

Design Techniques for Low Power Mixed Analog-Digital Circuits with Application to Smart Wireless Systems

by

Said Fares Al-Sarawi

B.E. (First Class Honours), Arab Academy for Science and Technology, Alexandria, Egypt, 1990

Thesis submitted for the degree of

Doctor of Philosophy

in

School of Electrical and Electronic Engineering Faculty of Engineering, Computer and Mathematical Sciences

> The University of Adelaide Australia

> > February, 2003

Contents

Conten	iii
Abstrac	ix ix
Declara	tion xi
Publica	tions
Acknow	vledgement xix
List of	Figures xxi
List of	Tables xxix
List of	Abbreviations and Symbols xxxi
Chapte	r 1. Introduction and Motivation 1
1.1	Mixed Signal Systems
1.2	Low Power Mixed Signal Technology
1.3	Problem Definition
1.4	Common Mixed Analog-Digital Components
1.5	Original Contributions
1.6	Thesis Structure
BIBLIC	IGRAPHY 17
Chapte	r 2. Controlled Gain Amplifiers 25
2.1	Introduction
2.2	Series Transistor Configuration
2.3	Parallel Transistor Configuration
2.4	Current Mirror Configuration

2.5	Digitally Programmable Conductance Configuration				
2.6					
2.7	Experimental Work	18			
		18			
	2.7.2 Measurement of the PTC Amplifier	51			
2.8	Summary	55			
BIBLIC	JGRAPHY 5	9			
Chapte	er 3. Digital Trimming of Operational Amplifiers 6	1			
3.1	Introduction	52			
3.2	Statistical Data on Input Offset Voltage	53			
	3.2.1 Components of \mathbf{V}_{os}	3			
	3.2.2 Statistical Data on \mathbf{V}_{os}	53			
3.3	Input Offset Voltage Reduction and Cancellation	55			
	3.3.1 Device Mismatch Reduction	6			
		6			
-	3.3.3 Auto-zero Cancellation Techniques	7			
3.4	New Digital Trimming Techniques	0			
		'1			
		6			
3.5	Experimental Work	0			
3.6	Summary	2			
BIBLIC	GRAPHY 8	9			
		3			
4.1		4			
4.2	Low Power Prototype CMOS Schmitt Trigger Circuit				
	4.2.1 An nMOS Schmitt Trigger				
	4.2.2 A pMOS Schmitt Trigger				
	4.2.3 Fully Symmetrical CMOS Schmitt Trigger				
	4.2.4 Fully Adjustable Hysteresis CMOS Schmitt Trigger 10				
4.3	Finite Input Impedance (FII) Schmitt Trigger				
	4.3.1 Resistive FII Schmitt Trigger				
	4.3.2 Fully Adjustable FII Schmitt Trigger	3			
	4.3.3 Self-Biased FII Schmitt Trigger	4			

4.4	Experimental Work				
4.5	Discussion				
4.6	Summary				
BIBLIC	GRAPHY	133			
Chante	r 5. Analog Circuit Design using Neuron MOS	137			
5.1	Introduction				
5.2	General Model Derivation of the ν MOS Transistor				
5.3	Key Design Parameters for ν MOS Transistor				
	5.3.1 Floating-Gate Gain Factor				
	5.3.2 Threshold Voltage Seen from the Floating Gate				
	5.3.3 Floating Gate Offset Voltage				
5.4	Analog Circuit Design using ν MOS Transistor				
	5.4.1 A Linear Grounded Resistor	143			
	5.4.2 Controlled Gain Amplifiers	145			
	5.4.3 Schmitt Trigger Circuits	151			
5.5	Power Dissipation Reduction	154			
5.6	Experimental Work	155			
5.7	Summary	157			
BIBLIC	JGRAPHY	163			
Chanto	r 6. Novel Low Power Ripple Through Gray Code Counters	167			
6.1	Introduction				
6.2	Gray Code Sequence Generation				
6.3	Formulas Implementation				
0.0	6.3.1 Formulas implementation using JK flip-flops				
	6.3.2 Formulas implementation using a dynamic D-flip-flops				
6.4	Experimental Work	. 176			
6.5	Summary				
BIBLIC	JGRAPHY	185			
Chapte	r 7. A Novel Topology for Grounded-to-Floating Resistor Conversion	187			
7.1	Introduction	. 188			
7.2	A New Circuit Topology	. 188			
	7.2.1 Theoretical Analysis	. 188			

	7.2.2 Topology Implementation					
7.3	Converting a Grounded Resistor to a Floating Resistor					
7.4	Very High Value Floating (VHVF) Resistor					
7.5	Statistical Modelling					
7.6	A Design Example					
7.7	Summary					
BIBLIC	OGRAPHY 207					
Chapte	r 8. Program Mode Detection Circuits 209					
8.1	Introduction					
8.2	ISD9664 Chip					
8.3	Early work on the PMD circuit $\ldots \ldots 213$					
	8.3.1 Early Program Mode Detection Circuit					
8.4	New PMD circuits					
	8.4.1 New Program Mode Detection Circuits					
	8.4.2 PMD Circuits with a Supply Voltage Bleed					
	8.4.3 PMD Circuit with Node Reset					
	8.4.4 Symmetrical PMD Circuit					
8.5	Experimental Work					
8.6	Summary					
BIBLIC	OGRAPHY 233					
Chapte	r 9. Conclusions and Directions 235					
9.1	Summary and Future Directions					
9.2	Research Contributions					
9.3	Closing Comments					
Append	lix A. Three Dimensional VLSI Packaging Study 245					
A.1	Introduction					
A.2	Advantages of 3D Packaging Technology					
	A.2.1 Size and Weight					
	A.2.2 Silicon Efficiency					
	A.2.3 Delay					
	A.2.4 Noise					
	A.2.5 Power Consumption					

	A.2.6	Speed	250					
	A.2.7	Interconnect Capacity	250					
A.3	Vertica	al Interconnections in 3D Electronics	250					
	A.3.1	Periphery Interconnection between Stacked ICs	251					
	A.3.2	Area Interconnection between Stacked ICs	255					
	A.3.3	Periphery Interconnection between Stacked MCMs	256					
	A.3.4	Area Interconnection between Stacked MCMs	257					
A.4 Limitations of 3D Packaging Technology								
	A.4.1	Thermal Management	267					
	A.4.2	Design complexity	268					
	A.4.3	Cost	269					
	A.4.4	Time to Delivery	269					
	A.4.5	Design Software	269					
A.5	Discus	sion	270					
A.6	Conclu	usions	272					
BIBLIO	GRAP	нү	277					
Append	lix B. S	Symmetrical Level 13 Model Parameters	285					
Appendix C. A Statistical Analysis of MOS Mismatch								
BIBLIO	GRAP	нү	293					
Append	lix D. V	Very Low Frequency, Low Power Oscillators	295					
D.1	Introd	luction	295					
D.2	Schmi	tt-Oscillators	296					
D.3	Exten	ded Mode Schmitt-Oscillator	298					
D.4	Exper	imental Results of Extended Mode Schmitt-Oscillator	300					
	D.4.1	Schmitt-Oscillator Measurements	300					
	D.4.2	Extended Mode Schmitt Oscillator Measurements						
D.5	Summ	nary	303					
BIBLIOGRAPHY 3								
Appendix E. Detailed Derivation of Equation 3.3								
	lix E. I	Detailed Derivation of Equation 3.3	309					

Abstract

This dissertation presents and discusses new design techniques for mixed analog-digital circuits with emphases on low power and small area for standard low-cost CMOS VLSI technology. The application domain of the devised techniques is radio frequency identification (RFID) systems, however the presented techniques are applicable to wide range of mixed mode analog-digital applications. Hence the techniques herein apply to a range of smart wireless or mobile systems. The integration of both analog and digital circuits on a single substrate has many benefits such as reducing the system power, increasing the system reliability, reducing the system size and providing high inter-system communications speed – hence, a cost effective system implementation with increased performance. On the other hand, some difficulties arise from the fact that standard low-cost CMOS technologies are *tuned* toward maximising digital circuit performance and increasing transistor density per unit area. Usually these technologies have a wide spread in transistor parameters that require new design techniques that provide circuit characteristics based on relative transistor parameters rather than on the absolute value of these parameters.

This research has identified new design techniques for mostly analog and some digital circuits for implementation in standard CMOS technologies with design parameters dependent on the relative values of process parameters, resulting in technology independent circuit design techniques. The techniques presented and discussed in this dissertation are (i) applied to the design of low-voltage and low-power controlled gain amplifiers, (ii) digital trimming techniques for operational amplifiers, (iii) low-power and low-voltage Schmitt trigger circuits, (iv) very low frequency to medium frequency low power oscillators, (v) low power Gray code counters, (vi) analog circuits utilising the neuron MOS transistor, (vii) high value floating resistors, and (viii) low power application specific integrated circuits (ASICs) that are particularly needed in radio frequency identification systems. The new techniques are analysed, simulated and verified experimentally via five chips fabricated through the MOSIS service.