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Epidemiological consequences of
household-based antiviral prophylaxis
for pandemic influenza

Andrew J. Black1, Thomas House2, M. J. Keeling2,3 and J. V. Ross1

1Stochastic Modelling Group, School of Mathematical Sciences, The University of Adelaide, Adelaide,
South Australia 5005, Australia
2Warwick Mathematics Institute, and 3School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK

Antiviral treatment offers a fast acting alternative to vaccination; as such it is

viewed as a first-line of defence against pandemic influenza in protecting

families and households once infection has been detected. In clinical trials,

antiviral treatments have been shown to be efficacious in preventing infection,

limiting disease and reducing transmission, yet their impact at containing the

2009 influenza A(H1N1)pdm outbreak was limited. To understand this seem-

ing discrepancy, we develop a general and computationally efficient model

for studying household-based interventions. This allows us to account for

uncertainty in quantities relevant to the 2009 pandemic in a principled way,

accounting for the heterogeneity and variability in each epidemiological pro-

cess modelled. We find that the population-level effects of delayed antiviral

treatment and prophylaxis mean that their limited overall impact is quantitat-

ively consistent (at current levels of precision) with their reported clinical

efficacy under ideal conditions. Hence, effective control of pandemic influenza

with antivirals is critically dependent on early detection and delivery ideally

within 24 h.
1. Introduction
Despite its relative mildness, the 2009 influenza pandemic was still a significant

cause of mortality and morbidity. The potential for future severe pandemics

continues to present a major threat [1]. Faced with a virulent strain of pandemic

influenza, one of the main public-health objectives is to control or contain the

outbreak for sufficiently long that a vaccine can be developed. Treatment

with antivirals offers the potential to enable such control. The fundamental

policy is to give antiviral treatment to all household members (or other close

contacts) as soon as an infection is identified within the household [2–4].

This has several aims: it lowers the risk of onward transmission from both

those currently infected and from subsequent household cases, and it decreases

the severity and duration of disease (both for those already infected and for

subsequent household cases).

Clinical trials of the two major antiviral treatments against influenza,

oseltamivir and zanamivir, have shown subtly different effects. Both treat-

ments appear to have similar effects in lowering susceptibility to infection,

but oseltamivir appears to be more effective in reducing transmission from

treated infected individuals [5,6]. However, a fundamental challenge is to link

these individual-level observations to population-level predictions about the

effectiveness of this type of treatment. This is precisely the type of complex pro-

blem where multiple scales and nonlinear behaviour mean that mathematical

models are essential tools.

While detailed, large-scale simulation models of entire populations are now

feasible [7], the computational requirements of such models precludes the

number of replications necessary to perform wide-ranging sensitivity analysis.

In contrast, while simple models based on homogeneously mixing populations
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can be efficiently used, they do not admit sufficient complex-

ity to capture the localized correlation between detection of

disease and treatment with antivirals. Household models

offer a compromise, in which great computational efficiency

can be achieved, and yet the household-level distribution of

antiviral treatment (both reactively and prophylactically)

can be robustly modelled. Deterministic and stochastic

household models have been considered in the literature

[8,9]; herein we focus on (discrete-state) stochastic models,

as most appropriate for the very early stages of an epidemic.

Household models are an increasingly popular frame-

work for studying disease dynamics [9–11]. These models

capture the epidemiological observation that a small

number of household contacts are responsible for a signifi-

cant amount of transmission, and that such contacts are

highly clustered forming a clique. Such models are also the

simplest available that contain the necessary population

heterogeneity required to accurately model antiviral prophy-

laxis, robustly capturing the fact that antivirals are generally

administered to entire households. The small number of indi-

viduals within a household additionally means that the

chance nature of transmission (and recovery) is likely to be

influential, and therefore models must allow for the stochastic

aspects of epidemic processes. One further advantage of this

approach is that parametrization through likelihood calcu-

lation becomes feasible [9,10,12,13]; although it is possible

using Monte Carlo simulations, in practice this is likely to

be too slow.

Here, we introduce a general modelling framework for

infectious disease dynamics in a population of households,

allowing for complex control interventions, focusing specifi-

cally on the impact of household antiviral treatment. Given

the computational efficiency of this methodology, we are

able to fully explore the ranges of uncertainty in the effects

of treatments, and pay considerable attention to the impact

of delays between detection and deployment of the treat-

ments. Two specific scenarios concerning this delay are

considered: in the most general form, we allow for random

detection delay (for each infected member of the household)

to the notification of authorities of possible infection, and

then subsequent random deployment delay until interven-

tion is begun; we also consider the specific case of a fixed

delay to intervention following the first infectious case

within the household.

Two simple measures are used to capture the population-

level transmission effects of any treatment regime: the

household basic reproduction number, R*, which measures

the average number of secondary households infected by

a household when the clear majority of households are

fully susceptible [9] and the doubling time early in the

pandemic, Td. To calculate these, we extend the computation-

ally efficient methods recently presented for evaluating these

characteristics in a model with a homogeneous distribution

of household sizes [10] to the higher dimensional case of a

heterogeneous distribution of household sizes based upon

census data. We use census data from Indonesia (2003), the

UK (2001) and Sudan (1990), providing a contrast between

populations dominated by single and two-person households

to ones where households of size four and larger are most

common. Throughout this paper, our default assumptions

and parameters used are based on the 2009 H1N1 pandemic,

although we believe our results should translate to other

influenza outbreaks.
In common with many methods of control and other

studies [2–4,14–19], we discover that prompt action is as

important as effective action; that is to contain a pandemic,

even a highly efficacious antiviral treatment must be adminis-

tered rapidly. Nevertheless, delayed household antiviral

treatment can still significantly increase the doubling time

of the epidemic, buying time for other control measures.

1.1. Relation to previous work
Before 2009, many modelling papers were published that

dealt with mitigation of pandemic influenza, mainly motiva-

ted by concerns about H5N1 strains emerging from southeast

Asia [3,4,15–19]. This work was typically based on computa-

tionally intensive Monte Carlo simulation using estimates

of parameters from diverse sources, together with traditional

sensitivity analysis—although due to the complexity of the

models only a few realizations were generally possible. In

these models, a number of control measures were simul-

taneously simulated with the aim of containing an outbreak of

a highly virulant strain as rapidly as possible. As such, these

provided important general guidance to public-health policy

planning, which by necessity involves multiple interventions.

The motivation for our current work is different—we wish

to make a careful quantitative assessment of one particular

intervention (antivirals) to address the seeming discrepancy

between the efficacy of this intervention in clinical trials and

its lack of major impact at the population level during the

2009 pandemic. We therefore focus on a simpler households

model, as has been considered in more theoretical modelling

work [20–22], with two levels of mixing only—within and

between households. This analysis can be performed with

extreme computational efficiency; in fact, we circumvent the

need for simulation of model outputs (given parameter

values), instead evaluating our epidemiological quantities to

a desired numerical precision.

This computational efficiency allows us to achieve the

methodological ideal of fully accounting for uncertainty in

parameter values. We use posterior distributions for all par-

ameters, estimated from antiviral meta-analysis [6] and

influenza A(H1N1)pdm09 transmission data [23,24] and

report full kernel density estimates, along with credible inter-

vals, for all our results. Although we focus on relatively

simple models, much more epidemiological detail could

easily be included within the general framework (for

example, asymptomatic individuals). In this work, we have

only included aspects which can be robustly parametrized.

As such our results provide novel quantitative insights into

the impact of antivirals on the 2009 pandemic and add to

the ongoing debate concerning antiviral efficacy [25].
2. Models
In the basic household modelling framework, there exist two

levels of transmission: strong transmission between members

of the household, and weaker transmission between individ-

uals from different households. Typically households have a

small number of individuals so the internal dynamics must

be modelled stochastically. In this study, we are primarily

concerned with modelling pandemic influenza, so we use

an SEEIIR (susceptible–exposed–infected–recovered with two

exposed and two infectious classes) model for the infection

dynamics; this model has been used in a number of previous



Table 1. The transitions and associated rates defining the stochastic SEEIIR model for the within-household dynamics; k is the size of the household. Only the
states that change in a given transition are shown, all others remain constant. The parameters t and r control the reduction in transmission and susceptibility
when antivirals are administered to all members the household, hence t ¼ r ¼ 0 for the uncontrolled epidemic.

event transition rate

internal infection (S, E1)! (S 2 1, E1 þ 1) bk(1 2 t)(1 2 r)S(I1 þ I2)/(k 2 1)

latent progression (E1, E2)! (E1 2 1, E2 þ 1) 2sE1

start shedding (E2, I1)! (E2 2 1, I1 þ 1) 2sE2

infection progression (I1, I2)! (I1 2 1, I2 þ 1) 2gI1

recovery I2! I2 2 1 2gI2

S E
1 2sE

1

b(1 – r) (1 – t)

a(1 – t) (I
1
 + I

2
)

2sE
2

2g I
2

2g I
1

E
2

I
1 I

2

S(I
1
 + I

2
)

k – 1

R(a)

(b)

(c)

Figure 1. The basic household model used in this paper. There are three levels to this model: (a) the individual level, (b) the within-household level where there is
strong mixing, and (c) the population level in which there is weaker mixing and a distribution of household sizes.
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pandemic influenza studies [26,27]. The two stages in both

the latent and infectious periods mean that these periods

have an Erlang-2 distribution [10,28], which matches the

observed transmission profile [29].

Within the household, infectious individuals can infect sus-

ceptible individuals via transmission that is assumed to be

frequency dependent [30] in our investigations of the model

reported in §3, while in our main investigation of pandemic

influenza as reported in §4, we use an estimate of the trans-

mission parameter for each household size. The transmission

parameter is denoted bk in a household of size k. Newly

infected individuals then pass through two latent and two

infectious classes before recovering—the rates of progression

through these classes, s and g, are independent of the house-

hold size and composition. The basic events that define the

within-household model are detailed in table 1.

To maintain infection within the population, it is required

that infection can spread between households. In particular, it

is assumed that a susceptible individual contracting infection

from outside their household occurs at a rate equal to a times

the total prevalence of infection in the population. The basic

structure of the model is illustrated in figure 1. To gain

analytical traction on this model, we make the simplifying

assumption that new infections outside a given household

result in a naive household being infected, and hence that

households are only ever infected once. Given that we are

concerned with the early growth rate of an outbreak, this is
a reasonable assumption which is asymptotically exact in

the limit of an infinite population of randomly mixing house-

holds early in the epidemic. We compare this theoretical

argument against Monte Carlo simulations for a range of

population sizes in the electronic supplementary material.

For this study, we concentrate on quantities that capture the

early epidemic behaviour: the household basic reproduction

number, R*, and the doubling time early in the pandemic, Td.

The household basic reproduction number, R*, is the equival-

ent of the more familiar epidemiological measure of R0 [31],

but captures the expected number of secondary households

infected in the early stages of an epidemic [9,10]. It should be

stressed that R* is a population-level threshold [9].

We first demonstrate how these values can be calculated

for a heterogeneous distribution of households, assuming

no interventions, in terms of the expectation of a path integral

of a Markov chain. This generalizes the computationally effi-

cient methodology first introduced in [10]. Later, we consider

how these quantities are modified when antiviral interven-

tions are also included. We provide MATLAB code to

implement this methodology via the EpiStruct project [32].

2.1. Early dynamics for heterogeneous distribution of
household sizes

In the study of Ross et al. [10], efficient methods were presented

for evaluating a number of characteristics of the dynamics of
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infection in a population of interacting households. Here we

extend this methodology to the realistic scenario in which we

have a heterogeneous distribution of household sizes hk,

where hk is the proportion of households of size k.

An important distribution for our results is the size-biased
distribution, pk:

pk ¼
khkP

j jhj
: ð2:1Þ

This is the probability that a randomly selected individual

from the population belongs to a household of size k.

The household basic reproduction number, R*, is defined

as the expected number of secondary households infected

by a single household with initially one infected member,

when the population is completely susceptible. If Xk(t) is

the continuous-time Markov chain describing the infection

dynamics for a household of size k, then we define the func-

tion I(Xk(t)) as giving the number of infectious individuals in

the household at time t. The household reproduction number

is then given by,

R� ¼
X

k

pkE

ð1

0

aIðXkðtÞÞdt
� �

; ð2:2Þ

where the expectation of the integral in (2.2) may be evalu-

ated by solving a system of linear equations for each

household size k, as detailed in the study of Ross et al. [10].

The initial condition for the Markov chain, Xk(0), is taken to

be a single exposed individual in the first class E1, with all

other individuals susceptible.

The early growth rate, r, which is the rate of exponential

growth matching the expected early growth of the dynamic

household disease model, is found by solving,

X
k

pkE

ð1

0

aIðXkðtÞÞe�rtdt
� �

¼ 1; ð2:3Þ

where the expectation of the integral, here with exponential

discounting at rate r, may again be evaluated by solving a

system of linear equations for each household size k [10].

This integral is then combined with a numerical root-finding

method to determine r; here we have adopted MATLAB’s fzero

routine throughout. The doubling time of the early epidemic,

Td, is simply the time for the number of cases to double

(a quantity that can often be robustly estimated from epi-

demic data as it is unaffected by constant additive or

multiplicative errors) and is related to the early growth rate,

r, by Td ¼ ln(2)/r.

2.2. Modelling antiviral interventions
In §2.1, we discussed how to calculate the household basic

reproduction number, R*, and the early doubling time, Td,

for a heterogeneous distribution of households in the absence

of intervention. We now discuss the necessary modifications

to the basic model in order to account for pharmaceutical

interventions. The main challenge is modelling the delay

between the introduction of the disease to a household and

the allocation of antivirals to the household.

We assume the intervention, once it takes place, has

two main outcomes. Firstly, it reduces the susceptibility of

all individuals within the household to a fraction (1 2 r) of

their original susceptibility, where 0 � r � 1. Secondly, the

intervention reduces the within- and between-household

transmission rates to a fraction (1 2 t) of their original
values, where 0 � t � 1. A range of other assumptions are

possible within our model framework (such as an increased

recovery rate) but for influenza, our modelling assumptions

(motivated by current knowledge [5,6]) are that the two effects

represented by t and r are sufficient to capture the important

features of the system. The events and rates which define the

model are summarized in table 1; pre-allocation t ¼ 0 and

r ¼ 0, and post-allocation t . 0 and r . 0.

We consider three schemes to model the delay between

the initial infection and the effects of intervention: a constant

delay following the first infectious case within the household;

an exponentially distributed delay; and finally, a delay to

notification of possible infection presence within a household,

followed by an exponentially distributed delay to inter-

vention. The constant and exponentially distributed delays

represent two relatively extreme cases. The scheme with

notification involves each infectious individual within the

household independently notifying authorities of their poss-

ible infectious status at some rate rn, and once notified, there

exists an exponentially distributed delay to delivery and the

effects of intervention as in the previous case. Throughout

we focus on the average time from first symptoms to when

the antivirals take effect, and term this the mean delay.

For these schemes, the household basic reproduction

number R* and early doubling time Td can be calculated as

in §2.1 using the extended Markov chains. For the case of con-

stant delay, the expression for the expectations can be split

into two parts, with different dynamics before and after the

antivirals. Full mathematical details of all three schemes

and the various calculations involved are given in the elec-

tronic supplementary material.

One of the central claims of this paper is the efficiency

with which we can compute results. This can be seen by com-

paring times for computation of the path integrals with that

of stochastic simulations. For example, on a 2.5 GHz Intel

Core i5 machine running MATLAB, the average time to evalu-

ate equation (2.2) is 6.4 � 1023 s (this assumes the

exponential model with k ¼ 1, . . . , 7). In contrast, 104 replica-

tions of a Gillespie simulation of the same model takes 18 s.

This represents a speed up of three orders of magnitude,

thus large comprehensive sweeps of parameter space, such

as those shown in this paper, are computationally infeasible

using a naive Monte Carlo method.
3. Results
3.1. General behaviour of antivirals
To illustrate the dynamics, we compare the three intervention

schemes for a homogeneous population of households of size

k ¼ 3. Figure 2 shows how R* and Td vary with the mean

delay to intervention. Part A shows how R* varies assuming

constant (dashed lines) and exponentially distributed delays

(solid lines) for three values of exposed period parameter s.

Part B shows the model results incorporating notification

for a single value of s, with the black lines representing the

two extreme cases of a constant delay (dashed line) and

exponentially distributed (solid line) delay. To maintain a

consistent definition of mean delay, we add on the mean

delay due to notification, which is why the coloured curves

start at non-zero values for the mean delay; these initial

values represent the minimum possible delay for a given

value of rn. In the limit rn! 1, corresponding to
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instantaneous notification, the notification curve tends to that

of the exponential distribution without notification, as

expected. The limit rn! 0 corresponds to households never

notifying the authorities, and hence antivirals have no effect.

Figure 2c,d shows the corresponding early doubling time,

Td, for the same set of models. We can see that the long

exposed periods (smaller s) have a large effect on the mini-

mum doubling time Td, but not the basic reproduction

number R*, irrespective of the mean delay. In all cases, the

notification curves lie broadly within the limits of the con-

stant and exponential delay cases hence we consider only

these two extremes from now on.
3.2. Impact of demographics
Figure 3a–c shows the household size distributions for the UK

(2001), Indonesia (2003) and Sudan (1990). These were chosen

to represent a range of distributions. Many western household

size distributions, for example, those of USA and Australia, are

very close to the UK data presented. To investigate the behav-

iour of the models incorporating distributions, we calculate the

reduction in transmission, t, needed to bring R* ¼ 1 as a func-

tion of the mean delay. Figure 3d shows this using the three

different household size distributions and focusing on just
constant and exponential delays. We see that the bias towards

larger household sizes in both Indonesia and Sudan means

that the maximum possible delay is smaller for a given

value of t, although the shift is not large.
4. Pandemic influenza model
4.1. Parametrization
We now consider the application of our methods to assess the

use of antivirals to mitigate an outbreak of influenza, with

appropriately estimated parameters and distributions. We

focus in particular on the 2009 H1N1pdm outbreak. We esti-

mate the parameters of our model in two stages. Firstly, we

take a sample of 10 000 estimates for the transmission rate

parameters from the posterior distribution of parameters esti-

mated in [24]. This paper reports on the use of Bayesian

statistical methods to estimate transmission probabilities stra-

tified by household size, including probabilities describing

case ascertainment, using data collected from 424 households

in Birmingham, UK, during the first seven weeks of the 2009

H1N1 pandemic. As elsewhere in this paper, by using these

estimates we are assuming that the observed pandemic was

very close to what would happen in the absence of antivirals.
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To estimate the latent and infectious periods for H1N1,

we use data from the study of Donnelly et al. [23], which col-

lates clinical serial interval data from seven epidemiological

studies in the USA early in 2009. The clinical serial interval

is the time between date of symptom onset in the index

case and the date of symptom onset in one of its secondary

cases. By computing the (theoretical) distribution of serial

intervals for the SEEIIR model, we can then use these data

and Bayesian MCMC methods to estimate a posterior distri-

bution for s and g. Details of the calculation of the serial

interval distribution for this model, and the Bayesian meth-

odology, are given in the electronic supplementary material.

Figure 4c shows 2000 random samples from the posterior

distribution estimated by fitting to the serial interval data
provided in the study of Donnelly et al. [23] (also presented

in figure 4b) using our methodology. The distributions for

parameters t and r are shown in figure 4d,e. These are beta

density functions parametrized to match the mean and 95%

confidence intervals from the antiviral studies reviewed in

Halloran et al. [6]. The estimated reduction in transmission

was significantly different for the two drugs zanamivir

and oseltamivir, hence we provide two distributions for

these. The reduction in susceptibility was approximately the

same for both drugs. Finally, the between-household trans-

mission rate was set as a ¼ 1.18; this was chosen to give a

doubling time of approximately 7 days in the absence of

any interventions and is in line with estimates from the 2009

outbreak [33].
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4.2. Results
We take 10 000 random samples of the parameters from the

posterior and estimated distributions, each of which, via

our methodology, provides a sample from the distribution

of the household basic reproduction number, R*, and dou-

bling time early in the epidemic, Td. We used MATLAB’s

ksdensity routine to produce kernel posterior predictive den-

sities of R* and Td. This estimates a smooth probability

density function from a finite sample of a random variable.

Figure 5a,b shows how the densities for R* change with

mean delay for the drugs oseltamivir and zanamivir assum-

ing exponentially distributed delays. Figure 5c,d shows the

corresponding change in Td. Figure 6 shows the same plots,

but assuming a constant delay. In the short delay limit (less

than 2 days), these tend to the same results as for the expo-

nential delay model. Figure 7a shows the percentage

reduction in R* for different combinations of antiviral efficacy

and mean delay. This allows the exploration of the trade-off

between reducing the mean delay and increasing antiviral

efficacy. For example, a mean delay of 2 days with an efficacy

of 0.5 would give the same percentage reduction in R* as a

delay of 4.5 days and efficacy of 0.8. In the absence of more

detailed data, we have fixed t ¼ r, but the trade-off for any

range of parameters (and models) could be evaluated in this

way. Figure 7b shows the posterior distribution for R* with

and without interventions using such a delay distribution,

taken from Ghani et al. [29]. The mean of the distribution is

reduced from 2.4 to 1.6, for oseltamivir, and to 2.1 for zanami-

vir, but there is a large variance in the possible outcomes; this

helps to explain the large variation in estimates of R* in the
literature [29,33]. Finally, with our mean parameter estimates,

we calculated that, on average, 34 per cent of transmission

occurs within households, as opposed to externally; this is

again in line with previous estimates [16].
5. Discussion
We have presented a general modelling framework for

studying household-based interventions to combat infec-

tious diseases. This framework was used to study the use

of antivirals for prophylaxis during the early stages of an

influenza pandemic. In particular, we focused on antiviral

effectiveness during the 2009 H1N1 pandemic, and the

epidemiological consequences of delays to antiviral delivery.

Our results are relevant to understanding and mitigating

pandemics in three key ways. First, it was found that the anti-

viral efficacies required to stop the invasion of pandemic

influenza given expected delays due to notification and

subsequent delivery are higher than current estimates. How-

ever, antivirals with efficacies as currently estimated [5,6],

and with delays which are realistic under a well-planned

pandemic response plan [34–36], could have a significant

impact on reducing the doubling time in the early stages of

the outbreak.

Secondly, our work contributes to the debate on the

actual efficacy of antivirals. Ghani et al. [29] estimate that

the use of the antiviral oseltamivir reduced transmission by

16 per cent at the population level, which is smaller than

our estimate of about 33 per cent (using R* as a proxy for
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overall reduction in transmission). One possible explanation

for this discrepancy is that the antivirals are less effective

than suggested by controlled trials [25,37], for example, as a

consequence of patients not following the correct guidance;

a 13 per cent reduction is approximately that estimated for

the less efficacious zanamivir. Another explanation is that a

more nuanced model is required which takes into account
that the effectiveness of the antivirals is a function of the

time since initial infection [38].

Thirdly, an extremely robust conclusion of our work is

that the main damage due to delayed treatment occurs in

the first day or two. This has implications for the trade-offs

that must be made in antiviral distribution policy: obtaining

early treatment of fewer households, perhaps in combination
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with targeting of risk groups (such as larger households),

may be more efficient than late treatment of a larger

number of households. Intuitively, a lengthy delay is likely

to mean that the complete household outbreak has run its

course before antivirals take effect, mitigating any effect

they would have. Note that we would expect this conclusion

to be strengthened still further if the reduced biological effec-

tiveness of delayed antivirals were also modelled explicitly,

as discussed earlier.

We now turn to methodological conclusions from our

work. Here, we have used exponential delays, and also con-

stant delays, to notification and antiviral delivery, which

should provide two reasonably extreme cases. This distri-

bution can be replaced with any phase-type distribution, at

the expense of an increase in the computational running

time of our algorithms; our code is very efficient, and hence

there is scope for significant generalization here, and in par-

ticular Erlang-2 distributions, for example, could be easily

accommodated. Also, as stated earlier, other interventions

could be considered, and other epidemiological responses

to interventions could also be accommodated. For example,

antivirals could also induce an increased recovery rate and

their effectiveness could be made to depend on the stage of

infection. But, in the absence of detailed information, we

have attempted to keep assumptions to a minimum.
Another generalization which could be accommodated

within our formulation is different rates of mixing between

households of different sizes. Data that would allow for para-

metrization of such a model are now being collected through

large-scale contact surveys [39]. Such a feature in our model is

likely to have an impact on the effectiveness of interventions,

and may perhaps lead to the identification of optimal tar-

geted intervention strategies. It would also assist in the

study of social-distancing interventions, which will influence

mixing within and between households in different ways

depending, largely, on the household size.

As a final methodological point, we believe the approach

adopted for this study of drawing a large number of par-

ameter sets from posterior distributions, and evaluating

characteristics for each of these parameter sets, is currently

best practise. This allows for kernel density estimates of the

full uncertainty in the epidemiological characteristics and is

made possible by the computational efficiency of our model-

ling framework. We hope this approach is adopted more

widely in infectious disease modelling studies.

This research was supported under the Australian Research Council’s
Discovery Projects funding scheme (project no. DP110102893; A.J.B.
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