The effect of transforming growth factor beta1 null mutation on murine reproductive function

WENDY INGMAN

Department of Obstetrics and Gynaecology
The University of Adelaide
Adelaide, Australia

A thesis submitted to the University of Adelaide in fulfilment of the requirements for admission to the degree of Doctor of Philosophy

September 2002
TABLE OF CONTENTS

Table of contents iii
Abstract viii
Declaration ix
Acknowledgements x
Publications arising from these and related studies xi
Abstracts arising from these studies xii
List of tables xiv
List of figures xiv
List of movies xvi
Abbreviations xvii

Chapter 1 Literature review 1
1.1 Introduction 2
1.2 Regulation of TGFβ action 3
1.2.1 TGFβ isoforms 3
1.2.2 Regulation of TGFβ activation 5
1.2.3 TGFβ signalling 6
1.3 Genetic models for TGFβ disruption 7
1.4 The role of TGFβ in male reproductive function 9
1.4.1 Testis function and spermatogenesis 9
1.4.2 Penis, seminal vesicle and prostate growth and development 11
1.5 The role of TGFβ in female reproductive function 13
1.5.1 Ovarian function 13
1.5.2 Endometrial remodelling 14
1.5.3 Mammary gland development 14
1.6 The role of TGFβ in pregnancy 16
1.6.1 Embryo and fetal development 16
1.6.2 Implantation and placental development 17
1.7 TGFβ and immune regulation in reproductive tissues 18
1.8 Conclusion 20
1.9 Aims 23
Chapter 2 Materials and methods

2.1 Mice

2.1.1 Animal husbandry

2.1.2 Maintenance and production of TGFβ1 null mutant mice

2.1.2.1 Generation of the TGFβ1 null mutation

2.1.2.2 Generation of TGFβ1 null mutant mice on scid background

2.1.2.3 TGFβ1 colony database

2.1.3 Blood collection

2.1.4 Ovarian cycle determination

2.1.5 Analysis of mating behaviour

2.1.6 Testosterone replacement

2.1.6.1 Testosterone implants

2.1.6.2 Adult testosterone supplement

2.1.6.3 Neonatal testosterone supplement

2.1.6.4 Stimulation of steroidogenesis

2.2 Nucleotide Analysis

2.2.1 Genotyping mice

2.2.1.1 DNA Extraction

2.2.1.2 PCR design

2.2.1.3 Polymerase chain reaction

2.2.1.4 PKCS restriction digest

2.2.1.5 Detection of PCR products

2.2.2 Quantitation of mRNA

2.2.2.1 Primer design

2.2.2.2 RNA extraction

2.2.2.3 Reverse transcription

2.2.2.4 Polymerase chain reaction

2.2.2.5 Quantitation of steroidogenesis enzyme mRNA

2.2.3 Validation of PCR product sequence

2.3 In vivo and in vitro embryo development

2.3.1 In vitro fertilisation

2.3.1.1 Oocyte collection

2.3.1.2 Sperm preparation

2.3.1.3 IVF and culture
2.3.2 In vitro culture
2.3.3 Assessment of embryos
2.4 Tissue histology
2.4.1 Tissue preparation
2.4.2 Haematoxylin and eosin staining
2.4.3 Analysis of testis pathology
2.4.4 Immunohistochemical analysis of ovaries
2.4.4.1 Immunohistochemical staining
2.4.4.2 Quantification of endothelial cells
2.4.5 Whole mount preparation and analysis of mammary gland tissue
2.5 Serum hormone analysis
2.6 Statistical analysis

Chapter 3 Impaired steroidogenesis and spermatogenesis in male TGFβ1 null mutant mice

3.1 Introduction
3.2 Effect of TGFβ1 null mutation on male fertility
3.3 Effect of TGFβ1 null mutation on spermatogenesis
3.4 Effect of TGFβ1 null mutation on steroid synthesis
3.5 Discussion
3.5.1 General health and reproductive function in TGFβ1 null male mice
3.5.2 Spermatogenesis in TGFβ1 null male mice
3.5.3 Steroidogenesis in TGFβ1 null male mice
3.6 Summary

Chapter 4 Impaired sexual performance in male TGFβ1 null mutant mice

4.1 Introduction
4.2 Effect of TGFβ1 null mutation on male mating behaviour
4.3 Effect of TGFβ1 null mutation on penile NOS expression
4.4 Effect of sildenafil citrate treatment on mating ability of TGFβ1 null mutant males
4.5 Effect of testosterone replacement on mating ability of TGFβ1 null mutant males

4.6 Discussion

4.6.1 The effect of androgen replacement on sexual function in TGFβ1 null male mice

4.6.2 Induction of penile NOS enzymes in TGFβ1 null male mice

4.7 Summary

Chapter 5 Ovarian dysfunction in female TGFβ1 null mutant mice 88

5.1 Introduction 89

5.2 Effect of TGFβ1 null mutation on estrous cyclicity and ovulation 89

5.3 Effect of TGFβ1 null mutation on fertility 91

5.4 Effect of TGFβ1 null mutation on uterine morphology 94

5.5 Effect of TGFβ1 null mutation on preimplantation embryo development 94

5.6 Effect of TGFβ1 null mutation on ovarian steroidogenesis 100

5.7 Effect of TGFβ1 null mutation on mammary gland development 103

5.8 Discussion 103

5.8.1 Ovarian function and hormone synthesis in TGFβ1 null female mice 106

5.8.2 Impaired preimplantation embryo development and TGFβ1 mutation 108

5.8.2.1 Maternal reproductive tract TGFβ1 deficiency 108

5.8.2.2 Embryonic TGFβ1 deficiency 109

5.8.2.3 Oocyte development in TGFβ1 null females 111

5.8.3 Post-partum survival of pups born to TGFβ1 null females 112

5.9 Summary 113

Chapter 6 General Discussion 114

6.1 Introduction 115

6.2 Perturbation of reproductive function in male TGFβ1 null mutant mice 115

6.2.1 Impaired steroidogenesis in male TGFβ1 null mutant mice 115

6.2.2 Impaired mating ability in male TGFβ1 null mutant mice 117

6.2.3 Other aspects of the health male TGFβ1 null mutant mice 118
6.3 Perturbation of reproductive function in female TGFβ1 null mutant mice
6.4 Impaired neurological function in TGFβ1 null mutant mice
6.5 Interaction between TGFβ1 and other genes
6.5.1 Embryo lethality
6.5.2 Strain variation and reproductive function
6.5.2.1 TGFβ1 and the C57Bl/6 background strain
6.5.2.2 Male infertility linked to genetic interaction
6.6 Future research
6.6.1 TGFβ1 deficiency as a cause of infertility in humans
6.6.2 Restored fertility by exogenous TGFβ1 treatment
6.7 Conclusion

References
Appendix
ABSTRACT

Transforming growth factor beta 1 (TGFβ1) is a multifunctional cytokine implicated in gonad and secondary sex organ development, spermatogenesis and ovarian function, immunoregulation of pregnancy, embryo implantation and placental development. The TGFβ1 null mutant mouse offers the unique opportunity to study the role of TGFβ1 in vivo. TGFβ1 null mutant males are 100% infertile. When housed with normal females they do not deposit sperm or induce pseudopregnancy. Serum testosterone levels in adult TGFβ1 null mutant mice is decreased by 75%, caused by factors upstream of testis function as testosterone production can be induced by exogenous gonadotrophins. In the majority of TGFβ1 null mice, spermatogenesis proceeds normally and in vitro fertilisation experiments have shown the sperm are viable. Behavioural studies revealed that TGFβ1 null mutant males display mounting behaviour and while some intromit, ejaculation never occurs. Nitric oxide synthase enzymes were not induced in the penis of TGFβ1 null males in response to gonadotrophin, and this may be the cause of impaired sexual performance. Neither replacement of testosterone during perinatal development and/or adulthood, nor treatment with sildenafil citrate restored sexual function. Female TGFβ1 null mice also have severe fertility deficiencies. These mice suffer three distinct reproductive lesions (1) failure of 50% of the females to mate with normal stud males, (2) in females that do mate, failure of preimplantation embryo development leading to 80% infertility and (3) failure to nurture pups in the small proportion of females that produce live litters. Ovarian function is severely impaired in TGFβ1 null mutant females and is likely to be the principle cause of reproductive failure. The number of ovulations is reduced by 40% and each corpora lutea produces less progesterone leading to a 75% decrease in serum progesterone during early pregnancy. Embryos from TGFβ1 null mutant females on day 3.5 post coitum were developmentally arrested in the morula stage. Embryos from superovulated null mutant mice fertilised with normal sperm and cultured in vitro also failed to develop to blastocysts. Together, these studies suggest that preimplantation embryo developmental failure is the result of a lesion in oocyte development in the ovary prior to ovulation. These studies demonstrate that TGFβ1 is indeed a critical factor in many aspects of murine reproductive function.