing the main 
elements of the inversion approach is given in Figure 3. 
 

 
 
Figure 3: The inversion program flow chart shows the iterative methodology and convergence stopping criteria. 
 
 
2.4.3. Information content and resolution 
 
The optimisation of geophysical experimental design is an area of active and current research 
(Maurer and Boerner, 1998; Stummer, Maurer and Green, 2004;  Loke, Wilkinson and 
Chambers, 2010; Maurer, Curtis and Boerner, 2010; Blome, Maurer and Green, 2011), but 
compared to numerical forward modelling and inversion theory, this field of knowledge is far 
less developed.  
 
Inversion algorithms are largely based on linearized theory (Menke, 1984) and as such 
methods for quantifying the benefits of a particular survey exist. The quality of an inversion 
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result of a truly linear forward model can be appraised by examining the model resolution 
matrix formally defined as: 
 

1 1( )T T
m   R J J C J J         (19) 

 
It relates the estimated model parameters to the true model parameters (ܕ௧௥௨௘) through the 
equation: 

trueest Rmm            (20) 
 
Of particular interest are the diagonal elements of R. Values close to zero indicate poorly 
resolved model parameters, whereas values close to one indicate well resolved model 
parameters.  
 
The choice of a survey layout, configuration type and selection of data governs the structure 
of the Jacobian J, which is the foundation of the approximate Hessian matrix JJH T .The 
reliability of the model update depends primarily on our ability to invert the matrix ( JJ T +

1
mC ). Without the regularization (damping and smoothing) this matrix would likely be 

singular. The eigenvalue spectrum of the approximate Hessian matrix is related to the null-
space or unresolvable model space of a particular data set. This allows comparison of spectra 
from various experimental designs as a quantitative method to rate specific information 
content and resolving ability. 
 
 
 
3. SYNTHETIC INVERSION EXPERIMENT METHODOLOGY  
 
3.1. Experimental setup   
 
The focus of the experiments was to determine the effect of the actual assumptions 
(anisotropy or isotropy) used in the forward solver and sensitivity calculations for the same 
inversion routine on a number of different anisotropic models. Therefore, most experiments 
were conducted with a three-sided geometry (combined crosshole and borehole-to-surface) 
chosen because it delivered the most optimal possibility for data collection and model 
coverage. Such configurations are becoming more popular in field surveying. This type of 
electrode placement allows one to overcome the ambiguity from the Principle of Equivalence 
(Keller and Frischknech, 1966) associated with pure surface measurements when the axis of 
symmetry is vertical.  
The experimental setup consisted of 78 electrodes, 32 in each borehole and the remaining 14 
positioned along the surface. The positions of electrodes are shown by triangles in Figure 2. 
Electrodes are placed at 5 m spacing. The two boreholes extend to a depth of 155 m and are 
spaced 65 m apart.  
 
3.2 Forward and inverse parameterization 
 
The model domain was discretized for inversion with a regular grid of rectangular model cells 
of size 5 x 5 metres. Inversion cell size was chosen to be the electrode spacing so as to limit 
the total number of model parameters   because of the already increased number of parameters 
which must be considered when anisotropy is incorporated. There were 465 (31 by 15) 
inversion model cells for each parameter. The forward modelling was conducted with the 
same sub-domain parameterization as the inversion cells. The forward calculation used a 
Gaussian nodal order of five for each sub-domain along with 20 wave-numbers. This gave 
rise to 6,897 nodes in the forward GQG grid (   1 1( 1).( 1) 1 . ( 1).( 1) 1X ord Z ordN N N N       
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where 1XN =31, 1ZN =15, ordN =5). This was deemed to be a good compromise between 

accuracy and computational efficiency (Greenhalgh, 2008; Zhou et al., 2009). 
 
To provide a comparison with the optimal three-sided crosshole experiment, and to show 
what is possible with surface measurements alone in the presence of anisotropy, a surface 
electrode array numerical experiment was also conducted. Sixty one electrodes were placed 
along the surface at a spacing of 5 m. The model (inner) domain extended from x = 0 to x = 
300 m and in depth to z = 60 metres. The same forward and inversion discretization was used 
as in the 3 sided experiments, i.e. 720 inversion cells of size 5 by 5 metres with 720 forward 
sub-domains and 10,845 Gaussian nodes (Gaussian nodal order of 5).  
 
 
3.3. Electrode Array Types 
 
The three most widely used measurement configurations in cross-hole or surface-to-borehole 
geo-electric surveying are the pole-pole, pole-dipole and dipole – dipole arrays involving 2, 3 
and 4 mobile electrodes, respectively. For pole-dipole and pole-pole the remote electrodes are 
located at a considerable distance away from the survey area so that there is no effective 
contribution from the current sink. This section of the paper explains the basis and selection 
for the comprehensive data sets used. Secondly, we explain a method for selection of the 
highest sensitivity data sets obtained from calculation of the Jacobian for comprehensive data 
sets.  
 
A comprehensive data set (Xu and Noel, 1993) consists of every possible non-reciprocal 
measurement, whereas the complete data set is composed of all linearly independent 
measurements. It is possible to reconstruct the comprehensive data set from the complete set 
(Blome, 2009; Lehmann, 1995). The pole-pole comprehensive and complete data sets are 
equivalent and consist of 3003 recording configurations (78*77 / 2) for a 78 electrode surface 
to cross-hole experiment.  
 
Zhou and Greenhalgh (2000) conducted a thorough investigation into the sensitivity of 
various cross-hole electrode configurations, finding that sensitivity was improved along the 
midpoint region of the boreholes for configurations such as the bipole – bipole (AM-BN) in 
which current source (A) and sinks (B) and potential electrodes (M, N) are in different 
boreholes, i.e. borehole 1: A, M; borehole 2: B, N. This array also produces relatively large 
signals. Pole-dipole arrays were found to produce good results, however configurations such 
as A-MN  and MN-A are susceptible to noise due to low potential readings. The same is true 
for the 4-point configuration AB-MN and even though it offers improved resolution, it is at 
the expense of noise capture, especially due to the borehole fluid effect as recently 
investigated by Doetsch et al., (2010). 
 
It has been commonplace for some time in other geophysical techniques (e.g. seismic) to 
collect vast data sets. In geoelectrics it only became feasible in recent times to record massive 
data sets efficiently; currently a 64 channel resistivity system exists having capacity to collect 
such sets (Zhe, Greenhalgh and Marescot, 2007), and a 120 channel  parallel recording system 
has recently been described by Blome et al., (2011). This, combined with advances in 
computer memory and parallel processing techniques, could make inversion with 
comprehensive data sets possible in the future. But currently the massive amount of data 
involved in comprehensive pole-dipole and dipole-dipole data sets for even 78 electrodes is 
usually prohibitive for inversion because of time and computer memory constraints. To 
reduce the computational burden, it is normal practice to discard data points corresponding to 
high geometric factors K, which often correspond to low signal levels and therefore likely to 
be contaminated by noise. To illustrate the point, by eliminating all data having geometric 
factors K>500, a comprehensive pole-dipole data set of 78 electrodes still has ~76,000 data. 
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This is still a large amount of data to invert. For the same number of electrodes but in a 4-
point comprehensive AM-BN (bipole-bipole) configuration, eliminating data with K > 500) 
results in a set of>500,000 data points. 
 
3.4. Selecting the High Sensitivity Configurations 
 
From examination of the Jacobian matrix for the comprehensive data sets, there exists a large 
subset of data that has extremely small sensitivity magnitude. The motivation of saving 
computer memory and run time resources directs us to investigate the effect of discarding low 
sensitivity data from comprehensive data sets and working with a reduced (filtered or 
selected) version.  Such an approach was recently advocated by Athanasiou et al., (2009). In 
earlier optimised experimental design strategies described by Stummer et al., (2002) and 
Wilkinson et al., (2006), configurations were progressively selected in accordance with linear 
independence or contributing most towards improving model resolution. The latter approach 
entails having to sequentially compute the model resolution matrix for each electrode 
configuration added to the set, and is very computationally intensive. By contrast, our 
sensitivity selection strategy is far less demanding than that based on incremental 
improvements to resolution, and seems adequate for the purpose.  
 
An initial choice must be made for the model used to calculate the Jacobian. This is an 
arbitrary choice and may include any a-priori knowledge. We chose an isotropic model 
having  ߩ௅ =   500 = ்ߩ Ohm m because this is the starting model given for our inversions. 
 
The method of filtering (or selecting entries from) the Jacobian was, firstly, to split the matrix 
into separate model parameters:   ߩ௅ and  ்ߩ. The separate matrices (of dimension number of 
electrode configurations times the number of model cells) were then sorted along the model 
cell column in order of increasing sensitivity magnitude. Data may then be selected from each 
model cell column subject to either the absolute magnitude of the sensitivity or the number of 
data to include per model cell. Non-unique (dependent) data points are eliminated. A 
secondary beneficial outcome of the filtering process originates from prior knowledge of 
resolution patterns. Regions of low resolution model cells such as at the centre section of the 
boreholes can be allotted increasing numbers of selected high magnitude sensitivity data. The 
data inclusion method we used for our selected (filtered) data set was to take progressively 
increasing amounts of data for model cell columns as one moved from the boreholes towards 
the central column of cells. This is illustrated diagrammatically in Figure 4. 
 
With the filtering/selection strategy used, the comprehensive pole-dipole data set of 77,000 
measurements is reduced to 8,036 data points. The corresponding dipole-dipole 
comprehensive set of 549,000 configurations is reduced to 159,000 data points. 
 



Chapter 6: Resistivity inversion in 2D anisotropic media: numerical experiments 109 

 
Figure 4: A representative graph of the data selection strategy that filters out ineffective low sensitivity data by 
sorting and selecting high sensitivity data. The x-axis represents the model cell column number (numbers 1 and 
15 define the edge of the model / borehole). Increasing amounts of data are included towards the model cell 
column 8 which represents the lowest resolution along the central axis between the boreholes. 
 
 
 
3.4. Types of Models 
 
Three types of anisotropic model were investigated: firstly, an anisotropic background (TTI) 
having an embedded isotropic block anomaly. This type of model could simulate the 
geological situation of tilted shale or fractured limestone as the background rock, and an 
igneous inclusion or a pure water or air filled cavity causing the high resistivity anomaly. The 
second type of model is the reverse of the first type, involving an isotropic background with 
an anisotropic inclusion. This type of model could be representative of sandstone with 
enclosed clay or jointed ore body inclusion. The third model involves a layered anisotropic 
sequence that could simulate volcanic flows or metamorphic units of dissimilar dip. 
The anisotropic model parameters allow for the possibility of changing the magnitude 
(coefficient) of anisotropy and/or the orientation of the axis of symmetry. 
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4. RESULTS 
 
4.1 Anisotropic Background with an Isotropic Block Inclusion 
 
The models used to create the synthetic data sets in this section consisted of an anisotropic 
background with a rectangular high resistivity isotropic target (1250  m) centred between 
the boreholes. This section of the paper focuses on the effects of inversion reconstructions for 
variations in the orientation of the plane of isotropy (i.e. the 0 angle) and the magnitude of 

anisotropy (.  
 
For this preliminary experiment the comprehensive pole-pole data set (3003 data points) was 
employed for two reasons. Firstly, this basis of measurements contains all possible linearly 
independent subsurface information, and secondly, the relatively small data set minimised the 
computational time required. 
 
Figure 5 exhibits the inversion results for a set of true models in which the axis of symmetry 
angle 0  has three distinct values of 0, 45, and 90, as shown in the top, middle and bottom 

rows, respectively. This is physically equivalent to the orientation of the plane of isotropy 
(stratification or foliation) being horizontal, dipping and vertical. The coefficient of 
anisotropy is fixed at 22.1  The starting resistivity .( m 600 = ்ߩ   ,௅  = 400  mߩ  ) 
given for the inversion was a homogeneous and isotropic model having   ߩ௅=   490 = ்ߩ  m, 
which is equal to the geometric mean resistivity m. The isotropic nature of the starting model 
ensured that the anisotropic and isotropic assumption- based inversions could be made as 
nearly equivalent as possible, at least from the initial model viewpoint.  
 
The left and middle columns of Figure 5 represent the inversion results for  ߩ௅ and  ்ߩ  
produced with the correct anisotropic assumption for forward modelling and sensitivity 
calculations. The right hand side column gives the corresponding inversion result for the 
scalar resistivity   produced with the widely used isotropic assumption. The  ߩ௅ and  ்ߩ 
images show accurate reconstruction of the anisotropic nature of the true background 
resistivity for all angles of the plane of isotropy. It can be seen that for all 0  values the 

positions of the true high resistivity isotropic embedded anomaly (outlined by the black 
square) are well resolved for both   ߩ௅ and  ்ߩ images. An underestimate of the true high 
resistivity anomaly is noticeable in the   ߩ௅  background; however, the contrast between the 
background and the reconstructed anomaly is equal to that of the   ்ߩ images. The 
reconstructed target anomalies were somewhat smeared over the borders of the true known 
geometry, although importantly they were centred in the correct position. This smearing is a 
product of the inversion scheme which we made with basic functionality. More complicated 
inversion objective functions exist that could likely improve the results, however these were 
not included so as to not deflect from the main objectives of the experiment. 
 
The  images obtained with the incorrect isotropic assumption (right hand column Figure 5) 
show a noticeable banding effect which follows a parallel orientation to the plane of isotropy 
for each of the different values (0, 45, 90). The data misfits obtained by the set of inversions 
using the isotropic assumption were more than eight times higher than those produced with 
the anisotropic assumption, which were deemed to be within the numerical noise level (1~2 
%). The higher RMS values are of course a result of the banded artefacts. The source of the 
banding is the difference of sign in regions of the subsurface for isotropic Fréchet derivatives 
in anisotropic media. This has been described in Wiese et al., (2009) and quantified in 
Greenhalgh et al., (2010). 
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Figure 5: The comprehensive pole-pole data set inversion reconstruction of an anisotropic background model 
(constant = 1.22) with isotropic inclusion (1250 Ohm m). The left (  ߩ௅ ) and middle (  ்ߩ ) columns  are 
produced with the anisotropic assumption while the right column assumes isotropy (.  The axis of symmetry 
(normal to plane of isotropy) varies fromߠ଴= 0, 45, 90 degrees in the top, middle and bottom rows respectively. 
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Figure 6: The comprehensive pole-pole data set reconstruction of anisotropic background model (ߠ଴  = 45 
degrees) with isotropic inclusion (1250 Ohm m). The true model magnitude of anisotropy varies = 1.05, 1.5, 2 
from top to bottom rows. The columns are in the same format as Figure 5. 
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We now present in Figure 6 the effects of the magnitude of anisotropy of the background 
medium for the same style of model as above. Anisotropy was varied from slight (almost 
isotropic) values to highly anisotropic values, where conductivity was four times larger 
parallel to the plane of isotropy than perpendicular to it. The true models used had 0  = 45 , 
with the coefficient of anisotropy varied from 05.1  ,( m 525 = ்ߩ    ,௅  = 475  mߩ  ) 

5.1 and 2 ( m 700 = ்ߩ   ,௅  = 300  mߩ  )   in the ( m 800 = ்ߩ   ,௅  = 200  mߩ  ) 
top, middle and bottom rows, respectively. The isotropic anomaly conductivity value is 1250 
 m. The inversion results presented in Figure 6 are in the same format as in Figure 5 i.e., 
 in the left and middle columns with   in the right column. The starting model ்ߩ   ௅ andߩ  
used for the inversions was again the homogeneous isotropic resistivity equal to the geometric 
mean of the true anisotropic values of the background.  
 
The reconstructions performed under the anisotropic assumption are accurate in resolving the 
true background resistivities. The increasing anisotropy (i.e. difference between   ߩ௅ and  ்ߩ) 
is especially apparent in the intensifying colour values (both red and blue) from the top to 
bottom rows of the Figure. The high resistivity anomaly is centred over the true position 
(outlined in black) for all magnitudes of anisotropy. However, the reconstructed anomaly in 
the   ߩ௅ image decreases in resistivity with increasing whereas the opposite trend occurs 
for  ்ߩ. The ratio between the background and the anomaly resistivity is comparable for both 
 resistivities for the intermediate and high  values. The effect of the angle of the ்ߩ  ௅ andߩ  
symmetry axis ( 0 = 45) is apparent, since the reconstructions undertaken with the incorrect 

isotropic assumption show the target to be elongated along this orientation for large values of 
anisotropy. The high resistivity target was harder to image for the high  value (bottom row) 
because the   ்ߩ background increased to such an extent that the difference between the 
background resistivity and that of the anomaly became much less significant. 
 
The image obtained using an isotropic inversion algorithm shows superior recovery of the 
isotropic block for slight anisotropy (top row) to that obtained with an anisotropic inversion, 
specifically in terms of the resistivity structure resolved compared to the true model. 
However, for increasing magnitudes of anisotropy (middle and bottom rows), spurious low 
resistivity artefacts become apparent. A region of high resistivity is resolved but it is greatly 
stretched in the direction parallel to the plane of isotropy. The banded artefacts also parallel 
this orientation. The data misfits for these inversions increased with the magnitude of 
anisotropy (> 7 times the numerical noise), apart from the almost isotropic model in which the 
isotropic inversion converged to the numerical noise levels of 1 to 2 %.  All the inversions 
undertaken with the correct anisotropic assumption converged to within numerical noise 
levels of 1 to 2 %.  
 
We next investigate a similar type of anisotropic background model but this time with two 
embedded isotropic targets, one high resistivity (1250 m), the other low resistivity (50 m), 
and using a purely surface electrode array involving 61 electrodes. The pole-dipole 
comprehensive set (large geometry factor data filtered out) of 12,511 electrode configurations 
was employed for the reconstruction. The true models used had an axis of symmetry of 0  = 

45, with the coefficient of anisotropy for the background varied from 1.1  ௅  = 450ߩ  ) 
m,  550 = ்ߩ  m), 4.1 and 2 ( m 675 = ்ߩ  ,௅  = 325  mߩ  )   ,௅  = 200  mߩ  ) 
 . m), corresponding to the top, middle and bottom rows of Figure 7, respectively 800 = ்ߩ 
The inversion results are given in the same format as before, with the reconstructed  ߩ௅ and 
 values shown in the left and middle columns of Figure 7, and the isotropic inversion result ்ߩ 
for  given in the right column. Inversions were again started with isotropic resistivities equal 
to the geometric mean of the true values.  
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The reconstructions carried out with the anisotropic assumption are accurate, and able to 
resolve the increasing anisotropy which is apparent from the changing colours from the top to 
bottom rows. Both high and low resistivity anomalies are centred over their true positions 
(outlined in black) for all magnitudes of anisotropy. However, the reconstructed high 
resistivity target in the   ߩ௅ image decreases in resistivity magnitude noticeably at = 2. In the 
 images, the high resistivity target becomes poorly resolved as  increases. The resolving ்ߩ  
power of the   ்ߩ parameter drops with depth far more significantly than  ߩ௅ (see Wiese et al. 
2009). 
 
The image obtained with the incorrect isotropic assumption (isotropic inversion code) shows 
superior recovery of the isotropic blocks for the slight anisotropy case (top row) compared to 
that using an anisotropic inversion, specifically in terms of the level of target resistivity 
resolved. However, for the model with a high level of anisotropy (bottom row), spurious low 
resistivity artefacts become apparent in the isotropic image. The data misfits with the isotropic 
inversion are not as high as in the 3-sided experiments (Figures 5 and 6), but the same trend 
of increasing data RMS with increasing levels of anisotropy was again observed. 
 
 
 
4.2. Isotropic Background with an Anisotropic Block Inclusion 
 
In this section we present inversion results for an anisotropic target (block) in an isotropic 
background. The target is located midway between the boreholes and has square geometry; its 
electrical properties are  ߩ௅= 250  m, 750 = ்ߩ  m ( 7.1 ) with 0 = 45. The isotropic 

background is  ߩ௅=  500 = ்ߩ  m. Inversion results from a range of different electrode 
configurations and data sets are presented and compared. All inversions were started with an 
isotropic assumption =  ߩ௅=  500 = ்ߩ  m. 
Figure 8 shows the inversion results for the pole – pole comprehensive (top row), the pole – 
dipole selected (middle row) and pole - dipole comprehensive (bottom row) data sets. The left 
and middle columns correspond to anisotropic reconstruction ߩ௅and ்ߩ parameters and the 
right to the isotropic . 
 
The pole-pole anisotropic inversion updated the ߩ௅  and  ்ߩmodel parameters in the correct 
direction, with the spatial reconstruction giving the target anomaly at the true position 
(outlined by the black square). Resolution is more limited towards the centre of the boreholes, 
especially for ்ߩ. The corresponding isotropic inversion produced artificial banding which is 
oriented in a direction parallel to the plane of isotropy. The pole-dipole comprehensive data, 
when inverted, resolved the anisotropic anomaly in terms of spatial sharpness and yielded 
resistivities closer to the true values than in the pole-pole case. Although the resistivity scale 
of the pole-dipole filtered data set inversion was slightly inferior to the comprehensive set, the 
reconstruction was very efficient by comparison, with similar results achieved using 
considerably less data and computer resources. The isotropic assumption inversions had data 
misfits more than ten times larger than the numerical noise limits inherent in the forward 
modelling scheme. The cause of the large misfits was the trend of artificial banding patterns 
of alternating high and low resistivity that lay parallel to the orientation of the plane of 
isotropy.  
 
In Figure 9 we show inversion results for the pole-dipole comprehensive data set using the 
same model as in Figure 8, but  the axis of symmetry of the target is varied thru 0 = 0, 45, 

90  from the top to the bottom row. An alternative form of presentation is used for the 
anisotropic parameters this time, with m  and   shown in the left and right hand columns,  
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Figure 8: The pole-pole comprehensive (top), pole – dipole selected (middle) and pole dipole comprehensive 
(bottom row) inversion images for a model consisting of an isotropic background (500 Ohm m) with an 
anisotropic inclusion ( = 1.7) and = 45 degrees.  
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Figure 9: Alternative representation of the anisotropic model parameters produced by inversion using the pole – 
dipole comprehensive set. The mean resistivity (m) and the coefficient of anisotropy ( are displayed in the left 
and right columns respectively. The true model is the same as Figure 8 except the rows correspond to differing 
axis of symmetry angles:  = 0, 45, 90 degrees from top to bottom. 
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respectively. The   plot is particularly revealing, indicating the correct true isotropic 
background (   1). The anisotropic anomaly region is accurately represented with reddish 
colours, slightly underestimating the true value of    = 1.7. The m  images are hard to use 

for direct interpretation because it is a derived rather than physical quantity, and the anomaly 
region is dominated by the lower resistivity of and m .This type of representation 

nevertheless has interpretative value, as demonstrated in Kim et al., (2006), who were able to 
successfully delineate cavities by identifying regions of isotropy amongst an anisotropic 
background. The isotropic regions were cavities filled with either water or air. 

To further quantify the goodness of the different data sets, we show in Figure 10 the 
normalised eigenvalue spectra calculated based on the true model. Firstly, it is notable that the 
spectra for  and generally follow the same pattern except for low indices for the pole-
pole data set. There is a distinct magnitude difference between the pole-pole and pole-dipole 
dominant eigenvalues, with the pole-dipole sets being larger by more than five orders of 
magnitude. The pole-dipole filtered and comprehensive sets are distinguishable with the 
comprehensive having higher normalized eigenvalues and assuming a gentler slope with 
increasing index. The slopes of the spectra from the 200th  eigenvalue onwards are close to 
parallel but the pole-dipole comprehensive curve is offset two orders of magnitude higher 
than the pole-pole data set and has the smallest null space of the three sets. Here the null-
space can be thought of as the un-resolvable model parameters and therefore gives a good 
comparison between information content of the different data sets.  

Figure 11 displays the diagonal elements of the formal model resolution matrix, Rii (see 
equation 17) plotted at the respective model cells. The model used for this calculation was the 
anisotropic block model used throughout this section. The left hand columns of Figure 11 
display the resolution for pole – pole (top) and pole – dipole comprehensive (middle) and the 
pole – dipole selective data sets for both  and model parameters. For both  and
parameter highest resolution is seen closest to the electrodes for all data sets. The resolution 
values differ only slightly between  and .

A direct comparison of the resolving power for each data set is presented in the right hand 
columns of Figure 11. The top panel shows the model resolution ratio of the pole – pole with 
respect to the pole – dipole comprehensive set, the bottom panel shows the pole – dipole 
selected data set with respect to the pole – dipole comprehensive set. The top ratio plot clearly 
show the superiority of the pole - dipole comprehensive set over the pole – pole set, with 
ratios below 20 % in the majority of model cells. The selective (filtered) pole – dipole set 
shows high ratios greater than 70 % of the pole – dipole comprehensive set for the central 
model region, which illustrates the merits of selecting data based on sensitivity 
considerations.  
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Figure 10: Raw (top) and normalised (bottom) Eigenspectra of the pseudo Hessian matrix (JT J ) for the pole – 
pole comprehensive (pp),  pole – dipole selected (pdp SELECT) and pole – dipole comprehensive (pdp COMP) 
data sets. The calculation was based on the same model as in Figure 8. 
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Figure 11: The formal model resolution (Rii) is displayed in the two left most columns for the pole – pole (top 
row), pole –dipole comprehensive (middle row) and selective pole – dipole data sets (bottom row). The 
calculation was based on the same model as in Figure 8. The two right most columns display the ratio of the 
formal model resolution for the pole – pole (top row) and the pole – dipole selective (bottom row) with respect to 
the optimal pole – dipole comprehensive resolution.  

4.3. Three Parameter Inversion 

In the previous sections we focused on resistivity inversion incorporating anisotropy, and the 
erroneous results obtained using an incorrect isotropic inversion scheme. The anisotropic 
inversions were established for the two parameters  and , with a fixed but arbitrary 0
angle defining the orientation of the symmetry axis. This method of constraint, by decreasing 
the number of model parameters to be solved for, effectively stabilizes the inversion without 
specifically penalizing anisotropy. In this section we broaden the inversion to obtain all three 
parameters at each cell for a 2D TTI model. Previous studies (e.g., LaBreque et al., 2004; 
Herwanger et al., 2004; Kim et al., 2006; Li et al., 2011) have all ignored the angle of 
anisotropy by assuming the principal resistivitiy directions coincide with the co-ordinate 
frame. The implication of including the extra model parameter (the orientation of the axis of 
symmetry) is to increase the non-uniqueness and non-linearity of the inversion problem. In 
section 2.1, two equivalent descriptions for the three anisotropic model parameters were 
given, the Cartesian and the principal axis (eigen) frame.  
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As an instructive preliminary investigation to assess the preferred model description to use in 
the inversion, we computed the eigenvalue spectra of the pseudo Hessian matrix for the two 
different formulations: 0, ,L T    and , ,XX XZ ZZ   . These are shown in the top and bottom 

panels, respectively, of Figure 12. The eigenspectra were calculated for a homogeneous 
anisotropic model with  = 1.4 and 0  = 45 degrees. The spectra are extremely similar, with 

the exception of the newly introduced parameters: 0 , XZ  . The spectra related to 0  are five 

orders of magnitude higher than ,L T   and the Cartesian parameters , ,XX XZ ZZ   . The 

sensitivities for the 0  angle are also orders of magnitude larger than the anisotropic 

resistivity model parameters. The source of the amplitude difference in the sensitivity and the 
eigenvalues most probably stems from the different units of the eigenframe model parameters 

0  (degrees) versus  ߩ௅, ்ߩ ( m). Such large differences in sensitivity magnitude can 

destabilise an inversion (see later). This difference is not encountered in the Cartesian frame, 
because all parameters have similar sensitivity magnitude. However, the XZ  parameter is 

less physically meaningful than the 0  angle. 

 
The 0, ,L T    model employed to produce the first set of synthetic data for the three 

parameter inversion experiment is shown in Figure 13 (a). The model is a four-layered TTI 
medium, where each layer has a different coefficient of anisotropy and axis of symmetry (or 
dip of the plane of isotropy).The ,L T  (or alternatively: ,XX ZZ  ) parameters control the 

degree of anisotropy, which for this experiment is  = 1.4 in the top and bottom layers and 
= 2.4 in the middle layer. The 0 , XZ   parameters control the orientation of the TTI axis of 

symmetry, which varies in the four layers (from the top to bottom layer the values are 0 = 45, 

37.5, 0, -45 degrees respectively). 
 
Inversions of synthetic data from the same model were carried out using two different 
approaches. Firstly, the natural rock frame model parameters 0, ,L T    were used directly. 

Secondly, the  0, ,L T    values were initially converted into the Cartesian domain values 

, ,XX XZ ZZ    with forward calculations, sensitivity calculations and inversion model updates 

made with respect to the Cartesian model parameters. On completion of the inversion 
procedure, the Cartesian output values for the final images were transformed back into the 

0, ,L T    parameter form for display. An equivalent slightly anisotropic starting model was 

given for both inversions (e.g.,  ߩ௅= 260  m and  300 =்ߩ  m, 0 = 0). Larger smoothing 

parameters were applied to both inversions to counteract the increased non-uniqueness of the 
inverse problem.    
 
One attraction of working with the Cartesian frame is that all three parameters have the same 
units and comparable sensitivities. This is not the case for the eigenframe, because the dip 
angle parameter has different dimensions and far greater sensitivity values, as mentioned 
above. The effects of this will be evident later. 
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Figure 12: Three parameter eigenspectra comparison between eigen (or rock) frame (top) and Cartesian (bottom) 
parameters for an anisotropic block model with = 1.4 and  = 45 degrees. Note the orders of magnitude 
difference between the eigenframe parameters, whereas the Cartesian parameters are all of similar order.  
 
 
Figure 13 (b) shows the inversion results for the pole-dipole comprehensive data set carried 
out in the 0, ,L T    domain, whereas Figure 13 (c) displays the corresponding results for the 

inversion performed in the , ,XX XZ ZZ    domain then converted to 0, ,L T    for presentation. 

Comparison of the reconstructions shows superior results for the inversion carried out in the 
Cartesian domain. The Cartesian frame inversion was successful in delineating all layer 
boundaries and resolving the correct orientations of the resistivity ellipses of the true model. 
The large difference in magnitude of sensitivity between the model parameters de-stabilizes 
the linearized inversion carried out in the 0, ,L T   domain. Resistivity artefacts are observed 

in the  ߩ௅ and  ்ߩ  reconstructions.  



Chapter 6: Resistivity inversion in 2D anisotropic media: numerical experiments 123 

 
 
 
Figure 13: Three parameter inversion for a layered TTI media: 
a)  the true four layered synthetic model   
b)  inversion result conducted in the eigen (or rock) frame 
c)  inversion result conducted in the Cartesian co-ordinate frame and converted for presentation 
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They are especially noticeable in the  ்ߩ model parameter, where a section of low resistivity 
is observed at depths between 5 and 10 metres close to the left hand side borehole. This 
region indicates that the inversion update has actually been in the wrong direction. The other 
noteworthy point is the large scale difference between the Cartesian and eigenframe 
inversions, especially for the 0  and XZ  parameters (see Figure 12). Values for 0  are 

updated to magnitudes as high as 80 degrees, though it is important to point out the region in 
which the high angle values occur corresponds to a region of relative isotropy. For an 
isotropic model the 0  angle has no real meaning because any angle will still satisfy isotropy. 

The data misfit converges to 12% for the 0, ,L T    inversion, compared to 2.25% for the 

inversion in the , ,XX XZ ZZ   domain.  

 
 
Figure 14 shows an inversion reconstruction for a second model consisting of a single 
anisotropic block in an otherwise isotropic background of 500 m. The anisotropic targets 
both have   ߩ௅= 300  and 700 =்ߩ  m, with the target having an axis of symmetry defined 
by 0 = + 45 degrees. The coefficient of anisotropy was not extreme at  ~1.5, so as to keep 

the non-linearity of the inversion to manageable levels. The inversion was carried out in the 
Cartesian frame as this produced the more accurate results in the previous experiment. After 
convergence, the model parameters were converted to the eigenframe for presentation. An 
isotropic starting model of XX ZZ   500 m and XZ = 0  m was employed. The 

reconstruction of the true targets in terms of resistivity values (ߩ௅and ்ߩ) and true location is 
accurate for both cases. Slight smearing effects are observed especially for the  ்ߩ parameter 
beneath the target away from the increased sensitivity of the surface electrodes.  
 
 

 
 
 
Figure 14: Three parameter inversion of anisotropic block in isotropic background.  The block position is 
outlined in black. The true model parameters were:  ߩ௅= 300 m  and  700 =்ߩ  m, with the target having an 
axis of symmetry defined by= + 45 degrees. The inversion was carried out in the Cartesian co-ordinate frame 
and transformed back into the eigen (or rock) frame. 
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The 0  reconstruction showed relatively poor spatial resolution of the target. The target angle 

itself was well resolved, with angles of up to 35 degrees recovered. Considerable smearing of 
the true axis of symmetry angle is apparent along an axis of symmetry direction of - 45 
degrees.

Erroneous artificial angles in the form of negative values occur in the isotropic regions 
outside the true position of the target. These regions are positioned along the 45 degree axis of 
symmetry line from the centre of the true target with the top right hand artefact showing 
above -10 degree angles. Despite these artefacts the inversion converged to a data misfit of 
below 2 %. This example is important because it illustrates the problems associated with non-
uniqueness when inverting for the third model parameter: XZ or 0 .

5. CONCLUSIONS 

We have conducted 2.5D resistivity inversion experiments in tilted transversely isotropic (TI) 
media. The synthetic data were computed for the true anisotropic models but the inversion 
scheme used forward solvers and sensitivity calculations for either the correct anisotropic 
assumption (two or three parameters at each cell defining the conductivity tensor) or the 
incorrect isotropic assumption (single conductivity value for each cell). This enabled direct 
comparison of the effect of the assumption (anisotropic vs isotropic) on the image 
constructions.

Synthetic models included isotropic targets embedded in a TI anisotropic background, as well 
as TI anisotropic blocks within an isotropic background, and in which the magnitude of 
anisotropy and the dip angle of the axis of symmetry were varied. These models were 
investigated through a series of experiments with varying orientation and magnitude of 
anisotropy. Superior reconstructions in terms of RMS data misfit, the true anomaly shape and 
position, and the anisotropic background parameters were achieved when the correct 
anisotropic assumption was employed.  When the false (but widely practised) isotropic 
assumption was used the tomograms were dominated by patterns of banded artefacts. For 
increasing levels of anisotropy, the isotropic reconstructions became increasingly poor, with 
high data misfits. For weakly anisotropic media, isotropic inversions performed adequately, 
especially for surface electrode arrays 

Various pole–pole, pole–dipole and dipole–dipole crosshole data sets were investigated by 
examining the accuracy of the inversion result, the eigenspectra spectrum of the pseudo 
Hessian matrix and the relative resolution plots. The pole-dipole comprehensive data set 
produced the best reconstructions. However, we found that a data selection scheme based on 
using only the high sensitivity measurements produced tomograms of comparable quality to 
those of the comprehensive data sets, but involving far fewer measurements and hence 
reduced computer memory and run time. 

Reconstruction experiments were extended to resolving three anisotropic parameters at each 
model cell (dip angle of the symmetry axis in addition to the transverse and longitudinal 
resistivities). For a layered anisotropic model with model parameters described in different 
co-ordinate frames (Cartesian and the eigenframe) the Cartesian frame provided a more 
accurate inversion results and a smaller RMS data misfit. The eigenframe-based inversion 
instability was explained by means of the eigen-spectrum of the Hessian matrix which 
showed orders of magnitude difference between various parameters.  
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Chapter 7: Conclusions 
 

7.1 Overall Significance 
 
The non-invasive DC resistivity technique is used to supply critical information for 
delineation and interpretation of near-surface geological structures in engineering, 
environmental and mining applications. Successful inversions of field data to reconstruct the 
subsurface resistivity distribution are dependent on many factors:  

 electrode configurations  must be selected wisely to allow sufficient resolution with 
distance from the electrodes, while maintaining adequate signal to be detectable above 
noise limits. 

 discretization of the model into forward and inversion grids must be chosen 
economically for processing time constraints. Also the model cell size should be 
chosen in accordance with the variability of the geology. 

 sufficient measurements should be made or regularisation applied, in order to avoid an 
underdetermined problem.  

 forward modelling code is needed to accurately compute the response of the given 
resistivity distribution, topography and anisotropy. 

 sensitivity formulations are needed to update the inversion model correctly, so as to 
converge to the global minimum. 

 
This thesis primarily addresses the last two key factors to ensure successful inversions. It 
concentrates on incorporating the influence of anisotropy on the resistivity technique, with 
emphasis on sensitivity calculations and inversion. In many geological settings the influence 
of anisotropy on the technique is significant. When it is not taken into account, anisotropy can 
produce erroneous results which can then be easily misinterpreted.   
 
 

7.2 Contribution to Knowledge 
 
This work presents analytic solutions for the electric potential, current density and Fréchet 
derivatives within a 3-D homogeneous TTI medium. The solution is valid for any point within 
or on the surface of such a medium. The equipotential contours are not orthogonal to the 
current density vectors, but display an elliptical pattern. This is a notable departure from the 
isotropic case. 
 
The analytic solutions are supported by a numerical formulation to calculate sensitivity 
functions for a heterogeneous (2D, 3D), anisotropic medium. The formulation is based on 
Green’s functions for the true and the adjoint source, which must be computed by numerical 
means such as the finite element method or the newly developed Gaussian quadrature grid 
approach. The equations also involve the derivatives of the conductivity tensor with respect to 
the principal conductivity values and the orientation angles of the symmetry axis. These are 
derived and presented in analytic form for a very general class of anisotropy, as well as a 
simplified TTI medium. 
 
Using the presented formulations enabled a thorough investigation into anisotropic sensitivity 
for TTI media. Fréchet derivatives were computed and presented for a range of TTI model 
parameters: ߩ௅, ,்ߩ ,଴ߠ ߶, ,ߣ  ெ. The effects of various levels and orientations of anisotropyߩ
were tested along with different electrode configurations. General trends emerged for the 



Chapter 7: Conclusions  131 
longitudinal and transverse resistivity Fréchet derivative patterns. A close link between the 
components of current density perpendicular and parallel to the axis of symmetry and the 
longitudinal and transverse resistivity is evident. 
 
By reformulating the TTI model parameters in terms of the coefficient of anisotropy and the 
mean resistivity, comparison of isotropic and anisotropic sensitivity patterns were presented. 
This was achieved by computing and presenting the ratio of the respective sensitivities for 
various levels of anisotropy and orientations of the axis of symmetry. The results showed that 
significant divergence from a ratio of 1 (where anisotropic and isotropic sensitivity are equal) 
is observed for medium to strongly anisotropic rocks (ߣ ൐ 1.2) and for steeply dipping planes 
of isotropy. Sensitivities were even found to be opposite in sign in some regions of the model. 
This would lead to very different and erroneous adjustments in the model parameters in these 
regions during an inversion, if an isotropic assumption is made and the ground is anisotropic. 
 
Using the novel Gaussian quadrature grid forward modelling formulation, I have developed 
anisotropic resistivity inversion software. This is capable of handling complexities such as 
medium heterogeneity and the most general form of anisotropy. Throughout the thesis the 
complexity of anisotropy was chosen to be the widely used TTI class. 
 
A large part of the research presented is in the area of anisotropic resistivity sensitivity. 
Understanding and formulating sensitivity correctly is a key step to almost all successful 
inversion strategies. Sensitivity patterns were investigated for different anisotropic 
parameters, electrode arrangements and levels of anisotropy/orientation of axis of symmetry. 
For the first time comparisons between anisotropic and isotropic sensitivity patterns were 
drawn, with divergence between the two becoming noticeable and possibly problematic for 
modest levels of anisotropy.   
 
Having established successful sensitivity calculations, the next step was 2.5D inversion 
experiments in tilted transversely isotropic (TI) media. Synthetic data were computed for the 
true anisotropic models but the inversion scheme used forward solvers and sensitivity 
calculations for either the correct anisotropic assumption (two or three parameters at each cell 
to define the spatially variant conductivity tensor) or the incorrect isotropic assumption 
(single conductivity value for each cell). This enabled direct comparison of the effect of the 
assumption (anisotropic vs isotropic) on the image constructions. 
 
Superior reconstructions in terms of data misfit, true anomaly shape and position, and the 
anisotropic background parameters were achieved when the correct anisotropic assumption 
was employed. When the false (but widely practiced) isotropic assumption was used the 
tomograms were dominated by patterns of banded artefacts. For increasing levels of 
anisotropy, the isotropic reconstructions became increasingly poor, having higher data misfits. 
For weakly anisotropic media, the isotropic inversions performed adequately, especially for 
surface-based arrays. 
 
Reconstruction experiments were extended to resolving three anisotropic parameters at each 
model cell (dip angle of the symmetry axis in addition to the transverse and longitudinal 
resistivities). For a layered anisotropic model with model parameters described in different 
co-ordinate frames (Cartesian and the eigenframe), the Cartesian frame provided a more 
accurate inversion result and a smaller RMS data misfit. The eigenframe –based inversion 
instability was explained by means of the eigen-spectrum of the pseudo-Hessian matrix, 
which showed orders of magnitude difference between the different parameters. 
 
The chapters in this thesis provide a solid foundation for incorporating electrical anisotropy 
into resistivity interpretations. The benefits to inversion of including anisotropy when it is 
present have been clearly demonstrated. A description of the anisotropic conductivity tensor 
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has been offered, along with sensitivity and inversion demonstrations for various anisotropic 
models. I believe that the foundations laid from this research will be a fruitful place to start 
for future research endeavours. 
 

7.3 Future Directions 
 
A valuable extension to research in the area of anisotropic resistivity inversion would be a 
series of laboratory- based experiments. To the best of the author’s knowledge, this would be 
a novel area of research. It would provide definitive results proving or disproving the success 
of an anisotropic resistivity inversion scheme on real data where the true model is known. 
Analogue models are one-step closer to reality than an idealised mathematical (synthetic) 
model and the data are collected under realistic noise conditions. A physical scale model 
(“tank”) could be built to simulate anisotropic TTI geology. This could be achieved in a 
number of ways: by carefully layering sand and clay material or by inserting PVC sheets in a 
preferential alignment or by using micro particles with an anisotropic geometry (i.e. 
ellipsoidal) that would settle in such a way to provide preferential current flow paths. An 
anisotropic body could be placed within an isotropic background. A number of different 
electrode geometries could be employed such as surface, surface-to-borehole, cross-hole, or 
combinations, with various data sets collected. Comparison of resolution of data sets by 
eigenanalysis of the Hessian matrix, calculation of resolution matrices and inversion results 
would be informative for the field practitioners in survey design. However, one drawback of 
such laboratory studies is the edge-effects of the tank on the resistivity measurements. 
 
Developing improvements in parameterisation and regularisation would aid the accuracy of 
inversion results. In particular the effect of constraining the level of anisotropy and also 
anisotropic smoothing functions could be productive areas of future research. It would build 
on the work of Herwanger et al., (2003) and Li et al., (2011). 
 
This inversion methodology is readily extended into 3D experiments. It would be rewarding 
to numerically investigate tensor measurements in 3-D surface arrays, with current and 
voltage bipoles in various parallel and perpendicular orientations. An ambitious product of 
this investigation could be designing a survey capable of delineating effects of anisotropy and 
inhomogeneity, or simply as a means of detecting anisotropy. If a 3D tank model was built 
individual measurements could be evaluated for their practical sensitivity on components of 
the resistivity tensor, and results could be compared with predictions from numerical 
modelling. 
 
Collecting the complete (linearly independent) data set is cost effective in the field. If 
repeated measurements are made then a data set with well defined error estimates can be 
obtained. It is then possible to reconstruct the comprehensive data sets from the complete data 
set. From a physical point of view, such a data augmentation is not expected to provide 
additional subsurface information because we are only including linear combinations of the 
basis set. However, the reconstruction is actually a method of pre-conditioning of the Hessian 
matrix. It is trivial (algebraic additions) to propagate the errors in the reconstruction process 
so as to construct a data weighting matrix for the comprehensive data set. Inversion results 
from comprehensive data sets acquired in the field and different reconstructions from the 
complete data set could be compared by error estimates and other means.  
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Appendix   Gaussian Quadrature Grid Forward Modelling 
 
The numerical forward modelling routine used in the numerical sensitivity calculation and 
inversion chapters of this thesis is based upon the Gaussian quadrature grid modelling 
technique. For a complete derivation and explanation the reader is pointed to the formulations 
published in: Zhou et al., 2009. The modelling technique was selected because of the ease of 
incorporating arbitrary topography, heterogeneity and anisotropy. The formulation combines 
advantageous aspects of the finite element method and the spectral element method, such as 
the solution of the Variational Principle of the partial differential equation, Gaussian 
quadrature abscissae and local cardinal functions. The formulation can achieve similar 
convergence rates to the spectral element method, but does not require the element mesh or 
element mesh integrations. 

A.1 Resistivity Forward Modelling – Basic Equations 
 
The Variational Principle may be applied to 2.5D and 3D resistivity anisotropic forward 
modelling, in which the governing equations are: 
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Here  is in general a 33 symmetric conductivity matrix in the 3D case, n is the unit normal 
vector to the boundary ,  is a known function of the spatial coordinates and the conductivity 
and specifies the mixed boundary condition, rs is the current point-source location, and G is 
the Green’s function (the potential response to a unit current injection). If the medium has 
elliptical anisotropy, i.e. defined by the three principal values ( zzyyxx   ,, ) and with the 

symmetry-axis in the ẑ direction defined by the orientation angles (0, 0).Therefore, we have 
the functional: 
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for 2.5D and 3D modelling. Here, Gs is the value of G at the source position, which may be 
expressed by the interpolation formula of the neighbouring points (see the next section). 
 

A.2  Discretization of a 2D Functional 
 
For 2D resistivity modelling, the subsurface is often limited by a computational domain, i.e 
(x, z)  [

xNxx ,1 ]  [0, z0(x)], where the function z0(x) gives the topography of the Earth’s 

surface. The functional given in the previous section may be calculated by summation of 
successive integrals over the intervals Li:[xi, xi+1], (i = 1, 2, …,Nx -1; Nx2) in which the 
topography z0(x) is differentiable, i.e. z0(x)C1(Li), the integral becomes 
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where the integrand  F(, G, G)  is a function of the conductivity tensor  , the field 
quantity G, e.g., the electric potential in equations (A1) and (A2), and its gradient G, all of 
which in general vary with the spatial coordinates (x,y,z) . In order to calculate the inner 
integral along the z-axis, we may divide the elevation Z0(x) into Nz-1  ( 2zN ) parts and 
equation (A5) becomes 
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to this we apply the variable replacement
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and obtain the Jacobian matrix: 
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applying Gaussian quadrature formulae to the double intervals in equation (A6), yields 
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where ( lk  , )  and ( j
l

i
k ww , ) are the Gaussian quadrature abscissae (points) and weights 

respectively in the 2D case, and they can be analytically calculated once the integers iN  and 
jN  are given for the sub-domains ij: [xi, xi+1][ j

N

xz

N

xzj

zz )1(

)(
,

)1(

)()1( 00


 ]. Obviously, the 

Gaussian quadrature abscissae form a grid that spans the whole domain  and may easily fit 
the topography of the Earth’s surface. From equation (A9), one can see that the key step is to 
calculate the values of ),,( GGF   at the Gaussian quadrature points ( lk  , ), which 

involves sampling the model parameters )),(),(( lkk zx  and the field quantity 

)),,(),(( lkk zxG  and calculating the gradient 
),(),( lkk zx

G


  based on the grid. It is 

apparent that such grid may give the details of a complex model ),( zx  and the field quantity
),( zxG . It differs from the traditional finite element method and the spectral element 

methods, both of which require a powerful element generator for fitting a complex 
topography in the modelling and assume that each element has constant model parameters. 
 In order to calculate the gradient )/,/( zGxGG  , we apply the differential chain rule: 
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from which we have 
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We approximate the field quantity G in the domain ( lk  , ) [-1,1]  [-1,1] (see equation A7) 

by Lagrange interpolation 
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this leads to the derivatives with respect to the Gaussian quadrature points ( lk  , ):
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Substituting (A14) for (A12), we obtain the derivatives with respect to the original 
coordinates (x, z); they are 
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where 
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and the components of the vectors Nx(k, l) and Nz(k, l) are calculated as follows: 
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According to equation (A15), we have the following vector form of the integrand 
),,( GGF   for the 2.5D resistivity case (see equation (A3)): 
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therefore, equation (A6) becomes 
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where 
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The boundary integral in equation (A4) may be calculated in terms of the three sides: left (L), 
right (R) and bottom (B).They are 
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Substituting equations (A20)–(A24) for (A3), we finally have the matrix form of the 
functional for 2.5D resistivity modelling 

GbMGGG T
s

2

1
)( ,     (A25) 

where G is the vector consisting of the values at all points of the Gaussian quadrature grid, M 
is the matrix assembled by the local matrices ),(),()(

lk
T
qlkp

pq
klw  NN  and the coefficients 

in equations (A20)–(A24) and bs is the source vector containing the interpolation functions so 
that the equation GbT

ssG   is satisfied. Therefore, the forward modelling reduces to solving 

the linear equation system: 

sbMG        (A26)   

 
The dimension of the linear equation system is defined by the number of electrodes used in 
the survey along with the total number of Gaussian quadrature points. Normally, electric 
resistivity imaging surveys involve a large number of current electrode positions so that 
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equation (A26) may have to be solved hundreds of times. In 3D applications, an efficient and 
accurate linear equation solver is usually required, such as a conjugate gradient method. The 
banded Cholesky decomposition method ( TLLM  ) was applied to the linear equation 
system in the inversion routine used in this thesis. The advantage of the matrix method is that 
the decomposition is carried out only once for all the current electrodes. 
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