Technologies and Mathematical Modeling of Fines-Assisted Oil and Gas Recovery

Abbas Zeinijahromi, B.Sc.(Hons), M.Sc.

A thesis submitted for the degree of Doctor of Philosophy (Ph.D.)

Australian School of Petroleum
Faculty of Engineering, Computer & Mathematical Sciences
The University of Adelaide

August 2012
Table of Contents

Abstract ... iii

Statement of Originality .. v

Acknowledgment ... vi

Thesis by Publication ... viii

Statement of Authors’ Contributions ... x

1 **Contextual Statement** ... 1

 1.1 Thesis Structure ... 4

 1.2 How the Publications Are Related to This Thesis 7

 1.3 References ... 10

2 **Literature Review** ... 13

 2.1 Introduction .. 13

 2.2 Suspension Transport in Porous Media ... 14

 2.2.1 Surface Interactions ... 15

 2.2.2 Hydrodynamic Forces .. 20

 2.2.3 Classical Filtration Theory ... 21

 2.3 Low Salinity Water-Flooding as an Improved Oil Recovery Technique .. 25

 2.4 References ... 29

3 **Maximum Retention Concentration Function as a Model for Particles**

 Detachment in Porous Media ... 33

 3.1 Particle Detachment under Velocity Alternation during Suspension

 Transport in Porous Media ... 34

 3.2 Well Impairment by Fines Migration in Gas Fields 60

 3.3 Effects of Fines Migration on Well Productivity during Steady State

 Production .. 72

 3.4 Skin due to Fines Mobilization, Migration, and Straining during Steady

 State Oil Production .. 88
4 Analytical Model for Fines-Assisted Water-flood in Quasi 2-D Layer-Cake Formations

4.1 Effects of Induced Fines Migration on Water Cut during Waterflooding

4.2 Effects of Injected-Water Salinity on Waterflood Sweep Efficiency through Induced Fines Migration

5 Two-Phase Flow in Natural Rocks with Fines Lifting, Migration, and Straining

5.1 Improved Oil Recovery by Mobilizing Fines during Waterflooding (Laboratory-Based Incremental Recovery)

6 Modeling and Applications of Low Salinity Fines-Assisted Water-flooding (New Improved Oil Recovery Method)

6.1 Mathematical Model for Fines Migration Assisted Waterflooding with Induced Formation Damage

6.2 Fines Migration Assisted Improved Gas Recovery during Gas Field Depletion

7 Conclusions
Abstract

This is a PhD thesis by publication. It includes seven published/accepted for publication journal papers and two submitted papers in academic peer reviewed journals. The content of the thesis is also published in ten full volume technical papers of Society of Petroleum Engineering (SPE).

The thesis develops a theory for single and two-phase flow in porous media accounting for mobilization, migration, and straining of the natural reservoir fines. This phenomenon has been widely reported in laboratory studies and also well history data. The existing mathematical model, widely used in petroleum reservoir simulation, does not agree with laboratory observations. It contains phenomenological empirical constants which cannot be predicted theoretically.

The new closed system of governing equations, proposed in the current thesis, is free of the above mentioned shortcomings. The proposed system contains a new theoretical function describing the rock capacity to liberate fines so-called maximum retention function. This function is based on the micro scale conditions of mechanical equilibrium of fine particles in the porous space. The mechanical equilibrium condition is a torque balance of drag, lifting, electrostatic, gravity, and capillary forces. The maximum retention function is derived for both single-phase and two-phase flows in porous media. The comparison between the modified particle detachment model and the maximum retention function and laboratory and well data has shown a good agreement, which validates the model.

An exact analytical solution for single-phase flow in porous media with alternating velocity accounting for fines lifting has been derived, allowing for
mathematical description of a laboratory test on the suspension injection into reservoir cores with alternating velocities. Good agreement between the laboratory test results and the mathematical modeling predictions validates the theory developed.

Both analytical and numerical models for two-phase flow with induced fines migration have been developed. In reservoir scale approximation, the equivalence between the fines assisted water-flood and adsorption-free polymer flood has been investigated. It allows using the existing commercial simulators to model low salinity water-flood. The results of the modeling allow proposing a new technologically effective and economical method for improved sweep efficiency by fines assisted water-flooding.

Moreover, modeling of low salinity water injection shows that permeability reduction due to induced fines migration can slow down the encroaching water in oil/gas reservoir under strong water support. It decreases water production during pressure depletion of oil/gas reservoirs and improves the recovery. Also, a small volume injection of low salinity water can be used to reduce the water conning problem in oil/gas wells and prolong the wells production life.
Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Abbas Zeinijahromi and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Abbas Zeinijahromi 21/08/2012
Acknowledgment

It would not have been possible to write this doctoral thesis without the help and support of the kind people around me, to only some of whom it is possible to give particular mention here.

First and foremost, I would like to extend my deepest gratitude to my family who through my study career had always encouraged me to follow my heart and inquisitive mind in any direction this took me. They have always provided unwavering love and encouragement. Thank you for believing in me.

This thesis would not have been possible without the help, support, and patience of my principal supervisor, Prof. P. Bedrikovetsky. I am very appreciative of his generosity with his time, advice, and contributions. I could not have asked for a better role model, each inspirational, supportive, and patient. His encouragement and enthusiasm were important for the completion of this project.

The support, detailed review, constructive criticism and excellent advice of my Co-Supervisor Dr. T. Carageorgos, has been invaluable on both academic and personal level, for which I am extremely grateful.

I would like to express my heartfelt gratitude to the staff and students at Australian School of Petroleum, I am grateful for the chance to be a part of the School. Thank you for welcoming me and helping to develop this thesis.

I deeply appreciate the welcome I have received from the Department of Geotechnology at Delft University of Technology during my visit. Furthermore, I am deeply indebted to my wonderful colleagues in the Dietz laboratory that have
provided the environment for sharing their experiences. I am especially grateful to Dr. R. Farajzadeh and Prof. H. Bruining for all that they have taught me.

During this work I have collaborated with many colleagues for whom I have great regard, and I wish to extend my warmest thanks to P. Lemon (Santos, Ltd), Dr. Z. You and Dr. A. Badalyan (The University of Adelaide), A.Vaz (State North Fluminense State University of Rio de Janeiro), and F. Machado and A.L. S. de Souza (Petrobras, Brazil) who have helped me with my work.

The financial supports of the Santos, Ltd. and the Australian Research Council are gratefully acknowledged.
Thesis by Publication

Published Journal Papers

Papers Accepted for Publication

Submitted Journal Papers

Statement of Authors’ Contributions

This thesis comprises a portfolio of nine publications that have been published, accepted for publication and/or submitted for publications in accordance with ‘Academic Program Rules and Specifications 2012’. All journals to which the papers have been submitted are indexed in the ‘ERA 2012 Journal List’ database. The research summarized in the papers that constitute this thesis was undertaken within ‘Formation Damage and EOR Research Group’ at Australian School of Petroleum and with other universities and industry collaborators. Hence all the papers presented herein are co-authored and detail statements of relative contributions are endorsed by the co-authors.
STATEMENT OF AUTHORSHIP

Particle Detachment under Velocity Alternation during Suspension Transport in Porous Media
P. Bedrikovetsky, A. Zeinijahromi, F. Siqueira, C. Furtado, A. de Souza
Transport Porous Media, 2012, 91(1), 173-197

A. Zeinijahromi (Candidate)

Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)

Derivation of the exact solution, numerical calculations, comparative study between test and model data, participating in writing the text and formulating the final conclusions

Certification that the statement of contribution is accurate

Signed .. Date

F. Siqueira

Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)

Development of analytical model, mathematical numerical modelling, sensitivity study

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis

Signed Date 01 June 2012

C. Furtado

Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)

Carrying out the laboratory tests

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis

Signed .. Date

Jun 11th 2012
A. de Souza
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Formulation of the problem
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed Date 06/04/2012

P. Bedrikovetsky
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Development of basic equations, writing the manuscript, acted as corresponding author
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed Date 12/06/2012
STATEMENT OF AUTHORSHIP

Well impairment by fines production in gas fields
A. Zeinijahromi, A. Vaz, P. Bedrikovetsky

A. Zeinijahromi (Candidate)
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Derivation of the exact solution, numerical calculations, comparative study between test and model data, participating in writing the text
Certification that the statement of contribution is accurate
Signed ... Date ...

A. Vaz,
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Literature review, Formulation of the problem, Discussion of the results
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis,
Signed ... Date 06/04/2012

P. Bedrikovetsky
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Supervised development of work, helped in data interpretation, manuscript evaluation, and acted as corresponding author
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed ... Date 12/06/2012
STATEMENT OF AUTHORSHIP

Effects of Fines Migration on Well Productivity during Steady State Production
A. Zeinijahromi, A. Vaz, P. Bedrikovetsky, S. Borazjani

A. Zeinijahromi (Candidate)
Statement of contribution (in terms of the conceptualization of the work, its realization and its
documentation)
Derivation of the exact solution, numerical calculations, comparative study between test and
model data, participating in writing the text
Certification that the statement of contribution is accurate
Signed .. Date

A. Vaz,
Statement of contribution (in terms of the conceptualization of the work, its realization and its
documentation)
Performing literature review, Contributed to planning of article and provided critical
evaluation
Certification that the statement of contribution is accurate and permission is given for the
inclusion of the paper in the thesis
Signed .. Date

S. Borazjani
Statement of contribution (in terms of the conceptualization of the work, its realization and its
documentation)
Contributed to planning of article and provided critical evaluation
Certification that the statement of contribution is accurate and permission is given for the
inclusion of the paper in the thesis
Signed .. Date
P. Bedrikovetsky

Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)

Supervised development of work, helped in data interpretation, manuscript evaluation and acted as corresponding author

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis

SignedDate 12/06/2012
STATEMENT OF AUTHORSHIP

Skin due to Fines Mobilisation, Migration and Straining during Steady State Oil Production
P. Bedrikovetsky, A. Vaz, F. Machado, A. Zeinijahromi, S. Borazjani
Journal of Petroleum Science and Technology: accepted for publication 12/2011

A. Zeinijahromi (Candidate)
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Performed analysis, interpreted data and wrote manuscript
Certification that the statement of contribution is accurate
Signed ... Date

A. Vaz,
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Performing literature review. Contributed to planning of article and provided critical evaluation
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed ... Date 06/04/2012

F. Machado
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Contributed to planning of article and provided critical evaluation
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed ... Date 06/04/2012
S. Borazjani

Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)

Numerical modelling. Contributed to planning of article and provided critical evaluation

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis

Signed: Date: 8/6/2012

P. Bedrikovetsky

Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)

Supervised development of work, helped in data interpretation, manuscript evaluation and acted as corresponding author

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis

Signed: Date: 12/6/2012
STATEMENT OF AUTHORSHIP

Effects of induced fines migration on water cut during waterflooding
A. Zeinijahromi, P. Lemon, P. Bedrikovetsky

A. Zeinijahromi (Candidate)
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Derivation of the exact solution, numerical calculations, comparative study between test and model data, participating in writing the text
Certification that the statement of contribution is accurate
Signed .. Date

P. Lemon
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Performed the literature review. Contributed to planning of article and provided critical evaluation, participating in writing the text
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed .. Date

P. Bedrikovetsky
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Supervised development of work, helped in data interpretation and manuscript evaluation and acted as corresponding author
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed .. Date
STATEMENT OF AUTHORSHIP

Effects of Injected -Water Salinity on Waterflood Sweep Efficiency Through Induced
P. Lemon, A. Zeinijahromi , P. Bedrikovetsky, I. Shahin
Journal of Canadian Petroleum Technology, 2011, 50(9), 82-94

A. Zeinijahromi (Candidate)
Statement of contribution (in terms of the conceptualization of the work, its realization and its
documentation)
performed detailed analysis on all samples, interpreted data and participating in writing the
text
Certification that the statement of contribution is accurate
Signed ... Date

P. Lemon
Statement of contribution (in terms of the conceptualization of the work, its realization and its
documentation)
Contributed to planning of article and provided critical evaluation, participating in writing the
text, and formulating the final conclusions, performed literature review and conceptual
analysis
Certification that the statement of contribution is accurate and permission is given for the
inclusion of the paper in the thesis
Signed ... Date 3/6/2012

I. Shahin
Statement of contribution (in terms of the conceptualization of the work, its realization and its
documentation)
Contributed to planning of article and provided critical evaluation, performed literature
review and conceptual analysis
Certification that the statement of contribution is accurate and permission is given for the
inclusion of the paper in the thesis
Signed ... Date 13/6/2012
P. Bedrikovetsky

Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)

Supervised development of work, helped in data interpretation, manuscript evaluation and
acted as corresponding author

Certification that the statement of contribution is accurate and permission is given for the
inclusion of the paper in the thesis

Signed Date 12/12/06
STATEMENT OF AUTHORSHIP

Improved Oil Recovery with Waterflooding by Mobilising Fines (laboratory-based incremental recovery)
F. Hussain, A. Zeinijahromi, P. Bedrikovetsky, Y. Cinar, A. Badalyan, T. Carageorgos

A. Zeinijahromi (Candidate)
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Derivation of the exact solution, numerical calculations, comparative study between test and model data, participating in writing the text, formulating the final conclusions, and acted as corresponding author
Certification that the statement of contribution is accurate
Signed ..Date..........................

F. Hussain
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Carried out main laboratory study. Contributed to planning of article and provided critical evaluation
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed .. Date 04/06/2012

Y. Cinar
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Carried out laboratory study. Contributed to planning of article and provided critical evaluation
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed .. Date 4/6/12
A. Badalyan

Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Carried out laboratory study. Contributed to planning of article and provided critical evaluation
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed Date 06.06.2012

T. Carageorgos

Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Carried out laboratory study. Contributed to planning of article and provided critical evaluation
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed Date 06.06.2012

P. Bedrikovetsky

Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Supervised development of work, helped in data interpretation and manuscript evaluation
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed Date 06.06.2012
STATEMENT OF AUTHORSHIP

Mathematical Model for Fines Migration Assisted Waterflooding with Induced Formation Damage

A. Zeinijahromi, T. K. P Nguyen, P. Bedrikovetsky
Society of Petroleum Engineers Journal: accepted for publication 06/2012

A. Zeinijahromi (Candidate)
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Performed analysis, interpreted data, wrote manuscript and acted as corresponding author
Certification that the statement of contribution is accurate
Signed .. Date...

T. K. P Nguyen
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Contributed to planning of article and provided critical evaluation
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed .. Date...

P. Bedrikovetsky
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Supervised development of work, helped in data interpretation and manuscript evaluation
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed .. Date...
STATEMENT OF AUTHORSHIP

Fines migration assisted improved gas recovery during gas field depletion
T. K. P Nguyen, A. Zeinijahromi, P. Bedrikovetsky

A. Zeinijahromi (Candidate)
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Performed analysis on all samples, interpreted data, wrote manuscript and acted as corresponding author
Certification that the statement of contribution is accurate
Signed .. Date ...

T. K. P Nguyen
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Performed numerical reservoir modelling, performed analysis of calculation results.
Contributed to planning of article and provided critical evaluation
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed .. Date 04/06/2012

P. Bedrikovetsky
Statement of contribution (in terms of the conceptualization of the work, its realization and its documentation)
Supervised development of work, helped in data interpretation and manuscript evaluation
Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis
Signed .. Date 12/06/2012