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Abstract

Since its discovery in kaon decay in 1964, the origin of C'P (Charge-Parity)
violation has still not been completely understood. Even though the Stan-
dard Model is able to describe this phenomenon, its description involves
many theoretical uncertainties. Examples are the parameters of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements, and the hadronic matrix ele-
ments connected to the short and long distance effects. The interest in C'P
violation has increased with the rise of studies in cosmological physics (baryo-
genesis) and also with the use of new models so-called “beyond the Standard
Model”, such as the Higgs model and its derivative, the left-right symmetric
models and supersymmetric models.

C P violation can occur via three different modes: it could be an indirect
manifestation through the interaction of two initial states, for example B° —
B° — f, it could be a direct manifestation due to the initial particle decay, for
example, a difference between the decay rates B* — p°(w)p*, and finally,
it could be a combination of the two processes, decay and mixing, as in
BY — 1 K,. One exciting way to obtain a more accurate understanding of
direct C P violation is to study the details of the C' P violating asymmetries
in the case where p —w mixing plays a role in the B meson decay. In fact,
p —w mixing provides an opportunity to erase the phase uncertainty mod()
in the determination of the CKM angles o (in the case of B — pm) and v (in
the case of B — pK) in the unitarity triangle (UT). This phase uncertainty
usually arises from the conventional determination of sin2a (or sin 2v) in
indirect C'P violation. Hence, we have an efficient test to check the picture
of direct C' P violation within the Standard Model.

To achieve this goal, the present thesis is divided in three parts. Firstly,
direct CP violation is studied in the following decays: B*® — p®(w)M*?°
where M%7 is either a pion or a kaon. The mixing (through isospin violation)
of an w to p° which decays into two pions allows us to obtain a difference
of the strong phase reaching its maximum at the w resonance. The calcula-
tion of the hadronic matrix elements is carried out using the so-called naive
factorization method. This approach utilizes the knowledge of the transition
form factors between pseudoscalars and vector particles. In this first part,
these form factors will be directly extracted from the literature. By com-
paring experimental data with theoretical results, it is possible to constrain
uncertainties associated with the form factors and parameters p and n of the
CKM matrix elements. The experimental data (from BELLE, BABAR and
CLEO) for branching ratios such as #(B — pm) and B(B — pK) will be
used in this way. Thus, we are able to determine in first approximation (a
correct order of magnitude) the C'P violating asymmetry parameter, acp,
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for the decays B¥° — ntr~ K*° and B*? — ntr-7%0.

In order to decrease all the uncertainties mentioned previously, it is neces-
sary to evaluate the transition form factors between pseudoscalar and vector
particles. To get these form factors, we first need to calculate the wave
functions which are involved in these transitions. We take into account sev-
eral physical constraints to determine the wave functions for the particles
7,K,p,w and B; these include the decay constant, electromagnetic form
factor, transition form factor and charge radius. We also consider the nor-
malization to fully constrain the wave functions. We apply an explicitly
Covariant Light Front Dynamics (CLFD) formalism in our analysis to com-
pute both wave functions and transition form factors. In this formalism, the
state vector describing the system under consideration is defined on a light
front plane of arbitrary orientation. It is thus decomposed in Fock state
components, each one being expressed in terms of a probability amplitude
very similar to a non-relativistic wave function. All off-shell amplitudes are
thus explicitly dependent on the orientation of the light-front plane, while
any physical amplitude should be independent on it.

Then, the last major uncertainty that remains is related to the final state
interactions. To compute the hadronic matrix elements without using naive
factorization and the Bjorken assumption, we will apply QCD factorization.
By assuming some properties lie in energy scales involved in B decays, it
allows us to determine as well as possible the non-factorizable terms which
arise during the usual hadronic matrix calculation. Finally, only one uncer-
tainty remains uncontrolled, theoretically speaking: these are the CKM ma-
trix parameters p and . By comparing, once again, experimental results for
branching ratios (B — pK) and #(B — pr) with the theoretical results
obtained in this second approach, we can check firstly the transition form fac-
tors determined in CLFD. Secondly, we can use these conclusions to predict
the C P violating asymmetry parameter, acp, for decays B*? — n+na~ K*°
and B¥° — ntx~ 70 Finally, based on these results, we determine some
limits for the parameters p and 7 of the Cabibbo-Kobayashi-Maskawa matrix.
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Résumé

L’origine de la violation C'P (Charge-Parité) n’est pas encore completement
comprise depuis sa découverte dans la désintégration du kaon en 1964. Méme
si le modele standard décrit de maniére assez précise ce phénomene, il prend
en compte de nombreuses incertitudes telles que celles sur les parametres de
la matrice Cabibbo-Kobayashi-Maskawa (CKM), celles sur les éléments de la
matrice hadronique reliée aux effets & courte et longue distances (probleme
d’intéraction forte), etc ... L’intérét de la violation C'P s’est accru avec I'essor
du domaine cosmologique (étude de la baryogénése), et avec I’élaboration de
nouveaux modeles dits “au-dela du modéle standard”, dont on peut citer
par exemple le modéle multi-scalaire, le modele symétrique droite-gauche,
les modeles supersymétriques.

La violation CP peut se présenter selon trois modes possibles: soit,
c’est une manifestation indirecte diie au mélange de deux états initiaux qui
intéragissent, par exemple B® — B° — f, soit c’est une manifestation directe
diie 3 la désintégration de la particule initiale, par exemple B — p%(w)p*,
soit enfin, c’est une combinaison de mélange et de désintégration, par exemple
BY — ¢ K,. Une voie d’étude motivante pour permettre une compréhension
plus précise de la violation directe de C'P est d’étudier plus en détails les
parametres d’asymétrie dans le cas de la désintégration du méson B tout en
tenant compte autant que possible de toutes les incertitudes présentes, et en
particulier celles liées & 'intéraction forte.

Pour ce faire, I’étude présentée dans cette theése est divisée en trois par-
ties. Premiérement, la violation directe de C'P est étudiée dans les réactions
suivantes: BE0 — p°(w)M*P ot M*0 représente soit un pion soit un kaon.
Le mélange p —w qui se désintégre en deux pions permet d’obtenir a travers
la violation d’isospin, un déphasage maximum de la phase forte au voisinage
de la résonance w. Le calcul des éléments hadroniques se fait en utilisant la
méthode dite de factorisation naive ot un nombre de couleur effectif, N&//,
paramétrise les effets hadroniques. Cette méthode implique la connaissance
des facteurs de forme de transition entre particules pseudo-scalaires et parti-
cules vecteurs. Dans cette premiere partie, ceux-ci sont directement extraits
de la littérature scientifique. En confrontant les données expérimentales et
les résultats théoriques, il est alors possible de contraindre les incertitudes
théoriques liées aux facteurs de forme, aux éléments p et n de la matrice
Cabibbo-Kobayashi-Maskawa (CKM) et au nombre de couleur effectif, N, efs,
via principalement les rapports de branchement %(B — pr) et B(B — pK).
Tl devient alors possible de déterminer en premiére approximation le taux
d’asymétrie pour les désintégrations B*? — rtr- KE0 et B0 — rr—ntl.

Afin de réduire les présentes incertitudes, il est alors nécessaire d’évaluer
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les facteurs de forme de transition entre les particules pseudo-scalaires et
vecteurs. Pour obtenir ces facteurs de forme, il est indispensable de calculer
les fonctions d’ondes qui sont impliquées dans ces transitions. On prendra en
compte les contraintes physiques qui distinguent les particules les unes des
autres, i.e., constante de désintégration, facteur de forme électromagnétique,
facteur de forme de transition et rayon moyen carré. A ceci s’ajoute la condi-
tion de normalisation qui intervient dans toute évaluation de fonction d’onde
représentant une particule décrite dans une approche de théorie des champs.
Dans notre cas, nous appliquerons un formalisme explicitement covariant et
dynamique du front de lumiére pour notre analyse. Dans ce formalisme, le
vecteur d’état décrivant un systéme donné est défini sur un plan du front
de lumieére suivant une orientation arbitraire. Il est alors décomposé en état
de Fock ou chaque état est exprimé en terme d’amplitude de probabilité.
Les amplitudes “off-shell” sont explicitement dépendantes de 1’orientation
du plan du front de lumiere tandis que les amplitudes physiques doivent en
étre indépandentes.

Ayant déterminé les facteurs de forme de transition entre les particules
B,m, K, p et w, la derniére incertitude qui puisse étre analysée est celle liée a
I’'importance des intéractions dans les états finaux. Afin de calculer au mieux
les éléments de matrices hadroniques sans utiliser I’hypothese de Bjorken,
nous utiliserons une approche dénommée QCD factorisation. Elle permet,
en tenant compte des échelles d’énergie mises en jeu dans les procéssus
de désintégration, de calculer la partie généralement non factorisable d’un
élément de matrice hadronique, et ainsi d’approximer les intéractions dans
les états finaux. Désormais, seule une incertitude subsiste: les éléments p et n
de la matrice CKM. En comparant les résultats expérimentaux des rapports
de branchement et les résultats théoriques obtenus par cette étude, il est alors
envisageable a la fois, de vérifier la validité des facteurs de forme déterminés
par I’approche CLFD, puis d’extraire des prédictions sur le taux d’asymétrie
de la violation directe de C'P dans les désintégrations du méson B en trois
corps. Finalement, nous exploiterons ces résultats afin d’obtenir des limites
sur les éléments p et n de la matrice Cabibbo-Kobayashi-Maskawa.
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Matter Antimatter






Chapter 1
Introduction

« Ecrire est difficile, parce qu’on est toujours dépassé par son livre. ¢

Jean d’Ormesson

A little bit of history...

Why did the matter in our Universe not completely annihilate with antimat-
ter immediately after its creation? The answer to this question has been
and remains the quest of many physicists, both experimentalists and theo-
reticians, in high energy physics since the mid 1950’s. The answer lies some-
where within C P violation theory, since it enables us to distinguish in an
absolute way matter and anti-matter. For a long time, Charge conjugation
C, which transforms a particle into 1ts anti-particle, and Parity P, which
reflects the space coordinate & into —&, were considered as exact discrete
symmetries in processes such as those involving electromagnetic, strong and
weak interactions.

In May 1947 one of the first decays of a neutral particle (K° — 7¥77)
into two charged ones was observed. Almost ten years later (1956), Lee and
Yang [1], motivated by the so-called § — T puzzle, pointed out that parity
invariance might be not conserved in weak interactions. Soon after (1957),
Wu et al [2] and Garwin et al [3] verified this theoretical analysis indepen-
dently and even found that both parity and charge invariance are violated
in weak interactions. In 1964 Christenson, Cronin, Fitch and Turlay [4], dis-
covered for the first time C P violation in K° meson decays, at Brookhaven
National Lab. It was found that two neutral strange mesons could mix by
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4 CHAPTER 1. INTRODUCTION

weak interaction through the decay,
K° = (nm,mmm) — K°.

One way to represent this mixing is to consider two particles, called K, and
K, and defined as a linear combination of K° and K°:

1K) = (1K) +1K%) (11)
1) = = (1K) = 1K) . (12)

K, (K1 — Kg with short lifetime 7¢ = 8.92 x 107! 5) decays into two pions
and K, (K; — K, with long lifetime 77, = 5.17 x 108 s) decays into three
pions if one assumes C'P conservation. What was observed in 1964 was the
interference between the particles K;, — n7 and Kg — nm. Even though the
branching ratio (K — ) is very small, it was the proof that Kg and
K1 should be rewritten as a linear combination of K; and K, as follows,

|Ks) ~ |K1) + €| K2) (1.3)
K1) ~ |K2) + ¢|Ki) (1.4)

where the epsilon parameter, €, describes the strength of C'P violation.
le] >~ 2 x 10™% and Arg(e) ~ /4. We had to wait until 1973 to find the
theoretical explanation within the Standard Model by M. Kobayashi and T.
Maskawa [5] whereas there is still not definitive theoretical explanation be-
yond the Standard Model. In this work, our analysis will stay within the
Standard Model framework.

Plan

CP violation, as it has already been mentioned, is a very exciting field of
investigation in particle physics. For almost forty years, physicists have been
trying to understand this mechanism. As everyone can imagine, it is not easy
to draw an exact picture of CP violation. One way to extract reasonable
predictions, since theoretically speaking, one knows the mechanism within
the Standard Model, is to use a phenomenological approach which, of course,
carries many uncertainties and is very often model dependent.

The aims of this thesis are, first of all, to determine an order of magnitude
for the direct C'P violation in decays such as B — p®(w)M*0 — gtg~ M0
(with M being a kaon or a pion). The p — w mixing effects in these decays



are also investigated in detail. The second aim is to decrease, within a rela-
tivistic and dynamic approach, the uncertainties included in the form factor
transitions and wave functions which are involved in our analysis. The third
aim is to apply a new kind of factorization of hadronic matrix elements, and
hence, to be able to obtain better predictions for the branching ratios as
well as the C'P violating asymmetry parameter, acp, in B decays. Com-
parisons with experimental data (only for branching ratios) provided by the
BABAR, BELLE and CLEO collaborations give us an excellent opportunity
to finally constrain the Cabibbo-Kobayashi-Maskawa (CKM) matrix element
parameters p and 7.

To study as far as theoretical tools allow us to go, we divide our work
into four parts as follows: the first part, so-called “Matter Antimatter”, gives
the necessary and basic background in particle physics in order to under-
stand the concept of C P violation within the Standard Model. In particular,
we recall briefly in Chapter 2, the characteristics of the Standard Model:
Gauge theory, Quantum Chromodynamics, Quantum Electrodynamics and
Flectroweak interaction. It is known that, within the Standard Model frame-
work, the Cabibbo-Kobayashi-Maskawa matrix is the main source of Charge
Parity violation. Thus, we introduce it in an extensive way since all of the
following work is based on it. Experimentally, it has been observed that C P
violation can arise in different ways. To clarify them and to introduce the one
which we are going to focus on, we summarize the different observations of
O P violation in B meson decays. This first part is very well established and
therefore we refer the reader to the plentiful literature for more explanation
and detail.

The second part, so-called “Branching Ratio and Direct C'P Asymme-
try in B Decays”, mainly focuses on the analysis of direct CP violation.
We begin by explaining the formalism used in our approach: the operator
product expansion (OPE), Wilson coefficients and finally the effective Hamil-
tonian are introduced (Chapter 3). We then describe the calculation of the
hadronic matrix elements involved in the decay amplitude, by using the so-
called “Naive factorization” method. In Chapter 4, we discuss in detail p —w
mixing, its origin (Vector Meson Dominance model) and its inclusion in our
calculations of the branching ratios and C P violating asymmetry parameter
acp. In Chapter 5, we are then able to investigate the branching ratios such
as B(B — pr) and #(B — pK). All the numerical and technical details are
described in this chapter. We also list the branching ratios for #(B — pm)
and %(B — pK) measured by CLEO, BABAR and BELLE. Based on our
results for the branching ratios and comparisons with the experimental data,
we determine in Chapter 6, direct C P violation for the same decays including
p — w mixing effects.
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Our calculations contain several uncertainties. One of them is the form
factor involved in the factorization method. The third part of this thesis,
the so-called “Covariant Light Front Dynamics, Wave Functions and Form
Factors”, aims to reduce this uncertainty. To increase the accuracy on these
transition form factors, we recalculate them in a relativistic and dynamical
approach. In Chapter 7, we introduce the main properties and definitions
of Covariant Light Front Dynamics (CLFD). In Chapter 8, we determine
the wave functions for the following mesons: we evaluate the pseudoscalar
particles 7, K, B and D and the vector particles p and w. We emphasize
that this study takes into account some experimental data (decay constant,
charge radius...) in order to parametrize the wave functions. We use the wave
functions mentioned previously to compute the transition form factors such
as pseudoscalar pseudoscalar transition and pseudoscalar vector transition.
This last study is accomplished in Chapter 9.

In order to go further in our investigation, we replace the naive factor-
ization (used as a first approach) by a very recent (1999) and promising
theoretical framework. This last part, “QCD Factorization in B Decays”,
presents the corrections included in our analysis through the “QCD factor-
ization” method. The main idea is to include all of the interactions at the
order a; between quarks and gluons arising in the final states following B
decays (in our case). In Chapter 10, we introduce in detail the method ap-
plied in our calculations. Expecting to have reduced as far as we can, all
the uncertainties involved in the analytical calculation of decay amplitudes,
we are able, in Chapter 11, to recalculate the branching ratios Z(B — pm)
and #(B — pK). In a similar manner to Chapter 6, we are also able in
Chapter 12, to determine more accurate asymmetries in B meson decays. In
this final chapter, we also propose some reasonable constraints regarding the
Cabibbo-Kobayashi-Maskawa matrix element parameters p and 7. To end
this work, we give some final remarks and draw some conclusions based on
this analysis within the Standard Model.



Chapter 2

C P violation, a brief overview

“ Les petites choses ont leur importance; c’est toujours par elles qu’on se
perd. ”

Fiodor Dostoievsk:

In this chapter, we introduce the formalism and the concept of C' P viola-
tion [6] within the framework of the Standard Model (SM). We set the scene
and describe all the “participants” which are necessary to understand a CP
violating asymmetry between matter and antimatter.

2.1 The Standard Model

2.1.1 Basic concepts

The Standard Model of elementary particle physics gives a complete descrip-
tion of the weak, electromagnetic and strong interactions. It is based on the
Glashow-Salam-Weinberg Model of the electroweak interaction plus Quan-
tum Chromodynamics. This model is derived from work undertaken in 60’s
and is built on the principle of local gauge symmetry.

Gauge theory

Within the Standard Model, the fundamental interactions are governed by
gauge theory [7]. The free QED or QCD-Lagrangian (for a Dirac particle)
described in the framework of gauge theory is not invariant under the phase
changes called local gauge transformations. Nevertheless, local gauge invari-
ance can be restored by applying the appropriate covariant derivative D,
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8 CHAPTER 2. CP VIOLATION ...

acting on the field (fermion field for example). Then, the Lagrangian be-
comes invariant under any local transformations of a symmetry group. If
the symmetry group elements commute, we have an Abelian gauge theory.
This is the case for Quantum Electrodynamics (QED) where U(1) defines an
Abelian group. This is not the case for Quantum Chromodynamics (QCD)
where SU(3)colour, the gauge group of strong interaction, is a non-Abelian
group. In the latter group, SU(3)colour, the eight generators correspond to
the gluons. The properties of asymptotic freedom and confinement are due
to the colour charge carried by the gluons and quarks, which leads to gluons
interacting with each other (self-interaction), as well as with quarks.

Quantum ChromoDynamics

QCD [7] is the quantum field theory of strong interaction between quarks
and gluons. Since the colour symmetry of the quark model is gauged, the
strong interaction is described by an SU(3) colour Yang-Mills theory with
each flavour of quarks transforming according to the fundamental triplet
representation. By adding the renormalization requirement, the analytical
form of the full QCD-Lagrangian density has to be the following:

Locp =
1
_ Z(a#A?/ _ 8yAZ +gf“bcAfLA,°,)(3”A““ _ auAau. _l_gfa,deAdu.Aeu)
1

_ %(auAap)Z _ —aaﬂ(au&ac . gfabcAbu)nc

- tﬁ[in(aﬂ —igA®T) —m|¢, (2.1)

where the first line refers to the gauge part of the QCD-Lagrangian. A%, g
and f°% are the gluon fields, gauge coupling and structure constants of
SU(3)colour, Tespectively. The gluon colour indices take the values, a,b,c
equal to 1,---,8. The first term of the second line defines the gauge fixing,
where ¢ could be 1 for Feynman and ’t Hooft gauge. The second term of
the same line describes the Faddeev-Popov interaction, where 7 is the ghost
field. The following term is the fermion part with the free part given by
) [m(aﬂ — m)]z/) and the quark gluon interaction written as ¢ [%gA‘“‘T“] Py,
where ¢ refers to the quark field and T* to the generators of SU(3)colour-

Quantum ElectroDynamics

QED [7] is the quantum field theory of electrons, positrons and photons. It
describes any electromagnetic interactions of these elementary particles. The
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fermion field ¢ transforms under a local U(1) transformation as:
W(z) = ¢'(z) = exp(—ieA(z)) P(z) . (2.2)

To restore the local U(1) gauge invariance of the free Lagrangian for a Dirac
particle, we introduce a vector field A, (called gauge field) and we replace the
ordinary derivative 8, by a covariant derivative D,. Hence, the full QED-
Lagrangian density constrained by the U(1) group of transformations reads
as,
1 2 1 2
Logp = —7(0uAy — 0,A,)" — 52(0.A%)
4 2¢
+ b |17,(0* + 1eA*) —m|y . (2.3)
The gauge part of the QED-Lagrangian is given by the first term which is
invariant under transformation A}, = A,+08,A. The second term is the gauge
fixing condition analogously to the QCD-Lagrangian, but here the photon

field is gauged. The last part contains the interaction term, —%y,eA*% and
the free QED-Lagrangian, ¢1v,(0* —m).

2.1.2 The electroweak interaction

Within the Standard Model (SM), one defines three generations of quarks
and leptons [7, 8, 9]. The gauge symmetry which governs these particles is,

Gon = SU(3). ® SUR)L @ U(L)y , (2.4)

where ¢, L and Y refer to colour, left and hypercharge respectively. Since one
assumes that a scalar field, ¢, defines a Vacuum Expectation Value like,

(¢) = ( v /(1/5) ) (2.5)

the gauge group Gsuy is spontaneously broken down to SU (2)L @ U(1)y.
SU(2)L @ U(1)y can also be spontaneously broken to U (1)gm through the
Vacuum Expectation Value of a scalar doublet Higgs field:

(9) = ( i: ) : (2.6)

The particles are classified as follows. The left-handed leptons are in SU(2)L

doublets,
(., e
e Jp\K J\T /L
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and similarly for the quarks,

(£).05).00), o9

with the corresponding right-handed singlets. Note also that d’, s’ and & are
related to the mass eigenstates d, s and b by a unitarity transformation. The
Standard Model Lagrangian is written down as the most general renormaliz-
able Lagrangian which is consistent with the gauge symmetry. If we focus on
the electroweak interaction of quarks and leptons, the massive bosons, W%,
are the mediators describing the electroweak charged current interaction,

%(JIW“ +ITWHY (2.9)

where, g, is the SU(2)1, coupling constant and the current! J, + is given by,

Jr= Z(QQ')V—A + Z(W)V-A ; (2.10)

f f

with ¢ and [ denoting respectively quark and lepton. The notation V —
A refers to the «,(1 — 75) structure. We stress that the charged current
interactions involve only left-handed quarks and left-handed leptons. For
the neutral current interaction, the vectors are Z° and the photon A. The
corresponding Lagrangian term is,

g2 em
mJSZ”-FCJu A¥ : (2.11)

where the current J) is defined as,

=Y fruld —chw)f - (2.12)
f

In Eq. (2.12), f denotes the quark flavour and ), cf; are written as,
o, =TS —2Q;sin?Ow and ¢, =T/, (2.13)

where Q) is the charge, Ow is the Weinberg angle and T3f is the third com-
ponent of the weak isospin. For the current J;™, one has,

I = Qsfnf - (2.14)
f
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Finally, the weak interaction is related to the Fermi constant, Gr, which
plays an important role in the Standard Model,
Gr 9 e?

/2 8MZ, ~ 8MZsin?Oy ’ (215)

where Mw is the boson W mass.

2.2 The Cabibbo-Kobayashi-Maskawa matrix

2.2.1 Sources of CP violation

There are three possibilities which may explain the source of C'P violation
inside the Standard Model [10, 11, 12]. The first one comes from the strong
interaction. If we assume that the vacuum is given by a superposition of
degenerate vacua |n) which creates non-trivial quantum fluctuations (instan-
tons), we can include in the Lagrangian the following term:

2
Lo=6- §%F3G‘:VGAW : (2.16)
where 6 is the QCD vacuum angle (in fact, the C P violating asymmetry
parameter), gs the QCD gauge coupling and Gf},j the QCD field strength
tensor. The term L violates CP symmetry for a non-zero value of 6 =
 — arg(det M?), where M? is the non-diagonal quark mass matrix expressed
in the electroweak basis. But, up to now, the so-called strong C P problem [13,
14] remains without any available explanation: based on the experimental
values on the electric dipole moment of the neutron, g has to be less than
10~1° which implies a extremely fine value of the QCD vacuum angle . The
second possible source of C P violation is in the leptonic sector if neutrinos are
massive. In this case, the term related to the leptonic sector, in the effective
Lagrangian, can give, after symmetry breaking, a Majorana neutrino mass
matrix with three C' P violating phases. The last way to get C'P violation in
the quark sector, is the CKM matrix. This possibility is widely detailed in
the following.

2.2.2 The CKM matrix

Let us first focus on the Yukawa interaction term in the Lagrangian used in
the Standard Model. It reads as,

Ly wkawe = —YiQLiddR; — Y “QLidur; + h-c. (2.17)
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where Y;} is the Yukawa matrix element, Q)1 are the left-handed quark SU(2)-
doublets and ug,dr are the right-handed SU(2)-singlets. C'P asymmetry is
violated if and only if,

Sm{det[YY ¥, YY1} #£0. (2.18)

Now, if we replace ¢ by (v + H°)/v/2, the Yukawa Lagrangian becomes

massive and gives,
Ly ukawe = —(My)i;dridr; — (My)ijiriug; + h.c. (2.19)

with M; = Y/v/ /2. In the mass basis, one can always find some unitarity
matrices Vyr and Vyg which verify the condition,

VLMV = MP* (2.20)
where M;Hag is diagonal and real. Then, the mass eigenstates are given by,

dri = (Var)izdrj
dri = (Var)ijdr; ,
uri = (Var)ijdej »
ug; = (Var)i;jdr;j -

Therefore, after electroweak symmetry breaking, the charged current inter-
action for quarks is given by,

e
Lw = _\/isin GWﬁLi’y“(%L%E)ijdLjW: + h.c., (2.21)

where by definition, one puts,
Vorxm = VL V) (2.22)

This non-diagonal 3 x 3 matrix is so-called the Cabibbo-Kobayashi-Maskawa
and represents the charged current couplings between quark transitions. It
describes the only source of flavour changing interaction in the quark sector.
The CKM matrix is dependent on nine parameters; three real angles and
6 phases. In order to get a unique matrix, some conventions are adopted:
the first is the arrangement of the quark masses from the heaviest to the
lightest. We can also illustrate this by taking into account the hierarchy of
quark transition through the charged currents (see Fig. 2.1) [15].
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d u
H‘ , 4
2 .
\ N =—0(1)
»d
2 PR o N N --0(10")
A e T
LY --0(10?)
b FIANN. t —0(10%)
e N4
Q=-1/3 Q=+2/3

Figure 2.1: Hierarchy of strength of transitions between quarks.

The connection between the electroweak eigenstates (d’,s’,b) and their
mass eigenstates (d, s, b) is given by,

d Vud Vu.s Vub d
s = Vcd V;s Vcb X S . (2.23)
v Vie Vis Vi b
Therefore, the CKM matrix takes the form,
Vud Vus Vub
Vokm = | Vea Ves Vao | - (2.24)
‘/td V;s ‘/tb

The second convention on the matrix, is to minimize the number of phases in
the matrix. When this is realized (in the case of three generations of quarks),
the CKM matrix contains only one single physical phase. It is called the
Kobayashi-Maskawa phase dxp and any CP violating physical observable
in flavour changing interactions has to be related to this phase. Inside the
Standard Model, the phase dxa is the only source of C'P violation in the
quark sector.

There are two parametrizations of this matrix. One, called standard
parametrization reads [16, 17],

Vekm =
—i6
€12€13 812€13 S13€” KM
s =
—512Ca3 — C12523513€ KM €12C33 — d12dp3813€" KM $23C13 3
5 5
S12893 — C12C23813€°KM  —C12823 — S12€23813€" KM €23C13

(2.25)
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where ¢;; = cosf;; and s;; = sinf;;. The three angles §;;, are real mixing
parameters. The ¢;; and s;; are chosen positive and dxp can vary in the
range 0 < dxpr < 7 since the measurements of C'P violation in K decays
impose this. In this representation, there are four independent parameters
which are,

S12 = |Vus|, S13 = |Vub|, 823 = |‘/cb|7 and dxpr . (2-26)

Another parametrization is widely used in phenomenological applications.
This is the Wolfenstein parametrization (Wolfenstein 1983) [16, 18, 19]. In
this approach, the four independent parameters are A, A, p and 7. Then, by
expanding each element of the matrix as a power series of the parameter
A = sin 8, = 0.2209 (0, is the GellMan Levy Cabibbo angle), one gets (O(A*)
is neglected),

. —3X? A AN(p—in)
Verm = - — 3 AN? ; (2.27)
AN(1 —p—in) —AN il

where n plays the role of the C'P violating phase. In this parametrization,
even though it is an approximation in A, the CKM matrix satisfies unitarity
exactly, which means,

Viens - Verxne = 1= Vorm - Vigas - (2.28)
The relation between the two parametrizations described above is,
s12=2A,
S23 = AN )
s13€7 KM = AN3(p —in) .
Finally, one can also define a C'P violating quantity independent of the

parametrization. This quantity is called Jariskog parameter and represents
the unique condition for CP violation [10, 20];

3

IV VaViVisl = Jop Y €kmejin - (2.29)

m,n=1

CP symmetry is violated within the Standard Model if Jop # 0. From
the CKM matrix derived in the Wolfenstein parametrization, one can also
obtain 6 normalization relations and 6 orthogonality relations because of the
unitarity of the matrix, for example:

VuaViy + VeaVig + ViaVig = 0. (2.30)
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By combining the Wolfenstein parametrization and the unitarity triangle, we
can represent the structure of the CKM matrix geometrically in the complex
plane (5,7), as shown in Fig. 2.2. The relations between (p,p) and (7,m)

are [21],
= (-2 7= (1-2)n. s

The area of all triangles drawn from the orthogonality or normalisation

Im
A=(Pn)
o
p + if 1-p+in
Y B .
C=(0,0) B=(1,00 Re

Figure 2.2: The unitarity triangle (UT) of the CKM matrix in the complex
plane.

relations is the same and reads [16, 21],
2Aa = |Jep| , where Jop = MNA% = 0(10_5) . (2.32)

The accuracy between the (5,7) and (p,n) quantities is in the order of 3%.
The three angles , 8 and 7 of the unitarity triangle [22, 23] in can be derived
as a function of the CKM matrix elements and one gets,

VeV ViaVi Vua Vi
= —_ = - = —_, 2.33
o= o] wmz]’ pws|-gigt| v=em | 23

which gives analytically the following relations,

20i(7° + 5* = P)

sin(2e) = G L A - 2P +7)
: _2p(1 —p)

sin(28) = —_(1 —_—_,6)2 I3

sin(2y) = 2P

F—’z+772 ’
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As regards the lengths CA and BA in the triangle ABC, one has also,

Vud Vi A2\ [ Vi Via Vi 1| Vig
=CA= L =|]1—-—=)|—|, Ri=BA= = - .
B=CA=Iy vy ( 2) 173 VaVil A Va
(2.34)

Figure 2.3: Confidence levels, plotted in the plane (p,7), and obtained from
a global fit taking into account many experimental data.

To complete this description, we end by giving the numerical values of the
CKM matrix [24]:

0.9741 t0 0.9756  0.219 to 0.226  0.0025 to 0.0048
Voknm = | 0.219t00.226 0.9732 to 0.9748  0.038 to 0.044
0.004 t0 0.014  0.037 t0 0.044  0.9990 to 0.9993
(2.35)

The experimental determination of the matrix elements U,y are mainly based
on 3 decays, K semi-leptonic decays, B decays, lifetime of B meson, and from
unitarity conditions. In Fig 2.3, values of p and # are plotted according to
the latest experimental constraints [16].
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2.3 CP violation in B meson decays

The theory of C P violation predicts large C'P violating effects in B meson
decays [10, 12, 21, 25], where one can observe three features of C'P violation.
First, we define the decay amplitude Ap; and Apy by,

Aps = (f|Ha|B)
ABf . <f|Hd|B> P

where H; is the decay Hamiltonian. We also write down the decay amplitude
A Bf as,

Ay = |Ag|€F 4 |Ap|eP = (2.36)

where each term is related to a particular Feynman diagram (or set of Feyn-
man diagrams). Two types of phases appear in Ap;y. The first phase, ¢,
(called weak phase) originates from the CKM matrix element through the
corresponding electroweak Lagrangian term. The second one, 4;, (called the
strong phase) does not violate C P symmetry and arises from the final state
interaction processes (absorptive parts in the amplitudes). Let us now de-
scribe briefly the different kinds of C'P violation.

2.3.1 CP violation in mixing

This requires that two neutral mass eigenstates cannot be chosen to be CP
eigenstates [12, 21, 25]. If, one defines the mixing matrix for the two meson
system as,

M =M +il, (2.37)

where M and T are complex 2 x 2 matrices, the asymmetry will be propor-
tional to,

T
acp = Im (ﬁ) , (2.38)

which means that a relative phase between M;, and I';; 1s necessary.

2.3.2 CP violation in the interference of decays with
and without mixing induced

The feature of C P violation is based on spontaneous oscillations of a particle
(see Fig. 2.4) into its antiparticle, which are due to the difference between
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u,c.t
B° W w* B’

d 4 B 4 b
b > A4 > d
B° u,c,ty ATCt B°
4 —e—hamiiit—e— b

Figure 2.4: Leading box diagrams for B° B® mixing.

mass eigenstates in the system of B°, B® [12, 21, 25]. Then, it yields a mixing
(in some case) of two states which provides interfering amplitudes and may
produce C P violation.

By definition, the time dependent asymmetry is given by,

(B°(t) - F)—T(B°(t) = F)

BG S HiTEo b 239

acp(t,B° - B° = F) = g

where I'(B°(t) — F) is the decay rate of B°(t) — F. After decomposition,
one gets,

acp(t,BO — BO - F) =
a%s¥(t, B® — B® — F)cos(AMt) + afsp™(t, B® — B® — F)sin(AM¢)
cosh(ATt/2) — a4k(t, B® — B® — F)sinh(AT't/2)

?

(2.40)

where AM = (0.523 £ 0.029 £ 0.031) ps~! for the B meson. The expressions

decay mizing

for a5, afp'™ and aSh are the following,

adecay — 1- l§|2
F1+lEP’

amizing . 2Jm£
CP 1+ |§|2 ?

aég = 2%@6 -
1+ [¢[?
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The observable ¢ has the form:

(2.41)
where ¢s represents the weak mixing phase.

2.3.3 Direct CP violation in B decays

This requires that the two CP conjugate processes have different absolute
values for their amplitude [12, 13, 21, 25]. This type of C'P violation is called
Direct C P violation. Let us start from the usual definition of asymmetry,

I'(B— F)-T(B—F)
I(B—F)+I(B—=F)’

acp(B— F) = (2.42)

which gives,

_ |A(B—= F)P —|A(B = F)?

B F)= e _
acp(B = F) |A(B— F)P + |A(B— F)?’

(2.43)

where A(B — F) is the amplitude for the considered decay. If one uses the
definition of the amplitude written in Eq. (2.36), one gets,
—2|A1||A2l sin(qSl - ¢2) sin(51 — 62)

acp(B — F) = 5T a 1Ay cos(dr — ba) coslls — ) T 1A~ Y

Therefore, in order to obtain direct C P violation, the C'P asymmetry param-
eter acp needs a strong phase difference coming from the hadronic matrix
and a weak phase difference coming from the CKM matrix.
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Chapter 3

Effective Hamiltonian

“ La seule écriture valable, c’est celle que l’on invente... C’est cela qui rend
les choses réelles. ”

Ernest Hemingway

In this chapter, we define the theoretical tools which will be used in order
to calculate, in first approximation, the asymmetries and branching ratios
in B meson decays [26, 27]. We derive the basic formalism such as the
Operator Product Expansion, Wilson coefficients, effective Hamiltonian and
naive factorization.

3.1 Operator Product Expansion

The Operator Product Expansion (OPE) [28, 29, 30] is used to reproduce
the weak interaction of quarks. The decay amplitude, A(M — F'), can be
written as,

AM — F) o Ci(u)(F|0:(1)| M) , (3.1)

where p refers to the energy scale and is equal to mp 1n our case. In Eq. (3.1),
Ci(u) are the Wilson coefficients (see Section 3.2) and O;(p) the operators
given by the OPE, then, one sees that the OPE separates the calculation
of the amplitude, A(M — F), into two distinct physical regimes. One is
called hard or short-distance physics, represented by C;i(u) and calculated by
a perturbative approach. The other is called soft or long-distance physics.
This part is described by Oi(u), and is derived by using a non-perturbative
approach such as a 1/N expansion [31], QCD sum rules [32, 33], hadronic
sum rules...

23
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The operators, O,, (dependence on y is removed here for convenience) can
be understood as local operators which govern a given decay. They can be
written, in a generic form, as,

On = (q_anIQJ)((ijanl) b (32)

where I',; denotes a combination of gamma matrices. They should respect
the Dirac structure, the colour structure and the type of quark relevant for the
decay being studied. We can define two kinds of topology which contribute:
there is the tree diagram of which the operators are Oy, O, [28, 29, 30, 34], and
the penguin diagram expressed by the operators O3 to Oy [28, 29, 30, 34]. As
regards tree contributions (W% exchange), the Feynman diagram is shown
Fig. 3.1.

Qs Qs

A

q,

Figure 3.1: Tree diagram.

The current-current operators related to the tree diagram are the follow-
ing [28, 30],

OF = Govu(1 — 7s)ustisr*(1 — 75)ba

0% = q7u(1 — 5 )utiy*(1 — 75)b ,

or,

01 = Zou(l — 75)upsp7*(1 — 75)ba
0z = qru(1 — s)usy*(1 —75)b
depending on the channel b — u or b — s, respectively. In the above

equations, o and 3 are the colour indices. The second type of contribution
is the penguin one. We can also define two sets of penguin contributions.
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The first is called a QCD-penguin (one or two gluons are exchanged) and the
second is called an electroweak-penguin (v and Z° exchange). The Feynman
diagram for the QCD-penguin is shown in Fig. 3.2 and the corresponding
operators are written as follows [28, 30]:

Os = qru(1 = vs)b Y _T7*(1 = 75)d
q/
Os = Gavu(l — 75)bs Z T (1 = 75)qa
ql
and for the (V — A)(V + A) transition currents, one has,
Os = qru(L —75)b Y I (1 +75)d

q

Os = Gavu(1 = 75)bg Y @7 (1 +75) 4 -

q

A

T4 Qs
q,
b >
[sp)
q5=q;

Figure 3.2: QCD-penguin diagram (left hand-side) and real penguin (right
hand-side)...

Finally, for the electroweak-penguin, there are two Feynman diagrams repre-
sented in Fig. 3.3 (Z,~ exchange from quark line) and Fig. 3.4 (Z,y exchange
from the W line). The structure of O7 to Oy is given by [28, 30],

3 _
O7 = §q’>’u(1 = ’75)b2 ex@7*(1+75)q

q

3 ]
Os = S@mu(l = 75)b5 Y exds7(1 +75)da

ql
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N

q4 q4
q;
b >
[o}]
=9,

Figure 3.3: Electroweak-penguin diagram.

3 }
Oy = 5%(1 — 7s)bZ ee@ (1 ~7s)q'

q

3_ N
O = §Qa’7u(1 ~ ¥s)bs z e dp7*(1 — 75)qa »
ql

where ¢, denotes the quark electric charge and ¢, the quarks (u, ¢, s,t) which
may contribute in the penguin loop.

A

q4 q.;
V‘ | q
Vo qq
b >
(1)
W
45~

Figure 3.4: Electroweak-penguin diagram (coupling between Z,v and W).
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3.2 Wilson coefficients

As we already mentioned in the previous section (see Section 3.1), the Ci(u)
are the Wilson coefficients [29]. They represent the physical contributions
from scales higher than y (the OPE describes physics for scales lower than
1), and since QCD has the property of asymptotic freedom, they can be cal-
culated in perturbation theory. The Wilson coefficients include contributions
of all heavy particles, such as, the top quark, the W bosons, and the charged
Higgs. Usually, the scale p is chosen to be of the order of O(m) for the B
decays. Wilson coefficients are calculated to the next-to-leading order (NLO)
since this is the first order where one can get some corrections O(a;) from
the leading-log-order (LO). By definition, C(u) (we remove for convenience
the index 7) is given by [28, 29, 30],

C(p) = Uy, Mw)C(Mw) , (3.3)

where U(u, My ) describes the QCD evolution and reads as,

U, M) = [1 + ajl(:)J] [aﬁg’)r [1 - 23(4_]‘:@_)']] , (3.4)

with J the matrix element including the leading order and the next-to-leading
order corrections. d is the anomalous dimension. The final expression for

C() in the NLO, with U°(g, M) = (as(Mw)/ o))" is,

as(Mw)

C(u) = [1 + O‘Z(:) J] U° (1, M) [1 +

(B—Jﬂ, (3.5)

where B is a constant term which depends on the factorization scheme. Since
the strong interaction is independent of quark flavour, the C(u) are the same
for all B decays. At the scale u = my = 5 GeV, C(u) take the following
values [35, 36, 37, 38] summarized in Table 3.1. To be consistent, the matrix
elements of the operators, O;, should also be renormalized to the one-loop
order. This results in the effective Wilson coefficients, C}, which satisfy the
constraint,

Ci(my)(0:(my)) = CH0:)" (3.6)

where (O;)"*® are the matrix elements at the tree level. These matrix ele-
ments will be evaluated in the factorization approach. From Eq. (3.6), the
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Ci(p) for p =5 GeV

Ch —-0.3125

C, +1.1502
Cs +0.0174 Cs +0.0104
Cy +0.0373 Ce —0.0459
Cr: —1.050 x 10™° Cy —0.0101

Cs +3.839 x 10~* Cio +1.959 x 1073

Table 3.1: Wilson coefficients to the next-leading order.

relations between C! and C; are {35, 36, 37, 38],

C]l_ . Cl 3 C; - 02 9
C:;=C3—‘Ps/3, CQ=C4+PS,1
Cé_ - 3/3 Cé=Ce+Ps,
07 C7+P67 Cé=08’
Co=Co+ P., Cio=Cro , (3.7)
where
Qs 10
P, = 8_71'02< 9 + G(mcnuaq ))
Oem 10
Pe= on (301+02)( +G(mcnu7q ))
and,

m?2 — z(1 — z)q

12

1
G(me, u,q%) = 4/ dz z(z — 1)Iln
0

Here ¢? is the typical momentum transfer of the gluon or photon in the
penguin diagrams and G(m, i, ¢°) has the following explicit expression [39],

9 2 2 2 m2 1+1/1—44
%G =3 (1nﬁ—§—4m°+(1+2m—;) 1—4—°1

w3 ¢ q 1 - 4&2;
2 m? m?
Im G = —3 1+ 2? 1— 7 (3.8)

Based on simple arguments at the quark level, the value of ¢* is chosen in
the range 0.3 < ¢?/m? < 0.5 [40, 41]. From Eqgs. (3.7, 3.8) we can obtain
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C! ¢/ml=03 ¢/mi=05
CI —0.3125 —0.3125
C,  +1.1502 +1.1502

Table 3.2: Wilson coefficients for the current-current tree operators.

C? q*/mé = 0.3 ¢*/m¢ = 0.5
CT 2433 x 1072 +1.543 x 1072 +2.120 x 1072 +2.174 x 10™%
O, —5.808 x 1072 — 4.628 x 1073 —4.869 x 1072 —1.552 x 1072
C!  4+1.733 x 1072 +1.543 x 10737 +1.420 x 1072 + 5.174 x 107%
1 2
i

5
C, —6.668 x 1072 — 4.628 x 1073 —5.729 x 1072 — 1.552 x 102
Ch  —1.435 x 107* —2.963 x 1075 —8.340 x 10™° —9.938 x 107°

Cl +3.839 x 10~ +3.839 x 10~*
Ol —1.023 x 1072 —2.963 x 10~% —1.017 x 1072 — 9.938 x 107>
‘ +1.959 x 103 +1.959 x 103

Table 3.3: Wilson coefficients related to the electroweak and QCD-penguin
operators.

numerical values for C/. These values are listed in Tables 3.2 and 3.3, where
we have taken o,(mz) = 0.112, oem(my) = 1/132.2, my = 5 GeV, and
m. = 1.35 GeV.

3.3 Effective Hamiltonian

In any phenomenological treatment of the weak decays of hadrons, the start-
ing point is the weak effective Hamiltonian at low energy [28, 29, 30, 34, 42].
It is obtained by integrating out the heavy fields (i.e. the top quark, W and
Z bosons) from the Standard Model Lagrangian. It can be written as,

Hess = G—\/l-;— 2 VormCi(p)Oi(p) (3.9)

where Gp is the Fermi constant, Vogxa is the CKM matrix element (see
Section 2.2.2), Ci(r) are the Wilson coefficients (see Section 3.2), Oi(p) are
the operators entering the Operator Product Expansions (see Section 3.1)
and p represents the renormalization scale. We emphasize that the amplitude
corresponding to the effective Hamiltonian for a given decay is independent
of the scale y. In the present case, since we analyse B decays into p7 and into
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pK through p — w mixing, we take into account tree and penguin diagrams.
For the penguin diagrams, we include all operators Oz to Oyo. Therefore, the
effective Hamiltonian used will be,

B G 10
Hﬁf?—l = 7}; [VubV;q (C’lOg + Czog) - V;th; Z C,'Oi:| + h.c. : (310)
=3

where ¢ = d or s according to the b — u or b — s transitions. Finally, the
decay amplitude will be expressed as it follows,

A(B— PV) = % {VubVJq (Cl(PVI02|B> + Cz<PV|0%IB>) -
10
VaVy > Ci(PV|0;|B)

=3

+he, (3.11)

where (PV|0;|B) are the hadronic matrix elements. The notation PV means
Pseudoscalar Vector. They describe the transition between initial state and
final state for scales lower than ¢ and include, up to now, the main uncer-
tainties in the calculation because of the non-perturbative approach.

3.4 Naive factorization

The computation of the hadronic matrix elements, (PV|O;|B), is not trivial
and requires some assumptions. The general method which has to be used is
called the “factorization” procedure [43, 44, 45]. This involves the approx-
imation of the matrix element as a product of a transition matrix element
between a B meson and one final state meson times a matrix element which
describes the creation of the second meson from the vacuum. This can be
formulated as,

(PV|0:|B) =(V|J24|0) (P|Ju|B) ,
or (PV|0i|B) =(P|Ju0) (V|Jsi|B) , (3.12)

where the J;; are the transition currents. This approach is called naive
factorization since it factorizes (PV|0;|B) into a simple product of two quark
matrix elements, (see Fig. 3.5). Analytically, Fig. 3.5 can be written down
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as,

A(B - PV) x [Z VorwmCi(p)(M1 M, |0 B)

=1

o3 [Z VCKMCi(u)(Ml|Jzi|0)<M2|Ju|B>] . (3.13)

Oi(w)

TRCW~@) ™, 3 ()

r -

= ll.—(_)l C,(H)x

Mmﬁx@ﬁ

Figure 3.5: Naive factorization, where M; and M, represent the final meson
states.

The justification has been given by Bjorken [46] and is the following: the
heavy quark decays are very energetic, so the quark-antiquark pair in a meson
in a final state moves very fast away from the localised weak interaction. The
hadronization of the quark-antiquark pair occurs far away from the remaining
quarks. Then, the meson can be factorized out and the interaction between
the quark pair in the meson and the remaining quark is very tiny.

Moreover, by reordering the colour indices (Fierz transformation) with
1/N&/S (NS is the effective number of colours), and also including the colour
octet contribution through the variable & (since it is non-factorizable), the
result takes into account the colour-allowed and colour-suppressed contri-
butions which can occur in the decay at the tree level. N&// is defined as
a parameter which, by assumption, includes all hadronization effects (they
cannot be factorized completely) and is written as,

il
(—elf_W=§+§z’Withz=1”10’ (3.14)
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where it is assumed that N¢// is the same for all operators O;. Finally, and
this is the main uncertainty in the present approach, all of the Final State
Interactions (FSI) are not involved. Recall that this work is achieved by
applying a phenomenological treatment. In this approach, corrections asso-
ciated with the limit of validity of the factorization hypothesis are param-
eterized and may contribute to large uncertainties [47]. However, it should
give a good estimate of the magnitude of the B decay amplitude in many
cases [48, 49]. We will see in the last part, how it will be possible to incor-
porate QCD corrections in order to include the FSI (at the first order in ;)
into the factorization approach.



Chapter 4
p — w mixing

“ $’l y avait une seule vérité, on ne pourrait pas faire cent toiles sur le méme
theme. ”

Pablo Picasso

In this chapter, we describe the mechanism of p — w mixing (coming
from the quark mass difference between the u and d quarks [50]) and its
implications for B decays (for asymmetries and branching ratios). We explain
the origin of the mixing, based on the Vector Meson Dominance model, and
how it has been determined (by fitting the pion electromagnetic from factor

data).

4.1 Vector Meson Dominance

The idea to incorporate the hadronic contribution of vector mesons in the
photon propagator (in other words, the photon propagator is mixed with an
intermediate state p-propagator) was developed in the early 60’s when nuclear
form factors were analysed by Nambu [51, 52, 53]. Later, in order to study
strong interaction corrections to photon mediated processes at low energy
(non-perturbative QCD), the Vector Meson Dominance model [54] (VMD)
was proposed. It successfully describes the interactions between photons and
hadronic matter by assuming that all photon hadron couplings are governed
by vector mesons. Without going into details, we just recall that VMD
(VMD1) is build on effective Lagrangian field theory, where the relevant

33
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terms are the following (for the process v — nt7~, see Fig. 4.1) [55]:

L= = wpt — eJy A" — GornptJy (4.1)
29,

The first term gives the coupling term (momentum dependent) between the
photon and the p meson at the 4 — p vertex and ensures that the photon
remains massless. The second term represents the direct photon hadronic
matter coupling (where J,, is the hadronic pion current), and the third term
shows the coupling between the p meson and the pion field. We also stress
that global gauge invariance is conserved in the Lagrangian used to develop
the VMD1 model [55, 56]. Hence, by applying this approach, it was possi-
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Figure 4.1: ete™ — 7t7~ described (upper diagram) in the s-channel. The
lower diagram represents the Vector Meson Dominance description for the
same process (similarly for ete™ — ptp™).

ble to reproduce the process, ete~ — wt7r~, where the amplitude denoted,
M1~ 7" includes the vector meson interaction (see Fig. 4.1):

M = —e(py — pa)uFrld?) (4.2)

where py, p; are the pion momentum and, F,(¢?), the pion electromagnetic
form factor taking into account all intermediate processes. Which can been
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defined by [55, 56],

F7r 2 == ]. - i gp?r.?r
(¢°) 9(q )[qz “mi+ zmpf‘p(qz)]

1
—m2 +1im, T (¢?)

. 2 ex i¢
gm(q)[q2 Aexp ] (4.3)

where g,, and g, would be equal if we assumed universality (even though
experimentally this does not hold exactly). The third term of Eq. (4.3)
includes the w contribution attenuated by a factor real, A, and the Orsay
phase, ¢ (both can be extracted from experiment). Other versions of the
VMD model (based on various Lagrangians) were established [55, 56]: mainly,
VMD2 and HLS (hidden local symmetry [57]). But all of them keep in mind
that the interaction between photon and hadronic matter is mediated by a
vector meson propagator taking the following form:

—Guv
D,, = : , 4.
# q? — m% + imyIlv(q?) (4.4)

where my and ['v are the meson mass and momentum dependent width.

4.2 p— w mixing

4.2.1 p — w mixing formalism

It is by analysing data from the cross-section for e*e~ — m*n~ (Fig. 4.2) [58]
and references therein that p — w mixing parameters have been determined.
The interference resulting from the narrow resonant w and the broad resonant
p produces a significative enhancement in the interaction around /s = 780
MeV [58].

If we refer to Fig. 4.1 (top diagram), the amplitude, M7 which cor-
responds to the coupling of the photon to the pion pair is given by,

MO = b(ky )iy u(ky)i Dy (Q)eFr(g') (ke — ks)” (4.5)

where k; and k, are the momenta of the electron and positron, and ks and
k, are the momenta of the pions. F,(q?) is the pion electromagnetic form
factor and D,,(q) the photon propagator written as,

: e _ )3
1Dy (q) = 7 [guv +(¢-1) e ] ) (4.6)
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Figure 4.2: Cross-section for ete™ — 77~ in the region where p —w mixing
effects are maximum i.e. where /s ~ m,,.

where ¢ defines the covariant gauge applied. Let us start by assuming that
the vector mesons couple to a conserved current, therefore its expression (for
one channel) is

Duu = (1 _ H(q2)) Ququ) s (47)

1
e G

where II(¢%) is the one-particle irreducible self-energy. Now, by extending
the same formalism to two coupled channels, the full propagator involving
p — w mixing, can be expressed as [59],

1 (5,9 + a(p,w)q.q. w(q )T )
D, == " , u p " : 4.8
g a ( pr(qz)Tu,, 8w + a(w, p)quq, (48)

where we use the following definitions:

T = gu — (qufb//q2) )

=q2—H w(q®) —m =f12—m2 + imulu(q?) ,

p=q'— pp(q2)—mp = ¢’ —m? +im,[,(¢*),
A (L) - [ = Tl ]e).

a= Hf,w( ) — 5,8u , (4.9)

a(p,w) =

with, II2,(¢%), the momentum dependent mixing amplitude which vanishes
as ¢°> — 0. We can now write down the amplitude, M7 where we take
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into account the coupling between photon and vector mesons, fy;, fywy, and
also the coupling g,,~- between pr and the final pion pair (guw,mr similarly for
wr). Therefore, one gets,

(4.10)

M;/—Hm — (Mu.;p;—nr'rr Mp.;w;—)mr) Dm/ (M’Y—MOI) ,

M=o

where, py and wy are the pure isovector p and isoscalar w state. Dy, is given

by:

_ 1/s, Mpw/8p8w
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Figure 4.3: ete™ — nt7™: leading order diagrams (upper) and leading order
in isospin violation diagram (lower).

By expanding Eq. (4.10) one has,
it I,.(q*%)
YT __ pI—TT Y—=p1 wr—mTw =T PW Y—=pI1
M7 = M, _SpM M= M

2
+ MG Wel@) p v 4 M‘ZI’""LM”W’ , (412)
Sw

SpSw

where all the above terms are described in Fig. 4.3. However it is more
appropriate to analyse the p — w mixing in the physical basis rather than
the isospin pure basis where the G parity can be violated either through the
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mixing p; —wy or the direct decay wy into the pion pair. We recall that, in the
isospin basis, pr and w; are exact eigenstates of isospin. MOW (Maltman,
O’Connell and Williams) [59, 60] defined a transformation, C, between the
physical basis and the isospin basis, which is the following,

C = (612 —161) : (4.13)

and one can therefore write the p and w states explicitly as;

P =pPr— &wr,
w = €pr +wr, (4.14)

where €; and €, are two mixing parameters. Since we require that the mixed
physical p — w propagator should not have poles, then ¢; and e, read as:
II,.(m? II,.(m?
€ = M, €2 = M ) (4.15)

Sw — 8, Sw— S,

It is assumed that, in the vector meson resonance region, the momentum

dependence of II,,(¢?) is negligible, which means that I, (m2) = IL,.(m2) =

H,, [61]. Then, II,, will be treated as a constant and €¢; = €, = ¢ will be
given by the expression,

I,

Sw — Sp

(4.16)

€=

By inserting the transformation matrix, C, (with CC~! = I) in Eq. (4.10),
we can diagonalize the D,, matrix propagator:

MZ—)WW — (MZI—HF‘IF M(:L!]—}'mr) CC_I
1/s, I,./858u _, (M
(HﬁW/SpSw l/Sw ce Mrer | o (4.17)

which gives after computation, the amplitude, M}~"", expressed in the phys-
ical basis:

Fiyis iy w Viyig ]' s 0 M’y_)p
MZ—> . (Mﬁ_’ My~ )(/Op l/sw) (M"’"“’) , (4.18)

where one can extract the corresponding amplitudes between both the isospin
and physical basis as follows:

Mﬁ—)mr — Mﬁ;—}mr + EM(;:]—)WT ,
M‘u:—nr‘rr — _6MZI—)7r7r n MZI—HMr )
M’Y“)P —_ M’Y—)'PI + CM’Y_’WI ,
MY = e MO L MY (4.19)
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By expanding Eq. (4.18) one finally gets:
1 1
M'y—)»mr — Mp—)'mr_M'y—)p + Mw—}mr_M'y—}w . (420)
p “os, s

We stress that M*I"" cannot be neglected since it provides one of the two
sources of G parity violation in the p —w mixing and has a strong influence
on fitting the pion electromagnetic form factor.

4.2.2 Electromagnetic pion form factor
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Figure 4.4: Electromagnetic pion form factor data.

Starting from the definition of the pion electromagnetic form factor in-
cluding p — w mixing and the w; — 77 decay, one has,

D! D! 11, D!
2 — pp pp AW ww Gorrr
W= ) (om0 ) () o)

where Dyy = D (see Eq. (4.4)) since we are working to the first order
in isospin violation. In order to determine the value for H,,w, we chose an
appropriate form factor:

Fr(s) = F,(s) [1 + JJ::; <S — ngp:(siinwrw)] : (4.22)

where F,(s) is a function incorporating constraints on the form factor and
playing the same role as the term f,vgp,rn/$,-
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By fitting the pion form factor data (see Fig. 4.4 [62]), it is therefore
possible to extract II,,. Different fits [63, 64] have been realised and the
typical average p — w mixing magnitude is [65]:

I1,.,(m2) = —3500 & 300 MeV? . (4.23)

The average value also respects the experimental branching ratio for the
process w — mr [66, 67]. Finally, we emphasize that there is no possibility
to fix the value of p — w mixing independent of experimental constraints.

4.3 p — w mixing in B decays

4.3.1 Inclusion of p — w mixing in CP violation

Let A be the amplitude for the decay B — p%(w)M; — nTn~M; (with
M, = {7, K}), then one has,

A= (Myr—=*|HT|B) + (Myn~n*|HF|B) , (4.24)

with HT and HF being the Hamiltonians for the tree and penguin opera-
tors. We can define the relative magnitude and phases between these two
contributions as follows,

A= (Myn~n*|HY|B)[1 + ree”] |
A= (M=t~ |HT|B)[1 + re”e‘id’] , (4.25)

where § and ¢ are strong and weak phases respectively. The phase ¢ arises
from the appropriate combination of CKM matrix elements which is ¢ =
arg[(VieVis )/ (Vi V)] with ¢ = {d, s} for B decays including either 7 or K.
As a result, sin ¢ is equal to sina (or sinvy) with a (or «) defined in the
standard way [24]. The parameter, r, is the absolute value of the ratio of
tree and penguin amplitudes:

_ |(p°(w) M| HP|B)

"= [P I ETIB) | e

In order to obtain a large signal for direct C'P violation, we need some mech-
anism to make both siné and r large. We stress that p — w mixing has the
dual advantages that the strong phase difference is large (passing through 90°
at the w resonance) and is well known [40, 41, 68, 69, 70, 71]. Note as well
that working in the naive factorization approach, the only source of strong
phase is provided by p — w mixing. With this mechanism, to first order in
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Figure 4.5: B decays without (upper) and with (lower) p — w mixing.

isospin violation, we have the following results when the invariant mass of
mtn~ is near the w resonance mass,

(Myn~n*|HT|B) = Sg" ute +

pw

% 1P+ gﬂp,, : (4.27)

pSw Sp

(Myn~nt|HP|B) =

Here ty (V = p or w) is the tree amplitude and py the penguln amplitude
for producing a vector meson, V, g, is the coupling for p° = T, I, is
the effective p — w mixing amplitude, and sy is from the inverse propagator
of the vector meson V,

sy =s—mi +imyTy , (4.28)

with /s being the invariant mass of the ntn~ pair. We stress that the
direct coupling w — mtn~ is effectively absorbed into 11, [59, 60, 61, 63,
66], leadlng to the explicit s dependence of I,,. Making the expansion

I,.(s) = Wpu(md) + (s — )H’ (m?), the p — w mixing parameters were
determined in the fit of Gardner and O’Connell [65): Z I1,.,(m2) = —3500+
300MeV?, Fm [1,,(m2) = —300 £ 300MeV? and II}, (mZ) = 0.03 £ 0.04.
In practice, the effect of the derivative term is neghglble From Egs. (4.25,
4.27) one has,

rede® = I_}MSW_P,; : (4.29)
Mute + 8wt
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Defining,
Pu — piilsa+d) , by = ae'e | P Beiss | (4.30)
tp p Puw
where 8,,8s and &, are strong phases (absorptive part) at short distance.
One can rewrite Eq. (4.29) and one finds the following expression,

I, + Beilss,,

6 IR
re* =r'e qsw T e (4.31)
Letting,
ae®™ = f+gi, B =btci, r'eé =d+ei, (4.32)
and using Eq. (4.31), we obtain the following result when /s ~ m,;:
rei = ) ~C’ +1D ) ]
(s —m2 + f&e 1,, — gIm I,,)? + (fIm 1L, + g%e 11,um,Lo)? ’
(4.33)

where C and D are defined as:

C=(s—m+ f% I,, — g9m l:I,,w) {d[.%e I, + b(s —m2) — cmwa]
—e [/m I, + bm, T, + c(s — mz,)] }
+ (foIm I, + m,I, + g% fI,,w) {e [%e I, + b(s — m?2) — cmwa]

+ d[/m I, + bm, Ty + (s — mi)] } , (4.34)

and,

D= (s—m?+ fR,, —gISmilu) {e I:.?Z’e I,, + d(s — m2) — cmwFW]
+ d[ﬂm I, + bm, Ty, + (s — mz)] }
— (fIm I, + m,T, + 9% I:I,,w) {d[,%e I, +b(s — m2) — cmwFW]

—e€ [ﬂm I, 4+ bm,l, + c(s — mi)] } . (4.35)
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The quantities ae®®=, Be’®s and 7/ e®s will be calculated later. In order to
get the C P violating asymmetry, acp, sin¢ and cos ¢ are needed, where o is
determined by the CKM matrix elements. In the Wolfenstein parametriza-
tion [18, 19], one has for the decay B — p%(w)r,

o U
A 7 e
2
cos¢ = Pl —p)=m (4.36)

Vi —p) =P+ 77
and for the decay B — p°(w)K one has,

. -1
sin ¢ = ——,
/p2 + TI2
cos ¢ = — (4.37)

The values used for p and n will be given in the following chapter.

4.3.2 Inclusion of p — w mixing in branching ratios

In the Quark Model, the diagram (Fig 4.5 top) describing the B — p° M,
decay (with M; = {m,K}) is the main contribution. In our case, to be
consistent, we should also take into account the p—w mixing contribution (see
Fig 4.5 bottom) when we calculate the branching ratio, since we are working
to the first order of isospin violation. The application is straightforward and
we obtain the branching ratio for B — p°M;:

G253
%(B = pOMl) = Z;lﬂwalB' l:vuq,‘sAZ; (alv a2) - stAfo(a;;, N ,alo)]
fi 2
T AT P AP ... pw
i [Vu,sAw(a’h a2) Vu.,sAw (03, ,alo)] (Sp = m?‘,) T z.mwl_\w 5 (438)
where the p-momentum takes the following form:
‘p-;l — \/[sz — (mp + li)z][sz == (mp - li)Z] ) (4.39)

2mp

In Eq. (4.38) Gy is the Fermi constant, I'p, the total width B decay, ak, an
integer related to the given decay B — p°M; (with M, = {m,K}) and VL,
V.F, are the CKM matrix elements involved in the tree and penguin diagram
respectively. Finally, AT (a;) and AF(a;) are the tree and penguin amplitudes
which respect quark interactions in the B decay.
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Chapter 5

Branching ratios for B decays
into pm or pK

“Il y a en chacun de nous des calculs que nous nommons espérance. ”

Platon

This chapter is devoted to the application of all the theoretical tools
described in the three previous chapters. We start by investigating branching
ratios in B decays including in the final state either a m or K particle. We
shall calculate branching ratios for the processes B¥? — p*%7%0 and B*? —
pEOK*0 and shall compare with the experimental results.

5.1 Formalism

With the factorized decay amplitudes, we can compute the decay rates by
using the following expression [72],

2

A(B - VP) 51)

€v " PB

|,
8rm?

[(B—-VP)=

where p,, is the c.m. momentum of the decay particles (already defined, see
Chapter 4), my is the mass of the vector V particle, ey is the polarization
vector with the condition ey-Py = 0 and A(B — V P) is the decay amplitude
given by,

10
A(B—=VP)= %_“21 > VIFa(VP|Oi|B) . (5.2)
=1

45
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In Eq. (5.2), all variables have been introduced in a previous chapter (see
Chapter 3). The term denoted VuT,s’P represents the CKM matrix elements
involved in the tree and penguin diagrams, for the b into u and b into s
transitions, respectively:

VuT . |VUbV;L*dI VuP = I‘/"-b‘/;ﬂ
sfor 2=1,2 and for 2=3,10.
VI = |V Vi VP =|VaVl

The effective parameters, a;, which appear in the decay amplitude (see
Eq. (5.2)) are the following combinations of effective Wilson coefficients, C7,

1 1 .
Neffcéj—l’ A2;-1 = Céj—l + Wcéj, for 7= ]_,. .. ,5 .

(5.3)

'
Q25 = 02_7' +

As we have already mentioned in Chapter 4, we take into account the p — w
mixing contribution when we calculate the branching ratio, since we are
working to the first order of isospin violation. Therefore, for recall, the
general expression for the branching ratio is given by:

GEIp,

B(B0 - :I:,OM:E,O —
( P ! ) Otkﬂ'FBi,o

[VT AT(a1,a2) — VAL (as, - - ,alo)]

u,84%p

2

; (54)

My
(8, —m2) +im,I'y,

u,5° tw u,5% tw

+ VT AT(al, az) e VP AP(G.3, i ,(110)]

where G is the Fermi constant, I'g+.0 is the total width B decay, and ay is
an integer related to the given decay. A% and AY, are the tree and penguin
amplitudes with V being either p or w. MF® is {K,n}. Finally, the term
involving II,, generates the p — w mixing.

5.2 Calculational details

5.2.1 Factorization

With the Hamiltonian given in Eq. (3.10) (see Chapter 3), we are ready to
evaluate the matrix elements for B® — p%(w)MF° where M is 70 or
K*0. In the factorization approximation [43, 44, 45), either p°(w) or M ™°
is generated by one current which has the appropriate quantum numbers in
the Hamiltonian. For these decay processes, two kinds of matrix element
products are involved after factorization; schematically (i.e. omitting Dirac
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matrices and colour labels) (p°(w)]|(@w)|0)(ME°|(§:b)| BX?) with ¢, = {u, s},
and (M:°|(g3q)[0)(p°(w)|(ub)| BE®) with ¢; = {u,s}. We will calculate
them in several phenomenological quark models.
The matrix elements for B — X and B — X* (where X and X* denote
pseudoscalar and vector mesons, respectively) can be decomposed as follows
for the pseudoscalar pseudoscalar transition [73, 74],

my = m m -

m2
(X|Ju|B) = (PB +px — — ) Fi(k?) + —kTg—k‘#Fo(kZ) ,
P
(5.5)

and for the vector transition,

(X B) = e B V) + i{fZ(mB +mxe) s (K)
ek &k
- mp+ mx*(PB + Pro)uda(k) - U S k,,A3(k2)}

*

&2 2mx* . k‘,Ao(kz) 5 (56)

L€
+1

where J, is the weak current defined as J, = ¢y*(1 — ¥5)b with ¢=u,d,s
and k = pp — px(x#)- € is the polarization vector of X*. Fy, F; are the form
factors related to the transition 0~ — 0~ and Ao, A1, Az, A3,V the form
factors which describe the transition 0~ — 1~. Finally, in order to cancel
the poles at k% = 0 the form factors respect the conditions:

F1(0) = Fo(0), As(0) = Ao(0) , (5.7)
and they also satisfy the following relation:

mpg + mx»+ mp — Mmx+
Ag(i?) = PR 4,47) - TR AR (5.8)

5.2.2 Form factors

The form factors F;(k?) and A;(k?) depend on the inner structure of the
hadrons. We will adopt here three different theoretical approaches. The first
was proposed by Bauer, Stech, and Wirbel [73, 74] (BSW model), who used
the overlap integrals of wave functions in order to evaluate the meson-meson
matrix elements of the corresponding current. The momentum dependence
of the form factors is based on a single-pole ansatz. The second one was
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developed by Guo and Huang (GH model) [75]. They modified the BSW
model by using some wave functions described in the light-cone framework.
The BSW (GH) models will be labelled models 1(2) and models 3(4) accord-
ing to the form factors, Fy(k?) and Ao(k?), given in Eq. (5.9) where n =1
and 2, respectively. The last model was given by Ball [76, 77]. In this case,
the form factors are calculated from QCD sum rules on the light-cone and
leading twist contributions, radiative corrections, and SU(3)-breaking effects
are included. This model will be labelled model (5). Nevertheless, all these
models use phenomenological form factors which are parametrized by making
the nearest pole dominance assumption. The explicit k* dependence of the
form factor is as [72, 73, 74, 75, 76, T7]:

Fl(kz) — hl =, Ao(kz) — hAO =,

R

1 Ag
or
h h
Fl(kz) = N - SN2 Ao(k2) & N Ao SN2
1—d1m%-+b1 (m%—) 1—dom%-+bo(;kr)
B B B B

(5.9)

where n = 1,2, my4,. Note also that m; are the pole masses associated with
the transition current, h; and hga, are the values of form factors at k? =0,
and d; and b; (+ = 0, 1) are parameters in the model of Ball.

5.3 Numerical inputs and experimental re-
sults

5.3.1 CKM values

In our numerical calculations we have several parameters: g%, N/, and
the CKM matrix elements in the Wolfenstein parametrization. As men-
tioned in Chapter 2, the value of ¢° is conventionally chosen to be in the
range 0.3 < ¢?/my® < 0.5. The CKM matrix, which should be determined
from experimental data, is expressed in terms of the Wolfenstein parameters,
A, ), p, and 7 [18, 19]. Here, we shall use the latest values [78] which were
extracted from charmless semileptonic B decays, (|Vys|), charm semileptonic
B decays, (|Vz|), s and d mass oscillations, Amg, Amg, and C P violation in
the kaon system (ex ), (p,n). Hence, one has,

A=02237, A=08113, 0.190 < p < 0.268 , 0.284 < 7 < 0.366 .
(5.10)
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o B ~
(PminsTmin) 104°47 19°32 56°21
(Pmins Mmaz)  93°13  24°31  62°56
(Pmass min) 112°14 21°20 46°66
(Pmaz> Tmaz) 99°66  26°56 53°78

Table 5.1: Values of the CKM unitarity triangle for limiting values of the
CKM matrix elements.

These values respect the unitarity triangle as well (see Table 5.1).

5.3.2 Quark masses

The running quark masses are used in order to calculate the matrix elements
of penguin operators. The quark mass is taken at the scale u ~ m; in B
decays. Therefore one has [79],

my (= mp) = 2.3 MeV mq(u = my) = 4.6 MeV

ms(p = mp) = 90 MeV , mp(p = mp) = 4.9 GeV (5.11)

which corresponds to ms(u = 1 GeV) = 140 MeV. For meson masses, we
shall use the following values [24]:

mpt = 5.279 GeV | mpo = 5.279 GeV
my+ = 0.493 GeV , mgo = 0.497 GeV
my+ = 0.139 GeV , myo = 0.135 GeV ,
my = 0.769 GeV , my, = 0.782 GeV . (5.12)

5.3.3 Form factors and decay constants

In Tables 5.2 and 5.3 we list the relevant form factor values at zero momentum
transfer [73, 74, 75,76, 77,80] forthe B — K, B — p,and B = 7 transitions.
The different models are defined as follows: models (1) and (3) are the BSW
model where the ¢ dependence of the form factors is described by a single
(n = 1) and a double-pole (n = 2) ansatz, respectively. Models (2) and (4)
are the GH model with the same momentum dependence as models (1) and
(3). We define the decay constants for pseudoscalar (fp) and vector (fv)
mesons as usual by,

(P(9)|@17u75210) = —ifpqy
V2(V(9)|q171.4210) = fvmvey , (5.13)
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h_go h] M A, my do(dl) bo(bl)
model 1 0.280 0.290 5.27 5.32
model 2 0.340 0.625 5.27 5.32
model 3 0.280 0.290 5.27 5.32
model 4 0.340 0.625 5.27 5.32
model 5 0.372 0.305 1.400(0.266) 0.437(-0.752)

Table 5.2: Form factor values for B — pr at k* = 0.

hAg hy My, My do(d1) bO(bl)
model 1 0.280 0.360 5.27 5.41
model 2 0.340 0.762 5.27 5.41
model 3 0.280 0.360 5.27 5.41
model 4 0.340 0.762 5.27 5.41
model 5 0.372 0.341 1.400(0.410) 0.437(-0.361)

Table 5.3: Form factor values for B — pK at k* = 0.

with g, being the momentum of the pseudoscalar meson, my and ey being the
mass and polarization vector of the vector meson, respectively. Numerically,
in our calculations, we take [24],

f. =132 MeV , fx =160 MeV , f, ~ f,, = 221 MeV . (5.14)

The p and w decay constants are very close and for simplification (without
any consequences for results) we choose f, = f,.

The numerical values for the CKM matrix elements V,1;”, the Wilson
coefficients, C;, the p — w mixing amplitude fI,,w, the particle masses, my,p,
which appear in Eq. (5.4), have been all reported on Chapters 2, 3, 4 and 5,
respectively. The Fermi constant is taken equal to be Gr = 1.166391 X
10~3GeV~? [24] and for the total B decay width, I's(= 1/78), we use the
world average B life-time values (combined results from ALEPH, CDF, DEL-

PHI, L3, OPAL and SLD) [78, 81, 82]:

g0 = 1.546 = 0.021 ps ,
g+ = 1.647 £ 0.021 ps . (5.15)
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5.3.4 Experimental results

To compare the theoretical results with experimental data, as well as to
determine the constraints on the effective number of colour, N&//, the form

factors, and the CKM matrix parameters, we shall apply the experimental
branching ratios collected at CLEO [83, 84, 85, 86, 87], BELLE [88, 89, 90,
91, 92, 93, 94, 95, 96] and BABAR! [98, 99, 100, 101, 102, 103, 104, 105]
factories. All the experimental values are summarized in Table 5.4 (for pr)
and Table 5.5 (for pK).

CLEO BABAR BELLE
PO 104733 £ 2.17 24 + 8 + 3* g0
(<39)F (< 28.8)"
p=m° < 437 = =
pEnT 27,6551 £ 4.2 2890+54+43 208733727
P70 16720408 (<5.5)7 <1067 < 537
Pl 2.65 + 1.9 120£0.79  2.60+1.31
wrE 11853+ 14 6.6571 0.7 42778405

Table 5.4: The measured branching ratios by CLEO, BABAR and BELLE
factories for B decays into pr (107¢). Exp. data*, fit* and upper limit".

CLEO BABAR BELLE
P°K* 8.46735 £ 1.8° 10+6+£2° <1357
(<10)t (<29)"
PEK° - - < 23.67
KT 16.0715 £2.87 (<32)° - 158458450
0 0

p K =~ = -

2102 4] 1.89 £ 1.41 = -

wK* 32722108 (<7.9)7 1471%3+03 927325+1.0°

Table 5.5: The measured branching ratios by CLEO, BABAR and BELLE
factories for B decays into pK (107%). Exp. data™, fit* and upper limit.

1We note that BABAR [97] reported preliminary branching ratios for the channels
B(B® — p*n¥) = (22.6 £1.8+2.2) x 107° and B(BY — pfK¥) = (1.3113+£1.3) x 107°
after this thesis was prepared.
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5.4 Branching ratios for B0 — pEOg+:0

5.4.1 Formulae

We begin by analysing processes such as B0 pE0g:0 and also B —
wr®. Two investigated cases include p — w mixing: B~ — p°n~ and B° —
p°7°. Three other decays (without mixing) are: B~ — p~n°, B® — p~m+
and B~ — wn~. In this section, we give the explicit tree and penguin
amplitudes? for all these charmless B decays. Therefore, after factorization

one gets the following amplitudes®:
for the decay B~ — p°n~ (o = 32 in Eq. (5.4)),

V24% (a1, a3) = a1 f, Fi(m3) +azfrAo(m?) , (5.16)

3 1
ﬁAf(aS’ e ,(110) = prl(mi){—(Ll + ‘2‘((17 + ag) + 5(],10}

mz

+ f,er(mfr){a4 - 2((16 + ag) [(mu n md)(mb T mu)] + am} 3 (517)
)

for the decay B~ — wn™ (ax = 32 in Eq. (5.4)),
V2AZ (a1, 02) = a1 f,Fi(m2) +azfrAo(m?) , (5.18)

\/5145((13, cee, alO) = f,,Fl(mﬁ){2(a3 + a5) + %(a7 + ag) + (a4 - %alo)}

2

- ] +a4+alo} ; (5.19)

m

my, + mgq)(my + my,)

+ fon(mfr){—2(a6 + as) [(

for the decay B® — p°7° (o), = 64 in Eq. (5.4)),
2Af(a1,a2) = alf,,Fl(mf,) + CLlfﬂ-Ao(mfr) , (520)

1
ZAf(a;;, eeyay0) = prl(mi){—% + 5(3617 + 3ag + a10)} +

2

. 1
2mg(my + md)] + 5(—3a7.+ 3as + am)} !

m

fer(mfr){—w T (200 — as) [
(5.21)

Read Fi(m2) as FE*™(m2) and Ag(m2) as AZT (m2).
3Note that the integer ax includes the coefficient written near to the tree or penguin
amplitudes on the l.h.s. of Egs. (5.16)-(5.27).
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for the decay B® = wn® (ax = 64 in Eq. (5.4)),

2/‘13(“1, az) = _alprl(mi)'i'alfvrAO(mfr) ) (5.22)

1
2A5(a3, cee alo) = prl(mf,){—Q(ag + (15) — Q4 — 5((17 + ag — a]_o)}

2

+ frAo(m?2) { —a4+ (206 — as) [ T ] + l(—36!7 +3ag + alo)} ;

2mq(my + mgq) 2
(5.23)
for the decay B° — p~n* (ax = 16 in Eq. (5.4)),
A:{(al,ag) = azf,,Fl(mf,) 5 (524)
AP(as, -+ ,a10) = (as+a10) fyFa(m)) 5 (5.25)
for the decay B~ — p~n° (o = 32 in Eq. (5.4)),
V2AT (a1, a2) = aaf, Fi(m?)+a1frAo(m3) , (5.26)

\/iAf(a& . aalO) = prl(mi)(a4 + 010) +

f,er(mf,){—cM - %(3(17 — 3ag — a1o) + (2a¢ — as) [ it ] } ;

2mq(mp + ma)
(5.27)

We can also calculate the ratio between two branching ratios: Z#(B° —
pEn¥) and Z(B* — p°n%), in which the uncertainty caused by many sys-
tematic errors is removed. We define the ratio, R, as:

_ B(B° = p*rT)

R, = BBE = port) (5.28)
and, without taking into account the penguin contribution, one has,
g+ | (a1 | frAo(m?) 11, -
= — | =+ =] 1 - 5.29
= T (02 * foF1(m3) T (5, —m2) +imJLs (529)
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Figure 5.1: Branching ratio for B* — p°z* for models 1(2), ¢*/m? = 0.3
(¢?/m? is used to calculate the Wilson coefficients) and limiting values of the
CKM matrix elements. Solid line (dotted line) for model (1) and max (min)
CKM matrix elements. Dot-dashed line (dot-dot-dashed line) for model (2)
and max (min) CKM matrix elements. Notation: horizontal dotted lines:
CLEO data; dashed lines: BABAR data; dot-dashed lines: BELLE data.

5.4.2 Results and discussions

In order to determine the range of N¢//  which is allowed by experimental
data, we have calculated the branching ratios for B* — p°n%, B¥ — p*n®,
B° — p*r¥, B® - p°7° and B* — wr®. All the results are shown in
Figs. 5.1, 5.2, 5.3, 5.4, and 5.5 for the corresponding branching ratios listed
above. Results are plotted for models (1) and (2), since each of them in-
cludes different form factor values, and hence this shows their dependence on
form factors. As experimental data, we shall use three sets of data from the
CLEO, BABAR and BELLE Collaborations, respectively. Since experimen-
tal branching ratios from CLEQ are the most accurate, we shall use them to
extract the range of N¢//. The other two, the BABAR and BELLE data,
will give us an idea of the magnitude of the experimental uncertainties. It is
clear that numerical results are very sensitive to uncertainties coming from
the experimental data. Thus, the determination of the allowed range of N°//
will be done by using all the branching ratio results.

Let us start with the decay processes B~ — p®7~ and B~ — p~n°% In
both cases, we have a large range for N°/f and the CKM matrix elements
over which the theoretical results are consistent with experimental data from
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Figure 5.2: Branching ratio for B¥ — p*n® for models 1(2), ¢°/m{ = 0.3
and limiting values of the CKM matrix elements. Solid line (dotted line)
for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-
dot-dashed line) for model (2) and max (min) CKM matrix elements. Same
notation as in Fig. 5.1 for the horizontal line.

CLEO, BABAR and BELLE. For B~ — p~7°, the lack of data does not allow
us to determine the range. However, experiment and theory are consistent
in both cases. For B~ — p°7~, the models show considerable variation even
though they are all consistent with the experimental data. Numerical results
for models (1,3) and (5) are close, as are those for models (2) and (4). We
emphasise that the effect of p — w mixing on the branching ratio B* — pOr®
can be as large as 30%. As regards B® — p~n* and B® — p°n°, the results
and conclusions are different from those for B — p%r%. If we look at the
branching ratio for B® — p*7¥, only models (2) and (4) are consistent with
the experimental data over a large range of N, ¢/f, whereas models (1,3) and
(5) are not. The strong sensitivity to the results in that case comes from
the fact that the decay branching ratios for B® — p*n¥ depend on form
factors more sensitively, because in this case only one form factor, £ 1(k?), is
involved. In all the other cases, the amplitudes depend on Fi(k?) and Ao(k?).
Therefore these branching ratios are less sensitive to the magnitude of the
form factors. Finally, for the branching ratio #(B* — wr®), plotted in
Fig. 5.5, all models give theoretical results in consistency with experimental
data. Once again, the difference observed between models (1) and (2) mainly
comes from the form factor Fi(k?) (i.e. from the pion wave function used).
Our complete analysis of branching ratios shows that models (1, 3) and (5)
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Figure 5.3: Branching ratio for B® — p*n¥ for models 1(2), ¢*/m{ = 0.3
and limiting values of the CKM matrix elements. Solid line (dotted line)
for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-
dot-dashed line) for model (2) and max (min) CKM matrix elements. Same
notation as in Fig. 5.1 for the horizontal lines.
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Figure 5.4: Branching ratio for B — p°n® for models 1(2), ¢°/mj = 0.3
and limiting values of the CKM matrix elements. Solid line (dotted line)
for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-
dot-dashed line) for model (2) and max (min) CKM matrix elements. Same
notation as in Fig. 5.1 for the horizontal lines.
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Figure 5.5: Branching ratio for B — wn* for models 1(2), ¢°/m} = 0.3
and limiting values of the CKM matrix elements. Solid line (dotted line)
for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-
dot-dashed line) for model (2) and max (min) CKM matrix elements. Same
notation as in Fig. 5.1 for the horizontal lines.

cannot give results consistent with all experiments and have to be excluded.

To remove systematic uncertainties coming from experimental results,
one can calculate the ratio between two branching ratios for B decays.
In the present case (with the data available), the ratio, R,, is between
B(BE — p°r%) and B(B° — p*r¥). Results are shown in Fig. 5.6. We
observe that the ratios differ markedly between models (1,3,5) and models
(2,4). Since models (1,3) and (5) have already been excluded, we will use
models (2) and (4) for the determination of the range for N¢ ¢f f If we just

B — pm {NeIT}
model (2) 1.09;1.63(1.12;1.77)
model (4) 1.10;1.68(1.11;1.80)

maximum range 1.09;1.68(1.11;1.80)
minimum range 1.10;1.63(1.12;1.77)

Table 5.6: Best range of N/ determined for ¢?/mi = 0.3(0.5) and for
B — p7 decays.

include tree contributions in the decay amplitudes, R, becomes independent
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Figure 5.6: The ratio of two pm branching ratios versus /V, ¢S for models 1(2)
and for limiting values of the CKM matrix elements: solid line (dotted line)
for model (1) with max (min) CKM matrix elements. Dot-dashed line (dot-
dot-dashed line) for model (2) with max (min) CKM matrix elements. Same
notation as in Fig. 5.1 for the horizontal lines.

of the CKM matrix elements. Penguin contributions lead to a relatively weak
dependence of R, on the CKM matrix elements. By comparing numerical
results and experimental data, we are now able to extract a range for N, eff
which is consistent with both approaches (experimental and theoretical). To
determine the best range of N¢//, we select the values of N&// which are
allowed by all constraints for each model. Finally, after excluding models
(1,3) and (5) for the obvious reasons mentioned before, we can now fix the
upper and the lower limit of the range of N&// (Table 5.6). We find that N, eff
should be in the range 1.09(1.11) < N&// < 1.68(1.80) for ¢*/m{ = 0.3(0.5).

5.5 Branching ratios for B*° — p™0K +,0

5.5.1 Formulae

After the analysis of branching ratios related to B — pm, we now consider
the case B — pK. In this section, we start by enumerating the theoretical
decay amplitudes. We shall analyse five b into s transitions. Two of them
involve p — w mixing. These are B~ — p°K~ and B® — p°K®. Two other
decays are B® — p~K* and B~ — p~ K° and the last one is B~ — wK™.
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We list in the following, the tree and penguin amplitudes which appear in

the given transitions®.
For the decay B~ — p° K~ (o) = 32 in Eq. (5.4)),

V2A%(a1,a2) = a1 f,Fi(m3) + as fx Ao(mk) (5.30)

V2AP (ag,- -+ yai0) = f,,Fl(mf,){%(a7+a9)}

' 2
2 _ s .
+ fKAO(mK){a4 + a10 — 2(as + as) [(mu ey E—— mu)] } ; (5.31)
for the decay B~ — wK~ (ax = 32 in Eq. (5.4)),
V2AL(a1,a5) = arf,Fi(m}) + azfx Ao(mk) , (5.32)

\/§A£(a3, cee alO) = prl (mi){2(a3 + a5) + %(a7 + CLQ)}

my + ms)(mb + mu)

+ fKAo(mi{){—z(as + a6) [( m%{ ] + a4 + alo} : (533)

for the decay B° — p°K° (o, = 32 in Eq. (5.4)),

\/é_AZ(al,ag) e alf,,Fl(mf,) , (534)

V24l (a3, -+ ,a10) = prl(mi){g‘(M 0 09)}

+ fKAo(m%){—a‘; + (2a6 — as) [( my ] o %am} ; (5.35)

ms + ma)(ms + mq)
for the decay B° — wK° (ar = 32 in Eq. (5.4)),
V2AZL(ay,a5) = a1f,Fi(m?) , (5.36)

V2AL(as, - ,a10) = prl(mi){Q(% +as) + %(‘17 + “9)}

ms + mg)(my + mq)

+ fKAo(m%){(M — (2a¢ — as) [( m%{ ] — -;-alo} i (5.37)

“Read Fi(m2) as FP7%(m2) and Ag(m}k) as AZ™*(m%). See footnote 3 as well.
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for the decay B~ — p~ K° (ax = 16 in Eq. (5.4)),

AZ(alaa2) = a2prl(mi) ) (538)
Af(as,"' ,@10) =
1 m2
. 2 - . _ K ;
I AO(mK){a4 910 (2a — as) (ms + ma)(ms + md)] } i (5:39)
for the decay B® — pt K~ (ai = 16 in Eq. (5.4)),

Al(a1,a2) = asfx Ao(mi) , (5.40)
Af(as,"' ,a10) =

o) as + azo — 2(as + a) i (5.41)

KAo\Mg )y Ga 10 6 T dsg (ms+mu)(?nb+mu) . .

Moreover, as we did for B — pm, we can calculate the ratio between two
branching ratios, in which the uncertainty caused by systematic errors is
removed. We define the ratio Rx as:
B(B° — p*K¥F)
Ry = 42
and, without taking into account the penguin contribution, one has,
or ay f,Fi(m? .
Ry = 2Bt + _il.(—;) 1+ o
['go azfx Ao(m%) (s, —ml) +im,I,
Finally, we define the ratio R, between the two ratios R, and Rk defined in
Egs. (5.28) and (5.42), respectively, as,

R
R=—"7. 5.44
e (5.44)
Numerically, by using the experimental data from pm and pK, one gets a
ratio equal to R = 1.40 £ 2.04. By simplification, we can also just include

the tree contribution and one obtains therefore:

-2

. (5.43)

. 2
po|fe . FET0MD) | afoFER(m) +anf A Mmoo
fe  AT(m2)  af,FET(m) + aafrAg P(md) '
Further, since a; < a1, a rough estimation of R can be read as,
FB=K (2} |
p=|fe B (m)l o (5.46)
fr A5 7*(m2)
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5.5.2 Results and discussions

In order to determine the range of N¢// available for calculating the C'P
violating parameter, acp, in BE¥® — p® K*° we have calculated the branch-
ing ratios for B¥ — p°K*, B* — p*K° B° — p*K¥, B® — p°K°, and
Bf —» wK*. We show all the results in Figs. 5.7, 5.8, 5.9, 5.10, and 5.11,
where branching ratios are plotted as a function of N&// for models (1) and (2)
(different form factors are used in models (1) and (2)). By taking (just as for
pr) experimental data from the CLEO, BABAR and BELLE Collaborations,
listed in Table 5.5, and comparing theoretical predictions with experimental
results, we expect to extract the allowed range of N/ in B — pK and to
make the dependence on the form factors explicit between the two classes
of models: models (1,3) and (5), and models (2) and (4). We shall mainly
use the CLEO data, since the BABAR and BELLE data are (as yet) less
numerous and accurate. An exception will be made for the branching ratio
B* - wK*, where we shall take the BELLE data for our analysis since they
are the most accurate and most recent measurements in that case. Neverthe-
less, we shall also apply all of them to check the agreement between all the
branching ratio data. The CLEO, BABAR and BELLE Collaborations give
almost the same experimental branching ratios for all the investigated decays
except for the decay B~ — wK~. In the latter case, we observe a strong
disagreement between all of them since they provide experimental data in a
range from 0.1 x 107 to 12.8 x 107®. Finally, it is evident that numerical
results are very sensitive to uncertainties coming from the experimental data
and from the factorization approach applied to calculate hadronic matrix
elements in the B — K transition. Moreover, for B — pK, the data are
less numerous than for B — pm, so we cannot expect to get a very accurate
range of N&//.

For the branching ratio B* — p° K* (Fig. 5.7) we found a large range of
values of N*/f and CKM matrix elements over which the theoretical results
are consistent with experimental data from CLEO, BABAR and BELLE.
Each of the models (1,2,3,4) and (5), gives an allowed range of NS, Even
though strong differences appear between the two classes of models, because
of the different form factors used, we are not able to draw strong conclusions
about the dependence on the form factors. For the branching ratio B* —
p£K?°, (Fig. 5.8), BELLE gives only an upper limit for the branching ratio
whereas BABAR and CLEO do not. Our predictions are still consistent with
the experimental data for all models, for a large range of NS, In this case,
the numerical results for models (1) and (2) are very close to each other and,
we need new data to constrain our calculations.

If we consider our results for the branching ratio B® — p*K¥ (plotted in
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Figure 5.7: Branching ratio for B¥ — p°K*, for models 1(2), ¢*/m{ = 0.3
and limiting values of the CKM matrix elements. Solid line (dotted line) for
model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-dot-
dashed line) for model (2) and max (min) CKM matrix elements. Notation:
horizontal dotted line: CLEO data; dashed line: BABAR data; dot-dashed
line: BELLE data.
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Figure 5.8: Branching ratio for B* — p£K?, for models 1(2), ¢*/mZ = 0.3
and limiting values of the CKM matrix elements. Solid line (dotted line)
for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-
dot-dashed line) for model (2) and max (min) CKM matrix elements. Same
notation as in Fig. 5.7 for the horizontal line.
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Figure 5.9: Branching ratio for B® — p*K¥, for models 1(2), ¢*/m{ = 0.3
and limiting values of the CKM matrix elements. Solid line (dotted line)
for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-
dot-dashed line) for model (2) and max (min) CKM matrix elements. Same
notation as in Fig. 5.7 for the horizontal lines.

Fig. 5.9), there is agreement between the experimental results from CLEO
and BELLE (no data from BABAR) and our theoretical predictions at very
low values of N¢//. All the models (1,2,3,4) and (5), give branching values
within the range of branching ratio measurements if N7/ is less than 0.07.
The tiny difference observed between models (1) and (2) comes from the
form factor Ao(k?) (where Ag(k?) refers to the B to p transition taken at
k? = m%) since in that case, the amplitude computed involves only the
form factor Ao(k?). For the branching ratio B’ — p°K® shown in Fig. 5.10,
neither CLEO, BABAR nor BELLE give experimental results. Nevertheless,
from models (1) and (2), it appears that this branching ratio is very sensitive
to the magnitude of the form factor Fi(k?) (in our case, Fi(k?) is uncertain
because h; = 0.360 or 0.762 in models (1) and (2), respectively) since the tree
contribution is only proportional to Fy. Moreover, from the range of allowed
values of N/, we can estimate the upper limit of this branching ratio to be
of the order 4 x 10~8. Finally, we focus on the branching ratio B* 5 wK*®
which is plotted in Fig. 5.11 for models (1) and (2). We find that both the
experimental and theoretical results are in agreement for a large range of
values of N°/f. But, models (1) and (2) do not give similar results because
the form factors Fi, applied in these models, are very different. Moreover, the
dependence of the branching ratio on the CKM parameters p and 7 indicates
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Figure 5.10: Branching ratio for B — p°K?, for models 1(2), ¢*/m} = 0.3
and limiting values of the CKM matrix elements. Solid line (dotted line) for
model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-dot-
dashed line) for model (2) and max (min) CKM matrix elements.
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Figure 5.11: Branching ratio for B* — wK#, for models 1(2), ¢*/m{ = 0.3
and limiting values of the CKM matrix elements. Solid line (dotted line)
for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-
dot-dashed line) for model (2) and max (min) CKM matrix elements. Same
notation as in Fig. 5.7 for the horizontal lines.
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Figure 5.12: The ratio of two pK branching ratios versus N, ¢/f for models
1(2) and for limiting values of the CKM matrix elements. Solid line (dotted
line) for model (1) with max (min) CKM matrix elements. Dot-dashed line
(dot-dot-dashed line) for model (2) with max (min) CKM matrix elements.
Same notation as in Fig. 5.7 for the horizontal lines.

that it would be possible to strongly constrain p and n with a very accurate
experimental measurement for the decay B~ — wK™.

To remove systematic errors in branching ratios given by the B factories,
we look at the ratio, R, between the two branching ratios #(B° — p*K¥)
and #B(B* — p°K7¥). The ratio is plotted in Fig. 5.12 as a function of
N&f/, for models (1) and (2) and for limiting values of the CKM matrix
elements. These results indicate that the ratio is very sensitive to both N&//
and to the magnitude of the form factors. The sensitivity increases with
the value of N¢// and gives a large difference between models (1,3) and (5)
and models (2) and (4). We found that for a definite range of N eff) all
models investigated give a ratio consistent with the experimental data from
CLEO. It should be noted that R is not very sensitive to the CKM matrix
elements. Indeed, if we only take into account the tree contributions, Rk is
independent of the CKM parameters p and 7. The difference which appears
comes from the penguin contribution and has to be taken into account in
any approach since they are not negligible. To extract a common behaviour
for both B — pm and B — pK decays, we calculate the ratio, R, between
R, and Ry, defined in Egs. (5.28) and (5.42), respectively. In Fig 5.13,
the ratio is given as a function of N¢// for models (1) and (2). The results
show that model (1) is agreement with the experimental data (CLEO) for
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B — pK {Neff}
model (1) 0.66;2.68(0.61;2.68
model (2)  1.17;2.84(1.09;2.82

)
)
maximum range 0.66;2.84(0.61;2.82)
minimum range 1.17;2.68(1.09;2.68)

Table 5.7: Best range of N/ determined for ¢°/m} = 0.3(0.5) and for
B — pK decays.

a range of N¢/f varying between 2.5 to 4.2, whereas it agrees from 2.8 and
3.45 for model (2). In addition to the CKM matrix elements and form factor
effects (already discussed in detail previously), both models (1) and (2) have
a critical point (minimum value of the ratio R) near N&// = N, = 3.

LU e o G T RGN | L W 4 ML B

R=R /R,

PR (NN VN NNV NN [N T S TN [N S SSSTENN M
1 15 2 25 3 35 4 45 5 55 6

Neff

Figure 5.13: Ratio, R, between R, and Rk for models 1(2), ¢°/mj = 0.3
and limiting values of the CKM matrix elements. Solid line (dotted line)
for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-
dot-dashed line) for model (2) and max (min) CKM matrix elements. Same
notation as in Fig. 5.7 for the horizontal lines.

We have summarized for each model, each branching ratio and each set
of limiting values of CKM matrix elements, the allowed range of N&// within
which the experimental data and numerical results are consistent. To de-
termine the best range of N/, we have to find some intersection of values
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of N¢// for each model and each set of CKM matrix elements, for which
the theoretical and experimental results are consistent. Since the experi-
mental results are not numerous and not as accurate as one would like, it
is more reasonable to fix the upper and lower limits of N&// which allow us
the maximum of agreement between the theoretical and experimental ap-
proaches. By using the limiting values of the CKM matrix elements we show
in Table 5.7, the range of allowed values of N&// with p — w mixing. Even
though in the previous study for B — pm, we have restricted ourselves to
models (2) and (4) rather than models (1,3) and (5), here, we cannot ex-
clude one of the models (1,2,3,4) and (5) because of the lack of accurate
experimental data. We find that N/ should be in the following range:
0.66(0.61) < N&// < 2.84(2.82), where the values outside and inside brackets
correspond to the choice ¢?/m? = 0.3(0.5).

5.6 Summary

We have calculated the branching ratios B¥ — p°r%, Bf — pEr®, B® —
pin¥, B® — p°7° and B* — wn® and compared the results with ex-
perimental data coming from the CLEO, BABAR and BELLE Collabora-
tions. We have shown that for models (2) and (4) there is a range for N¢//,
1.09(1.11) < N&/ < 1.68(1.80), in which theoretical results are consistent
with experimental data. Models (1,3) and (5) are excluded since the form
factor Fi(k?) in these models cannot produce results consistent with ex-
periment. For a deeper investigation into this problem, some resonant and
non-resonant contributions [106, 107, 108, 109, 110, 111] which may carry
bigger effects than expected in the calculation of branching ratios in pm may
have to be considered seriously.

As regards theoretical results for the branching ratios B * _, )°K*, B* —
ptK° B — p*K¥, B° — p°K° and B* — wK?*, we made comparison by
using experimental data from the same factories as for pr. We found that it is
possible to have agreement between the theoretical results and experimental
branching ratio data for B* — p°K*, B* — pEK°, B* — wK*, B® —
p*K¥ and R. For B® — pPK°, the lack of results does not allow us to
draw conclusions. Only an estimate for the upper limit (4 X 107%) has been
determined.

In comparison with the situation for B — pm, it is not possible in the
case of B — pK, to exclude one of the models because of the lack of exper-
imental data. Nevertheless, we have determined a range of value of Nt
0.66(0.61) < N¢// < 2.84(2.82), inside of which the experimental data and
theoretical calculations are consistent for all the models. We have to keep in
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mind that, because of the difficulty in dealing with non-factorizable effects
associated with final state interactions (FSI), which are more complex for
decays involving an s quark, we have weakly constrained the range of value

of N&/J.

global maximum range 0.66;2.84(0.61;2.82)
global minimum range 1.17;1.63(1.12;1.77)

Table 5.8: Global range of N¢// from both B decays.

Finally, if we take into account the allowed range of N&// determined from
decays such as B — pm and B — pK we find a maximum global allowed
range of N&// which should be in the range 0.66(0.61) < N&// < 2.84(2.82)
(see Table 5.8). This gives us a mean average value for N&// around 1.75.



Chapter 6

Direct C P violation via p — w
mixing

“ Avec l’avion, nous avons appris la ligne droite. ”

Antoine de Saint-Ezupéry

After the computation of branching ratios in B — pM;, where M; is
either K or 7, and the comparison with experimental data from three main
factories (BABAR, BELLE, and CLEOQ), we are now able to constrain the
investigation of C'P violating asymmetry through the effective number of
colours, N¢//. This chapter first starts by analysing the C'P violating asym-
metry, acp, in the process B¥? — n¥r~7*0. Then, we also shall study the
process B¥® — 77~ K*0 in a similar way in order to give some predictions
concerning direct C'P violation in B decays.

6.1 Calculational details

The calculation of the C'P violating asymmetry, including p — w mixing,
has already been discussed in detail in Chapter 4. We just remind that the
asymmetry, acp, can be written as,

A2 -14P —2rsin dsin ¢
e |A|2+]A]2 ~ 1+ 2rcosécosdp+ 712’

(6.1)

where all quantities are explained in Chapter 4. As we see in Eq. (6.1), the
asymmetry, acp, can be expressed in terms of r (the ratio between the tree
and penguin amplitudes), and the strong and weak phases, 6 and ¢, respec-
tively. Therefore, to determine these quantities, we shall use (see Chapter 4

69
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for more details) the following expression which involves the p — w mixing
amplitude, IT,,:
H wHwW w
refe® = _e_p_ﬂ _ (6.2)
prtw + Swtp

As regards the calculational details, we apply the factorization approxima-
tion to evaluate the matrix elements which arise in the penguin and tree
amplitudes. For the form factors Fy(k%) and Ao(k?), we adopt, the same
models as we did for the calculation of branching ratios. More details can be
found in Chapter 5. Finally, all the numerical inputs (CKM values, quark
masses and decay constants) are also listed in Chapter 5.

6.2 BT o gtp—gT0

6.2.1 Formulae

In this section, we apply the formalism derived in Chapter 4 and write down
all the analytical expressions necessary to calculate the C'P violating asym-
metry parameter, acp. We first focus on the case where M; = {7~ }.

Case of B~ — wton—=w—

Using the decomposition given in Egs. (5.5, 5.6), one has for the tree operator
contribution,
1

— ] ]' ! ! !
by = malfl [(Cl + OO FA(mE) + (O + OO o) . (63)

where p, is the three momentum of the p. In the same way, we find £, =1,
so that gives us,

el =t,/t,=1. (6.4)
After calculating the p and w penguin operator contributions, one has first,

. 7} L1,
peits =22 = mﬁ—"""{@ + 2O Fi(m) + Fo Aol

g[(c*'+ —CL) + (06+NLC{O)]fPF1(m§)
2m2 fr Ao(m2) ]

my + md)(mb + mu)

—[(Cé+—N—cC') (Cs ‘N—coé)] (

+(Clo+ 3 ClghoFi(m) + fer(mi)]} . (65)
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and the ratio between the w penguin and p tree (from which we can extract
the weak CKM matrix phase ¢) is,

Ve Via
Vb Vig

! _18q - Puw

re -
(C1 + %C3) fo Fr(m2) + (Cf + 5-C) fr Ao(m?2)

The expression for the matrix element of the w penguin operator is,

(6.6)

—+ ! 1 ! ! 1 /
po =ms Ipp|{2 (€G34 300+ (€4 + 7:00)| £

1 , 1 ., , 1
+3 |+ o+ G+ 5o 0)] Fi(m
2f*erO :I

(my + mag)(my + mu)

/ ]' [ !’ ]' !
~2[es+ pop+ @+ 0] |
+(Chot -0 [ Aom?) + fo s ()]
+ Gl 308 [l - L) } 7

while the ratio of CKM matrix elements ratio is:

_ (1=p)+m B (1 /\2>—1 sin 7y

(1 — A2/2)y/p? + n? 2 sin 3
where the angles v and § are defined in the unitarity triangle (see Chapter 2).
To simplify the formulas we used N, for N¢// in Egs. (5.3)-(5.11))

Vis Vi
Vi V3

(6.8)

Case of B® — wwtn—x°

In a similar way, we write down the expressions' necessary to calculate the
asymmetry when M; = {n°}. The p tree operator contribution for this given
decay 1s,

to = malfl| (€1 + 00| (FoFitem2) + feo(md) s (69

where all the variables are as previously defined. We find in this case that
t., # t,, and we have:

6. —foF1(ml) + frAo(m2)

FoFi(m2) + FoAo(m2)

1Read Fy(m2) as FE="(m2) and Ag(m?) as AB=0(m2).

(6.10)
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After calculating the penguin operator contributions, one gets,

pes = T%{ — (Cit R (m2) + o Ao(md)]

3 ! 1 ! ! 1 14

- 5[(07 + N;CS) - (09 S ECIO)]fWAO(mEr)
3 ! 1 7 ! ]' !

+ 5[(07 + YV_CCS) + (09 + Fccm)]prl(m;z;)

2m? fr Ao(m}) ]
mq + mgq)(ms + my)

+(Ch+ 309 - MG+ 00 |7
+5(Clot OIS F(mD) + fWAo<m3r)1} ;)

Ve Via
Vub Jd

1 18 Pw
re q — _
(C{ jxlfcc'.,))(fpl 1(’”/2)) f7l"10(”7’12r))

Once again the ratio of CKM matrix elements is given in Eq. (6.8) and the
w penguin operator has the following expression,

(6.12)

» 1 ro L
P = mB|pp|{ ~2[(Ch+ O+ (€ + 00| Film)

1 7 1 ! ! 1 !
- et e+ G+ 50l S

7.9 o 0]

— (Cy+ 209 [FeAo(m?) + fyFi(m)]

1 ! 1 ! i
= [5(08 + FCC?) — (Ce +

+

1, ., 1, ) )
5( 10t ‘N;Cs;) [frAo(m2) + f,F1(m3)] } . (6.13)

6.2.2 Results and discussions

In our analysis, we are going to show the dependence on the CKM matrix
elements and form factors of the direct C P violating asymmetry in B decays.
We aim to include the latest values of the Wolfenstein CKM parameters, p
and 1. In the following numerical calculations, we apply all the formalism
detailed previously and we investigate more precisely two channels of B de-
cay asymmetries. These are B® — ntn~n® and B~ — ntr~7~. We find
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Figure 6.1: CP violating asymmetry, acp, for B® = n¥n~x?, for ¢*/m} =
0.3, N¢// = 1.09(1.68) and limiting values of the CKM matrix elements for
model (1): solid line (dotted line) for N&// = 1.09 and max(min) CKM ma-
trix elements. Dashed line (dot-dashed line) for N&// = 1.68 and max(min)
CKM matrix elements.

that for a fixed N&//, there is a maximum value, @mqz, for the C'P violating
parameter, acp, when the invariant mass of the w17~ is in the vicinity of the
w resonance. In Figs. 6.1 and 6.2, we show the C P violating asymmetries for
B — ntn=1°, ¢%/m? = 0.3 with N/ =1.09(1.68), and ¢*/m} = 0.5 with
Ne¢ff =1.11(1.80), and for limiting values of CKM matrix elements, respec-
tively. These results are shown for model (1), as an example. In Figs. 6.3
and 6.4, C P violating asymmetries are also given in the case B~ — nr~n™.
Both studies are done with the same approach. We investigate five models,
with five different form factors in order to show the model dependence of
acp-

As regards the maximum CP violating asymmetry for B° — ntr 7O,
ez, Varies from —51%(—38%) to —84%(—69%) in the allowed range of p,7
for ¢/m? = 0.3(0.5). From the numerical results listed in Table 6.1, for
N =1.09(1.11) and Ngf7, = 1.68(1.80), we can see that the five models
fall into two classes: models (1,3) and (5) and models (2) and (4). For models
(1,3) and (5), and for NI =1.09(1.11), the maximum asymmetry, ¢maz,
is around —54%(—40%) for the set (Pmaz, Mmer) and around —69%(—53.6%)
for the set (Pmin, Mmin), leading to the ratio between them around 1.28(1.34).
In each of these models and for N¢/f = 1.68(1.80), the maximum value of

the asymmetry, @maz, reaches —62.6%(—48.6%) for the set (Pmazs Mmaz) tO
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Figure 6.2: C'P violating asymmetry, acp, for B® — ntn=n°, for ¢*/m} =
0.5, N¢// = 1.11(1.80) and limiting values of the CKM matrix elements for
model (1): solid line (dotted line) for N¢// = 1.11 and max(min) CKM ma-
trix elements. Dashed line (dot-dashed line) for N¢// = 1.80 and max(min)
CKM matrix elements.

around —77.3%(—64.6%) for the set (pmin,Nmin). In that case, the ratio is
equal to 1.23(1.32). If we consider models (2) and (4), the maximum asym-
metry, Gmas, Where N7 =1.09(1.11), is around —63.5%(—48%) for the set
(Pmaz, Mmaz) @and around —78.5%(—62%) for the set (pmin, Mmin). This yields
a ratio of order 1.24(1.29). When N¢// = 1.68(1.80), one has a maximum
of asymmetry around —71%(—56.5%) for the set (pmaz,mas) and around
—84%(—69%) for the set (Pmin, Nmin), leading to a ratio around 1.18(1.22).
Now let us consider B~ — wTn~m~. All the numerical values can be
found in Table 6.2. Once again, the models fall into two classes as in
B° — ntr=7° For models (1,3) and (5), and for N7 = 1.09(1.11),
one finds the maximum value of the C' P violating asymmetry, dmq,, around
~32.3%(—25.3%) for the set (pmaz,Mmaz) and around —43.6%(—34.3%) for
the set (Pmin, Jmin). For N&fJ = 1.68(1.80), we find that the value of amas
is around —29.6%(—20.3%) and —40.3%(—27.6%) for the given maximum
and minimum sets of (p,n). The corresponding ratios between asymmetries
are around 1.34(1.35) and 1.36(1.36). For the second class of model (mod-
els (2) and (4)), the maximum CP violating asymmetry, amqg, for No2J =
1.09(1.11), is around —38%(—30%) and around —50.5%(—40.5%) for the
maximum and minimum set of (p,7), respectively. Finally, for N&&f =

1.68(1.80), one gets —38.5%(—27.5%) and —52.5%(—38%). The ratio is
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Figure 6.3: CP violating asymmetry, acp, for B~ — wtn~n~, for ¢*/mf{ =
0.3, N¢/f = 1.09(1.68) and limiting values of the CKM matrix elements for
model (1): solid line (dotted line) for N&¢// = 1.09 and max(min) CKM ma-
trix elements. Dashed line (dot-dashed line) for N&// = 1.68 and max(min)
CKM matrix elements.

equal to 1.32(1.35) when NeT = 1.09(1.11) and is around 1.36(1.38) when
Neff = 1.68(1.80).

From all these results, many comments can be enumerated. Although
the maximum asymmetry, @maz, still varies over some range in both cases
(B~ — ntr~n~ and B® — 7ntn7%), we want to stress that by using
more accurate CKM element values than before, a more precise CP vio-
lating asymmetry is obtained. The reason is primarily the matrix elements
Viq and V,;, which are involved in the b — d transition through the ratio
of p, to t,. In our preliminary CP violation study where we used the val-
ues A = 0.815, A = 0.2205,0.09 < p < 0.254 and 0.323 < 1 < 0.442, for
the process B~ — mtm~n~, we found that the ratio between maximum and
minimum asymmetry related to the minimum and maximum set of (p,7),
was around 1.6. By comparison, in the present work, this ratio is reduced to
1.3. The difference is related to the improvement in the measurement of the
CKM matrix elements, and shows the strong effect of the CKM parameters,
p and 7, on limiting asymmetry values.

With regard to the CKM matrix elements, it appears that if we take
their upper limit, we obtain a smaller asymmetry, acp, and vice-versa. As
we found before, there is still a strong dependence of the CP violating asym-
metry on the form factors. The difference between the two classes of models,
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Figure 6.4: CP violating asymmetry, acp, for B~ — ntn~n~, for ¢*/mj =
0.5, N¢/f =1.11(1.80) and limiting values of the CKM matrix elements for
model (1): solid line (dotted line) for N¢// = 1.11 and max(min) CKM ma-
trix elements. Dashed line (dot-dashed line) for N/ = 1.80 and max(min)
CKM matrix elements.

(1,3,5) and (2,4), comes mainly from the magnitudes of the form factors. In
fact, the form factor Fj(k?), which describes the transition B — 7, is mainly
responsible for this dependence. In both classes, we find a stronger depen-
dence of the C'P violating asymmetry on the CKM matrix elements than
that on the form factors or the effective parameter N°//. The difference
observed in our results between ¢*/m? = 0.3 and ¢*/m? = 0.5 arises from
the renormalization scheme of the Wilson coefficients in the weak effective
Hamiltonian. Finally, since N°// (treated as a free parameter) is related to
hadronization effects through the factorization approach, it is not possible
to determine its value accurately since non-factorizable effects are not well
known. That is why the asymmetry also varies in some range of N&//. It
is obvious that a more accurate value for N¢// (which requires a more ac-
curate approach with non-factorizable effects being taken into account), and
hadronic decay form factors (which requires better a understanding of the
pion structure and the B — 7 transition) are needed in order to determine
the CKM matrix elements.

In spite of all the uncertainties mentioned above, we stress that the p —w
mixing mechanism in the B — pm decay can be used to remove ambiguity
concerning the sign of sind. As the internal top quark dominates the b — d
transition, the weak phase in the asymmetry is proportional to sinea (=
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Figure 6.5: sind as a function of N&f/, for B® — w¥n~n°, for ¢°/m} =
0.3(0.5) and for model (1). The solid (dotted) line at sin§ = +1 corresponds
the case II,, = (—3500; —300), where p — w mixing is included. The dot-
dashed (dot-dot-dashed) line corresponds to 11, = (0;0), where p—w mixing
is not included.
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Figure 6.6: siné as a function of Neff for B~ — nta~n~, for ¢*/m} =
0.3(0.5) and for model (1). The solid (dotted) line at sin§ = 41 corresponds
the case Il,, = (—3500; —300), where p — w mixing is included. The dot-
dashed (dot-dot-dashed) line corresponds to I1,., = (0;0), where p—w mixing
is not included.
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Figure 6.7: The ratio of penguin to tree amplitudes, r, as a function of
Net | for B® — ntr=n®, for ¢*/m} = 0.3(0.5), for limiting values of the
CKM matrix elements (p,n) max(min), for IT,, = (—3500; —300)(0,0), (i.e.
with(without) p — w mixing) and for model (1). Figure 6.7a (left): for
I, = (0;0), solid line (dotted line) for ¢*/m? = 0.3 and (p,7n) max(min).
Dot-dashed line (dot-dot-dashed line) for ¢>/m? = 0.5 and (p,7n) max(min).
Figure 6.7b (right): same caption but for 11, = (—3500; —300).

sin ¢), where a = arg [—%‘%J. Hence knowing the sign of siné enables
us to determine that of sin @ from a measurement of the asymmetry, acp.
In Figs. 6.5 and 6.6 we show sind as a function of N¢/f for B® — w¥m~n°
and B~ — wtn~m~, respectively, when we have maximum CP violation.
In our determined range of N&//, (1.09(1.68) < N&ff < 1.11(1.80)), one
finds that its sign is always positive for all the models studied and for all
the form factors. Therefore, by measuring the C'P violating asymmetry in
B*® — gtg—n%0 decays, we can remove the mod(m) uncertainty which
appears in the determination for o from the usual indirect measurements

which yield sin 2a.

In Figs. 6.7 and 6.8, the ratio of the penguin and tree amplitudes, as a
function of N¢// is plotted for limiting values of the CKM matrix elements,
p,n, for the processes B*® — wtr~7n%0. Even though one gets a large value
of siné around N¢// = 1, for B® — n*r~7° without p — w mixing, one
still has a small value for r around this value of N¢//. Similarly, we observe
the same phenomena for B~ — wt7~7~ when N%// = 0.5. In both cases,
the C' P violating asymmetry, acp, remains very small without p — w mixing.
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Neoly = 1.09(1.11) NeglJ, = 1.68(1.80)
model (1)
Pmacs mac -55(-41) -65(_5]_)
Pminy Tlmin -72(—55) -80(-65)
model (2)
Pmaz> Mmaz -63(*43) -?]_(-56)
Pmin> Timin -78(-62) -84(_69)
model (3)
Pmazs NMmaz -56(—41) -65(_51)
Pminy Imin '72(-55) —80(-69)
model (4)
Pmazs Nfmax -64(48) -71(_57)
Pmin; Nmin -79(62) -84(-69)
model (5)
Pmaz; NImaz -51(-38) -58(_44)
Pmin; Tmin -63(-51) -72(-60)

Table 6.1: Maximum C P violating asymmetry amez(%) for B® — ntm~x°,
for all models, limiting (upper and lower) values of the CKM matrix elements,
and ¢?/mZ = 0.3(0.5).
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N7 =1.09(1.11) N7 =1.68(1.80)

min Cmaz

model (1)

Pmazs Tmax '33(“26) '32(-22)
Prmins Tmin ‘45(‘36) -43(-30)
model (2)

Prmaz: Tmaz -38(-30) ~38(-27)
Pminy min ‘50('40) -52(—38)
model (3)

Pmaz; Mmaz "34(-27) ~32(-22)
Pmins Nmin ‘45("36) —44(-30)
model (4) -
Pmazs Mmaz "38(“30) -39(-28)
Pmins Imin ‘51(“41) "53(-38)
model (5)

Prmaz Tmaz -30(-23) 25(-17)
Pmin; Mmin -41(-31) -34(—23)

Table 6.2: Maximum C P violating asymmetry aqz(%) for B~ — ¥~ 7™,
for all models, limiting values of the CKM matrix elements (upper and lower
limit), and for ¢?/mj = 0.3(0.5).

Thus p — w mixing plays an essential role in both enhancing the direct C' P
violation and rendering the analysis of the result free of ambiguity.

6.3 B’ 5 gtp-K*P°

6.3.1 Formulae

After the study of direct CP violation in the b — d transition, we now
investigate the C P violating asymmetry, acp, in the b — s quark transition.
We begin by calculating all the tree and penguin operator contributions? in
the charged decay B* — ntn~K*.

2Read Fi(m2) as FE*X(m2) and Ao(mk) as A7~ (m%).
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Case of B- — wtn~ K~

As usual, we start by computing the p tree operator contribution which takes
the following form,

= ! 1 ! I ]' !
t, = mBlpp| (Cl == 'Jvcz)prl (mi) + (02 i Fcl)fR'AO(mi’) ; (6'14)

where f, and fx are the decay constants of the p and K respectively. In the
same way, we find ¢, = t,, therefore one has,

aee =1, (6.15)

After calculating the penguin operator contributions for p and w, one gets,

. 5 1
et — _ﬂ%h)p_l{(c; + 2G4 frcAo{rm)

3 ! 1 ! ! 1 ! [ 1 !
+3((01+ 300+ (Ch+ 2C10)) HFi(m2) + (Clo+ 7 CHAalmiy

_ 2((@; + O+ (Gt 1—%0;)) [ (mmfrf:j ;‘t‘;’i:"%)m)} } - (6.16)

and the ratio between penguin and tree operator contributions, which in-
volves CKM matrix elements, is given by,

et — _ Pw Vs Vi -
(Cf + 7:C3) foFr(m]) + (O3 + 7 C1)frAo(mk) | Vs Vi
(6.17)
In Egs. (6.16, 6.17), the w penguin contribution, p,, is:
fond ! ]' ! !/ 1 ! 2
Pu = mp|p,|4 2 (Cs+ _N'C4) +(Cs + FCG) fPFl(mp)
1 i 1 ! [ 1 ! 2
+5( (G A (Co+ 77Cro) foFi(my)
1 ! 1 !
+ ((C‘i it ‘]\Tcé) +(Cro + F09)> FrAo(m¥k)
o (CL+ 2ty + (Ch+ —C) i ]f Ao(m)
B ( 8+ Nc 7 6 Nc ® (mu+ms)(mb+mu) ROATK ’

(6.18)
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and the ratio of CKM amplitude which arises in the b — s transition is,
VaVis | 1 1 _1 1

VaVa| ™ X2 tn2 A|sinpl’

To simplify the formulas we used N, for N¢// in Egs. (5.14)-(5.24))

(6.19)

Case of B —» ntn— K°

Finally, in the case of neutral decay (B° — n+tn~K°), by applying the same
formalism one gets:

- 1
t, = mp|p,|(C] + ]_V‘C;)prl(mi) ) (6.20)
The computation of w tree contribution gives t,, = t,, therefore one has again,
ae* =1, (6.21)

The ratio between p,, and p, is expressed as,

: m D, 3 ' ]- ? ’ 1 !
ﬂe - —M{E((C'y + ch) + (CQ W FCIO))prl(mIZJ) +
_(OI_I_LCI)_*_E(C/ +LCI)+ 2(0' LCI) Cl ..l_Cl
4 Nc 3 9 10 Nc 9 6+Nc 5 _( 8+Nc 7)

[(mb + md)g{md T ms)] ) fKAO(m%')]} , (6.22)

and,
Vs Vis
Van Vil

r/eiéq - _ Puw
(C1+ 3 Ca)fp Fu(m})

where p,, gives, after calculation the following expression:

) (6.23)

o ! 1 / ! 1 !
m=mmm&QQ+FQH«%+FQQnmmb
10w, 1 TR, 2
+5( (G MCS) +(Co + wc1o) | foF1(my)

m fx Ao(m¥) ]
my + mg)(ma + my)

+ ((cg + Niccé) ~2(Cs + N%Cé)) [(

4 1 ’ 1 / 1 !
+QQ+E@—¢%+E@QA%WQ}<MQ
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Figure 6.9: C'P violating asymmetry, acp, for B® — rta~ K°, for ¢*/mi =
0.3(0.5), for N&/f = 0.66,0.61 and for limiting values, max (min), of the
CKM matrix elements for model (1): solid line (dotted line) for N&f/ = 0.66.
Dashed line (dot-dashed line) for N&// = 0.61.

The CKM weak phase expression involved in this decay is identical to the
one given in Eq. (6.19).

6.3.2 Results and discussions

We have investigated the C P violating asymmetry, acp, for the two B decays:
B® — p°K°® — nt7~K° and B~ — p°K~ — 7#tn~K~. The results are
shown in Figs. 6.9, 6.10 and 6.11 for B — n*n~K°, (acp = [[(B° —
atn= K% — T(B° — n~ntKO)]/[[(B® = n*n~K°) + T(B® = n~7* K°))),
with ¢?/m? = 0.3(0.5) and for Nt equal to 0.61,0.66,2.65,2.69,2.82 and
2.84. Similarly, in Figs. 6.12, 6.13 and 6.14, the CP violating asymmetry,
acp, (= [[(B~ = ntn~K~) —=T(B* = n~atK*)]/[[(B~ = 7t~ K™) +
[(B* — n—xtK))), is plotted for B~ — n*n~ K, where ¢*/mj = 0.3(0.5)
and for the same values of N°/f previously applied for B® — n*x~K°. In
our numerical calculations, we found that the C'P violating parameter, acp,
reaches a maximum value, @maz, when the invariant mass of the 77~ is in
the vicinity of the w resonance, for a fixed value of N&//. We have studied
the model dependence of a with five models where different form factors have
been applied. Numerical results for B® — rtn~K°and B~ — nta~ K~ are
listed in Tables 6.3 and 6.4, respectively. It appears that the form factor
dependence of acp for all models, and in both decays, is weaker than the
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Figure 6.10: C'P violating asymmetry, acp, for B® = nTn~K?°, for ¢*/m? =
0.3, for N¢// = 2.69,2.84 and for limiting values, max (min), of the CKM
matrix elements for model (1): solid line (dotted line) for N/ = 2.69.
Dashed line (dot-dashed line) for N*// = 2.84.

N¢ff dependence.

For B® — ntn~ K°, we have determined the range of the maximum asym-
metry parameter, a,q., when N¢// varies between 0.66(0.61) and 2.84(2.82),
in the case of ¢?/m? = 0.3(0.5). The evaluation of @n., gives allowed values
from 37%(55%) to —20%(—24%) for the range of N¢/f and CKM matrix
elements indicated before. The sign of . stays positive until N&f f/ reaches
2.5. If we look at the numerical results for the asymmetries (Table 6.3), for
N = 0.66(0.61) and ¢*/m? = 0.3(0.5), we find good agreement between all
the models, with a maximum asymmetry, am,z, around 33%(45.6%) for the
set (Pmaz,Nmaz), and around 26%(33.2%) for the set (pmin, fmin). The ratio
between asymmetries associated with the upper and lower limits of (p,n) is
around 1.26(1.37). If we consider the maximum asymmetry parameter, @maz,
for N¢JJ = 2.84(2.82), we observe a distinction between the models. Indeed,
two classes of model appear: models (2) and (4) and models (1,3) and (5).
For models (2) and (4), one has an asymmetry, amqz, around —6%(—7%)
and around —9%(—10%) for the upper and lower set of (p,7n), respectively.
The ratio between them is around 1.50(1.42). For models (1,3) and (5),
the maximum asymmetry is of order —14.3%(—16.3%) for (pmaz; Mmaz) and
around —19.3%(—23.0%) for (pmin,Mmin). In this case, the ratio between

asymmetries is around 1.34(1.41).
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Figure 6.11: CP violating asymmetry, acp, for B® — rtn~K°, for ¢*/m} =
0.5, for N&// = 2.65,2.82 and for limiting values, max (min), of the CKM
matrix elements for model (1): solid line (dotted line) for N&// = 2.65.
Dashed line (dot-dashed line) for N&// = 2.82.

NT7 =0.66(0.61) N.J =2.84(2.82)

model (1)

Pmaz; Imaz 32(463 -14('16)
Pmins Nmin 25(33 “19(-22)
model (2)

Pmazs Tmaz 32?413 ..6(_7)_
Pmins Nmin 27(30 'g(-].O)
model (3)

pma,z, nmaq; 32%45 '14%'16}
Pmin; Tmin 25(33 -20(-23

model (4)

Pmaz, Imaz 32(41) —6(-7)

Prmins lmin 27(30) -9(-10)
model (5) o ~

Pmaz, mes 37(55) . -15(-17

Pmins Nmin 26 40) -19(*24

Table 6.3: Maximum C P violating asymmetry amqz(%) for B° - ntr~K°,
for all models, limiting values (upper and lower) of the CKM matrix elements,
and for ¢?/m? = 0.3(0.5).
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NIl =0.66(0.61) N5 =2.84(2.82)

model (1)
P e 47(45) -15%-17)
Priins Mnin 34(35) -21 -23)
model (2)
Pmazs Tmaz 45(41) ”11("13)
Pmins Nmin 33(32) '1?(_18)
model (3)
e 47(44 -15(-17
Pmins Imin 34(35 -20(-23
model (4)
Pmaz; Nfmaz 45542) '12('13)
Pminsy Mmin 33 32) -17(_18)
model (5)
Pmazs Mmaz 49546) -17(-'19;
Pmins Mmin 36 35) —22(—25

Table 6.4: Maximum C P violating asymmetry amq,(%) for B~ — nta~K—,
for all models, limiting values of the CKM matrix elements (upper and lower
limit), and for ¢*/m} = 0.3(0.5).

The first reason why the maximum asymmetry, @,,,., can vary so much
comes from the element V,;. The other CKM matrix elements V3, Vi, and
V.s, all proportional to A and A, are very well measured experimentally and
thus do not interfere in our results. Only V.3, which contains the p and n
parameters, provides large uncertainties, and thus, large variations for the
maximum asymmetry. The second reason is the non-factorizable effects in
the transition b — s. It is well known that decays including a K meson (and
therefore an s quark) carry more uncertainties than those involving only a 7
meson (u,d quarks). If we look at the asymmetries at N/ all models give
almost the same values, whereas at N&ff . we obtain different asymmetry
values (with moreover a change of sign for the CP violating asymmetry).
The C'P asymmetry parameter is more sensitive to form factors at high
values of N¢// than at low values of N¢//. It appears therefore that all of
the models investigated can be divided in two classes, referring to the two
classes of form factors.

For B~ — wtr~K~, we have similarly investigated the C'P violating
asymmetry. The values of maximum asymmetry parameter, a,,,., for a range
of N¢// from 0.66(0.61) to 2.84(2.82), where ¢?/m? = 0.3(0.5) and for the five
models analysed, are given in Table 6.4. We found that for this decay, the C P
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Figure 6.12: C P violating asymmetry, acp, for B~ = n*r~ K~ , for g?/m? =
0.3, for N¢ff = 0.66,0.61 and for limiting values, max (min), of the CKM
matrix elements for model (1): solid line (dotted line) for N/ = 0.66.
Dashed line (dot-dashed line) for N¢// = 0.61.

violating parameter, acp, takes values around 49%(46%) to —22%(—25%)
for the limiting CKM matrix values of p and 7 defined before. Once again,
the sign of the asymmetry parameter, acp, is positive if the value of N&f/
stays below 2.7. If we focus on N&J equal to 0.66(0.61), models (1,2,3,4)
and (5) give almost the same value which is around 46.6%(43.6%) for the
maximum values of the CKM matrix elements. For the set (pmin,Mmin),
the maximum asymmetry, @mqq, is around 34.0%(33.8%). The ratio between
asymmetry values taken at upper and lower limiting p and 7 values is around
1.37(1.28). Let us have a look at the C'P asymmetry values at N, eff . As
we observed for the decay B® — 77~ K°, all models are separated into
two distinct classes related to their form factors. For models (1,3) and (5),
the value of maximum asymmetry, @maz, is around —15.6%(—17.6%) and
around —21%(—23.6%) for the maximum and minimum values of set (p,7),
respectively. The calculated ratio is around 1.34(1.34), between these two
asymmetries. As regards models (2) and (4), for the same set of (p, n), one
gets —11.5%(—13%) and —17%(—18%). In this case, one has 1.47(1.38) for
the ratio. The reasons for the differences between the maximum asymmetry

parameter, dmqs, are the same as in the decay B® - rtr~ K°.

By analysing the B decays, such as B® — rtr~K®and B~ —» ntn~ K™,
we found that the CP violating asymmetry, acp, depends on the CKM ma-
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Figure 6.13: C P violating asymmetry, acp, for B~ — ntn~ K~ for ¢*/m? =
0.3, for N¢ff = 2.69,2.84 and for limiting values, max (min), of the CKM
matrix elements for model (1): solid line (dotted line) for N¢/f = 2.69.
Dashed line (dot-dashed line) for N&// = 2.84.
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Figure 6.14: C P violating asymmetry, acp, for B~ — n*7~ K~ for ¢/m? =
0.5, for N&// = 2.65,2.82 and for limiting values, max (min), of the CKM
matrix elements for model (1): solid line (dotted line) for N¢// = 2.65.
Dashed line (dot-dashed line) for N*// = 2.82.
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Figure 6.15: sind, as a function of N&//, for B® — rtr~K°, for ¢*/m} =
0.3(0.5) and for model (1). The solid (dotted) line corresponds the case
fI,,w = (—3500; —300), where p —w mixing is included. The dot-dashed (dot-
dot-dashed) line corresponds to I1,, = (0;0), where p — w mixing is not
included.

trix elements, form factors and the effective parameter N¢// (in order of
increasing dependence). As regards the CKM matrix elements, the depen-
dence through the element, Vs, contributes to the asymmetry in the ratio
between the w penguin and the p tree contributions. It also appears that for
the upper limit of set (p,7n), we get the higher value asymmetry, acp, and
vice-versa. With regard to the form factors, the dependence at low values of
Ne#i is very weak although there was a considerable difference between the
phenomenological form factors (models (2) and (4) and models (1,3) and (5))
applied in our calculations. At high values of N, /! the dependence becomes
strong and then, the asymmetry appears very sensitive to form factors. For
the effective parameter, N&//, (related to hadronic non-factorizable effects),
our results show explicitly the dependence of the asymmetry parameter on
it. Because of the energy carried by the quark s, intermediate states and
final state interactions are not well taken into account and may explain this
strong sensitivity.

Finally, results obtained at g?/m? = 0.3(0.5), also show renormaliza-
tion effects of the Wilson coefficients involved in the weak effective hadronic
Hamiltonian. For the ratio between asymmetries, results give an average
value of order 1.36(1.40) for B® — ntn~K° and 1.39(1.33) for B~ —
r+r7—K~—. This ratio is mainly governed by the term 1/sin 3, where the
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Figure 6.16: sind, as a function of N*/f for B~ — n*n~K~, for ¢*/m? =
0.3(0.5) and for model (1). The solid (dotted) line corresponds the case
I1,., = (—3500; —300), where p — w mixing is included. The dot-dashed (dot-
dot-dashed) line corresponds to II,, = (0;0), where p — w mixing is not
included.

values of the angles o, 8 and v are listed in Table 5.1. As a first conclusion
based on these numerical results, it is obvious that the dependence of the
asymmetry on the effective parameter N¢// is dramatic and therefore it is
absolutely necessary to more efficiently constrain its value, in order to use
asymmetry, acp, to determine the CKM parameters p and 7.

We know that the effects of p — w mixing only exist around the w res-
onance. Nevertheless, at small values of N&// i.e. =~ 0.6, (see Figs. 6.9
and 6.12), the curves show large asymmetry values far away from p —w mix-
ing, which is a priori unexpected. In fact, if we assume that non-factorizable
effects are not as important as factorizable contributions, then N*// should
be much bigger. From previous analysis on some other B decays such as
B = Dn,B = wn,B — wkK, it was found that N¢// should be around
2 {112]. Therefore, although small values of N%// are allowed by the ex-
perimental data, we expect that the value of N¢// cannot be so small with
more accurate data. Thus, with a very small value of N¢/f, non-factorizable
effects have been overestimated. This means that soft gluon exchanges be-
tween p°(w) and K may effect p — w mixing and hence lead to the large C P
asymmetries in a region far away from w resonance. However, at /s energy
very far from w resonance, the C'P asymmetries go to zero as expected.

In spite of the uncertainties discussed previously, the main effect of p —w
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Figure 6.17: The ratio of penguin to tree amplitudes, 7, as a function of
Neff for B® — n+n~K°, for ¢*/mi = 0.3(0.5), for limiting values of the
CKM matrix elements (p,7) max(min), for II,, = (—3500; —300)(0,0), (i.e.
with(without) p — w mixing) and for model (1). Figure 6.17a (left): for
I1,, = (0;0), solid line (dotted line) for ¢>/m} = 0.3 and (p,n) max(min).
Dot-dashed line (dot-dot-dashed line) for ¢*/m} = 0.5 and (p,7) max(min).
Figure 6.17b (right): same caption but for I1,. = (—3500; —300).

mixing in B — pK is the removal of the ambiguity concerning the strong
phase, siné. In the b — s transition, the weak phase in the rate asymmetry
is proportional to siny where v = arg[—(VisVi5/(VusV};)]- Knowing the sign
of sin §, we are then able to determine the sign of sin~ from a measurement
of the asymmetry, acp. In Figs. 6.15 and 6.16, the value of sind is plotted
as a function of N¢/f for B® — mtn~K° and B~ — ntn~ K, respectively.
It appears, in both cases, when p — w mixing mechanism is included, that
the sign of sin § is positive, for all models studied, until N&ff ~ 2.5 for both
B~ — rtr~ K~ and B° — nt7~K°, when ¢*/mi = 0.3(0.5). For values of
N¢f/ bigger than this limit, sind becomes negative. At the same time, the
sign of the asymmetry also changes.

In Figs. 6.17b and 6.18b, the ratio of penguin to tree amplitudes is shown
for BE0 — w1~ K0, in the case of I, = (—3500, —300). The critical point
around N&ff = 2.7, refers to the change of sign of siné. Clearly, we can use
a measurement of the asymmetry, acp, to eliminate the uncertainty mod ()
which is usually involved in the determination of 4 (through sin 2v). If we
do not take into account p — w mixing, the C P violating asymmetry, acp,
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Figure 6.18: The ratio of penguin to tree amplitudes, r, for B~ = 7T7~ K~
Same caption for Figure 6.18a (left) and Figure 6.18b (right) as in Fig. 6.17.

remains very small (just a few percent) in both decays. In Figs. 6.15 and 6.16
(for the evolution of siné) and in Figs. 6.17a and 6.18a (for the evolution of
penguin to tree amplitudes), for B¥® — 7t7r~ K% we plot sin § and r when
II,, = (0,0) —i.e. without p —w mixing. There is a crltlcal point at Neff =1
(for B® — mt7~K°) and N¢// = 0.24 (for B~ — ntn~K ™) for which the
value of sin 4 is at its maximum and corresponds (for the same value of N¢/7),
to the lowest value of r. Anywhere else, the value of sind is closed to zero.
The last results show the double effect of the p — w mixing: the C'P violating
asymmetry increases and the sign of the strong phase ¢ is determined.

6.4 Summary

The aim of the present work was to apply recent values of the CKM matrix
elements, e.g. A, \,n and p, to study direct C P violation for B decays such
as BE® — pOw)r*® — rtr~7® and BF® o p%(w)KE? — ntr-K*°
where the p — w mixing mechanism must be included. When the invariant
mass of the 77~ pair is in the vicinity of the w resonance, it is found that
the C P violating asymmetry, acp, has a maximum @n,.;. 1o calculate the
CP violating asymmetry, acp, we started from the weak Hamiltonian in
which the OPE separates hard and soft physical regimes. We worked in the
factorization approximation where the hadronic matrix elements are treated
in some phenomenological quark models. The effective parameter, N¢//, was
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used in order to take into account, as well as possible, the non-factorizable
effects involved in B — pm and B — pKdecays. Although one must have
some doubts about factorization, it has been pointed out that it may be quite
reliable in energetic weak decays [48, 49, 113].

We started by analysing the direct C'P violating asymmetry in the two
B decays: B~ — m~ntn~ and B® — 7~ ntn° We found that the CP vi-
olation parameter, acp, is very sensitive to the parameters p and 7 in the
CKM matrix, and also to the magnitude of the form factors appearing in
the five phenomenological models we investigated. For B® — n~n*n°, we
have calculated the maximum asymmetry, amqz, as a function of the effective
parameter, N*f/ with the limiting values of the CKM matrix elements. We
found that the C'P violating asymmetry, @mqz, can vary from —37% to —84%.
For B~ — n—ntn~, we also determined the range for the maximum asym-
metry, amqe, namely —17% to —53%. As we already determined in a first
preliminary study, the ratio between the asymmetries for limiting values of
the CKM matrix elements is mainly governed by . We found a ratio equal to
1.64 where the CKM values used were the following: A = 0.815, A = 0.2205,
0.09 < p < 0.254, and 0.323 < n < 0.442. In the final work, one finds for
the same decay, a ratio equal to 1.30. The more accurate value for n has
reduced uncertainties on both the CP violating asymmetry and the ratio,
I'(B* — n~ntr+)/T(B° - n~nt7f).

We have also studied C'P violation in B decay process such as B¥? —
PP K*° — nta~ K0, We have explicitly shown that the direct C'P violating
asymmetry is very sensitive to the CKM matrix elements, the magnitude
of the form factors Ao(k?) and Fi(k?), and also to the effective parameter
N¢/f (in order of increasing dependence). We have determined a range for
the maximum asymmetry, Gmqz, as a function of the parameter N&/f ) the
limits of CKM matrix elements and the choice of ¢*/m? = 0.3(0.5). For the
decay B® — mtn~K° and from all models investigated, we found that the
largest C P violating asymmetry varies from +37%(455%) to —20%(—24%).
As regards B~ — 7t~ K™, one gets +49%(+46%) to —22%(—25%). For
B0 5 ptp~ K*0, the sign of amq, stays positive as long as the value of N, ff f
is less than 2.7. In both decays (B — pK), the ratio between asymmetry
values which are taken at upper and lower limiting p and 7 values is mainly
governed by the term 1/sin 3. It appears also that the direct CP violating
asymmetry is very sensitive to the form factors at high values of N¢/7.

We underline that without the inclusion of p — w mixing, we would not
have a large CP violating asymmetry, acp, since acp is proportional to
both sind and r (for B — pr and B — pK). Without p — w mixing,
we found a critical point for which siné reaches the value +1, but at the
same time, r becomes very tiny. Therefore, the asymmetry, acp is also very
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tiny. We emphasise that the advantage of p — w mixing is the large strong
phase difference which varies extremely rapidly near the w resonance. In our
calculations, we found that for B¥® — 77~ K*0, the sign of sin é is positive
until N°// reaches roughly 2.5 when ¢2/m? = 0.3(0.5). For BX® — p’r*° —
atr— %0, the sign of sind stays positive.

By measuring acp for values of N°//  within the limits given above, we
can remove the phase uncertainty mod() in the determination of the CKM
angle o in B¥® —— 7t~ 0. In a similar way, it has been also possible to
remove the phase uncertainty mod(r) in the determination of the CKM angle
~ by analysing direct C P violation in B — nt7~ K. Thus by combining both
previous results, we can finally remove the phase uncertainty mod(7) which
appears in the analysis of the CKM angle 8 through the study of b6 — ¢
transition and hence, to constrain the unitarity triangle condition.

The investigation of branching ratios such as B¥? — p¥0r*0 and B*° —
ptOK*0 allowed us to make comparisons between our theoretical results and
experimental data from the CLEO, BABAR and BELLE Collaborations (see
Chapter 5). We have applied five phenomenological models in order to show
their dependence on form factors, CKM matrix elements and the effective
parameter N// in our approach. In output, we determine for both decays
(B = pr and B — pK), the range for N¢// which constrains the direct
C P violation asymmetry parameter, acp. With more accurate CKM matrix
elements values, i.e. p and 7, we are able to give more precise C'P violating
asymmetries, and the main uncertainties remaining are from the factorization
approach and the hadronic decay form factors. The QCD factorization will
provide a more efficient way to deal with non-factorizable effects. With regard
to form factors, we have shown that some models for the B — 7 transition are
not consistent with the experimental branching ratios, whereas for B — K,
we cannot draw firm conclusions.

Therefore, in the following and in order to go further in our investigation,
we shall determine in a covariant light cone framework, wave functions for m,
K, B and D. Then, we shall calculate form factors based on these functions
determined from physical observables. Finally, in the last part, we shall apply
QCD factorization, where the new form factors will be involved, to obtain
(better and more accurate) predictions on direct C'P violation in B decays.
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Covariant Light-Front
Dynamics, Wave Functions and
Form Factors
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Chapter 7

Covariant Light-Front
Dynamics - Main properties

“ La théorie, ¢’est quand on sait tout et que rien ne fonctionne. La pratique,
c’est quand tout fonctionne et que personne ne sait pourquoi. ”

Albert Einstein

In this third section of the thesis, we are going to apply the Covariant
Light-Front Dynamics (CLFD) formalism to determine wave functions for
pseudoscalar particles B, D, K, 7 and for vector particles p,w (see Chapter
8). Then, we will calculate transition form factors (see Chapter 9) for P — P
and P — V where P (pseudoscalar) and V (vector) are the particles men-
tioned previously. In this first chapter, we recall the theoretical background of
Covariant Light-Front Dynamics. We will start by giving some basic prop-
erties of Light-Front Dynamics (LFD), then we will summarize briefly the
dynamical approach used in the covariant formulation of light-front dynam-
ics.

7.1 Light-Front Dynamics

The first requirement to build a dynamical theory is that it should be in-
variant under the ten generators of the Poincaré group. These generators
include space time translations (four generators), space rotations (three gen-
erators) and Lorentz boost (three generators). The time translation operator
is the Hamiltonian. Three forms of dynamics have been derived and defined
a long time ago, in one of Dirac’s famous papers [114]. There are the instant
form, the point form and the front form (see Fig. 7.1 [115]). Among the ten
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generators of the Poincaré group, the ones which do not leave the light-front
plane w-z = cte invariant are called dynamical, i.e. they should depend on
the interaction. The other ones are called kinematical.

The front form The point form
%0 = ct4+z %%= 1t , ct= tcoshw
%lax %!'= w , x= Tsinhosin6 cos¢
%=y £2= 8 , y= tsinhosin® sing
% - ct-z X’a ¢ , x= tsinhwcosd

=

<

L
~o Qo
OO'LO
ODI—OO
OO O

)

Figure 7.1: Dirac’s three forms of dynamics.

The instant form describes in a four dimensional space, the evolution
of one system from one three dimensional plane, ¢ = const, to another one.
The point form describes the evolution of one system on any four dimensional
space like surface t2— 72 = const. A physical process can also be described in
the observer’s system (¢, z’,y’, 2’) which is moving with velocity v along the
z-axis in the laboratory system (¢, z,y, z). Then, the evolution is investigated
from one plane #' = const in the moving system (or ¢ + zv/c® = const if we
refer to the laboratory system) to another plane. If v — ¢, the wave function
is therefore determined on the plane ¢ + zv/c = const which corresponds to
the equation for the light-front plane z = —ct moving along —z axis. In
this so-called front form, the coordinates are defined as (z4,z,y, z—) where
zy =t+zand z_ =t —z. While the front form is interesting since the boost
operator along the z axis gets kinematical, the plane z, = cte is not invariant
under all spatial rotations. The angular momentum operators are therefore
dynamical. In order to treat in a transparent way the dependence of these
operators on the dynamics, an explicitly covariant light front dynamics has
been derived by V.A. Karmanov [116, 117, 118, 119, 120, 121, 122, 123].
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7.2 Covariant Light-Front Dynamics

7.2.1 Main properties

In the past few years, a Covariant formulation of Light-Front Dynamics
(CLFD) has been proposed [122, 123, 124] and applied to relativistic particle
and nuclear physics. This formulation is particularly useful for describing
hadrons, and all observables related to them, within the constituent quark
model. In CLFD [122, 123, 124], the state vector which describes the phys-
ical bound state is defined on the light-front plane given by the equation
w-z = 0, where w is an unspecified light-like four vector (w? = 0). It defines
the position of the light-front plane. This approach is a generalization of
the standard Light-Front Dynamics (LFD) [125]. This latter can easily be
recovered with a special choice of the light-front orientation, w = (1,0,0,~1).

The description of relativistic systems in the covariant formalism of LFD
provides several advantages as compared to the standard formulation. The
main properties are the following [122, 123, 124]:

e The formalism does not involve vacuum fluctuation contributions be-
cause of Lorentz time dilatation. The state vector describing the phys-
ical bound state contains a definite number of particle, described by
Fock state components.

e The Fock components of the state vector satisfy a three dimensional
equation, and the relativistic wave function has the same meaning,
namely a probability amplitude, as the non-relativistic one. This is
very convenient in the framework of the constituent quark model.

e Relativistic wave functions and off-shell amplitudes have a dependence
on the orientation of the light-front plane which is fully parametrized
in term of the four vector w. Approximate on-shell physical amplitudes
also depend on w, whereas, the exact on-shell physical amplitudes do
not depend on the orientation of the light-front plane.

In contrast to LFD, where the covariance is lost, CLFD proposes a formu-
lation in which the evolution for a given system is expressed in terms of
covariant expressions. Therefore, any four vector describing a phenomena
can be transformed from one system of reference to another one by using a
unique standard matrix which depends only on kinematical parameters and

on w.
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7.2.2 Kinematical and dynamical transformations

The kinematical transformations are associated with transformations of the
coordinate systems, while dynamical transformations correspond to transfor-
mations of the hypersurface on which the state vector is defined.

Consider first the case of kinematical transformations. The transforma-
tion of the system of reference under both translation (z — &’ = ¢ + a) and
infinitesimal rotation (z, — z), = gz, = ¥, + €,2”) transform the state
vector, ¢, (o), where 0 = w-z is the light-front time, as:

$u(9) = ¢(0") = [Ups(a) + Un(9)] $u(@) , (7.1)

with Upe(a) = exp(iP°-a) and Up(g) = 1 + 1/2J0,e*. P° and JO are
respectively the free part of the operators associated to the four momentum
P, and four angular momentum J,, defined by,

A

B = [ Tustors - o)dte = B2+ B,

J = / S(wz—o)d*z = JO + JL‘,’," , (7.2)

where the int superscripts indicate the interacting part of the operators. In
Eq. (7.2), Mf, and T}, are the angular and energy momentum tensors. The
free operator parts fully control all the kinematic transformations and do not
contain any interaction term. They describe the transformation of the state
vector under transformation of the reference system. The operators Pt and
Jint contain the interaction Hamiltonian H™t(z):

}5;“' = wy /Hi“t(w)cs(w-x —o)d'z

= [ B e - rilos -, (19

The dynamical transformation of the state vector is completely defined by
the part of the operators containing the interaction Hamiltonian H™(z)
according to the Tomonaga-Schwinger equation [126]:

i8¢p/8a(z) = H™(z)¢ . (7.4)

These operators describe the transformation of the state vector under trans-
lations and rotations of the light-front plane. In the case of a rotation of the
light-front plane, it is easy to find [122, 123, 124] for instance:

¢w(0') =’ ¢w+5t~/(0) = ¢, + 0¢y, with 8¢, = %SW (L""JL i - wyai >¢w(0) :
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It is then possible to express the interacting part of the angular momentum
operator, acting on the state vector, according to,

J6u(0) = Lu(w)du(o) | (7.6)

where,

A . 0 d
L”_,,(UJ) =1 (wﬂw*— w,,%—#> . (77)

With this “angular condition”, it is possible to determine (without any am-
biguity) the state vector for a definite angular momentum as well as the
dependence of ¢, on the orientation of the light front. Moreover, it allows
this determination in terms of kinematical transformation properties of the
wave function, letting the dynamical transformation of the system appear
through the dependence of the wave function on the orientation w of the
light-front plane (see Refs. [122, 123, 124] for more details).

7.2.3 S-matrix

In CLFD, the S-matrix is calculated from the light-front graph techniques.
For technical details regarding CLFD graphs rules, we refer to the extensive
review in Refs. [122, 123, 124]. The S-matrix which gives the time evolution
of the wave function from one light-front plane to another in the direction of
the light-front time is written as:

S = Tuexp [—i / Hj;'t(x)d‘*x] , (7.8)

where the T-product orders the operators with respect to the light-front time
o = w-z, and H™ is the interaction part of the Hamiltonian. The S-matrix
can thus be decomposed as follows:

S=14 3 [P HE @ (o = ) HE e (2 = 20)
O(w- (Tno1 — o)) H(z)d 2y - - - d*zn . (7.9)

Since the S-matrix is expanded in terms of (light-front) time ordered con-
tributions, all particles are on their mass-shell, while any intermediate state
is off energy shell. Thus, all amplitudes and equations of motion can be
expressed in terms of three-dimensional quantities (like the momenta for in-
stance). This enables us to have a clear physical relationship between light
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front relativistic and non-relativistic amplitudes, as we shall illustrate in the
following sections. The final expression for the S-matrix takes the following
form:

S=1+ / " _explire) e (7.10)

o 2mi(T — t€)

with R(wr) given by:

R(wr) = / H,(wr —wn) 5 dny

(7‘1 — 1€)

F r) dTn—l

H, (WTl—LOTg) o Hy(wr — wTy_1) (7.11)

27rz(7‘2 — 1€) . 271 (Tp—1 — 2€)
Here H,, is the Fourier transformation of the interaction part of the Hamilto-
nian. The full S-matrix and therefore any physical amplitudes do not depend
on w but the off-shell energy amplitudes do.

7.3 Wave function

The particle is described by a wave function expressed in terms of Fock
components of the state vector [127, 128, 129] which respects the properties
required under any transformation and therefore respects the angular mo-
mentum condition -see Eq. (7.6). Recall that the state vector is to be an
irreducible representation of the Poincaré group and is to be fully defined by
a mass, M, a four momentum, p, a total angular momentum, J, and a z-axis
projection of angular momentum, A. The state vector describing a meson of
momentum p, defined on a light-front plane characterized by w (with w-z =0
for simplicity), is given by:

Ip, A}, = ¢"(p) = (27)*/? / ®7 i on (k1 k2, p,wr)al (Ky)al, (k2)[0)
d kl d3k2
" @n) 2, 2n) e,
i (271-)3/2/(I).-{l):’lhazasas(kl’k?)k3apa“-’7')aal( ) (k3)a (kz)IO)
x 6@ (k1 + ks + ks — p — wr) exp(it0)2(w-p)
d3k1 d3k2 d3k3
(273722, (21)3/2\/2ex, (270)3/%\/2er, )

x 6W(ky 4+ ky — p — wr) exp(ito)2(w-p)dr

dr (7.12)
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where ¢, = 1/k? + m? and k; is the momentum of the quark ¢. A is the
projection of the total angular momentum of the system on the z axis in the
rest frame and o7, 02, 03 are the spin projections of the particles 1 to 3 in the
corresponding rest systems. If we retain the two body component only [127,
128, 129], from the delta function ensuring momentum conservation, one gets:

P=ptwr=ki+k:. (7.13)

To keep track of this conservation law, we shall represent on any diagram

Figure 7.2: Diagrammatic representation of the two body wave function on
the light-front.

(see Fig. 7.2) the four-vector wr by a dashed line (the so-called spurion line,
see [122, 123, 124] for more details). We emphasize that the bound state wave
function is always an off-energy shell object (7 # 0 due to binding energy)
and depends on the light-front orientation. There is no fictitious particle in
the physical state vector, although a momentum is assigned to the spurion.
The parameter 7 is entirely determined by the on-mass shell condition for
the individual constituents.

7.3.1 Various parametrizations

The two-body wave function ®(ki,ks,p,wr) written in Eq. (7.12) can be
parametrized in terms of various sets of variables. In order to make a close
connection to the non-relativistic case, it would be more convenient to intro-
duce another pair of variables [122, 123, 124] defined by:

k= L_I(P)kl = k1 . \/%'.—2 l:k‘]_o — —\/7;—21-?—%?] 3 (714)
ne LWl (Pl (7.15)

|L=1(P)w] w-p
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where P = k; + ko, and L™*(P) is the Lorentz boost. The relativistic,
relative momentum, k, corresponds, in the frame where k; + k; = 0, to the
usual relative momentum between the two particles. Note that this choice of
variable does not assume that we restrict ourselves to this particular frame.
The unit vector n corresponds, in this frame, to the spatial direction of w.

The second set of variables which we shall use in the following are the
usual light-front coordinates (z,R,), which are defined by analogy to the
equal time function in the infinite momentum frame as:

W'k‘l
r = ’
w-p
Rl = kl—.’L'p,

and where R, is decomposed in its spatial components parallel and perpen-
dicular to the direction of the light-front, By = (Ro, R, Ry). We have by def-
inition R;«w = 0, and thus R} = —R?2. We can easily express these variables
in terms of the previous ones. All details can be found in Refs. [122, 123,-124].
The relations between (z,R ) and (k? n-k) are the following,

R_zL a k2 - (n°k)2 ’

_ l[l _ M] , (7.16)

2 €k

with €, = v/k? + m? in the case of equal masses. The inverse relations read:

R? + m?
g _ I 2
T L(l-z)
R? + m? 172 11
k= | — — .
e [TE5](5-4) 0

where k? and n-k are the rotation and Lorentz invariants. The wave function
can therefore be expressed at any time as:

®(Ry,z) = &(k%n-k) . (7.18)

7.3.2 Equation of motion

The two-body component ® is the solution of a three dimensional equation,
Eq. (7.19). It is shown schematically by the diagram of Fig. 7.3. For simplic-
ity, let us just first consider the case of a scalar system composed of two scalar
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particles. The wave function is scalar, and can be parametrized in terms of
®(z,R,). The homogeneous equation which ® should satisfy is given by:

R? +m? 5 B
(-—;(—:[_—x)—ﬁf ) (I)(CII,RJ_) =

1
ol ECRAECRRER TS

R/, dx’
2z/(1—2')’

(7.19)

where m is the constituent quark mass (for two identical particles) and M is
the bound state mass. In this form, this equation is similar to the Weinberg
equation. The kernel K of the equation, defined graphically by the shaded
area in Fig. 7.3, depends on the dynamics of the system. In our case, we shall
use a kernel with one gluon exchange. This exchange is shown in Fig. 8.1
and will be discussed later in Chapter 8. The relativistic wave function is

Q4

Figure 7.3: Two body relativistic wave function equation.

an equal-time wave function on the light-front which turns out to be the
non-relativistic wave function when ¢ — oo.

7.3.3 Normalization

As regards the normalization, the state vector which describes a physical
particle is normalized according to:

', N|p, A) = 2po6@(p — p' )N, (7.20)

where N** =3~ N, MX with N2 being the contribution from the n-body
Fock components. Its expression in terms of  and Ry is given by [122, 123,
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124],

)\')\ 3 E JA*
27'[') / QJIUI ~Jn0n .710'1 InOn

- d’R.dz;
(2) . L J.z %
§ (;RM>5(;@ ) TV (7.21)

where J, A, j;, and o; are defined as in Eq. (7.12) and where @ is the wave
function expressed in the Fock state decomposition (see Eq. (7.12)). In the
case where the total angular momentum is equal to zero (J = 0), the nor-
malization condition for the corresponding pseudoscalar or scalar particles
becomes:

Y N.=1, (7.22)

where we take into account all the n-body Fock components. If the total
angular momentum is equal to one (J = 1), the normalization condition for
the corresponding pseudovector or vector particles takes the following form:

N,i")‘ _ ez(’v)(p)fﬁue,(,'\)(P) \ (7.23)

where e{’ )( ) is the polarization vector for the system and I** is a tensor
written as,

I}V = —Ang"” + Bap*p” + Cu(p*w” + p'w*)

v
wHw G

+ Da(pw” — pPwh) + E"((w-p)2 + 3M2) . (7.24)

In Eq. (7.24) A,, B,,,C,, D,, and E, are constants with . C, = > D, =
>, E, =1 and M is the mass of the system.

Although each contribution to the normalization may depend on w (this
is the case for J = 1 but not for J = 0), the total result will be independent
of w if all the n-body Fock components are included.



Chapter 8
Meson wave functions

“ Il n’est pas certain que tout soit certain. ”

Blaise Pascal

Many theoretical frameworks are used to understand the internal struc-
ture of hadrons - for example we can mention QCD sum rules [130, 131, 132],
perturbative QCD [133, 134, 135], lattice QCD [136, 137], chiral perturbation
theory [138, 139], constituent quark model [140], heavy quark effective the-
ory [141], heavy quark symmetry and light-front quark models [122, 142, 143].
In our work we chose to follow the formalism of Covariant Light-Front Dy-
namics, detailed in the previous chapter. We will start by applying this
formalism to determine in a phenomenological way the wave functions of
pseudoscalar particles such as B, D, K, 7 and the vector particles p, w.

8.1 Pseudoscalar wave function

8.1.1 Structure of the bound state

The explicit covariance of our approach allows us to write down explicitly the
general structure of the two-body bound state. For a pseudoscalar particle
composed of an antiquark and a quark of mass m; and m, respectively, it
has the form:

AN
+ r] ool (8.1)

m,

1 _
\IJPS = ~\/—§u(k‘2) [Al

where v(k;) and @(k;) are the usual Dirac spinors, and A; and A; are the two
scalar components of the wave function. Note that the colour factor is not
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included in the wave function written in Eq. (8.1). The mass m, is defined

by m, = % and is chosen here just for convenience. The representation
of this wave function in terms of the variables k and n is given by:

io-[n x K]

1
Ups = Ewé <g1 + _k—g2> wy , (8.2)

where w; is the Pauli spinor. One can easily express A; and A; in terms of
g1 and g;. One finds for A;:

my k2 -t (7))
A=+ <1 3 ) +2
' VEk1 + mi1/Er2 + Mo (ek,1 + my)(ex,2 + m2) {91 k

k? 1 1
X |1 — —n-k —
(ek1 + m1)(gk2 + ma) €k1+ My Ek2+mo

X ( ! + ! >_1 (8.3)
Ekl+my  Ek2+ mg ’ ’
and for A,:

-1
A ____\/Ek,l‘l‘mlk\/ek,z-f'mz <1+ m1+m2> a (8.4)
€kt Ek2

where one defines ¢x; = \/k? + m? .

The components g; and g, will be parametrized by gaussian wave func-
tions written as g; = 4m%q;f; exp(—p;k?) where o; and 3; are two parameters
to be determined from experimental data. In terms of the variables (z,R ),
we have for the relative momentum between two quarks of different masses:

(RL + (ma(e —1) —2m)")(R] + (mu(e — 1) + amy)*) -

4z(1 — z)(RE + (1 — z)m? + zm3) (8.5)

k> =

8.1.2 Radiative corrections to the wave function

In our phenomenological study of wave functions, we shall start from a gaus-
sian parametrization of the components g; and g», as given above. However,
it is necessary to correct these wave functions in some way in order to incor-
porate the high momentum tail given by the one-gluon exchange mechanism
(see Fig. 8.1). We shall achieve this using perturbation theory, starting from
the zeroth order wave function parametrized as gaussian, and calculate the
corrected wave function using the equation of motion analogous to Eq. (7.19).
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ki

Figure 8.1: One-gluon exchange kernel.

This equation is, for spin 1/2 particles:

(s - Mz) u(k2)dv (k1) =

1 - ’ ’ o uy d31{1,
s [ 00) (B 4 ) o — BB Kok oy s (86)
with: B R 4+ m? N R? 4 m2 .
B T 1-z) ’ '
1 [A & 1 [A} &
= — e d ¥=— A, —"—| s . X
J 7 [mr + Azw-p] Y5 , an 7 [mr + 2 75 (8.8)
The kernel! K* can be written as K** = —g**K, with:
2 / ' 2 2y dn
K=g* | 0w (ks —k))S((ky — Ky + wn —wT)” — p )7_1 —
d
b7 [0 = RS — bt om P =) T (09
-

INote that a colour factor —% has to be added.
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which gives,

. 0(eo-(ky — )
p? — (ks — k3)? + 27w-(ky — k}) — e
g*0(w- (K — k1))

— . (8.10
+,uz—(ki—k1)2+2‘r’w-('k{—k1)—ze (8:10)
where T and 7’ are defined by,
_ 2 "' M2
= 32 wj_\f) , and 7= 52 == (8.11)

The two items in Eq. (8.9) cannot be both non-zero simultaneously. After
developing all scalar products, one gets the following final expression for K,
in the variables (z,R):

K(z,z',R,,R; M) =
{ (—(a: —1)(z” + 2’ + z(2' — 1))m] — 2R/ -Ry(z — 1)z’

- M*z'(z - 1)(z—z')+K'(z,2/,Ry, R'J_)) x’_(:vl—_—l_)_} O(z' —z) +

{ (—(:p' —1)(z* + . +2'(z—1))mi-2R ‘R (2’ — 1)z

_ MP(' — 1)z — 2) + K'(z, 2", R, 1)) 5(95—1—1_)} Oz — ),
(8.12)

where,

K'(z,z',R;,R}) = R2z'(z' — 1) + R?z(z — 1) + miza'(z + 2’ - 2) .
(8.13)

In order to extract the two components A; and A,, one should proceed as
follows. We first multiply both sides of Eq. (8.6) by u(k2) on the left and
7(k1) on the right, then sum over polarization states. We then multiply both
sides successively by 45 and s, and then take the trace. We end up with
the following system of equations:

Tr sk + ma)d(fy = ma)| =
d’R/, dx’

1 =
(s — M2)(2r)3 /Tr [75(162 +ma2)Au(fr — ml)]K m , (8.14)
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Te [ (s + ma)9 (ks = rma)| =

(s — Mlz)(27r)3 /Tr [9"75(%2 + m2) A (F1 — ml)} K‘“’;,(R%;:—) , (8.15)

with:

Ay = YKz +m2)d' (m1 — K1)y - (8.16)

In perturbation theory, we take A}, = A}, in the r.h.s. of Eq. (8.14) and
Eq. (8.15), where AY', are given by Eq. (8.3) and Eq. (8.4) with gaussian
wave functions for g; 2. The correction to the wave function is then given by
solving the system of equations Eq. (8.14) and Eq. (8.15). We finally get:

A},2 =AY, +Al,, (8.17)

1 oo
Alp = / / [X1,2($7 Ry, RIJ_)A(IJ, + D o(z, ', Ry, R )AY
o Jo

1 d’R/ dz’
s — M?(27)32z'(1 — ')’

x K(z,z',R., R/ ; M) (8.18)

where the expressions for x1,2 and §;; are reported in Appendix A.

8.1.3 Physical constraints
Normalization

According to the spirit of the constituent quark model, the state vector is
decomposed in Fock components, and only the two-body component is re-
tained. Since the state vector is normalized as:

(0, N|p, A) = 2po6®(p — p')6** (8.19)

it gives for a state of zero total angular momentum, the following normaliza-
tion condition [124]:

No=1= / > U, D (8.20)
D xix
where D is an invariant phase space element defined by:

1 d3k1 1 d3k _ 1 dzRJ_d.’I,'

= (2m)% (1 — z)2¢, - (2m)3 ey T npa(i-a) (8.21)

D
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With the pseudoscalar wave function written in Eq. (8.1), the normalization
condition is therefore [124]:

=[P

D. (8.22)
my

Decay constant

The pseudoscalar decay amplitude is given by the diagram in Fig. 8.2. Ac-
cording to the usual definition, the decay amplitude is ', = (0|J,|PS) where
J,, is the 5,75 current. Since our formulation is explicitly covariant, we can
decompose I', in terms of all momenta available in our system, i.e. the
incoming meson momentum p, and w,. We have therefore:

Fu = fPS Pu + B Wy (8'23)

where fps is the physical decay constant. In an exact calculation of Iy, B
should be zero. Since w? = 0, the decay constant can be obtained according

to:
I'w

Using the diagrammatic rules of CLFD, we can calculate I', from the dia-

1

49 (p)

Figure 8.2: Decay diagram.

gram shown in Fig. 8.2. One gets:

o=V [ T |55 (22 4+ e ) s — Boula = e) (B + )| D
(8.25)
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Having calculated the trace, the decay constant is then given by:

ﬁm=2¢§é[{wﬁu—xy+mﬂ»}m+ﬂdl—@AzD. (8.26)

my

Electromagnetic form factor

The electromagnetic form factor is one of the most useful tools with which we
can probe the internal structure of a bound state. Moreover, from the electro-
magnetic form factor at low @2, it is possible to determine the charge radius
for a given particle. This physical observable is therefore very powerful in
order to constrain the phenomenological structure of the wave function. The
leading order (impulse approximation) for the electromagnetic form factor is
shown in Fig. 8.3.

In CLFD, the general physical electromagnetic amplitude of a spinless
system can be decomposed as [124, 144]:

J, = (PS|37,4|PS) = (p+ P), Fps(Q®) + 5’,’; @), (8.27)

where Fps(Q?) is the physical form factor. In any exact calculation, B (Q?)
should be zero. We choose for convenience w-g = 0. This implies automat-
ically that the form factors Fps(Q?) and B(Q?) depend on Q? = —¢ only,
since from homogeneity arguments they can depend only on w - p/w-p' = 1.
The physical electromagnetic form factor Fps(Q?) can be obtained by con-
tracting both sides in Eq. (8.27) with w,. One then has:

J-w

Fps(Q*) = Sop (8.28)

By using the diagrammatic rules of CLFD, we can write down the elec-
tromagnetic amplitude corresponding to Fig. 8.3 where the photon interacts
with a quark. Assuming that quarks are pointlike, one obtains:

FR@) = <, [ Te[-T# + may ettt )i = )| D

‘P
(8.29)
with, e,, the quark electric charge and where J is defined by:

J =~914°, (8.30)
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ot N
~N

> =
Qi (p) q (kl) (p ) Qi

70T

Figure 8.3: Electromagnetic form factor, F35(Q?), of a two body bound state
where the photon interacts with the quark. A similar diagram can be drawn
in the case of Fp%(Q?) where the photon interacts with the antiquark.

with 9 and ¥’ given in Eq. (8.8). After simplification one obtains,

[(ml(l —z)+moz)? + R — xRJ_-AAlA,l

z(1l — z)m?
(mi(1 — z) 4+ mox)

FAQ) =« [

D

+ 2(AA; + Al A,) +4z(1 — $)A2A’2:| D . (831)
The wave functions A} and A’ depend on (z/,R/,), with = z’ in the impulse
approximation. If we define the four momentum transfer ¢ by ¢ = (g0, A, q))),
with A-w = 0 and q parallel to w, we have Q* = —¢* = A? and thus
R/, = R, — zA. In the case where the photon interacts with an antiquark,
one gets:

FA@) =« [

Tr [—wmz ) — )T + )| D
D D

2(1 — z)w
(8.32)

Finally, for the electromagnetic form factor, Fps(Q?), one obtains:
Fps(Q®) = FR4(Q%) + F3(Q7) - (8.33)

From the form factor, we can extract two major pieces of information: the
first is the charge radius of the bound state defined by:

d

(rps) = —GH-Q—ZFPS(Qz) (8.34)

@2=0’
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and the second is the behaviour of the electromagnetic form factor at high
Q? (i.e. its asymptotic form).

Asymptotic behaviour of the electromagnetic form factor

It is now well accepted that the asymptotic behaviour of the pion form factor,
Fps(Q?) ~ 1/Q?, is fully determined by the one gluon exchange mechanism.
This mechanism can either be considered explicitly in the hard scattering
amplitude, or incorporated in the relativistic wave function of the meson.
Here we adopt the second strategy. At asymptotically large Q@?, the form .
factor is dominated by the contribution from the relativistic A; component
in Eq. (8.1). The high momentum tail of the wave function is thus generated
by the one-gluon exchange kernel, as detailed in Section 8.1.2. We will assume
that the asymptotic behaviour of the kaon form factor is similar to that of
the pion.

Transition form factor

The quantum numbers of the 7 transition amplitude, = — y*v, are similar
to the deuteron electrodisintegration amplitude near threshold, as detailed
in Ref. [124]. The exact physical amplitude has the form:
—1

F,, = _2_¢3,,,Ww"1f>ﬁ’«’M , (8.35)
where P = p+p and ¢ = p’ — p. In any approximate calculation, the ampli-
tude F,, has to depend on w. It should therefore be decomposed in terms of
all possible tensor structures compatible with the quantum numbers of the
transition, as we did above for the decay constant and the electromagnetic
form factor. One thus has [124]:

—1 v v v
Fup = 76pqu P F™ + €puyq"w” Bi + €puyp’ W Be

+ (Vugo + Vp‘lu)BS + (Vow, + Vow,)Ba + (Vupo + Viopu)Bs (8-36)

2m2w-p
where V, = €4ap,w*¢°p". From Eq. (8.36) we can extract the physical form
factor F™ by the following contraction:
—1
F™ = ————e""qu\F,, . 8.37

2Q2(W‘p)e QWAL pp ( )
For the transition form factor to leading order, the two relevant diagrams
are indicated on Fig. 8.4 (F2,) and Fig. 8.5 (F, ® ), respectively. By applying
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Qi (p)

Figure 8.4: The leading contribution (Fg,) to the transition form factor,
™ — v*v (first diagram).

the diagrammatic rules of CLFD, we can derive the corresponding amplitude
and one finds:

Fe = ?(eﬁ — )
/ T [9(m — a (8 — wr' + m)y (ks + m)] B D
D

oy o (8.38)

where e, is the quark electric charge. The second diagram which is necessary
to compute the transition form factor can be calculated similarly, and one
gets for F?®

wo?

R =L e
/ Tr [ﬂ(m — kv (m — By +wr’ )y (ke + m)] m? — ( 2
D

e (8.39)

Other diagrams which should be taken into account at leading order either
correspond to vacuum diagrams or are equal to zero for w-g = 0. The total
amplitude for the transition form factor therefore reads:

Fry (@) = \/g(ei =)
2D
8 /D 4ei(l —z) — 2R -A + zQ?

R.-A
[Al +24A22(1 — z) + A, 52

1-z)| . (8.40)
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Figure 8.5: The leading contribution (F?,) to the transition form factor,
T — «v*v (second diagram).

Axial anomaly The constraint from the axial anomaly is defined at Q* =
0 GeV?. It gives the transition form factor when both photons are on their
mass-shell. One should have [145, 146, 147]:

Fol@ = 0) = 757 - (8.41)

Asymptotic behaviour At high Q?, the transition form factor behaves
like 1/Q?2. In this limit, we can simplify Eq. (8.40) and one obtains:

QF. Q)| =2v3(e - &) / Ui +242(-2)]D. (342

Q2—roo D
In the approximation = 1/2, the transition form factor can be expressed
as a function of the decay constant obtaining,

Q2F7F’Y(Q2) . \/5(612; - eZ)fr . (8.43)

Q20

8.1.4 Numerical results

Data

The wave function is expressed in terms of the scalar functions A, and A,,
which means that we have to determine 5 parameters in our analysis. There
are two parameters per scalar function, A;, and the strong coupling constant
as well. In order to have an accurate phenomenological investigation, we will
deal with only 3 parameters which are a and § from the scalar function A,
and the strong coupling constant from the one-gluon exchange. Therefore,
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the analysis will start by using a scalar function A, and by applying the
kernel to it we will generate the scalar function A, without any additional fit
parameter. We will separate our analysis into two parts. The first concerns
heavy particles, such as B and D, and the second focuses on light particles,
such as 7 and K.

Regarding the particles B and D, it has been explained in Ref. [148] that
the relativistic component A, goes to zero in the heavy quark limit. We can
thus safety restrict our choice by taking only the scalar function A, as initial
ansatz wave function. Since we work in a constituent quark model, we use the
following quark masses and decay constants for the numerical applications:

my = myp = 4.930 GeV, and my =m, = 0.35 GeV ,
my = m. = 1.620 GeV, and my =m, = 0.35 GeV ,
fp = (0.225 4 0.028) GeV [149] , and fp = (0.200 % 0.030) GeV [150, 151] .

Unfortunately, there is no experimental data for decay constants of heavy
mesons. Therefore, we will use values for the decay constants fp and fg
extracted mainly from lattice QCD and QCD sum rules, even though it can
be observed that their values may vary according to the framework applied.
Note also that we modify slightly the value of m, in order to have m; +m;y >
M. For the meson masses we take,

Mg =5.279 GeV, Mp =1.968 GeV .

The strong coupling constant is evaluated at the next to leading order ac-
cording to the heavy quark mass for the B and D mesons. Working in the
constituent quark model framework, we will assume that the normalization
of the wave function is equal to one.

The second part of our analysis concerns the light particles 7 and K. For
light quark systems like 7 or K, one would have to consider both components
A; and A, as initial ansatz. For the reason previously explained, (number
of parameters and simplicity) we will consider only as input the scalar wave
function A; and we will obtain the relativistic component A, through ra-
diative corrections. The initial scalar wave function for 7 and K will thus
be determined using only three parameters: o, and the strong coupling
constant, a,. For the numerical applications, we take for the quark masses:

my = m, = 0.350 GeV, mo = m, = 0.350 GeV ,
my = ms; = 0.510 GeV, mo = m, = 0.350 GeV ,

and concerning the meson masses, one uses:

M, =0.135GeV , Mg =0.497 GeV .
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The coupling constant, as, is determined according to the asymptotic be-
haviour of the electromagnetic form factor. Its value for the pion and kaon
will be discussed in the next section. Both particles K and 7 are more easily
constrained than B and D, because of the numerous available experimental
data. In our analysis, we will take into account the decay constant and the
observables extracted from the electromagnetic form factor. For the decay
constant, we take the following values:

fr=0.129 £0.01 GeV ,
fx =0.159 £ 0.01 GeV .

As has already been mentioned in the previous section, one important phys-
ical property and one specific physical behaviour can be obtained from the
electromagnetic form factor. These are the charge radius and the asymp-
totic electromagnetic form factor. We use for the charge radius the following
experimental values:

(r2)op = (0.439 +0.03) fm? [152]
(r% )exp = (0.340 £ 0.05) fm?® [153] .

Recently, experimental data has been re-analysed for the pion asymptotic
electromagnetic form factor at high @*. Usually, the value 0.3 GeV? [154]
has been used for Q?F,(Q?) when Q? becomes large. Since the re-analysis
of experimental data sets from DESY [155] and those extracted from the
longitudinal cross section at Jefferson Lab [156], we will use the following
asymptotic limit:
leiinoo Q*F,(Q%) = (0.45 £ 0.10) GeV? .

Unfortunately, for the kaon electromagnetic form factor, we do not have any
accurate experimental data sets. By assuming that the kaon is similar to the
pion by SU(3) symmetry, we will consider the same asymptotic behaviour
as for the pion, however with a larger uncertainty. Thus one has:

Qlim Q*Fx(Q?) = (0.45 £ 0.15) GeV? .
2500

Finally, we will assume that the normalization is equal to one in the spirit of
the constituent quark model.

Discussion

By solving the system of physical constraints detailed previously, we have
extracted the wave functions for the pseudoscalar mesons B, D,7 and K.
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In order to compare the theoretical predictions {y} with the experimental
measurements {z + o, }, we defined the following x? by:

=Y (x;y)z . (8.44)

We also define the light cone distribution amplitude?, ®(z) as a function of
the momentum fraction carried by one quark as,

&(z) = /0 ” (2W)§;;_w)¢(x,Rl). (8.45)

We consider the normalization and decay constant as our input parame-
ters for the evaluation of the B and D mesons and we choose for the value
of the strong coupling constant (calculated to next leading order) that given
at the scale p = m; and u = m, for the B and D mesons respectively. The
average transverse momentum 4/(R? ) is the only output in the case of heavy
mesons. For the pion and kaon wave functions, we consider in addition to the
two previous input parameters, the asymptotic electromagnetic form factor.
Then as output parameters, one obtains the charge radius, the transverse
momentum 4/(R?) and the asymptotic transition form factor (the latter
case is only valid for the pion).

B D T K
ayp = 0.2804 o) = 0.2426 o] = 0.056 a1 = 0.099
B =1.4680 p;=2100 pBy=3112 p,=19.01
a; =0.2190 @;,=0.3200 ;=092 «,=0.68

Table 8.1: Parameters a;,31(GeV™?) and o, for the B,D,K and 7 wave

functions.

The input parameters have been fitted and the results for the constants
01, 81 and a; are listed in Table 8.1 for all of the mesons mentioned previously.
For the heavy quark systems, such as the pseudoscalars B and D, the values
of a; and f, are strongly related to the value of the decay constant fp(p). In
Fig. 8.6, the distribution amplitudes for B and D are shown. It can be seen
that the distributions ®(z) for B and D are peaked at high values of z and
vanish at low values of . This behaviour originates from the heavy ¢ and
b quark masses. Their distributions reach the maximum when z is around
3% = 0.93 and z7°® = 0.86, respectively. This roughly corresponds to

2Note that ®(z) refers to the scalar function A;.
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Figure 8.6: Pseudoscalar distribution amplitude. Full line, dotted line,
dashed line and dot-dashed line represent the distribution amplitude for
B, D, K and 7 respectively.

the ratios my/Mp and m./Mp. Finally, the average transverse momentum,
(R2), is equal to 0.530 GeV for the B meson and takes the value 0.413
GeV for the D meson. These results are listed in Table 8.2.

Now let us focus on light particles. We are mainly interested in the pion
and the kaon pseudoscalar mesons. Regarding the pion wave function, many
studies have been performed in the past and it is still under investigation.
We can refer to the Gaussian model [141, 157], the BSW approach [75] and
the B.F. (Braun and Filyanov) wave function [158, 159]. We can also cite
the very well known asymptotic form [160, 161, 162] and the C.Z.-like wave
function [161, 163, 164] (Chernyak and Zhitnitsky). Note as well that wave
function distribution amplitudes can be expanded in terms of Gegenbauer
polynomials, where their coefficients are calculated using Light Cone Sum
Rules (LCSR).

In order to determine the pion wave function, recall that we use as input
parameters the decay constant, the electromagnetic form factor at high Q?
and the normalization. As output parameters we obtain the electromagnetic
form factor at low Q2 (that gives us the charge radius), the transition form
factor, the axial anomaly and the transverse momentum / (R%). The co-
efficients oy, /1 and a, which are necessary to obtain our wave function are
listed in Table 8.1. The distribution amplitude is shown in Fig. 8.6 as well as
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B D T K

input
Normalization 1.00 100 1.00 1.00
Decay constant (GeV) 0.200 0.225 0.129 0.159
Asymptotic Q?Fps(Q?) 0.35 0.37

output

Asymptotic Q*F.,(Q?) 0.166

Charge radius (fm?) 0.410 0.386
V(BZY (GeV) 0.530 0.413 0.290 0.320
x? 0.0 0.0 1.0 0.28

Table 8.2: Physical constraints for pseudoscalar particles.

I ] ] l I I_ 1) ] 1]
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Figure 8.7: Different pion wave functions, asymptotic (dot-dashed line), C.Z.
(dot-dotted dashed line), our work (dotted line).
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Figure 8.8: Pion electromagnetic form factor. Experimental data are taken
from Ref. [165] (solid square).

in Fig. 8.7 where comparisons® can be made with the C.Z. and asymptotic
pion wave functions. In Fig. 8.7 the C.Z. and asymptotic pion wave functions
are:

®(z)*¥" = 6z(1 — z) ,

cz 2 R} +m?
®(z)"? = A(1 — 2z)°exp [_-872:1:(1 = :c)] i
where A and 7 are parameters that define the wave function. In Figs. 8.8, 8.9
and 8.10 are shown respectively, the pion electromagnetic form factor squared
at low 2, the pion electromagnetic form factor at high Q? and finally the
transition form factor. For the electromagnetic form factor one obtains very
good agreement with experimental data at low Q2. The pion charge radius
given by the slope of the electromagnetic form factor curve at QR? =0 GeV
is equal to (r2) = 0.410 fm®. This is inside the experimental uncertainty
range. At high Q? (see Fig. 8.9), the electromagnetic form has been fitted
and therefore it is consistent with the data sets [156]. We underline that we
take into account the one gluon exchange process which contributes strongly
to the quark momentum distribution at high Q?%. We refer the reader to

3The distributions have been plotted in order to get a maximum equal to one.
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Figure 8.9: Asymptotic pion electromagnetic form factor. Experimental data
sets are: full diamonds [172], full triangle down [155] and full square [156].

literature regarding the pion electromagnetic form factor [166, 167, 168, 169,
170] for comparisons. The transition form factor shown in Fig. 8.10, gives
good agreement with the experimental data [171] at high Q2 and it also
agrees with the theoretical limit. The only experimental constraint which is
not well reproduced is the axial anomaly. A summary of the results is given
in Table 8.2. Finally, we have also computed the transverse momentum for
which one obtains the following value: 1/(R2) = 0.290 GeV.

In a similar way to that for the pion, we investigate the structure of
the kaon wave function. We apply exactly the same approach as outlined
previously, with the same input and output parameters except that we do
not use the transition form factor and the axial anomaly. In Figs. 8.11
and 8.12 are shown respectively the electromagnetic form factor squared at
low Q? and the electromagnetic form factor at high Q2. The coefficients a4, 8
and o, obtained by fitting the physical observables mentioned previously are
listed in Table 8.1. In Table 8.2 are given the values of our input and output
parameters.

For the electromagnetic form factor, we mainly focus on low Q? since
we do not have enough accurate experimental data. However, we can check
our results at high Q? because of assumptions (kaon is similar to the pion
by SU(3) symmetry) that give us an asymptotic value of @?*Fx(Q?) around
0.37 GeV2. We observe that our theoretical results and the experimental
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Figure 8.10: Asymptotic pion transition form factor compared to the
data [171]. The dot-dashed line is the analytical asymptotic transition form
factor from CLFD and the full line is the asymptotic behaviour of the pion
transition form factor.

data sets are consistent at low Q? as well as in very good agreement with
other theoretical approaches, such as soft QCD [173, 174]. By calculating
the electromagnetic form factor slope at @* = 0 GeV one is able to obtain
the kaon charge radius. In our work one has (r%) = 0.386 fm®. As for the
pion, the charge radius is inside experimental uncertainty. Regarding the
electromagnetic form factor at high @2, we have good agreement with the
expectation of obtaining a similar behaviour to the pion electromagnetic form
factor. This comes from the inclusion of the one gluon exchange that allows
the electromagnetic form factor to become flat and stable at high QZ.

Finally the distribution amplitude of the kaon wave function is shown in
Fig. 8.6. We emphasize that the asymmetry in the distribution arises from
the s quark mass as expected. From the distribution amplitude, we can also
calculate the kaon transverse momentum which is around 1/(R?%) = 0.320
GeV. The study of the kaon ends the analysis regarding the pseudoscalar
mesons. In the next section we investigate the vector particles such as the p
and w.
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Figure 8.11: Kaon electromagnetic form factor compared to data [153] (solid
squares) and to data [175](solid circles).
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Figure 8.12: Asymptotic kaon electromagnetic form factor.
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8.2 Vector mesons

8.2.1 Formalism

We shall now concentrate on the structure of vector mesons J* = 1=. Fol-
lowing the same approach as for the pseudoscalar mesons, the wave function
is decomposed in terms of all possible independent spin structures. One
obtains [124):

&), (ki k. p,wr) = vVm ex(p) 6% (k2) By v” (k1) , (8.46)
with:
ki — ko), 1 ki —k
¢u=<P1(—2m—2—+902—’7u+803 p+904(1m%¢)‘
i Mo (g 47)

— e yse ki k Mo
‘105m2w p')’Seu Py 1y R2pWry +906( p)? )

where e (p) is the polarization vector of the vector meson, and m is the
mass of the quark and antiquark. We consider here only the case of equal
masses for the quark and antiquark. The wave function* is determined by
six invariant functions ;_e, which depend on two invariant scalar variables.
This decomposition is similar to the deuteron wave function used in previous
studies [176, 177]. In terms of the variables k and n, the wave function takes
the form [124]:

v, . (k,n) = Vmuw! ¢ (k,n)ws, , (8.48)
with:

P(k,n) = f1\/— fz (3—1{(152—0) 0) + fS% (3n(n-o) — o)

+f4 (3k(n o) + 3n(k-o) — 2(k-n)o)

+ hyfSE Benl 4 Y xmlxel (849

where w, is the two-component Pauli spinor normalised to w] Tw, =1,and &
are the usual Pauli matrices. The relation between 1*(k,n) and ¢(k n), is
the same as the relation between the spherical function ¥;}(n) and n.

The coefficients of the spin structures in Eq. (8.47) and Eq. (8.49) are
scalar functions of two independent invariants, which we can choose to be k?

4Note that the wave function written in Eq. (8.47) does not include the colour factor.
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and k-n, since these variables are only rotated by a Lorentz boost [124]. In
the non-relativistic limit, only two components remain, f; and f>, and they
only depend on k2. This can be easily seen if we keep track of the c factors,
and then let ¢ go to infinity to obtain the non-relativistic limit. We shall
neglect in the first approximation the tensor component, f;, so one is left
with the non-relativistic wave function f; = ¢ %(k?). The relation between
©1(k?), p2(k?) and ¢"VF(k?) is given by [178]:

2

oK) = mﬁw’*(k% (8.50)
Pall?) = VRPN (8.51)

Finally, the wave function ¢"®(k?) should be normalized according to [178]
and one obtains,

No=1= m/D |6V E(K®)|’D . (8.52)

8.2.2 Decay constant

The vector decay diagram is similar to the one for the pseudo-scalar particles.
It is shown in Fig. 8.13. The decay amplitude M** to produce a photon with

4% (p)

Figure 8.13: Leptonic decay diagram.

polarisation €* from a vector state of polarisation ¢’ can be decomposed in
terms of all possible tensor structures. Therefore we can write M#** [178] as:

B B Bs M?
e papt B B P ey, o
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where the tensors a‘” are defined as followed:

p'p’
M2’

pp _ o p 4
ay” =pw, +pwy,

up __ _pp
a =g -

e __ u o
a3 =p W, —p Wy,
a? = whw?,

po _ p#pp

S_Mz‘

By algebraic manipulations [178], we can isolate the physical amplitude F' as
a function of M*?, and one obtains:

F = %(Il o 212 + I4 + I5) 5 where Ii = Mﬂpafp ° (8'54)

The decay amplitude can be calculated by using CLFD diagrammatical rules
and we obtain:

My = V3m /D Tr [¢p(m — kvl = vs)(k2 + m)] D. (8.55)
One can thus extract the physical amplitude, F', which can be written as:
F= / [mE$¥R0)] D (8.56)
D

where one has:

o =2/ [1 -2 (E + E—")] . (8.57)

Ek m
For two identical quarks, the relative momentum, k, is defined by:

_Ri—i—mz 2

k2 = m —m, (858)

and the non-relativistic wave function ¢’V (k?) is parametrized as a gaussian:
¢NR(k2) = ¢(x) E(xaRJ.) ) (859)

with ¥(z) given by:

2 .

b(z) = aexp [—ﬂ (Mm——x) - mZ)] . (8.60)
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Here, o and (3 are two parameters determined from experimental data sets.
The function ¥(z, R ) has the form,

Y(z,R.) = 47*Bexp [—ﬂﬁ] i (8.61)

with the following normalization:

o dzR_]_ 1 B
/o 22 —2) @rp e Re) =1 (8.62)

After averaging over the polarization states of the vector, one obtains for the
decay width:

A 2E2FP (8.63)

I‘(V—-)e"'e‘)zzﬂw3 2E;

where E, is a factor arising from the electric charges of the constituent quarks,
M is the mass of the vector meson and o, is the electromagnetic fine structure
constant. In the non-relativistic limit, one obtains the following decay width
PNR(V — ete),

TVR(V 5 ete) = 32w%a§E:|¢NR(r =0)*, (8.64)

where ¢"VF(r) is written at the origin as,

NR(y — _M
¢ (_0)—2\/3. (8.65)

8.2.3 Numerical results
Data

Because of the lack of experimental data for the vector mesons on which we
are now focused, we will start our derivation by using a non-relativistic wave
function. The vector wave function, ¢"#(k?), is determined by two param-
eters, a and 3, which are calculated from the two following constraints: the
normalization condition and the leptonic decay. In our numerical applica-
tions, we use the constituent quark masses for v and d quarks as previously
defined. Regarding the vector masses, one takes:

M,=0.770 GeV, M, =0.782 GeV .
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P w
a=0.213 o=0.204
B =5840 B =6.589

Table 8.3: Parameters a, 3(GeV™?) for the p, w wave functions.

The leptonic decay is the only physical constraint which is used in our anal-
ysis. We apply the following experimental data for our simulations:

Tee(p) = (6.77 £ 0.32) KeV ,
Tee(w) = (0.60 £ 0.020) KeV .

The charge factor E, which arises in the decay width formulation has the
following form:

1 1
E(p) = 5(eu =€), Eg(w) = 5(eut ea)” (8.66)
where e, and e; are the quark electric charges. We also assume that the
normalization is chosen to equal one for all the vector mesons analysed.
As output, we will get the mean relative momentum square (k?), and the

averaged transverse momentum square (R%).

Discussions

In solving the system of physical constraints (normalization and leptonic
decay width) detailed in Section 8.2.1, we have determined the wave functions
corresponding to the vectors p and w. The parameters « and J included in
our ansatz wave function have been listed in Table 8.3.

The distribution amplitudes for these vectors are plotted in Fig. 8.13. We
investigated the mesons p and w where no radiative corrections have been
taken into account. As output results, we obtain the mean relative momen-
tum square (k?) and the averaged transverse momentum squared (R%) for
all of the vectors studied. Their values are also enumerated in Table 8.4.

One defines in the non-relativistic limit the mean relative momentum
square of the bound state by,

(k) = 0°° é;;

Regarding the determination of the p and w wave functions, the lep-
tonic decay width used as a constraint does not include radiative corrections

K2V R () (8.67)
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Figure 8.14: Vector meson distribution amplitude: the dotted line and dot-
dashed line represent the results for the distribution amplitude of w and p,
respectively.

through the one-gluon-exchange. Their distribution amplitudes are plotted
in Fig. 8.13 and it appears that they are very close to each other as expected.
We are working within the constituent quark picture where the normalization
is equal to one for both vectors. The decay constant that is very similar for
p and w (f, = 221 MeV and f, = 218 MeV) is used as the second constraint
through the leptonic decay width. These two reasons mainly explain why
their distribution amplitudes are very similar.

The low values obtained for the mean relative momentum squared (an
output), (k?), (see Table 8.4) are in total agreement with the expectation
of large radii for the particles w and p. One calculated the mean relative
momentum and one obtains (k?)/m2 = 1.420 for p and (k?)/m?2 = 1.224
for w. According to the parameters determined with the constraints detailed
previously, we have determined the averaged transverse momenta for p,w.
Their values, which are listed in Table 8.4, respect the hierarchy created by
the constituent quark model, since the transverse momentum for p and w
(0.459 GeV and 0.434 GeV, respectively) are bigger than those for 7 and K
but smaller than those for B and D. This consistency over the quark scale
in the investigated vector and pseudo-scalar mesons is conserved.

Finally, we analyse the distribution amplitude ®2(R | ) as a function of the
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input
Normalization 1.00 1.00
Decay width (KeV) 6.77  0.60
output
V(R%) (GeV) 0.459 0.434
(k?) (GeV)? 0.174 0.150
X2 0.0 0.0

Table 8.4: Physical constraints for vector particles.

transverse momentum R, . This can be evaluated by the following expression,

By(Ry) = /0 (%)32;(1_1“)@5(35) (e, Ry) dz (8.68)

where X(z,R,) and ¢(z) have been defined in Eq. (8.60) and Eq. (8.61),
respectively. The distribution ®;(R ) is plotted for the vectors w and p in
Fig. 8.15. For w and p, the distribution in terms of the transverse momentum
R? is almost identical and indicates once again the similar constitution of
these two particles. We note that the average transverse momentum for these
particles is around 0.35 at R? = 0 GeV and goes down to 0 near R} =1
GeV. It emphasises the properties carried by a system of light quarks.
Note also that taking the slope of the distribution amplitude ®;(R ) at the
half width, gives the constituent quark mass for the given particles. Hence,
one obtains a quark mass around 0.45 GeV for p and w. That finalizes the
analysis of light vector mesons.

8.3 Summary

Here we focused on four pseudoscalar particles. Heavy quark and light quark
systems have been analysed through the mesons B, D, , and K. Regard-
ing vector particles, we have studied the p and w mesons. In using all the
available physical constraints, we have determined the unknown parameters
involved in our ansatz wave functions. According to the experimental data,
we have described meson particles by fitting our parameters and by includ-
ing one-gluon exchange (except for the p and w). The physical constraints
(depending on the considered particle) that have been taken into account are
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Figure 8.15: Vector distribution amplitude as a function of R,. Dashed line
and dot-dashed line represent the results for w and p respectively.

the electromagnetic form factor (asymptotic behaviour and charge radius),
transition form factor, decay constant and leptonic decay. The normalization
condition has also been utilized. As output results, we have calculated the
mean relative momentum square (k?), and the averaged transverse momen-
tum square (R?). Now, since one has fully parameterized the wave functions
for B, D,m, and K as well as for p and w, we are able to calculate the weak
transition form factors between them in the next chapter.



Chapter 9

Transition form factors

“ Choisis toujours le chemin qui semble le meilleur méme s’il parait plus
difficile: I’habitude le rendra bientot agréable. ”

Pythagore

Having determined the wave functions for the particles B, D, 7, K, p and
w, we can now investigate the transition form factors between two pseu-
doscalar mesons and between pseudoscalar and vector mesons. We mainly
concentrate our study on B decays, however we also include D decays for
completeness. We begin our analysis with the semi leptonic decays of pseu-
doscalar into pseudoscalar mesons described in the usual formalism (i.e.
quark model) and in the CLFD framework. Similar investigations will be
made for semi leptonic decays of pseudo scalar into vector mesons.

9.1 Weak decay form factors for P — P tran-
sitions

9.1.1 Usual formalism

Many studies have been done regarding the pseudoscalar pseudoscalar tran-
sition. Some of them have been performed in the quark model using heavy
quark theory [179, 180, 181, 182, 183], the light front formalism [141, 184]
and applying the Isgur-Wise function [185, 186]. Note also that in lattice
QCD [187, 188, 189, 190, 191, 192, 193], perturbative QCD [160, 194] and
QCD sum rules [76, 195, 196, 197] calculations were derived to analyse this
type of transition.

135



136 CHAPTER 9. TRANSITION FORM FACTORS

The b and d decays are mainly controlled by the following weak current
J,ﬁ‘( 4) (even though just gy“gy(a) is relevant),

Ty = 7" (1 = 75)%a) » (9.1)

where g is a light or a heavy quark. As usual, one can define the physical
amplitude for the semi-leptonic decay X — Y'lv; by the expression:

M= gf—\‘//;_l—”(leJ“lPl)Jf” , 9.2)

where JI*” is the leptonic current and G is the Fermi constant which takes
the value 1.166391 x 10~°GeV 2. In Eq. (9.2), (P,|J*|P1) is the hadronic ma-
trix element including the weak current as defined previously. The hadronic
matrix element can be given by the following decomposition:

(Po|J*|Py) = (P + P)* f (&) + (PL = P)*f-(d%) , (9-3)

where f1(¢?) and f_(q?®) are the transition form factors. P, and P, are
respectively the four-momentum related to the initial and final particle states,
involved in the hadronic current. By introducing another set of form factors
Fo(q®) and Fi(g?), the amplitude can be expressed by,

u

M2 _ M2 M2 e M2
(B|J¥|P) = Fi(¢®) | P+ Pa — 14(12_2‘1 + Folq?) 1—261“] :

q2

(9.4)

In Eq. (9.4) M; and M, are the particle masses and q is defined as ¢ = P, — P.
It is straightforward to derive the relationship between the two sets of form
factors. One obtains,

Fi(¢*) = f+(d%) (9.5)

2

Fo(d®) = f+(d*) + Wq_—]v_,—gf-(qz) : (9.6)

In the helicity basis, the form factors Fy(¢?) and Fy(q?) represent the transi-
tion amplitudes corresponding to the exchange of a vector and a scalar boson
in the t-channel. Note that at ¢ = 0, one obtains Fi(q? = 0) = Fo(q® =
0) = f+(q® = 0). This means that the exchange of either a vector or a scalar
boson are similar at ¢ = 0 in the t-channel. It is also possible to compare
our results with the usual assumption of pole dominance which is currently



9.1. FORM FACTORS FOR P — P TRANSITION 137

applied when the whole ¢ range is not accessible. In this case, the form
factors f1(g?) are described by,

2y _ f+(0)
f:l:(q ) = (1 — qz/Mz?OIe)n ’ (97)

where M. denotes the meson mass and n refers to a single pole or dou-
ble pole dominance. This latter expression has been derived according to
experimental data.

9.1.2 CLFD formalism

In the Covariant Light-Front Dynamics formalism, the exact transition am-
plitude does not depend on the light front orientation. However, in any ap-
proximate computation the dependence is explicit. But we can parametrise
this dependence since our formalism is covariant. Hence, the approximate
amplitude expressed in CLFD is given by the following hadronic matrix [148],

(P,|JH| P)CEFD = (P + Po)*f4(q%) + (Pr — Po)* f-(¢*) + B(¢")w" , (9.8)

where B(g?) is a non-physical form factor which has to be zero in any ex-
act calculation. The last term represents the explicit dependence of the
amplitude on the light front orientation w. In order to extract the physi-
cal form factor fi(q?), without any dependence on w, from the amplitude
(Py|J#|P,)°LFD | we will proceed as follow. Firstly, we calculate the following
scalar products X,) and Z which are defined by,

X = (P + Po),-(Pa|J*|P)°LFP =
f+(d%) [Q(Mf + M3) - qz] + f(PA)(ME - M)+ B(¢*)Pr-w (1+y), (9.9)

Y = (PL = o), (Po| J#|P)HFP =
f-(P)@ + Fo() (M} = M3) + B(¢")Prw (1 —y) , (9.10)
and finally,
wy - (Pp|J#| P )LD
w-P

In Eqgs. (9.9, 9.10, 9.11) the term y defines the ratio between the two momenta
P, and P, times the light-like four vector w as,
_w-Pz M22+P1P2

] 1 9 2 2
_ — P,=—-(M M2 — . 12
Y w- P, M12+P1-P2’ with P-P 2( 1 T My q°) (9.12)

Z =

=f(F) 1 —y)+ f+(@)A +y) . (9.12)
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For g% > 0, it is convenient to restrict ourselves to the plane defined by &- qg=
0. This condition is allowed in the system of reference where P1 + Pz =0
with Pyg— Py # 0. From the scalar products X',) and Z we can isolate the
form factors fi(q?) from B(g?). Then, one gets the expressions for the form

factors fi(q?):
fe(d®) = Uy, ) ¥y, 4% X, Y, 2) (9-13)
where Q(y, ¢°) is identical for both form factors fi(q?):

1
A[((y —1)ME + ¥y — ME(y —1)] ’

Uy, q°) = (9.14)

and where the functions ¥.(y, ¢, X, Y, Z) have the following form:

T_(y,¢%X,),2) =
Py + 1)+ X(y? - 1)+ (1 - 3y)ME — ME(y — 3) + ¢*(y - D]z
\If+(y,q2,X,y,Z) -

YW -1+ Xy -1+ [y - )M - Mi(y— 1)+ Py +1)| 2. (9.15)
The second step is to express the amplitude (P;|J#|P,)°EFP without using
the form factors fi(q¢?). In CLFD the leading contribution to the transition
amplitude (P;|J#|P,)°LFP is given by the diagram shown in Fig. 9.1.

e ® & k) as (P)

Figure 9.1: Transition between two pseudoscalar particles (leading contribu-
tion).

By using the CLFD rules (see Ref. [124]), one can derive the matrix
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elements from the diagram (Fig. 9.1) and one has,

(p2|Ju|Pl>gCLFD -
il

/Tr [—%(m; + B — 45)(ma + ko)1 (m1 — kl)} T x’D , (9.16)
where 9; is defined by:
1 | Ay @ =
’19_,‘ e 7§ |i—77_’tf + Az,jw—'p;jl Y5 and 191' e ’7019;’)’0 . (917)

A; ; are the scalar wave functions defined previously in Chapter 8. The indices
i = 1,2 denote the scalar component of wave functions whereas the indices
4 = 1,2 refer to the initial and final meson, respectively.

Note that z and z’ are the fraction of the momentum carried by a quark
q: (spectator quark) as given by:

z = w ky , and z'= w ks : (9.18)
WP W P2
Finally, recall D is the invariant phase space element given by:
3 d3 2

T erR(l—2)2 (r)P e (rp2z(l—z)

Now, one can replace the hadronic matrix element (P3|J “#|P,)CEFD | which
appears in the scalar products X,Y, Z defined in Eqgs. (9.9, 9.10, 9.11), by the
hadronic matrix elements ( P;|J “|P1)SLF D calculated by applying the CLFD
diagrammatic rules and given in Eq. (9.16). Hence, by using Eq. (9.13) we
are able to compute the form factors fi(g*) as a function of q* and this over
the whole available momentum range 0 < ¢* < ¢2,,,-

9.1.3 Semi-leptonic decay

The form factor f_(q?) yields a contribution to the semi-leptonic decay which
is proportional to the lepton mass and therefore can be safety neglected in
first approximation in the calculation of the decay rate. Using this assump-
tion, the usual semi-leptonic decay rate is proportional to just the form factor
Fi(¢*) = f+(q?) and takes the form,

=t [ dnr = DY) (9.20)

min
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where 7 is defined as n = Py Po/MiMa. Npmin = 1 (zero recoil) and Nmar =
(M? + M2)/2M; M, - these correspond to ¢* = ¢2,, = (M1 — M;)? and

2 = g2, "= 0, respectively. By writing the form factor h,(n) as a function
of f1(n), he(n) is normalized to one at the point of zero recoil (n = 1) and
its slope near 1 is the so-called Isgur-Wise function p*:

he(n) =1-p*(n—1)+O[(n — 1) . (9.21)
The other parameters in Eq. (9.20) are:
GLM? ) M,
Fo = VoS LLet with ¢ = 32 (0.22)

where Vj,,, is the relevant CKM matrix element. An extraction of the CKM
matrix element could be made by comparing experimental data with theo-
retical predictions for the semi-leptonic decay.

This work BSW model Lattice QCDSR

B—D

Fy(0) 0.72 0.69 - -
B-orm

Fo(0) 0.35 0.33 0.28 0.30
B—+ K

Fo(0) 0.40 0.37 0.30 0.29
D—r

Fy(0) 0.67 0.69 0.65 0.50
D— K

F5(0) 0.72 0.76 0.73 0.60

Table 9.1: Form factors for the pseudoscalar pseudoscalar transition. BSW
model [73, 74, 80], Lattice QCD [187, 188, 189, 190, 191, 192] and QCDSR [76,
195, 196, 197].

9.1.4 Numerical results for P — Ply,

We calculated the transition form factors in the case of the pseudoscalar
pseudoscalar transitions, suchas B— D, B—-7m,B—+ K, D - m7and D —
K. We are working in a constituent quark model where the CLFD formalism
is applied. The wave functions used to describe the particles B, D, K, and 7
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have been determined using the same approach as that for the form factors
(we refer the reader to the previous chapter for all the details regarding their
determination) and have been constrained by several physical observables
such as decay constant and electromagnetic form factor. We recall that all of
the wave functions include the effect of one gluon exchange, which provides
indirectly radiative corrections to the transition form factor.

Each of the weak hadronic transitions mentioned previously are induced
by a charge current quark transition. The B — D transition is induced by
b—>c,theB-—>7rbyb—>d,theB—%Kbyb—)s,theD—Hrbyc—)d,and
the D — K by the ¢ — s charged quark transition. In Table 9.1 we list the
form factors at ¢° = 0, computed in our work, and comparisons with other
approaches (Lattice QCD, QCDSR and BSW) are shown as well. Because of
Eq. (9.5) we expect to obtain similar results for Fy(¢?) and Fi(¢*) at ¢° = 0.
We observe that our results are qualitatively in agreement with the three
other frameworks, lattice QCD, QCDSR and BSW. However, it appears that
our results are closer to those obtained by BSW than those given by QCDSR
and lattice QCD. This can be understood by the fact that both BSW and
our work are derived in a constituent quark model approach. This is not
the case for the QCDSR and lattice QCD formalisms. In the next section,
we investigate the weak transition form factors in the case of B — Vivy, and
D — Viy.

9.2 Weak decay form factors for P — V tran-
sitions

Numerous studies of the weak decay form factors in P — V transitions can
be found in the literature. As for the P — P transition, different frameworks
have been applied. We refer the reader to theoretical approaches such as using
HQET [198, 199, 182, 183], light front and Isgur-Wise function [185, 186],
lattice QCD [187, 188, 189, 190, 191, 192, 193], perturbative QCD [160, 194],
QCD sum rules [76, 195, 196, 197] and “exotic” analysis [200, 201, 202, 203].
All of them investigate the hadronic matrix elements that drives the weak
decay transition between two hadronic states.

9.2.1 Vector current

Since the Lorentz invariance is maintained, one can define the hadronic form
factors as a covariant decomposition of hadronic matrix elements of vector
and axial currents. For a transition between a pseudoscalar and vector meson,
one has usually four form factors - three for the axial current and one for the
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vector current. We first focus on the vector current V,, where V, = @7, q:1.
In that case the transition can be written as:

2
P, e V| Py) = ————euape™(Ps) PR PS V() . 9.23
(o ViR = g ot (POPCPEV(E) . (929
The form factor V(g?) can be understood as the 1~ intermediate state in
the transition 0~ — 1~. It is sometimes more convenient to define the form

factor V'(¢?) by,
(P2, e|Va| P1) = 19(¢%)euap € (P2)(PL + P2)*¢” (9.24)

where g(g?) is related to the previous form factor V/(¢?) by the following
expression,

2
9(q’) = M1 n M2 V() - (9.25)
In Egs. (9.23,9.24, 9.25), M; and P; are respectively the mass and momentum
of the initial and final states. €*(P,) defines the vector polarization with the
condition €’(P,)-Ps, =0 and ¢ = P, — P,.

We can also express the pseudoscalar-vector transition form factor in the
explicitly covariant light-front formalism. By analogy the amplitude of the
pbcuuU—bbdlai vector transition is similar to the p—m transition. The transi-
tion (17 |J,|0~) has the same structure since the decomposition is determined
by the kinematic components only. In our case, the spins and parities of the
particles are the same for (17|J,|0) and (07|J,|17). Therefore, in the im-
pulse approximation the corresponding amplitude of the pseudo-scalar vector

transition for the vector part is given by [124],

2
(Py, €|V, | )P = B *(P)q" Py A(S) (9-26)

with A(¢?) a dimensionless scalar function. One has to decompose the
hadronic matrix element (P, €|V, |P)EFP on the general invariant ampli-
tudes in order to show explicitly the dependence of the transition amplitude
on w. Then, one obtains,

(Po, eV, PL)°HFP = e#(Py) (9.27)

where F,, contains all of the possible terms that are a function of w [124]:

- 2
Fp. = M2 eww,yq”P A(q ) + €upyq WY By + €ypuy Py w" By
2
+ (Voqu + Vi9,) Bs + (Vowy + Vuw,) By + W(V,,Pz# + VuPy,)Bs

(9.28)
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ae ® g k) au (Pe)

Figure 9.2: Transition between pseudoscalar and vector particles (leading
contribution).

with V, = eap,w*q°P;. The terms, B; (¢ = 1,5), are scalar functions
(carrying no physical meaning) that are equal to zero in any exact calculation
but which, in any approximate calculation, parametrize the dependence of
the transition amplitude on w. By separating the w-independent parts from
the non-physical w-dependent ones in Eq. (9.28), one can extract the physical
form factor A(g?) and one finds:

s Mzze“/""y((y - l)sz + qu)wv
A(g") = Aw-P)(((y —1)M? + ¢®)y — M3(y — 1))

F, . (9.29)

Now one has to express F,, by applying the diagrammatic CLFD rules in
order to determine (P, €| J,| P )CTFP (see Eq. (9.27)) without including the
form factor A(q?). Then one has,

(Ps, 6|JulP1>gCLFD . ep*(P2)ﬁ1pu =

Lo m mo + K2
/D{_\/—EC (P;)T I: ¢p( 2"‘462)’7#( + £2)

X (‘:’: - Ag,lw‘fbpl)vs(ml - kx)} 1

where, ¢,, the vector wave function is given by,
Byy00, (K1, 2y Pyywr) = v/ €,(Py) @(k2) ¢ v (K1) - (9.31)

We refer the reader to Chapter 8 as well as Ref. [124] for all of the defini-
tions regarding the vector wave function. Replacing F,, in Eq. (9.29) by its

! xl}D . (9.30)
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expression given in Eq. (9.30) one obtains the physical form factor A(g?).
The relationship between the form factor derived in CLFD, A(¢?), and in
the usual formalism, g(q¢?), is the following:

e = A0 o

In a similar way and for completeness one can determine the relationship
between the form factors A(q?) and V(¢?). One has,

My + M2)A(4?) _

s (9.33)

?

Vi) ="

It is then possible to calculate the form factor A(g?), V(q?) and g(q*) over
the full range of values for ¢°.

9.2.2 Axial current

After the extraction of the vector form factor, V'(¢%), we investigate the three
form factors noted, Ag(g?), Ai(q?), As(q?), that describe the axial transition

between pseudoscalar and vector particles. Their usual expression is the
following:

(P2, €|l Ap| Pr) = {(M1 + Mz)eh Ai(q?)

- B (1 P, ale?) - 20T, () - aa( ) } ,

(9.34)

where the momentum transfer ¢ is defined as ¢ = P, — P,, the axial current A4,
is @27,75q1 and the zero g>-momentum condition Ap(0) = As(0) is required.
Moreover, the form factor A3(q?) can be written in terms of A;(¢?) and A;(q?)

by,

M; + M,

M, — M,
2M,

T Aa(?) . (9.35)

As(q®) = A -

The physical meaning of the form factors A;(q¢?) is the following: A;(¢?) and
As(q?) are related to the 1T intermediate states, whereas A(q?) refers to the
0* state. We can also define another set of form factors in terms of a4 (q?)
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and f(q?). They take the following expression:

(Py, €A |P1) = —f(¢)es(P2)
— & (Py)-(PL— P) a4 (") (P + P2), + a—(¢)(Pr = P2),| 5 (9:36)

where the form factors a+(q?) and f(q?) can be linked to Ao(¢?), A1(q?),
Az(q?) and As(q®) by the relations:

£(@) = —(My + My)Ax(?) | (9.37)
a+(¢?) = Wj_—M—ZAZ(QZ) ' (9.38)
o ()= 2F [Aa(q2> - Ao<q2>] . (9.39)

The general transition amplitude regarding the axial current can be written
by analogy to that one for the 7 — A; transition. The transition (17|J,|07)
for the axial current, corresponds to the same change of parity as the tran-
sition (1*]J,|07) for the vector current. Therefore, the transition amplitude
expressed in the covariant light-front formalism becomes as [124]:

(Pa, el J,|P) 5P =

CZ(Pz){Fl(q2) [(P2-q)g" — P2,q*] + Fa(a*) (909" — ¢° 9] + F3(¢") Pt qp} :
(9.40)

Here, ¢,(P,) is the vector polarization of the outgoing particle with the con-
dition €,(P;) P} = 0. The amplitude describing the pseudoscalar vector axial
transition (written in light-front dynamics) is determined by three form fac-
tors Fi(q?), Fz(q?) and F3(¢*). We emphasise again that in any approximate
calculation, this amplitude should incorporate the w-dependent contribu-
tions. This is explicitly given by [124],

(Py, €| J,|P)CEFD = & (P)GY (9.41)

where,

épu . Fl(q2) [(PZ“I)gpu - PZp‘Iu] + F2(q2) [‘IpQu - q2gpu]
i F3(q2)P1u‘b + A'Py, [Plp - qp(q-Pl)/qz] + C'Pouq, + quzwuplp/w'P2
+ ByPiyw, + By Pyyw, + Baw,g, + Bawuw, ,  (9.42)
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where Fy(q?), F2(¢?) and F3(g?) are the three physical form factors. On the
other hand, A’,C’, By, By, B, B; and B, are the non-physical terms used to
express the w dependence By solving Eq. (9.41) we can extract the form
factors Fi(¢?), F2(q?) and F3(g?®), and can write them as a function of G

2q 2 épu
Fy%s

F1,2,3(q2) e X { P, [F1(12)3 Prpw, + Fl 2,3 QoWp Tt F1(,32),3 Pyyw,

1
+ F1(,42),3 quwP:l ( P ) FI(Z 3 Wup =t F1(,62),3 g/.tp + F1(,72),3 Plpqu

+F1() QpQu+F123P1pqp+F123P1pP1u}, (943)

where the analytic expressions for the kinematical terms Fl( 9 . and the func-

tion Fl( ). can be found in Appendix B. By analogy to the method applied
to calculate the term F,, in the amplitude related to the vector current V,,
we can also derive G*” by using the diagrammatic CLFD rules:

(Py, el J,| PSP = e(Py) Gl =

u

1 * T m/ IN(_ m
/D{ﬁeﬂ(Pz)Tr[—db( 2+ £2)(=7075)(m2 + F2)

X (j:: + Az,lw?bpl)’)’s(ml - kl):l 1 _lx,}D . (9.44)

Finally, one replaces in Eq. (9.43) the expression for G, given by Eq. (9.44)
and one obtains the form factors Fy(q?), F2(q?) and F3(g?), derived in the
light-front formalism. The correspondence between the form factors a.(g?)

and f(g?), and Fi=13(¢?) are:

a-() = - [Fid®) + Falg") + 5 R()] (9.43)

a+(¢?) = %Fl(qz) ; (9.46)
(@) = A [ M- M+ @]+ PR . (94D
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Note that the relationship between the form factors F;=1,3(¢?), and the usual
Ai(g?) is:

Aold’) = i [24°Pale®) + P (M7 = M)
M) = sy PP = M) = (@) + 2B
Ax(q?) = R (M + M) (9.48)

By following this formalism, we can calculate all of the form factors Ai=03(q%)
over the full range of g>-momentum according, in terms of the form factors

Fi—1 3(q?) derived in CLFD.

9.2.3 Semi-leptonic decay

For completeness, we detail the semi-leptonic decay rate for the pseudo-scalar
vector transition. The usual definition can be written as:

P=To [ oot = 12| L+ €~ 26n) {HZ(0) + Hi(n) | + Hé(n)] ,
(9.49)

where all of the terms proportional to the lepton masses have been neglected.
In Eq. (9.49) the upper limit for Nz = (M} + M3)/2M; M; where M; and
M, always define the ingoing and outgoing particle masses. The expressions
for the “bare” semi-leptonic decay rate, ['g, is the following:

G M?
4873
with € = M,/M, and Vj,,, denoting a CKM matrix element involved in the
semi-leptonic decay. The helicity amplitudes, Ho(n), Hx(n), which appear in

the semi-leptonic decay rate take the form:

FO = |%1G2I2 52 ) (950)

Asz(n)

Ho(n) = |(n— &)1+ & Ai(n) — 2(n* - VéTiel (9.51)
and,
Haln) = (1 + DA 7207 - DD (9.52)

A;(n) and V (n) are the previously defined form factors, expressed as functions
of n. By comparing theoretical with experimental results regarding the semi-
leptonic decays, we are able to determine in a reasonable way the CKM
matrix elements, Vj, 4, , arising for a given decay.
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9.2.4 Numerical results for P — Vliy,

By applying the formalism detailed previously we can calculate the weak
transition form factor in the case of a pseudoscalar vector transition. We were
focused on those like B — p, B — w as wellas D — p and D — w. The first
two transitions correspond to a decay induced by the charge current b — d
quark transition whereas the last two transitions correspond to a ¢ — d quark
transition. We list in Table 9.2 our results obtained for the vector current,
i.e. the form factor V(q?), as well as those obtained for the axial current -
i.e. the four form factors A;(q?) (with : =0,1,2,3). For comparison we also
list the results given by lattice QCD and the QCDSR formalism.

V(0) Ao(0) A;(0) A3(0) As(0)

B—=op
This work 034 032 030 0.29 0.32
BSW model 0.32 0.28 0.28 0.28 0.28
Lattice 037 030 027 0.26 0.30
QCDSR 034 038 026 0.22 0.38
B—ow
This work 0.34 0.32 030 0.29 0.32
BSW model 0.32 0.28 0.28 0.28 0.28
Lattice - - - - -

QCDSR - - - - ~
D—p
This work 1.19 066 0.75 0.87 0.66
BSW model 1.23 0.68 0.78 0.92 0.68
Lattice 1.1 0.59 0.65 0.55 0.59
QCDSR 1.0  0.57 0.5 0.4 0.57
D—w
This work 1.19 0.66 0.75 0.87  0.66
BSW model 1.23 0.68 0.78 0.92  0.68
Lattice - - - - -

QCDSR - - = = 5

Table 9.2: Form factors for the pseudoscalar vector transition within the
BSW model [73, 74, 80], Lattice QCD [187, 188, 189, 190, 191, 192, 204, 205]
and QCDSR [76, 195, 196, 197, 206].

It appears, as in the previous case (P — P), that our results are in
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agreement with those from QCDSR, lattice QCD and the BSW model. The
small discrepancy which can be observed between all of the results may come
from the different formalisms applied but it is still smaller in the case of

P — V than P — P.

9.3 Summary

Based on the covariant light front dynamics formalism, we derived the weak
transition form factors in the case of pseudoscalar pseudoscalar transitions
as well as pseudo scalar vector transitions. The wave functions (see Chapter
8) describing the particles B, D,m, K, p and w have been taken into account
in our approach. This yields a dependence of the form factors on these wave
functions. It has to be noticed that our results for the form factors have
been shown at g2 = 0 only. In theory we derived all of the equations which
are necessary to obtain the behaviour of the form factors according to the
momentum ¢2. However, in practice we are not able to compute the form
factors over the full range of ¢ because of problems related to numerical
simulations. This work is still in progress.

We also compared our results with QCD sum rules and lattice QCD. We
emphasize that both approaches have a limited range of applicability. QCD
sum rules gives correct results only at low q°, whereas lattice QCD gives
correct results only in the high ¢? region. However, comparisons between all
of the transition form factors in both cases give good agreement.

Knowing the values for the form factors F&p=, Fep K and A7 at ¢ = 0,
we can now focus on the final state interactions that arise in B decays and
make an estimate of them in the calculation of the hadronic matrix elements.
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Part IV

QCD Factorization in B Decays
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Chapter 10

QCD factorization

“ Avoir un systéme borne son horizon; n’en avoir pas est impossible. Le
mieur est d’en posséder plusieurs. ”

Raymond Queneau

In this final part, we are explicitly taking into account all the final state
interactions at the order o, and we are evaluating them in B decays. QCD
factorization will be applied to reach this goal instead of naive factorization.
Form factors and wave functions determined in CLFD will also be used in
our analysis. In this chapter we introduce, in an extensive way, the formalism
of QCD factorization (derived by M. Beneke, G. Buchalla, M. Neubert and
C.T. Sachrajda [207], so-called BBNS approach) necessary to calculate the
hadronic matrix elements arising in B decay amplitudes.

10.1 QCD factorization in B — PV decays

Factorization in charmless B decays involves three fundamental scales: the
weak interaction scale M, the b quark mass scale m;, and the strong inter-
action scale Agop. It is well known that the non-leptonic decay amplitude
for B — PV is proportional to:

A(B— PV) x Z Ci(p)(PV|0:(w)|B) , (10.1)

where we have omitted the CKM factor and Fermi constant for simplicity.
The matrix elements (PV|O;(r)|B) that depend on both m; and Agcp,
contain perturbative and non-perturbative effects which are not accurately
estimated in the naive factorization. The coefficients C;(u), include strong

153
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interaction effects from the scales Mw down to m,, and have been under
control for a long time. The aim is therefore to obtain a good estimate
of the matrix elements without using naive factorization, where the matrix
element of a four fermion operator is directly replaced by the product of
the matrix elements of two currents, one semi-leptonic and another purely
leptonic. In QCD factorization [208], assuming a heavy quark expansion such
as my > Agcp and soft collinear factorization where the particle energies
are bigger than the scale Agcp, the matrix elements (PV/|O;(u)|B) can be
written as [209]:

(PVI0:()|B) = (Plis| BYV]10) [1 £ raal + O(Agon/my)| , (102

where r, refers to the radiative corrections in o and j; are the quark currents.
It is straightforward to see that if we neglect the corrections at the order o,
we recover the conventional naive factorization. We can rewrite the matrix
elements (PV|0;(u)|B), at the leading order in Agep/ms, in the QCDF
approach by using a partonic language and one has [209, 210, 211, 212, 213,
214]:

(PV|0:(u)|B) = FE~F(0) / dxT1(z)bv(z) + AB~Y(0) / dyTL(y)b,(v)
+f e / o / W TI(E, 2, y)on(E)dv(2)er(y) » (103)

where ¢y with M = V, P, B are the leading twist light cone distribution
amplitudes (LCDA) of the valence quark Fock states. The light cone mo-
mentum fractions of the constituent quarks of the vector, pseudoscalar and B
mesons are given respectively by z,y, and £. The form factors for B — P and
B — V semi-leptonic decays evaluated at k? = 0 are denoted by FJ-B"P (0)
and AB=Y(0). Eq. (10.3) can be understood via Fig. 10.1 where a graphi-
cal representation of the factorization formula is given. The hadronic decay

Figure 10.1: Graphical representation of the factorization formula.
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amplitude involves both soft and hard contributions. At leading order, all
the non-perturbative effects are assumed to be contained in the semileptonic
form factors (Fig. 10.2) and the light cone distributions amplitudes. Then,
non-factorizable interactions are dominated by hard gluon exchanges (in the
case where the O(Agcp/ms) terms are neglected) and can be calculated per-
turbatively, in order to correct the naive factorization approximation. These
hard scattering kernels [209, 210, 211, 212, 213, 214, 215], T4 and T/, are
calculable order by order in perturbation theory. The naive factorization
terms are recovered by the leading terms of T coming from the tree level,
whereas vertex corrections (see diagrams (a-d) in Fig. 10.3) and penguin cor-
rections (see diagrams (g-h) in Fig. 10.4) are included at the order of a; in i
The hard interactions (at order O(a;)) between the spectator quark and the
emitted meson (see diagrams (e-f) in Fig. 10.4), at large gluon momentum,
are taken into account by T/L.

VARVARAVAR. "

000000

QQ0000

Figure 10.2: Soft corrections at the order a;.

N NA X

(@ ® (©) (d

Figure 10.3: Order « corrections to the hard scattering kernels: vertex
corrections.

10.2 Effective Hamiltonian

Phenomenological studies in charmless hadronic B decays are based on an
effective Hamiltonian. We refer to Chapter 2 for details, definitions and
explanations and just recall that the Hamiltonian results from a sum of lo-
cal operators O;(u), times Wilson coefficients C;(u), times the quark mixing
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fop s

® ()
Figure 10.4: Order a, corrections to the hard scattering kernels: penguin
corrections and hard spectator scattering.

onoooo{

matrix element V,. In this part, we will use a Hamiltonian which includes
electromagnetic, @7,, and chromomagnetic, sy, operators as well as anni-
hilation contributions, b;. This gives us,

GFr
V2

_th‘/; [ z C; O; +C7’Y O7—Y+ng Osg:|+ Z V;b *;foleMzbi}—I-h.c. .

Heﬂ' = {Vub‘/:q (Cl Og ‘|‘ 02 g)

i=3,...,10 i=1,...4
(10.4)
The definitions of the operators O; are recalled for completeness:
Of = (Pabs)v-4(@6Pa)v-4 Of = (Paba)v-4(3P5)v-4 ,
Os= (Goba)vos Lo (G98)v-4,  Os=(Gubs)v-s) ¢ (Gpde)v-4 ,
Os = (Goba)v-42 ¢ (T598)v+a O = (Gubp)v-s D o (Tp9e)v+4 »
Or = (Guba)v-a X 264(Ts)vea » Os = (Gubs)v-4 Yo 3¢,(Tse)v+4
Os = (abo)v-a 2 5€,(3598)v-4 » Or0 = (Zabp)v- AZq se.(dsda)v-4

(10.5)

where (q1q2)v+a = @17u(1 £ 75)q2, @, B are colour indices, e, are the electric
charges of the quarks in units of |e|, and a summation over all the active
quarks, at the scale u = O(my), ¢ = u,d, s, c,b, is implied. In Eq. (10.5) p
and ¢ denote the quark u or s according to the given transition & — u or
b — s. Expressions for the operators Oz, and Og, are,

—e B}
Orzy = g;z-mbsau,,(l + ) F*b ,
Osy = — mp 50, (1 + v5)G*b . (10.6)

82
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In Eq. (10.6) the definition of the dipole operators Oz, and Os, corresponds
to the sign convention applied for the gauge-covariant derivative i D* = i0* +
gsAPt,. Listed in Table 10.1 are the Wilson coefficients, C;, calculated at the
scale p = ms, in the Naive Dimensional Regularization (NDR) scheme [207,
216]. The following sections will present in detail the necessary formalism
used to factorize the hadronic matrix elements.

NLO Ci Cs Cs Cy Cs Ce
p=m, -0.190 1.081 0.014 -0.036 0.009 -0.0042
NLO Cy/a Cs/a Co/a Cio/a
pw=my -0.011 0.060 -1.254 0.223
LO -
-0.318 -0.151

Table 10.1: Wilson coefficients C; in the NDR scheme. Input parameters are
AL = 0.225GeV, my(my) = 167 GeV, my(ms) = 4.2GeV, My = 804 GeV,
o =1/129, and sin®6w = 0.23.

10.2.1 The QCD coefficients a;

The coefficients a; [207, 216] have been calculated at next-to-leading order.
They contain all the non-factorizable effects at the first order in ;. In order
to clearly separate every contribution, the coefficients a; are written in two
parts:

a; = ai,1 + ai,11 (10.7)

where the first term includes the naive factorization, the vertex and penguin
corrections, while the second term contains the hard spectator interactions.
According to the final states, the terms a; have to be expressed for two
different cases: case A corresponds to the situation where the recoiling meson
M, is a vector and the emitted meson M, is a pseudoscalar, and vice-versa
for case B. For case A, the coefficients a; take the form [207, 216],

C. Cra, 7Cros
ar=Cit L+ V| s v = g CaH(BM, My)
““20”'1\76[” = VM], 11 = 3 CuH (BMs, Ma)
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C Cro, ., T mCra,
azr=Cs+ J_Vi [1 + :'rr V| az,r = ]\1;“2 CsH(BM,, M,) ,
C Cros ., mCras
aZ,I = 04 + FS [1 + jﬂ'a VM- + az,I,b , a4’II = ]v’FZ C3H(BM1’ M2) ;
C Cros; 7Cra,
as;=Cs+ Nq [1 - :: V](xrT ) —as 1 = ;2 CeH'(BM,, M3) ,
Csr Cros
ag; = Ce + ]_Vi 1- 6:—71.] +agry ag1r =0,
Csr C Qg nC (2
ar;=Cr+ FS 1- :ﬂ V](J] . —a7 = NI:; CsH'(BM,, M>) ,
Crr Cro,
ag,I = 08 + F’Y -1 ' 6:_71-] + ag,I,b 9 as,II == 0 ’
C Cro, nCro
as = Co+ =214+ 2 Var] as, 11 = IR CioH (BM:, M) ,
C C Qg mC Qs
ajo,r = Cro + -179 [1 + :ﬂ_ VM] +afo sy Gro01= ]\1;2 CoH(BMy, M,) ,
(10.8)
where the terms af ;;,a§ 1, af 1, and af 1, are,
CFas 11\7/1,2 P CF'as Pfﬁfﬁ
%Iy 4 N, %15 = T4 N
a Py’ a Py
ag,1p = or N, GZI)O,I,b = or N, ’ (10.9)

where the subscripts 2 and 3 refer to the corresponding twist-2 and twist-
3 LCDAs of the mesons. In Egs. (10.8) and (10.9) Vi, V}, represent the
vertex corrections, H, H' describe hard gluon exchanges between the specta-
tor quark in the B meson and the emitted meson (pseudoscalar or vector).
Py > Pars, Piis » Piia are the QCD penguin contributions and electroweak
penguin contributions, respectively. These quantities contain all of the non-
perturbative dynamics and are a result of the convolution of hard scattering
kernels g, with meson distribution amplitudes, ®. The other parameters are
C; = Cy(p) (in NDR), a5 = (1) (next to leading order), Cr = (N2—1)/2N,
with N, = 3. The vertex corrections V3s and Vj; involved in a;; are given
by [207, 216],

1
Vu =12 ln%—18+/ dz g(z) Pm(z) ,
0

1
Viy =12 ln% —6 +/ dz g(l — z) ®pm(2) (10.10)
0
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with the kernel g(z) having the following form,

g(z) =3 (11— . Inz — i7r)

-z
2lnz

+ [2 Liz(z) — In®z + |

— T

-3+ 2n)lnz—-(z & 1- :c)] . (10.11)

We assume that one can neglect the higher order terms in the expansion in-
volving Gegenbauer polynomials for the leading-twist light cone amplitudes,

®p(z), given by,

®pr(z) = 62(1 — z) [1 + Z oM (u)C3* (22 — 1)] (10.12)

n=1

where o™ (u) are the Gegenbauer moments that depend on the scale p.

3/2(4) are coefficients defined such as C} 3/2(y) = 3ufor n = 1 and CH(u) =
(3/2)(5u? — 1) for n = 2. Since the corrections to the asymptotic form are
very small, we use ®57(x) = 6z(1 — z) and we obtain the result,

/dxg ) Bz /dwg(l—x)CDM( )=—-;--3m. (10.13)

Regarding the QCD penguin contributions, Py ;, one has [207, 216],

2
Py, =G [3 In— + 3 GM(Sp)]

+(Cs— l09)[ ln— + 4 Gu(0) = Gu( )]

+Z(C4+Cs+ e,Cs+ = eqcm)[ ln_;__GM(sq):l ef.f/(; dum(z )’

-
g=q'

2
PI’\)J,3 =C [3 1n_ﬂ_ + 3~ GM(Sp):l

+(Cs— l09) [§ e Y % — G(0) — c‘;M(1)]

+Z (Ca+ Ce + er8+ ech)[ nE;—b — GM(sq)] —-2C57, (10.14)

g=q'



160 CHAPTER 10. QCD FACTORIZATION

while for the electroweak penguin contributions, Pf\’,}fw, one finds:

4 2
PEEY = (Cy + N.Co) [gln % +5- GM(S,,)]
2

(C3+NC4)[ ln—+§~— —GM( ) — lGM(l)] +

4
Z(NCC’3+C4+Nc05+CG)§e [ 3 ln——GM(sq)] @K / dp M) 1 =

q=q’

(10.15)

and,

~—~

Pp’EW (01+N02)[ ln7+§—GM

8

4 2 1= 1.
— (Cs+ N.Ca) [§ In 7+ 2 = 5Cn(0) - —GM(l)]
4
—+ ; (N Cq+C4+NC§+Cs)::€ [§1n7—GM(Sa)] Ncc_ei:f 5

g=q’

(10.16)

where the subscripts 2 and 3 refer to the corresponding twist-2 and twist-3
LCDAs of the mesons. s, = m?/mj is the mass ratio and can be equal to
sy = 84 =0,s. =m2/mf or s, = 1. All active quarks at the scale y = &(my)
are represented by ¢’ = u,d,s,c,b. The functions Gas(s) and Gu(s) have
the following expressions:

1
Gu(s) = / dz G(s —ie,1 — z) Dp(2)
0
1
Gu(s) = / dz G(s —ie,1 — ) ®% () , (10.17)
0
where G(s,z) takes the form,

G(s,z) = —4/0 duu(l —u)ln[s — u(l — u)z]
_ 2(12s 4+ 5z —3zlns)  4v4s —x(2s+z) z

92 3532 arctan y P

(10.18)
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Explicitly, in Eqgs. (10.14-10.16), the terms G (s.), Gm(0) and Gar(l) are
given analytically by,

5 2 2 2
Gu(s:) = 3 glnsc + %sc + 1633 — g\/l — 4sc(1 + 25, + 2433)
X (2 arctan v/1 — 4s. — iﬂ') + 1235 (1 — gsc) (2 arctan /1 — 4s. — iﬂ—)z ,
) 27r.
Gu(l) = = —3V3r L (10.19)

and the terms éM(sc),éM(l) and G(0) are given by,

GM(sc) = E(1 —38c) — g Ins, + (1 — 4sc)3/2(2 arctan /1 — 4s. — zw)] ,

16 2.
Gu(0) = 9+§z,
or 32
Gu(l) = \/7%—3. (10.20)

The vertex and penguin corrections to the hard-scattering kernels are eval-
uated at the scale p ~ m;. The imaginary parts arising in both penguin
functions g(x) and G(s, z), give us two sources of strong rescattering phases.
Finally the hard scattering contributions, including chirally-enhanced contri-
butions in the coefficients a; iy, are written as [207, 216],

H(BV,P) = __fBfv / d§/ / ¢B £) ép( w)¢v(y)

m2 AB‘*V l—zl—y’
H'(BV,P) = J@ﬁzm / d¢ / / ¢B )(b};x) fv_(yy) , (10.21)

with the usual definitions for fg, fv, AZ7*V(0) and mp. For case B where a
vector is emitted, the expressions for a; are similar to those in case A except
for the parameters of H(BV, P) and H'(BV, P) which take the form:

HEPV) =l [ [ [ a0 8

[qsp(y) 2up 1 —ws;(y)] |

1—y my ¢ 1-—y
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H'(BP,V) = Z;ﬂfp(o /df/ f )

11—y myl—z1l—y

where the chirally enhanced factor is parameterized by the factor pp =
m%/(my + my), with m; and ms being the current quark masses of the
meson. The divergence coming from the twist-3 contribution is treated phe-
nomenologically by,

P 1
Xy =/ "15_( ) /0 dyﬁ = (1+on e"i’H)ln-TZ—f. (10.23)
In the above equation, the phase ¢y and the coefficient g are chosen in an
arbitrary way. Because the gluon is off-shell the strong coupling constant
a,(p), the Wilson coefficients C;(¢) and then the hard-scattering contribu-
tions H(BV, P) or H(BP,V) (with prime or not), involved in the terms a; 1,
are evaluated at the scale up = v/Arp, with Ap = 0.5 GeV rather than the
scale p = my.

10.2.2 The weak annihilation coefficients b;

It has been shown in Refs [217, 218] that weak annihilation contributions
should not be neglected in B meson decays, even though they are power sup-
pressed in the heavy-quark limit (Agcp/ms — 0). Moreover, their contribu-
tions could carry large strong phases with QCD corrections and hence, large
C P violation might be obtained in B meson decays. Annihilation contribu-
tions, at leading order in aj, are given by the diagrams drawn in Fig. 10.5.
They do not appear in QCD factorization formulae and they cannot be cal-

e SN

Figure 10.5: Order a; corrections to the weak annihilation.

culated within QCD-based factorization approach {209, 210, 211, 212, 213,
214, 215]. Nevertheless, their contributions denoted by A(My, M;)?, are ap-
proximated in terms of convolutions of hard scattering kernels with light
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cone expansions for the final state mesons. Since they differ according to
the final states, A(M;, M2)? is divided into two different cases: (recall) case
A is where M, is a vector meson and M, is a pseudoscalar meson. Case B
corresponds to the opposite situation. If we define = as the longitudinal mo-
mentum fraction of a quark contained in M, and § =1 — y, the momentum
fraction of an antiquark contained in Mj, then the diagrams related to the
annihilation contributions (without including the B decay constant) can be
expressed (for case A) in terms of {207, 216]:

AV, Py =0,

pl 1 9 ~
A{(V, P)* = mas / dz / dy By ()00 (y) P2 2L+ 2)
0 0

mp )

Ai(V, P)* = ra, / i / dy <1>v<x><1>P(y>[y( 52 ] ,

1—zy) g T2y

A;(V,P)“z —7ras/0 da:/(; dy Qv(x)@P(y) [j( 1 n 1 :l ,

1—2z3)  FyY?

ALV, P)* = na / de / 1 dy Oy (z)®? (y)Q”P 2y (10.24)
s ’ 0 0 d mp Ty(1l — =)

If we consider case B, one has:

Al (PV) =0,

o oup 2(1
A:{(P, V)a = —7ras/ d:z;/ dy @g)(x)q)v(y)ﬂ (_+ y) ’
0 0

my  Ty?

APV =, [ do [y 8r@)ov() [y—(l—i—y)+—1§]

Aé(P, V) = —wds/OI d:l:fo dy ®p(z)®v(y) [:E(l ! + : ] ,

—zy) oY
2up 2z

5 10.25
my ZTy(l — zg) ( )

1 1
AL(P,V)* = was/ d:c/ dy % (2)2v(y)
0 0

where ®y(z) is the leading twist light cone distribution amplitude of the
vector meson p or w and ®p(z) and ®%(x) refer to the twist-2 and twist-
3 LCDA’s (asymptotic forms) for the pseudoscalar 7 or K. In Egs. (10.24)
and (10.25), the superscripts ¢ and f on Af(My, M) correspond respectively
to the gluon emitted from an initial state or a final state quark. Finally,
the subscript k = (1,3) on AL(M;, M3)* describes the three Dirac structures
involved in the annihilation contributions: (V—A4)®(V—-A),(V-A4)®(V+A)
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and (—2)(S — P) ® (S + P). Considering the case where LCDA’s of light
mesons are symmetric under ¢ — Z, and assuming SU(3) flavour symmetry
conservation, one can simplify Eqs. (10.24) and (10.25) and one obtains the
following approximation for the weak annihilation amplitudes,
2
AL(V, P)* = —AL(V, P)* ~ 18ra, (XA —4+ ?) ,
2

AP, V) = —AL(P,V)* ~ 18na, (XA 44 53—) ,
ALV, P)®* = +AL(P,V)* ~ ma,ry [27r2 - 6()(31 + 2XA)] :
4§V, P)* = —AL(P,V)* = bmary (2X3 — X4) (10.26)

with the factor ry is defined by rM(u) = 2MZ/my(p)(mg, (1) + Mg, (1))
Following Ref. [209], the divergent endpoint integral fol dz/z is parameterized
by X4 and will be treated as a phenomenological parameter with the same
value for all the annihilation terms A(M;, M,)*. That is, in a similar way to
Xy, the parameterization is the following:

Xa=(1+04 em)ln% : (10.27)
h

with ¢4 an arbitrary phase. Taking into account the flavour structure of the
various operators involved in the weak annihilation topologies, the annihila-
tion amplitude can be written as,

A*(B = PV) o fafefr 3 Y VVibi - (10.28)

p=u,c i=1,4

In the above equation, fg, fp and fy refer to B, pseudoscalar and vector
meson decay constants, respectively. The coefficients b; in Eq. (10.28) ex-
pressed in terms of linear combinations of A(Mj, M2)%, have the following
form [207, 216]:

@
by (M, My) = FCIA*(Ml,M2) ,

s
by(My, M) = FczAf(Ml,Mz),

CF I a 7 a
ba( My, My) = ﬁ{csAl(Ml,Mg) + Cs AL(My, My)

+ [Cs + NcCG] Ag(Mh Mz)a} ’



10.3. INPUT PARAMETERS 165

9, | |
be(Mi, My) = ]_\[FE{C4A;(M1,M2)“ " CsA;(Ml,Mz)“} :
C , _
b (My, My) = =28 CoAi(My, My)® + CrAy(Mi, Ma)®
N?

+ [07 + NCCS] Aé(Mlv MZ)a} )

Cr
N2

by (M, M) = 2 { Crodi(Mi, Ma)" + CSA;(Ml,Mz)"} : (10.29)
where b;(M;, M) and by(My, M) are the current-current annihilation pa-
rameters arising from the hadronic matrix elements of the effective operators
O12. b3(My, My) and by(My, Ms) are the QCD penguin annihilation param-
eters (the most relevant effects) and 65" (My, My) and b (My, Ma) are the
electroweak penguin annihilation parameters coming respectively from the
effective operators Os_¢ and O7_10. The quantities b; depend on the final
state mesons through the terms A(M;, M;)* defined previously. It is crucial
to note that the terms A(Mj, M;)* are independent of the form of the B
meson amplitude because the momentum fraction of the quark spectator in
the B meson, &, has been neglected in front of z,Z,y and ¥, assuming hard
scattering. This approximation may need to be improved in future, however
it is expected to give the correct order of magnitude of the weak annihilation
effects.

10.3 Input parameters

10.3.1 Form factors, decay constants, CKM matrix el-
ements and quark masses

As defined previously, Foi(k?),V(k?) and Ag23(k?) are the form factors

describing transitions between pseudoscalar and vector particles, where k?

defines the momentum transfer involved in the corresponding transition. We

refer the reader to Chapter 5 for the usual definitions and properties of the

form factors. In our numerical computations, we will use those calculated in
CLFD (see Chapter 9). Recall, for the case of B — pm, their values are:

FBr™=0.35, AP =034, (10.30)
and for B — pK, their values are:

FEPX =040, AP0 =034, (10.31)
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The decay constants, fB, fr, s, fk and the CKM matrix element parameters
A, )\, p,n, have the same values as those applied in Chapter 5 of Part I.
The quark masses that appear in the calculations, contribute to the QCD
penguin Py ; and electroweak penguin corrections Pf\’l’zw, as well as the hard

scattering kernels Gp(s,) and Gar(s,) via the term s, = m?/mi. For the
numerical applications we take the following quark masses:

my=0=mg=m;=0, m.=1.45GeV , and m; = 4.6 GeV . (10.32)

The evaluation of the hadronic matrix elements of the (S + P) @ (S — P)
operators, via the equation of motion and the twist-3 LCDA’s of the mesons,
yields a chirally enhanced factor proportional to the quark masses (which are
renormalization scale dependent). The quark mass values have already been
listed in Chapter 5.

10.3.2 Light cone distribution amplitude (LCDA) of
the mesons

QCD factorization involves the light cone distribution amplitude (LCDA) of

the mesons [207, 216] where the leading twist (twist-2) and subleading twist

(twist-3) [219] distribution amplitudes are taken into account. For a light

pseudoscalar meson the LCDA is defined as,

(P(k)|q(22)q(21)]0) =

4 1 led
%E/ dz ei(”k'””k'zl){k’)’s@}v(x) — pupys |95 (z) — Uuyk“z"—@PG(x)] } )
0
(10.33)

where fp is a decay constant, up is the chiral enhancement factor and z =
22— z1. ®p(z), ®H(z) and ®%(x) are the leading twist and subleading twist
LCDA’s of the mesons, respectively. All distributions are normalized to
one. Neglecting three-particle distributions such as quark-antiquark-gluon,
it follows from the equations of motion that the asymptotic forms of the
LCDA’s must be used. They take the forms:

®p(z) =6z(l —z), ®p(z)=1, O%(z)==6z(l—=zx). (10.34)

For the LCDAs of the vector mesons, the usual definitions applied here are,

(01g(0)0,a(2)[V (k, V) = i(elk, — k) fi / dz (), (1039

6)‘

OFOaIV ) = kS ymy [ do ealie), (1039
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where ¢ is the polarization vector. ®y(z) and <I)|1|,(:c) are the transverse and
longitudinal quark distributions of the polarized mesons. Assuming that the
contributions from ®3(z) are power suppressed, ®v () takes the following
form,

oy (z) = 0l (z) = 6z(1 —z) . (10.37)

For the wave function of the B meson, we will use the distribution amplitude
determined in CLFD (see Chapter 8). To conclude this chapter, the end-
point divergences parameterized by the terms X4 and Xp, and included in
hard spectator scattering kernels and weak annihilation contributions, will
be treated by taking the following values: the phases ¢4 and ¢x are equal
to 0° and the constants g4 and gy are equal to one. Despite the fact that
several studies [220, 221] have fitted ¢4 and ¢y from different experimental
data, we shall use conventional values for them since the uncertainties carried
by ¢an are large. Recall that theoretically speaking ¢4,5 could vary in the
range {—180,+180}.
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Chapter 11

Branching ratios for B decays
into pm or pK in QCDF

“ Il n’y a pas moyen de contenter ceur qui veulent savoir le pourquoi des
pourquoi. ”

Leibniz

Now that we have introduced QCD factorization, we can apply this for-
malism to the calculation of the branching ratios for the decays B — pm and

B — pK. Hence, we can again (see Chapter 5) compare our results with
experimental data providing by BABAR, BELLE and CLEO.

11.1 Generalities

Investigating the branching ratios for B decays is not an easy task since
we have to deal with the high to low energy scale involved in the hadronic
matrix elements that arise in the B decay amplitude. Many studies have
been performed in the past regarding this subject. We could refer (for the
QCD factorization framework) to that for B decays into two vectors [222],
into two pseudo-scalars [223], into pseudoscalar and vector [224], into two
pions and into pion kaon [225]... Branching ratios have been analysed in an
extensive way by using the naive factorization formalism (226, 227, 228] as
well as in perturbative QCD factorization [229, 230, 231]. Before beginning
the analysis of branching ratios for B decaying into pr or into pK, we shall
make a few comments regarding our approach.

169
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e As in Chapter 10, the input parameters such as the parameters of the

CKM matrix, A, A, p and 7, the decay constants fr, fx, f,, fu, the quark
masses My, Mg, Mp, Ms, and the B life-time values 7go, 7+ (as listed in
Chapter 5) will be used in our numerical applications.

Regarding the form factors involved in our calculations, we shall use
those listed in Chapter 9 and determined in the CLFD approach. We
fix the value for the form factor Ag(k?) which describes the transition
B — p, and we keep free the other form factor Fy(k?) — that describes
the transition B — m or B — K — since its value is not determined
with the same accuracy and still needs improvement.

Because of the complexity of the QCD factorization method and the
different uncertainties carried by many parameters included in the for-
mulation (for example, the phenomenological parametrization of the
divergent point integral, X4 or Xy, in the annihilation and hard scat-
tering contributions, respectively), we shall fix all of the parameters
such as o4 m, %a,H, except the form factor Fy(k*) and the CKM matrix
parameters p and 7.

According to previous studies where numerous fits have been applied to
experimental data and where various constraints have been obtained,
we expect to have reduced the effects of uncertainties in our results
and hence, we will just focus on the uncertainties included in Fy(k?),
p and 7. Recall that the values of A and A are very well determined
and do not need more accuracy. Note as well that we replace N. by
Ne¢ff in the QCDF formulation since the colour octet contributions
cannot be neglected! and are not exactly factorizable. Therefore their
contributions are taken into account through the variable §; into N&//
(see Chapter 3). We shall use, according to results obtained in naive
factorization, the average value for N¢// that is equal to 1.5 in the case
of B — pm and around 1.75 in the case of B — pK. Thus we shall
express all of our results as a function of the form factor Fy(k?) and as
a function of the CKM parameters p and 7.

As when naive factorization was applied, we shall include the p — w
mixing contribution every time that it can contribute - i.e. in all of the
B decay channels such as B — p° M, with M being K or .

It has been shown that annihilation contributions could play an impor-
tant role in B decays. Even though they are power suppressed in QCD

INote that we used N, = 3 for the calculation of a; and CFp.
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factorization, they may give large strong phases due to QCD correc-
tions and then, they cannot be neglected. Although we did not include
them in the naive factorization, we will take them into account in our
second approach.

e It has also been pointed out that charming-penguin contribution ef-
fects could have been underestimated and may affect the evaluation of
hadronic matrix elements. It is assumed that charm-anticharm inter-
mediate states can be created by the weak interaction and may turn
into non-charmed final states by strong rescattering. Nevertheless, we
will not include these contributions because they are not yet under
good control, and carry large uncertainties and unknown parameters.

e Finally, in order to compare our results with experimental data and
to determine the constraints on the form factors FZ=", FE*¥ and
the CKM matrix parameters p and 7, we shall use the experimental
branching ratios of B — pr, B = pK, B — pm and B — wK from
BABAR, BELLE and CLEO. We refer the reader to Chapter 5 for their
listed values. At the time, we will have an opportunity to check the
agreement (or not) between naive factorization and QCD factorization
according to the experimental results.

11.2 Branching ratios for B — pw

11.2.1 Weak annihilation contributions

We analyse processes such as B¥® — p¥Or%0 and also B* — wr*. Two

of them include p — w mixing: B~ — p°7~ and B° — 7% The three
other decays without p — w mixing effects are B~ — p~n°, B° — p~7t and
B~ — wn~. Recall that the branching ratio of B — PV decays can be
written in the B meson rest frame as,
78 || a i
B(B—PV)= ="L|A(B—PV)+ A (B—PV)| , (11.1)
8m mp
where |p,| is a kinematical factor referring to the c.m. momentum of the de-
cay particles. A(B—PV) is the amplitude coming from the tree and penguin
diagrams and .A%(B— PV') is the annihilation amplitude. We emphasise that
annihilation contributions depend strongly on the value of the phase ¢4 that
could be subject to discussions. In this section, we give the explicit annihi-
lation amplitudes for all these charmless B decays. Their contributions are
added to the tree and penguin amplitudes. We refer the reader to Chapter
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5 for the explicit tree and penguin amplitudes. Note that there is a factor
ms|p,| that needs to be added to obtain the correct branching ratios accord-
ingly to Eq. (11.1). Moreover, an inversion between a; and a; has to be made
to follow the usual definition of the tree diagram contributions. Below, we
list the annihilation amplitudes:

for the decay B® — p~ 7™,

A(B’—p ) = ffoﬂfp{ Vas Vagbi (%, 07)
+ (Vs Vg + Vo Vea) [bz(p‘, ) + ba(nt, p7) + ba(p”, 1)

1 ew bl cw = 1 ew ol
= 585 (p7, ) + 05 (n 7, p7) — 505 (e ,7r+)]} ; (11.2)
for the decay B® — p%79,

A(B°=p°r°) = 2\/—fo1rfp{ ubvd[bl(p T )+b1(7T0,P0)]
0,0

0 0 0
+ (Vao JdTVcoV;d)[ba\ﬁ ,m°) + ba(m®, 0°) + 2by(w®, p°) + 2b4(p”, 7°)

1 ew ew ew ew
— SB70) — SH(, A7)+ b5 (n ) + 80T i (113)
for the decay B° — wn®,

a0 0y _ _CiF; * 0 0
A (B o) = ﬁfsfwfw{vub o [bu(,7%) + b(°,0)]
+ (VaViag + VaoVis) | = ba(m®, @) — b(e, 7°)

1 1 3 3
+ Ebgw(ﬂo,w) + Ebgw(w, m°) + 5b§“’(7r°,w) + —ébiw(w, Tro)] } ; (11.4)
for the decay B~ — p°n~,

A*(B™—p"17) = —fowfp{ Vs [ba(m™, %) = bae® 7))

+ (Vs Vi + Vs V) [bo(™, %) = bof(%, m7) + 857, %) = 652 (0°, 7)) } ;
(11.5)
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for the decay B~ — wn™,

G 2
A°(B™—wn”) = = faf fw{Vude [bg(w—,w) + bg(w,rr—)]
+ (VaViat VsV [t 0) + (e, m7) 857057, + 857, m)] |

(11.6)

for the decay B~ — p~n°,
a - ~ .0y _ GF * - 0 0 -
A (B 7%) = L fife o} ViaVia[balo™, %) = ba(n®,7)]

+ (Vs Vi + VisV23) [bol™, 1) = bol(n®, 97) + 55767, 71°) — 5¥(n°, 7)) } -
(11.7)

All the coefficients b; have been defined in the previous chapter. The ex-
pressions for the CKM matrix elements Vi, V5, Voo and V; can be found
in Chapter 2. As in Chapter 5, we shall also calculate the ratio between
B(B® — p*r¥) and B(B* — p°r*), since in that case, the uncertainties
caused by many systematic errors are removed. Recall, we define the ratio
R, as,

B(B° — p*r¥)

Re = BT o gon) - (11.8)

11.2.2 Results and discussions

Assuming that all of the parameters involved in QCD factorization have been
constrained by independent studies where the input parameters related to
factorization were fitted, we concentrate our efforts on the form factor £ o
and the CKM matrix parameters p and 7. In order to reach this aim, we
have calculated the branching ratios for B decays such as B* — p°r*, B —
pEn® BY — p*n¥, B® — p°n° and B* — wr*, where the annihilation and
p—w mixing contributions were taken into account. All the results are shown
in Figs. 11.1, 11.2, 11.3, 11.4, 11.5 and 11.6, and the branching ratios are
plotted as a function of the form factor F: B=7 and as a function of the values
of p and n as well. By taking into account experimental data from CLEO,
BABAR and BELLE collaborations, and comparing theoretical predictions
with experimental results, we expect to obtain a constraint on the form factor
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Figure 11.1: Branching ratio for B¥ — p°r%, for limiting values of the
CKM matrix elements. Solid line (dotted line) for max (min) CKM ma-
trix elements. Notation: horizontal dotted lines: CLEO data; dashed lines:
BABAR data; dot-dashed lines: BELLE data.

FB=™ as well as some limits for the CKM matrix element parameters p and
n. Because of their accuracy, we shall mainly use the CLEO and BELLE
data for our analysis rather than those from BABAR. Our results should
depend more on uncertainties coming from the experimental data than those
from the factorization approach (as opposed to naive factorization) applied
to calculate hadronic matrix element (pr|J,|B).

For the branching ratio B* — p°r* (Fig. 11.1), we found total consis-
tency between the theoretical results and experimental data from CLEO and
BELLE. However, these results allow us to determine a limit (between 0.3
and 0.50 with an average value around 0.42) for the value of the form fac-
tor FP=™ whereas they do not allow us to constrain for the CKM matrix
parameters p and . The weak dependence of the branching ratio on the
form factor, FP~", is related to the tree and penguin amplitudes which are
mainly governed by the form factor AOB_"’ rather than F2~". Therefore,
this branching ratio cannot be used as an efficient test to constrain the form
factor FE". Note also that the comparison with BABAR data shows an
agreement between theory and experiment at a little over one o but for a
value of FF=" bigger than 0.4.

For the branching ratio B* — p*x° (Fig. 11.2), CLEO gives only an
upper limit for the branching ratio, whereas BABAR and BELLE do not.
According to this upper limit, the value of the form factor FZ=" is to be lower
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Figure 11.2: Branching ratio for B¥ — ptm®, for limiting values of the

CKM matrix elements. Solid line (dotted line) for max (min) CKM matrix
elements. Same notation as in Fig. 11.1 for the horizontal line.
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Figure 11.3: Branching ratio for B° — p*n¥, for limiting values of the
CKM matrix elements. Solid line (dotted line) for max (min) CKM matrix
elements. Same notation as in Fig. 11.1 for the horizontal lines.
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Figure 11.4: Branching ratio for B® — p°r?, for limiting values of the CKM
matrix elements. Solid line (dotted line) for max (min) CKM matrix ele-
ments. Same notation as in Fig. 11.1 for the horizontal lines.

than 0.62. We emrphasize that this branchis atio 1S Strnno‘]v APnPnﬂpnf on

than 0. emphasize th r

the form factor F27™ and could be an efficient test to constrain the value of
FZ=". For the branchlng ratio B® — p*n¥ (shown in Fig. 11.3), BELLE,
BABAR and CLEO give coherent experimental data. The decay amplitude
related to this branching ratio is proportional to the form factor FZ>" and
thus allows us to constrain the form factor. Requiring agreement between
experimental values and theoretical results yields a mean average value for
FE~™ equal to 0.28. Note that for these first three branching ratios their
dependence on the CKM matrix elements p and 7 is strong. Hence we expect
to be able to determine limits for their values when more B decay channels
are taken into account.

For the branching ratio B® — p%z° (Fig. 11.4), BABAR, BELLE and
CLEO only give an upper limit for the branching ratio. Moreover, the branch-
ing ratio does not appear to be very sensitive to the CKM matrix elements
p and 1. We therefore need new data to go further in this case. Finally,
we focus on the branching ratio B* — wr®, plotted in Fig. 11.5. There is
no agreement with the CLEQO data for values of the form factor FZ~" lower
than 0.2 whereas there is a good agreement with BABAR and BELLE for
a large range of values of FE2". BABAR gives an average value of FZ="
around 0.35. Note that the sensitivity of the branching ratio to the CKM
matrix elements is bigger than that to the form factor FZ=" and this does
not allow us to draw any conclusions regarding the value of FZ=".



11.2. BRANCHING RATIOS FOR B — pw 177

16 e dsar e sy A e

14

o
RS L)

—
o

BR(B o ') x 10°
o0

(=)

L 1 I i
04 0.5

06 07 08 09 1

.
0 01 02 03

(B-m), 2
F, (mp)

Figure 11.5: Branching ratio for B* — wrE, for limiting values of the CKM
matrix elements. Solid line (dotted line) for max (min) CKM matrix ele-
ments. Same notation as in Fig. 11.1 for the horizontal lines.

To remove systematic errors in branching ratio data given by the B fac-
tories, we can look at the ratio Ry, between the two following branching
ratios: B(B° — p=n¥) and B(B* — p°n*). In Fig. 11.6 we show the ratio
R, as a function of the form factor F£7". All the B factory data are in
good agreement with theoretical predictions. The results indicate that the
ratio is weakly sensitive to the CKM matrix elements p and n whereas it
is strongly sensitive to the value of FB~7. Comparison with BELLE data
allows us to obtain a value for FZ=" of between 0.15 and 0.37, with BABAR
it is between 0.05 and 0.20 and with CLEO it is 0.08 - 0.42. According to the
first conclusion for the value of FZ=™, it seems to us that the value of the
form factor FZ~™ which describes the transition B — 7 taken at k? = m?2
might be around 0.3-0.4. Based on this result taking into account only the
branching ratio B — pm, it is also possible to give some predictions con-
cerning the branching ratios for the decays B® — p*m® and B® — p°r®.
Their predicted values are the following: #(B° — p*m°) = 17.5 X 10~° and
B(B® — p°r°) < 1 x107°,

It has to be pointed out that the annihilation contributions in B decays
play a major role since they contribute significantly to the magnitude of
the amplitude. As an example, in Fig. 11.7 we show the annihilation con-
tributions for the branching ratio B~ — p°r~. The annihilation diagram
contribution to the total decay amplitude strongly enhances (in a positive or
negative way) the branching ratio B~ — p°m~ according to the value chosen
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Figure 11.6: The ratio of two pm branching ratios for limiting values of the
CKM matrix elements: solid line (dotted line) for max (min) CKM matrix
elements. Same notation as in Fig. 11.1 for the horizontal lines.
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p°K#, for limiting values of the CKM matrix elements. Same notation as in
Fig. 11.1 for the horizontal lines. A?~“ and A* are the p° amplitude including
p — w mixing effects and annihilation contributions, respectively.
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for the phase ¢4. This contribution could be bigger than that of p—w mixing
but carries more uncertainties because of the endpoint divergence (see Chap-
ter 10).  We emphasise that these two contributions (p — w mixing effects
and annihilation contributions) are not just simple corrections to the total
amplitude but they fully contribute to obtain a correct description of the B
decay amplitude.

We emphasize as well that the value of the form factor FB~™ determined
in covariant light front dynamics fully satisfies this analysis since FB= is
equal to 0.35 in CLDF. Finally, the results obtained by applying QCD fac-
torization are qualitatively in agreement with naive factorization used in the
first part of this thesis. However, the QCD factorization approach is more
powerful since we are able to calculate the branching ratios as a function
of the uncertainty related to one physical parameter, the form factor FB-r,
rather than one phenomenological parameter, the effective number of colours
N¢e/f. According to this analysis of branching ratios for the B — pr decays,
the value obtained for the form factor FZ" would support the BSW model
rather than the GH model. In the next section, we are going to analyse the
branching ratios B — pK and then draw some conclusions regarding the
form factor FE=K.

11.3 Branching ratios for B — pK

11.3.1 Weak annihilation contributions

Now, let us consider the case where M is a kaon (i.e. B — pK). Asin
the previous section, where five b — u transitions were analysed, here we
investigate five b — s transitions. These are the following B decays: B~ —
p°K~, B® = p°K°, B® — p~K*, B~ — p~ K° and finally B~ — wK~. As
usual, the reader will find in Chapter 5 all of the expressions for the tree and
penguin amplitudes related to the analysed decays. Recall the inversion of a;
with a, and the factor mp|p,| for the branching ratio formula in Eq. (11.1).
In the following, we enumerate the annihilation amplitudes which will be
included in the usual branching ratio amplitude for the five decays mentioned
previously:

for the decay B® — pT K,

74

o7/ + ) =
.A(B—>pK)—\/§

fo et (Vi + VoV2) [ )
1 ew - .
— Sts(K ,p+)]} . (11.9)
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for the decay B® — p°K?,
G
A(B'—p°K’) = —_;foKfp{(%bV:s + Va V3) [bs(fo,PO)

- @) s o)

for the decay B® — wk?®,
G
A (B —»wK') = ?Ffowa{(%bVJs + Va V) [bs(?oaw)

- %bgwu?",w)]} . (11.11)
for the decay B~ — wKk ™,

G N
A (B—wK™) = TFfowa{mv;;;bz(K )
. 1)
+ (Vs Vi + Ve Vi2) |ba(K ™, w) + 557 (K7, w) | } ; (11.12)
for the decay B~ — p°K~,

G
A (B~ —p"K") = -Q—Ffsfxfp{%bmbz(ff‘,p")

(Vi Vi + VaV3) [balE %) 4 55K~ ) } . (11.13)

for the decay B~ — p~ K°,

oo L

A(BE) = F

(Vs o+ VaVi) [, ) + (R, p0)] - (1110

foKfp{VubVl;b2(Foap_)

All of the terms involved in the above expressions can be found in Chapter 9.
We shall evaluate the ratio, Rk, between the two branching ratios %(B° —
pEK¥) and ZB(B* — p°K*) as follows:

B(B® — ptK¥)

Bx = 2855 pok7)

(11.15)
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Figure 11.8: Branching ratio for B¥ — p°K % for limiting values of the
CKM matrix elements. Solid line (dotted line) for max (min) CKM ma-
trix elements. Notation: horizontal dotted line: CLEO data; dashed line:
BABAR data; dot-dashed line: BELLE data.

To end this analysis, we shall also calculate the ratio, R, defined as the ratio
between R, and Rk, by

R=-Z. (11.16)

11.3.2 Results and discussions

This section aims to discuss the numerical results of branching ratios for B
decays such as B — pK. The branching ratios for B~ — p°K~, B® — p°K°,
B® — p~K*+, B~ — p~ K° and B~ — wK ™~ have been calculated in the QCD
factorization framework rather than in the naive factorization approach, as
in Chapter 5. Results are plotted in Figs. 11.8, 11.9, 11.10, 11.11, 11.12
and 11.13. Annihilation contributions and p — w mixing effects have been
included in the B decay amplitudes.

We shall compare our theoretical predictions with experimental data pro-
vided mainly by CLEO since the BABAR and BELLE data are less nu-
merous and need some improvement. Nevertheless, for the branching ratio
B- — wK~ we shall take the BELLE data, which are the most recent and
accurate measurements in that case. It is also necessary to notice that all of
these branching ratio data are less numerous and carry more uncertainties
than those of B — pm. All of the branching ratios are plotted as a function



182 CHAPTER 11. BRANCHING RATIOS ...

3 5 1 i T I T I ) l T 'I T [ 1 I T [ L I T
3= _
B 2 it 7
X I~ -
w 2F -
- - -
a
_H;; 1.5 :— —-
g 1 |
0.5 —
% 01 02 03 04 05 06 07 08 09 1
(B=K), 2
By (mp)

Figure 11.9: Branching ratio for B¥ — p*K?, for limiting values of the
CKM matrix elements. Solid line (dotted line) for max (min) CKM matrix
elements. Same notation as in Fig. 11.8 for the horizontal line.

of the transition form factor FF7¥X where FE7K describes the transition
B — K at k* = m2. In order to constrain the value of this transition form
factor, we shall use some experimental data and hence we expect to obtain
some limits regarding its value. As usual, we also show the dependence of
the branching ratios on the CKM matrix parameters p and 7.

For the branching ratio B~ — p°K~ (see Fig. 11.8), theoretical results
and experimental data from CLEO and BABAR are in good agreement.
BELLE only gives an upper limit for this branching ratio which is still con-
sistent with our results. Note, that the dependence of the branching ratio
on the form factor, FE~X, is stronger than that on the CKM matrix pa-
rameters p, and 7. Nevertheless, no firm conclusion can be drawn from this
branching ratio except for a lower limit for the form factor FZ=¥ that is
around 0.33 (assuming the largest range of experimental data). For the
branching ratio B~ — p~ K° plotted in Fig. 11.9, we observe a total lack of
dependence of the branching ratio on the form factor FE~¥ that explains
the flat curves. This lack of dependence on F2~¥ can be seen as well from
the tree and penguin expressions. Only BELLE gives an upper experimental
limit and that is consistent with our results. Moreover, the variation of CKM
matrix elements p and n has a very weak influence on the branching ratio
predictions. This channel cannot be used to constrain both the form factor
FB~K and the parameters p and 7. Similarly, the branching ratio for the
B® — p~ Kt decay (see Fig. 11.10) is independent of the form factor F27¥
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Figure 11.10: Branching ratio for B® — p*K¥, for limiting values of the
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Figure 11.12: Branching ratio for B¥ — wK¥, for limiting values of the
CKM matrix elements. Solid line (dotted line) for max (min) CKM matrix
elements. Same notation as in Fig. 11.8 for the horizontal lines.

. . . .
and no constraint regarding this form factor can be extracted. We observed

that the branching ratio is more dependent on the parameters p and n than
in the previous case but it is still not sufficient to derive information about
the sensitivity of the branching ratio sensitivity to these parameters. We also
mention that our theoretical results are not in agreement with experimental
data from CLEO and BELLE. More investigations are needed in that case.

Next we consider the branching ratio B — p°K° shown in Fig. 11.11.
Since there is no experimental data from BELLE, CLEO or BABAR, no
conclusions about the form factor F2?¥ can be drawn. Due to the strong
sensitivity of the branching ratio on F27¥ and to the weak dependence on
the CKM parameters p and 7, it would be useful to have new data to constrain
the transition B — K. In Fig. 11.12 the branching ratio B~ — wK™ is
plotted. It turns out that our result is in agreement with BABAR and
CLEO data for values of F27K lower than 0.75 whereas lies outside the one
o range for BELLE. The curves have a strong dependence on the form factor
FEB=X_ Assuming that the experimental data from BABAR and CLEO are
more accurate than those from BELLE, it yields an upper limit for the form
factor around 0.55 (BABAR) and 0.75 (CLEO).

By calculating the ratio Rx between #(B° — p*K¥) and #(B* —
p°K¥), systematic errors can be removed. This ratio is shown in Fig. 11.13
as a function of F27¥ and for limiting values of the CKM parameters p
and 7. It appears that an agreement between experimental data provided by
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Figure 11.13: The ratio of two pK branching ratios for limiting values of the
CKM matrix elements. Solid line (dotted line) for max (min) CKM matrix
elements. Same notation as in Fig. 11.8 for the horizontal lines.

CLEO and our results is almost found whatever the value of the form factor
FB~K is. Assuming that FE7K is similar to FJB=™ we can also compute the
ratio R between the two previous ratios R, and Rg and the result is shown
in Fig. 11.14. Like the ratio Rx, the ratio R indicates that the upper limit
for the value of the form factor FZ7¥ has to be around 0.45. Note that this
limit can be applied on F~™ as well due to the assumption made previously.

From this analysis, some conclusions can be drawn. First, it seems that
the GH model, where FE?% = 0.762 at k* = m?2, does not lead to agree-
ment with the experimental results in the QCD factorization framework. It
appears as well that the BSW model might give a better approximation of
this form factor transition than the GH model. Nevertheless, in the B — pK
channel, we cannot effectively constrain our free parameter FEB-K because
of the lack of experimental data. However, we are able to give a predic-
tion regarding the branching ratio B — p°K° where data is currently not
available. According to our analysis, &(B° — p°K°) might be lower than
3 x 10~%. This prediction is consistent with our results obtained by using
naive factorization in Chapter 5. As for the branching ratios for the B — p7
channel, we observe a qualitative agreement between the naive factorization
and QCD factorization even though the second method can give more theo-
retical predictions.
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11.4 Summary

We have mainly calculated the branching ratios in two different channels,
B — pm and B — pK. These calculations have been performed by applying
the so-called QCD factorization approach, which takes into account explic-
itly the radiative corrections, at order a;, coming from the hard scattering
contributions. Our results are shown as a function of the form factor FZ=",
in the case of B — pm, and as a function of the form factor FB—X in the
case B — pK, since these transition form factors could carry large uncer-
tainties according to different models (BSW and GH models). We have also
included uncertainties from the CKM matrix parameters, p and 7, in our
theoretical predictions. In order to constrain in an efficient way the form
factors FZ2™, FE~X and the parameters p and 1, we have compared our
results with experimental data coming from CLEO, BABAR and BELLE.
Since these experiments do not always give the same experimental branching
ratios, we have tried to focus on those which are the most recent and accurate
depending on the branching ratio analysed.

Regarding theoretical results for the branching ratios B* — p°n%, B¥ —
pEm® B® — prn¥ BY — p°7° and B* — wr®, we found that the BSW
model provides a good agreement with experimental results whereas the GH
model does not. It has been possible to obtain a best fit for the form factor
describing the transition B — 7 at k? = m2 that is F£=" = 0.35. Moreover,
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predictions for the branching ratios B¥ — p*7® and B® — p%n° have been
made as well. These are B(B* — p*71°) 2 17.5x 1076 and #B(B° — p°n°) <
1 x107S.

For the branching ratios B~ = p°K~, B® — p°K°, B = p~K*, B~ —
p~K° and B~ — wK~, it has not been possible to determine precisely the
value of the form factor FZ7¥ that describes the transition B — K. At least,
we found that the value for the form factor might be less than 0.65. This
once again supports the BSW model in comparison with the GH model. A
prediction for the branching ratio B® — p° K° has also been made: £(B° —
p°K°®) <3 x 1078,

We would like to emphasize that QCD factorization gives more accurate
results than naive factorization as expected. However in a qualitative way
naive factorization is still able to give the correct order of magnitude for the
branching ratios analysed in our case. This does not mean that it is true
for all types of B decays. Secondly, the form factors FB=m and FE7¥ for
the transitions B — ™ and B — K, calculated in the covariant light front
dynamics framework, are in total agreement with the experimental data.
Recall that we found the following values for the form factors when the CLFD
approach was applied: F57ppy(m3) = 0.35 and F&‘C’II/{FD)(mf,) = 0.40. We
refer the reader to Chapter 9 for more details. Unfortunately, it is not possible
to constrain efficiently the parameters p and n with an analysis based only on
the channels B — pm and B — pK, because of the lack of experimental data.
We need more accurate data if we want to improve the values of the CKM
matrix parameters p and 7. We need also to include more B decay channels
such as B - K*r,B — K*n,B — K¢ to be able to obtain constraints
on the parameters p and 1. The conclusions drawn from this analysis are
going to help us to determine the C P violating asymmetry parameter, acp,
more precisely than when naive factorization was used. The next and final
chapter introduces our asymmetry predictions for the direct C'P violation in
B decays into the channels pm and pK.
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Chapter 12

Direct C P violation in B
decays in QCDF

“ On ne peut se passer d’une méthode pour se mettre en quéte de la vérité
des choses. ”

René Descartes

We end our analysis by investigating the direct C'P violating asymmetry,
acp, in B decays, limiting our study to the decay B — ntn~M, where as
usual, M is a kaon or a pion. Isospin violation is taken into account through
p — w mixing and QCD factorization is applied in this work instead of naive
factorization.

12.1 Asymmetry in B decays including anni-
hilation contributions and p — w mixing
effects

It has been shown in the first part of this thesis that the p —w mixing effects
strongly enhance the direct C'P violating asymmetry parameter acp. When
the invariant mass of the 717~ pair is in the vicinity of the w resonance, it
is found that the C P violating asymmetry, acp, reaches its maximum, @mag-
We refer the reader to Chapter 4 for more details about p — w mixing and
to Chapter 6 for its use in the determination of the C P violating asymmetry
parameter, acp, within the naive factorization approach. We emphasise that
in this framework (i.e. naive factorization) the asymmetry, acp, is very small
(near to 0) without the p — w mixing effects. Remember that large direct

189
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asymmetry requires at least a large strong phase difference and only p — w
mixing can provide it within naive factorization.

It has also been pointed out that annihilation amplitudes could contribute
significantly to the total decay amplitude. However, their determination still
needs to be improved and cannot be derived directly from the usual QCDF
framework. Despite this they were included in our analysis of the branching
ratios, where their contributions have been controlled by using a default value
for the phase, ¢,. We shall not include them in the following work since
their effects could provide large uncertainties in the direct C'P asymmetry.
The reader may refer to Chapters 9 and 10 for discussions regarding the
annihilation contributions.

Nevertheless, for completeness we detail below how these annihilation
contributions can be included in the usual calculations of asymmetry in-
cluding p — w mixing. As seen in Chapter 9, Section 9.2.2, the coefficients
b;(My, M) - that describe the annihilation contributions — are expressed in
terms of functions, A;(V, P)?, with the Wilson coefficients, Cy, related to the
tree and electroweak (or QCD) penguin diagrams. Recall that the functions
Aj-(V, P)® arise from the convolution of hard scattering kernels with leading
twist light cone distributions.

All of the details regarding the calculation of the C'P violating asymme-
try parameter, acp, can be found in Chapters 4 and 6. However we will
emphasise one technical detail about the inclusion of the annihilation am-
plitudes in the total amplitude. It is known that C P violating asymmetry
needs a strong phase difference, §, coming from the hadronic matrix and a
weak phase difference, ¢, coming from the CKM matrix to obtain direct C'P
violation. In Chapter 4 the equations that define the ratios between the tree,
t,,t,, and penguin p,, p., amplitudes were derived. They take the following
form:

Pu — piiléate) 3 b ae'e P _ Bets | (12.1)

]

t, t, Pu

Following the previous discussion in Sect. 10.2.2, we can separate tree (b;, b2)
from penguin (bs, b5, by, b5”) contributions in the annihilation amplitude.
Therefore, we rewrite Eq. (12.1) as,

o . t, 4+t ; + P, ;
Put Py _ iore) | Totlo _ e %’_ﬁ =B, (12.2)
w w

to+t2 7R
where 15,12, p5 and p{, are the tree and penguin annihilation contributions,
respectively for the (pM) and (wM) amplitudes. The expressions for t},;,, p;
and p? for every decay channel on which we are going to focus can be very
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easily determined. We refer the reader to Appendix C for their expressions.
As mentioned in the title of this chapter, the tree and penguin amplitudes
involved in the decay channel B — nt7~M are calculated in the QCD fac-
torization framework. Their expressions are proportional to the coefficients
ax (x Ci) and are listed in Chapter 6. The reader will replace the coeffi-
cients, al'F', determined in naive factorization by those obtained in QCDF,

afCDF, in Chapter 9. It is a straightforward substitution since the global
expression for the tree and penguin amplitudes does not change; simply, allF

becomes GECDF.

12.2 CP violation in B¥? — gtx— %0

In this section, we analyse the direct C'P violating asymmetry parameter,
acp, in the decay channels B~ — po(w)r~ — mtn~n~ as well as B® —
PP(w)m® = 7P
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Figure 12.1: CP violating asymmetry, acp, for B~ — ntn~n~ for lim-
iting values of the CKM matrix elements and for different values of the
form factor FZ~"(m?). Solid line (dotted line) for max CKM matrix ele-
ments and FE~"(m?2) = 0.3 (0.5). Dot-dot-dashed line (dashed line) for min
CKM matrix elements and FF~"(m?) = 0.3 (0.5). For comparison, we plot
the asymmetry acp determined in naive factorization. (Dot-dashed and dot
dash-dashed lines for minimum and maximum asymmetry values.)

In Figs. 12.1 and 12.2 we show the C'P violating asymmetries for B~ —
pP(w)r= — mta~n~ and B® = p°(w)r® — ntr~7° respectively, as a func-
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tion of the energy v/S, the form factor FZ2"(m?2) and the CKM matrix
element parameters p and 7.

_ . | y |
%60 770 780 790 800
VS (MeV)

Figure 12.2: CP violating asymmetry, acp, for B® — wtr~x°® for limit-
ing values of the CKM matrix elements and for different values of the form
factor FiP="(m?). Solid line (dotted line) for max CKM matrix elements
and F£2"(m2) = 0.3 (0.5). Dot-dot-dashed line (dashed line) for min CKM
matrix elements and F{??"(m?2) = 0.3 (0.5). For comparison, we plot the
asymmetry acp determined in naive factorization. (Dot-dashed and dot
dash-dashed lines for minimum and maximum asymmetry values.)

Focusing first on Fig. 12.1, where the asymmetry for B~ — p%(w)n~ —
mtr~n~ is plotted, we observe that the C' P violating asymmetry parameter,
acp, can be large and can even reach 20% — 30% outside the region where the
invariant mass of the 7+7~ pair is in the vicinity of the w resonance. This is
the first consequence of QCD factorization, since within this framework the
strong phase can be generated not only by the p — w mechanism but also
by the Wilson coefficients. We recall that the Wilson coeflicients include all
of the final state interactions at order a,. This shows as well that the non
factorizable contribution effects are important and can modify the strong
interaction phase. Because of the strong phase! that is either at the order
of a; or power suppressed by Agcp/ms, the CP violating asymmetry, acp,
may be small but a large asymmetry cannot be excluded. Note that at the w
resonance, the asymmetry parameter acp is around —10%. In comparison,

In comparison with QCDF, pQCD predicts large strong phases and direct CP asym-
metries.
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we show on the same figure the asymmetry parameter, acp, obtained by
applying naive factorization. The results are quite different between these
approaches because of the strong phase mentioned previously.

The second observation is that the form factor F?7"(m2) contributes
very strongly to the asymmetry. If the form factor FIB‘”'(mf,) is equal to 0.3
then the asymmetry reaches 8% far away from the w resonance whereas when
FP="(m2) is equal to 0.5 the asymmetry reaches 18%. This comes directly
from the hard scattering contribution (included in the Wilson coefficients)
that is dependent on the form factor FIB‘”'(mf,). Finally, it appears that
the asymmetry is dependent on the CKM matrix parameters p and 7, as
expected. Note that this dependence is qualitatively as large as that for the
form factor F£=7(m2).
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Figure 12.3: siné as a function of the form factor FZ?"(m?), for B~ —
rtr—r~ (full line) and B® — wtn~n0 (dashed line) for the case I, =
(—3500; —300), where p — w mixing is included.

In Fig. 12.2, the asymmetry, acp, is shown for B® — p%(w)m® — ntm=7°.
As for the previous case, we observe a strong sensitivity of the asymmetry to
the form factor FZ7"(m2) as well as the CKM matrix element parameters p
and 1. The CP violating asymmetry is predicted to be large, around —40%
without the p — w mixing effects. Again we show the comparison with naive
factorisation, where there is agreement near the w resonance. However, we
emphasise that the results are quite different from those obtained by using
the naive factorization framework where the strong phase only arises from

p—w mixing and hence allows for a large asymmetry only near w and nowhere
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else. With the knowledge of the asymmetry it will be possible to constrain

the form factor FZ="(m2).

As mentioned, one of the main reasons for the interest in p — w mixing
is to provide an opportunity to remove the phase uncertainty mod(7) in
the determination of the CKM angle « in the case of the b — u transition.
Knowing the sign of the C'P violating asymmetry at the w resonance gives
us the angle o without any ambiguity. This provides an efficient test for the
Standard Model. In Fig. 12.3, we present the evolution of siné as a function
of the form factor F£"(m2), for B~ — n*n~n~ and for B® — ntn~n°.
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Figure 12.4: CP violating asymmetry, acp, for B~ — ntn~ K~ for lim-
iting values of the CKM matrix elements and for different values of the
form factor FP2*¥(m?). Solid line (dotted line) for max CKM matrix el-
ements and FZ*¥(m?) = 0.3 (0.5). Dot-dot-dashed line (dashed line) for
min CKM matrix elements and F{27¥(m2) = 0.3 (0.5). For comparison, we
plot the asymmetry acp determined in naive factorization. (Dot-dashed and
dot dash-dashed lines for minimum and maximum asymmetry values.)

12.3 CP violation in B¥? — gtgx~ K+0

After the analysis of the C P asymmetry in B*? — p%(w)r¥0 — rtr—nt0,
we finally conclude our work by focusing on the asymmetry in B¥? —
ntr~ K*0. Plotted in Figs. 12.4 and 12.5 is the direct C P violating asymme-
try, acp, for B~ = p®(w)K~ = nt7~ K~ and for B® — p°(w)K°® = n*r~ K°
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Figure 12.5: CP violating asymmetry, acp, for B® — w+x~K° for limiting
values of the CKM matrix elements and for different values of the form
factor F2*¥(m2). Solid line (dotted line) for max CKM matrix elements
and FZ~K(m?2) = 0.3 (0.5). Dot-dot-dashed line (dashed line) for min CKM
matrix elements and FZ~¥(m?2) = 0.3 (0.5). For comparison, we plotted
the asymmetry acp determined in naive factorization. (Dot-dashed and dot
dash-dashed lines for minimum and maximum asymmetry values.)

respectively, for limiting values of CKM matrix parameters p and n and for

different values of the form factor F£=*¥(m?).

In Fig. 12.4, we show the C P asymmetry for B~ — p®(w)K~ = ntn~K~.
Similar conclusions can be drawn to that of previous case, regarding the sen-
sitivity of the asymmetry parameter, acp, on the form factor F; Jip2is (m?) and
the CKM matrix element parameters p and 7. There is no agreement for the
value of asymmetry between naive factorization and QCD factorization at
the w resonance except that the C'P violating asymmetry reaches its maxi-
mum in the vicinity of w in both cases. However, when the asymmetry goes
to zero far from the w resonance in naive factorization, it is around 10% in
QCDF.

The C P asymmetry for B — p°(w)K°® — n* 7~ K° is plotted in Fig. 12.5.
The p — w mixing effects still enhance the asymmetry near the w resonance.
However, we notice that outside this “window” the asymmetry remains large
in QCDF, whereas it goes to zero in naive factorization. As usual, the asym-
metry depends strongly on the form factor FB~K(m?) and the CKM matrix
parameters p and . Similarly to the case of B* — rtr~ %, a measurement
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Figure 12.6: sind as a function of the form factor FE7¥(m2), for B~ —
rtr~ K~ (full line) and B® — w*n~K° (dashed line) for the case II,, =
(—3500; —300), where p — w mixing is included.

of the asymmetry would yield a constraint on the form factor FP=¥(m2)
and thus on the wave function describing the Kaon.

As we did for B decaying into mmm we can remove the ambiguity for the
determination of the angle v that arises from the conventional determination
of sin 27 in indirect C P violation. In Fig. 12.6 sind as a function of the form
factor FE=*¥(m2), for B~ — n*r~K~ and B® — n*n~K° is shown. We
notice that the sign of siné does not change over the range of F£¥(m2).
This is very useful since we are then able to check the picture of direct C'P
violation within the Standard Model by measuring the asymmetry in case of
B decaying into 7 K.

As already mentioned, we obtain a large asymmetry in some decays in
QCDF because of the large strong phase arising in the Wilson coeflicients.
The function G(s, ), given in Eq. (10.18), depends on the ratio s = m2/m}
and on the fraction of momentum z. However, it has no dependence on the
invariant mass, g%, of the virtual gluon in the penguin diagram -unlike the
case of naive factorization (see Eq. (3.8) in Chapter 3). As a result, when
s =0, i.e. for u and d quarks, Gr(0) given in Eq. (10.19) (after integration
of G(s, ) over z) acquires a large imaginary part. The QCD penguin contri-
bution written in Eq. (10.14), Py, ;, depends on G)a(0). Therefore the effect
of the large imaginary part appears in the QCD penguin contributions, in
particular in the term involving C; in Eq. (10.14).
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Figure 12.7: C P violating asymmetry, acp, for B~ — atn~n~. Comparison
(dot-dash-dashed lines for various values of FZ=7(m2) = 0.3 (0.5)) is made

in the case where Im(Gar(0)) = 0 but only for the term involving C; in
Eq. (10.14). See Fig. 12.1 for the other definitions.
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Figure 12.8: C'P violating asymmetry, acp, for B- — ntn~n~. Comparison
(dot-dash-dashed lines for various values of F' B=7(m?) = 0.3 (0.5)) is made in
the case where a4 from QCDF is replaced by that given in naive factorization.
See Fig. 12.1 for the other definitions.
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If the imaginary part of Gar(0) is removed, we obtain results similar to
those found in naive factorization. As an example, Fig. 12.7 shows the C'P
violating asymmetry, acp, for the decay B~ — nTn~ 7~ where the imaginary
part of Gp(0) is taken to be zero but only for the term involving C in
Eq. (10.14). As a result, no large C'P violating asymmetry is obtained far
from the w resonance. For the same decay, Fig. 12.8 shows the case where
we replace the value of a4 determined in QCD factorization by that given
in naive factorization [37, 36, 35]. In other words, the dependence on ¢ is
included in the function G(m., i, ¢%) [39]. Once again, no large C P violating
asymmetry is found far from the w resonance. In these two illustrations,
we obtain a convergence of the C'P violating asymmetry, acp, close to zero
outside the w window.

From these investigations, it is clear that the omission of any ¢ depen-
dence in G(s,z) (Eq. (10.18)) is the reason for the difference between the
QCDF and the naive factorization approach. In fact, the effect of this dif-
ference is negligible for the branching ratios considered in Chapter 11, and
is only significant for C P violating asymmetry, acp, because that is propor-
tional to sin 8. Apart from this, the corrections associated with hard scatter-
ing introduced in QCDF are satisfactorily convergent, producing relatively
small corrections to naive factorization. For the future, it is crucial to work
towards a consensus on the most appropriate approach to the calculation of
the quark loop contribution shown in Fig. 10.4 (g).

We determined within the QCD factorization framework the C' P violat-
ing asymmetry parameter acp in B decays into three particles. The com-
putation of both asymmetry and branching ratios reveal once again that,
unfortunately, uncertainties play a major role in hadronic physics. However,
thanks to the experimental branching ratios provided by many facilities in
the world, it could be possible to strongly constrain our predictions. The fol-
lowing section presents how and which conclusions can be drawn regarding
our parameters.

12.4 Constraints

All these studies about direct C P violation and branching ratios in B decays
have been performed by involving some free parameters such as form factors
FE=m(m?), FB>K(m?2). By comparing experimental data with theoretical
predictions for branching ratios we determined some constraints concerning
these free parameters. We were mainly focused on the effective number of
colours, N&/f, the form factors FP2"(m2) and FP*%(m2) as well as the

p
CKM matrix element parameters p and 7. In the following section, we draw
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Figure 12.9: Fit of branching ratios for the decays B —+ pK, B — wK,
including the uncertainties from the CKM matrix parameters p and 1 and
the experimental data provided by BELLE and CLEO.

some conclusions about these constraints.

12.4.1 Constraints on form factors

Form factors play a major role in the factorization method (naive or QCDF)
since they represent the transition between two hadronic states where the
energy transition scale can vary from heavy quark to light quark masses (if
we consider b — u or b — s). Their computation is non trivial and may
carry large uncertainties, according to which model you are using. We refer
the reader to Chapters 5 and 8 for a list of available form factors determined
within different frameworks such as QCD sum rules, heavy quark limit, lat-
tice QCD or light cone QCD... The reason why we kept the form factors
FE=m(m?) and FP~K(m?) free came from the necessity to constrain indi-
rectly but efficiently the wave functions describing the pion and kaon mesons.
These two light particles are subject to intensive research because of their
complex physical properties.

It has to be noticed that to constrain a form factor requires constraints
on the effective number of colours, N¢/f. Therefore it is not possible to draw
conclusions about one without the other. In Figs. 12.9 and 12.10 we show
the results for the form factors FE¥(m2) and F£="(m2), respectively. We
have fitted all the branching ratios for B decaying into p7, into pK, into w&’
or into wm with the experimental data provided by the CLEO and BELLE
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facilities. We have excluded the data from BABAR since they are currently
not numerous and accurate enough. We have included uncertainties for the
CKM matrix parameters p and 1 and we have applied the QCD factorization
method where all of the final state interaction corrections arising at order a;
are incorporated. Finally we emphasize that the following results are model
independent.

In Fig. 12.9 we show the constraints for the form factor FE%(m?) as
well as the effective number of colours N¢//. Based on their experimental
data, we observe that the common region for BELLE and CLEO is very
small. The form factor Ff*¥(m2) is allowed to vary between 0.3 and 0.65.
At the same time, the effective number of colours can vary between 1 and
1.75. Their mean average values are FP*¥(m?) = 0.47 and N&ff = 1.40.
As we have already mentioned in the previous chapter, these results seem
consistent with the BSW model rather than the GH model. However, it is
not possible to draw any strong conclusions regarding FB-K (mf,) since the
experimental data for the branching ratios in B decays such as B — pK or

B — wK are unfortunately not accurate.
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Figure 12.10: Fit of branching ratios for the decays B — pm, B — wm,

including the uncertainties from the CKM matrix parameters p and 7 and
the experimental data provided by BELLE and CLEO.

In Fig. 12.10, the constraints for the form factor, FP7"(m?), and the

effective number of colours, N&//, are plotted by using the same fit method

as that for B — pK. In contrast to the previous case, we found a large
common region between BELLE and CLEO for the B decay into pm. From
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our analysis, F£="(m?2) varies between 0.3 and 0.57 and N, ¢S can take values
from 1.25 to 2.25. Their mean average values are F27"(m2) = 0.43 and
N&f/ = 1.75. These results which have a higher confidence level than those
for decays B — pK give a strong constraint on the form factor F{?="(m?)
and hence on the pion wave function. Once again, if we consider the average
values, it appears that the BSW model is in better agreement with our results
than the GH model.

The results obtained for the form factors F22"(m?) and FF~%(m2) re-
duce one of the main uncertainties in the factorization process that may
enhances results in asymmetry. Those obtained for the effective number
of colours, N/, confirm previous analysis where naive factorization was
applied for the same decays. Together, they increase the precision on theo-
retical predictions and allow us to focus on the most significant parameters
that govern the direct C P violating asymmetry within the Standard Model.

Next, we discuss the CKM matrix parameters p and 7.

12.4.2 Constraints on the CKM matrix parameters p
and n

It is well known that the CKM matrix parameters p and 5 are the main “key”
to C'P violation within the Standard Model. Recall that the weak phase is
mainly governed by the parameter 7 that provides the imaginary part which
is absolutely necessary to obtain an asymmetry between matter and anti-
matter. Based on our analysis, we are not able from branching ratios for
B — pr and B — pK to efficiently constrain the CKM matrix parameters
p and n. In fact, the common region allowed by CLEO and BELLE for
branching ratios in both cases B — pm and B — pK does not constrain the
parameters p and 7. As input parameters for p and 7, we used the values
0.190 < p < 0.268 and 0.284 < 1 < 0.366. The common region obtained in
our analysis fully satisfies these limits.

However, we can try to get some constraints by only taking into account
the mean values for the form factors FE="(m?), FE7¥(m2) as well as the
effective number of colours N°/f. The results are listed in Table 12.1. Ac-
cording to our work, we find the following limits: 0.214 < p < 0.251 and
0.300 < 7 < 0.351. This reduces by around 47% and 62%, respectively, the
allowed ranges for the parameters p and 7. These results seem promising but
they only include the branching ratios from the BELLE and CLEO facilities
for the channels B — pm, B — pK and are available for the mean values
for our constraints. It is clear that the ranges obtained in our work for the
CKM parameters p and 7 satisfy all of the experimental data, since we have
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BELLE and CLEO

P
B — pr P = 0.205, pmaz = 0.251
B — pK i = 0.214, pras = 0.268

common region Pmin = 0.214, ppmeg = 0.231

n
B — pr Nmin = 0.300, Nmer = 0.351
B — pK Nmin = 0.284, Moz = 0.366

common region Nrmin = 0.300, Nmaez = 0.351

Table 12.1: Limits for the CKM matrix element parameters p and 7.

used as inputs, the initial values (0.190 < p < 0.268 and 0.284 < n < 0.366)
for the CKM parameters derived by fitting branching ratios and asymmetry
data for numerous decay channels.

It has to be noticed that our results regarding the constraints for the form
factors, FZ~" and FP7K, as well as those for the CKM matrix parameters, p
and 7, are calculated in using the mean value of the input parameters. For ex-
ample, the variation of the quark mass values on the results are negligible. If
now we consider a variation of the parameter pg and the corresponding phase
b3, (used in the calculation of the hard-scattering contributions, H(BYV, P)
and H(BP,V), see Chapter 10) the effect on the results is small enough to
be ignored. We can draw the same conclusion for the parameter p4 (used in
the calculation of the annihilation contributions, A(P,V) and A(V, P), see
Chapter 10) as for the parameter py. Finally, the phase, ¢4, correspond-
ing to the parameter, p4, is the only main parameter which can affect our
results. A variation up to 30% of this parameter may change significantly
our results. We have to mention as well that our fits have been performed
by using several experimental branching ratios which can be subject to some
variations in the future. Therefore, our results are strongly dependent on
these experimental data.

Through our analysis of branching ratios in B decays, we have constrained
the form factors, F22"(m2), F£7X(m2), the effective number of colours,
N¢//| and the CKM matrix parameters p and 7. By determining the sign
of sina for the transition b — u, the sign of sin+y for the transition b — s
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and by an independent method sin B, we can see if there really is a unitarity
triangle like is the prediction of the Standard Model. Now we have to wait
for more experimental data regarding branching ratios and asymmetries in
B decays in order to provide more accurate results. We expect that our work
will be helpful in the quest to gain further knowledge of direct C'P violation

in B decays.
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Chapter 13

Conclusion

“ Les théories servent a irriter les philistins, 4 séduire les esthétes et a faire
rire les autres. ”

Amélie Nothomb

Direct CP violation in B decays

We have investigated direct CP violation in B decays, such as B — mwm
and B —» mnK. Because of the energy scale involved in these transitions,
the calculation of the hadronic matrix elements that arise in the B decay
amplitude is non trivial and requires several physical assumptions. The ef-
fective Hamiltonian is the starting point of any phenomenological treatment
of the weak decays of hadrons. It can be mainly written as a product of
CKM matrix elements describing the change of flavour, with Wilson coeffi-
cients describing the short distance physics and operators describing the long
distance physics. The main difficulty is then to express the hadronic matrix
elements which represent the transition between the meson B and the final
state.

As a first approach, we used the so-called “naive factorization” method
where the hadronic matrix is governed by the product of a decay constant
times a transition form factor between the meson B and one of the two final
mesons. Through the Wilson coefficients, this method includes a few of the
final state interactions but not all of them at the order a,. The colour octet
contribution is reproduced by an effective number of colours. By applying
this framework we have calculated the branching ratios for B — pm and
B — pK and we have extracted some constraints for the effective number of

205
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colours treated as a free parameter. Comparing our theoretical results with
experimental branching ratios provided by BELLE, BABAR and CLEO, we
have been able to determine a limited range for this free parameter. With
this value we then computed the direct C'P violating asymmetry parameter
acp for decays! such as B — nnm and B — 7K.

We included p —w mixing in order to analyse its effect on this asymmetry.
The mixing through isospin violation of an w to p, which then decays into
two pions allows us to obtain a difference of the strong phase reaching its
maximum at the w resonance. p — w mixing provides an opportunity to
remove the phase uncertainty mod(w) in the determination of two CKM
angles,  in the case of B — pr and 7 in the case of B — pK. This phase
uncertainty usually arises from the conventional determination of sin 2a or
sin 2 in indirect C P violation.

In order to decrease uncertainties involved in our calculations, we evalu-
ated the transition form factors used in our work. To obtain these form fac-
tors, we first investigated the wave functions related to the particles playing
a role in the decay. By working in an explicit covariant light front formalism,
we determined the wave functions related for the particles 7, p,w, K, B where
the decay constant, electromagnetic form factor, charge radius and normal-
ization were applied to constrain our parameters. Based on these functions,
we calculated the transition form factors between pseudoscalars and between
pseudoscalar and vector mesons.

To end our analysis we replaced naive factorization by QCD factorization
where all of the final state interactions at the order o, are included. Assum-
ing some properties (i.e. heavy quark expansion) lie at the energy scale of B
decays, this allows us to determine a good approximation to the non factor-
izable terms which arise during the usual hadronic matrix calculation. Note
that if we neglect corrections at the order a, we recover naive factorization.
We then investigated the branching ratios for B = pm, B — pK,B — wm
and B — wK by applying this method. Comparisons were made with ex-
perimental results from BABAR, BELLE and CLEO. As in the first part,
we then computed the direct C P asymmetry violating parameter acp in the
decays B — mnm and B — 7K.

Having reduced all of the uncertainties entering the calculation, we have
constrained the form factors FE>™ and FP7K. At the same time, we eval-
uated the effective number of colours N¢/f. Using the fit obtained for the
branching ratios pr and pK, and assuming that the values for the parameters
A and ) are accurate enough, we extracted some limits regarding the CKM

1Direct CP violating asymmetry, acp, in B — 7wK decays has been investigated
where the x.o resonance [232] is included. A large asymmetry is predicted.
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matrix parameters p and n. Finally, knowing the sign of the asymmetry in
B decays into wnm or into 7w K, we provide an efficient test to constrain
the value of the angles & and v in the unitarity triangle. This gives the
opportunity to check the picture of direct C' P violation within the Standard
Model.

Main results

e Factorization
As we said previously we used two approaches in order to factorize
the hadronic matrix involved in the amplitude, the so-called “naive
factorization” and “QCD factorization” methods. We have calculated
the branching ratios for B — pr, B — pK, B = wm and B — wK, and
compared the results with experimental data coming from the CLEO,
BABAR and BELLE Collaborations.

By applying the naive factorization method we have shown that the
range for N¢/f in which theoretical branching ratio results are con-
sistent with experimental data is 1.09(1.11) < N&// < 1.68(1.80) for
B — pm and is 0.66(0.61) < N&// < 2.84(2.82) for B — pK. Finally, if
we take into account the allowed range of N¢// determined from decays
such as B — pr and B — pK we find a mean average value for N¢//
around 1.75 £ 1.1.

By applying the QCD factorization method, we have shown that the
range allowed for the form factor, F2=", in the case of B — pm, is
0.30 < FB~™ < 0.57 and is 0.30 < F£* < 0.65 in the case of B — pK
for the form factor, FZ=¥. It has been possible to fit the form factor
describing the transition B — m at k* = m that is FB=m = 0.35.
Similarly we obtained for the transition B — K, FEK = 0.47 at
k* = m?. We recall that we found the following values for the form
factors when the CLFD approach was applied: Ff(ngD)(mz) = 0.35
and FPgrp)(m3) = 0.40.

Moreover, predictions for the branching ratios B* — ptr® and B —
p°7° have been made as well. These are Z(B* — p*7°) ~ 17.5 x 107°
and B(B° — p°7°) < 1 x 107%. Regarding the branching ratio B% —
p°K®, one has B(B° — p°K°) < 3 x 107°.

We would like to emphasize that QCD factorization gives more accurate
results than naive factorization as expected. However in a qualitative
way naive factorization is still able to give the correct order of magni-
tude for the branching ratios analysed in our case.
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e p — w mixing

In order to obtain a large signal for direct C'P violation, we already
stressed that p — w mixing has the dual advantages that the strong
phase difference is large and varies extremely rapidly near the w res-
onance. When the invariant mass of the #¥#~ pair is in the vicinity
of the w resonance, it is found that the C' P violating asymmetry, acp,
has a maximum @,,.; Whereas it goes to zero outside the w resonance
in the naive factorization method and may remain large in the QCD
factorization method. The direct CP violating asymmetry, acp, has
been analysed in the B decays B® — pO(w)rt® — =t as well
as B0 — p°(w)K*° — ntr~ K0 where the p—w mixing mechanism
must be included.

We found that the CP violation parameter, acp, is very sensitive to
the parameters p and 7 in the CKM matrix, and also to the magnitude
of the form factors. We found that the C P violating asymmetry, @mqx,
can vary from —37% to —84% for B® — 7~ n*x° and —17% to —53%
for B~ — n—ntr—. In the case of B® —» 7tn~K° we found amqz
varying from +37%(+55%) to —20%(—24%) and from +49%(+46%)
to —22%(—25%) for B~ — ntn~K~.

By measuring the CP violating asymmetry, acp, where the effects of
p — w mixing are taken into account, we can remove the phase uncer-
tainty mod(w) in the determination of the CKM angle o in B*° —
atr—7E0 In a similar way, it has been also possible to remove the
phase uncertainty mod() in the determination of the CKM angle v by
analysing direct C P violation in B — ntn~ K. Therefore the interfer-
ences generated by the p — w mixing allow us to eliminate the phase
ambiguity on the unitarity angles o and 7.

Finally, even though it is not possible to constrain efficiently the pa-
rameters p and n with an analysis based only on the channels B — pm
and B — pK, we have determined a range of values for p that is
0.214 < p < 0.251 and that is 0.300 < n < 0.351 for n. We recall
that the results listed previously about the form factors, F2=" and
FB~K  as well as those for the CKM matrix parameters, p and 7, are
stable against reasonable variation of the input parameters used in our
analysis.

It is clear that the inclusion of p—w mixing into the calculation of direct
C P violating asymmetry, acp, provides the opportunity to go further
into the knowledge of C'P violation since we can indirectly check the
unitarity triangle (UT) by measuring experimentally the direct asym-
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metry. We expect that the CLEO, BABAR and BELLE Collaborations
will be able to provide soon useful data regarding our analysis.

In the future...

e This work could be extended to more B decays. It would be very
interesting to constrain our parameters by investigating other channels
than pm and pK for branching ratios and asymmetries. By including
more channels such as B - K*n,B — K*n,B — K¢, we will use
more experimental data and hence be able to obtain better constraints
on our parameters.

e We largely focused our analysis on the case of B decaying into pseudo-
scalar plus vector mesons where the p —w mixing effects were included.
We have also analysed (but not included in this thesis) the results
for B decays into two vectors, such as p and K*. This analysis is
very promising and we refer the reader to the publications [233, 234]
for more details?. This work was performed in collaboration with the
LHCb experimental group of Clermont-Ferrand.

e In the QCD factorization (QCDF) framework, hard scattering and an-
nihilation contributions need further investigation. Clarifying these
points would be very helpful in avoiding any over or under estimation
of our theoretical predictions. For example, it is important to solve
the problem related to the end point integral divergence which is pa-
rameterized without any strong physical motivation. Moreover, the
annihilation contributions are not derived within the QCDF method.
To obtain a consistent framework, it would be better to find a way to

include them in QCDF.

e It has been shown in the previous chapter that the reason for the large
C P violating asymmetry outside the w window in QCDF is the large
strong phase included in the QCD penguin contribution through the
term Gpr(0). It is clear that the omission of any q*> dependence in
G(s,z) (Eq. (10.18)) is the reason for the difference between the QCDF
and the naive factorization approach. For the future, it is crucial to
work towards a consensus on the most appropriate approach to the cal-
culation of the quark loop contribution shown in Fig. 10.4 (g). Clari-

2Recently, BELLE [235, 236] and BABAR [237] published new branching ratio results
for B decays into two vectors which are in total agreement with our work.
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fication of this point would be helpful to obtain more accurate results
for the C P violating asymmetry, acp, in B decays.

e The work performed in CLFD (Covariant Light Front Dynamics) is
very promising since it shows that this formalism can be applied to
most kinds of phenomenological studies. Even though this framework
still needs to be improved, it provides excellent results for the wave
functions and transition form factors investigated in this thesis. It
would very be interesting to extend this analysis to more particles, in-
cluding baryons. As such, we are not restricted just to particle physics,
but can investigate phenomenological applications in nuclear physics
as well.

Beyond the Standard Model...

To explain the predominance of matter over antimatter in our universe re-
quires C P violation. It is well established that C'P symmetry is not an exact
symmetry in nature, because for example it is observed that the baryon num-
ber of the universe does not vanish. B decays seem to be one of the most ideal
tools with which to investigate CP violation, since all of the three families
of quarks can be involved through the Cabibbo-Kobayashi-Maskawa matrix.

Within the Standard Model, the CKM parameters A, A, p and 1 consti-
tute all of the fundamental quantities which can be described by the so-called
Unitarity Triangle [22]. The better we know this triangle and its shape, the
better we will be able to infer the intervention of any new physics which fu-
ture theoretical predictions and experimental data may reveal. Even though
a correct understanding of C P violation is expected within the Standard
Model, we do not have to exclude any other possibilities [238] to explain C'P
violation in B decays. Some other sources beyond the Standard Model might
be found such as those based on left and right symmetric model [239] and
Higgs model [240]. We can also mention supersymmetry [241, 242, 243, 244],
bariogenesis [245] and the neutrino sector [246] as an opportunity to explore
C P violation.

In any case, the understanding of C'P violation remains a great challenge
and, without any doubt, needs a strong interaction between experiment and
theory if we want to develop a deeper understanding of our universe.



Appendix A

The kernel, one-gluon exchange

in CLFD

“ On ne fait jamais attention d ce qui a €té fait; on ne voit que ce qui reste
a faire. 7

Marie Curie

In this appendix, we present the complete expressions for the functions x;
and ©; used to determine the radiative corrections in the calculation of wave
functions including a one-gluon exchange. We refer the reader to Chapter 8
for all of the definitions.

A.1 Functions

For Q, 5(x,z', R, R/ ) one has the following expressions:

Ql(x’ $,7R-L7 ,_L) .
=
RY
X (2Rﬁ_(—1 +z') + m3(—1+ z)x') + myz’ <—2 22" 4+ mi(z — :m:'))

{Qm, [m?(—l +z)(=1+2")z' + mimaz(—1+2")z’ — my(—1 + ')

+ 2(m1(—1 +z)(-1+2z")+ mz:m:') R'J_-RJ_:| } , (A1)
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~1

; PN
QZ(w,x aRJ.aRL) - Ri(_l i 11).'12

{—lengﬁ_(—l +z)z+

mi(—1+ z)}(—1 + 2')2’ + miz’ (-1 + z')z’ + 2R} (R’f(—l + z)z +
R2(-1+ :c’)a:’) + m2R% [—(—1 +2)z+ 2 +2(-3 + )z
+(-1+ 4x)x'2] +m? [—m%(l +2(-1+2z)z)(-1+2")z" +

R? (:1:2(1 —22'y+3(-1+z")z' + z(—1+ 62" — 4:c'2))] +2 [mlmg(—l +z)z+

mi(—1+2z)*(-1+2) - m2$x+R2( 1+x+$—2:c:c)]R RJ_}
(A-2)

A.2 Functions xi2

For x1.2(z,2’,Ry, R’ ) one has the following expressions:

g

1
{QRQRJ_ + m}(=1+z)(~1+z')%’

/ ry
Xl(.’L‘,:L' aRJ-7R'J.) - Ri(—l + x/)x/

+ m3z” (mga:(—l +z') + 2R2l:v') + m3myz’ (.7: —(1+z)z'+ x'?)
— myma(—1+z')z (2RJ_+m2( :1:+:v’)) mi(—1+2a')
X [2Ri(—1+x')2+m§x'(1—x'+x —-1+42a' )]

+ 2(my — ma)(mi (=14 z) + maz)(—1+ x')m’R'J_-RJ_} , (A.3)

-1
'R,.R') = 5¢_ 2
xa(@ e, R RY) = on RZ(—1+x)x(—1+x')x/{”‘1( LFiag)

(=1 + 2')%z' — mimy(=1 + 2)% (=1 + 2')2”? + mIma(—1 + 2')
[mg (1 +2(-1+ w)x)m +R? (—2(—1 +a)e +2(=1 + o)z’ +
(-3 + 4:0):1:'2)] + mya’ [2Ri (R’f(—l +z)z+R3(-1+ m’)2>
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+ miz?(—1+2')? + mIR3 (—1 +4z +2(1 + (=5 + z)z)z’
+(-1+ 4m)x’2>] — m¥(~1 + )’ [mg(l +2(=1+2)z)(~1+2) +
R2 (3 -3z +22(-3+z+ 2x'))] —my(—1+2') [2R’fRﬁ_(—1 +z)z

+ ' (2R‘i:c' + miz?e’ + mIR2 (-2’ 4+ 2z(-1+z + 2:1:')))] +2(my — m2)

X [Rﬁ_ +mi(-=1+z) —z(2R? + mgcc)] (-1+ x')x'R'J_-RJ_} . (A.4)



214 APPENDIX A. THE KERNEL ...



Appendix B

Transition form factor in CLFD

“ Le monde et la science ont leurs données propres, qui se touchent et ne se
pénétrent pas. L’une nous montre d quel but nous devons viser, l'autre, le
but étant donné, nous donne les moyens de l’atteindre. ”

Henri Poincaré
In this appendix, we present the complete expressions regarding the cal-
culation of the transition form factor in the case of pseudoscalar vector tran-
sition. All of the terms used in this section have been defined in Chapters

7, 8 and 9. We refer the reader to these chapters for their definitions. The
functions Fi(J ) are the kinematic terms involved in the transition form factor.

B.1 Functions Fl(j), 2(j)

The functions Fl(j ) take the following form:

F1(1) _ (1-y) X0
e yq2 -
o = (U= Y| x®
| vo ]
pe _ | @M =M - 1) |y
P ey - My - 1))
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Mi(y—1)* - ¢’
(4) _ 1 x®
g [ﬂw~ww ’

F® = x®
—(y—1)2ME + @(2(y — L)y — YMZ — ¢*y® + MF(M3(y — 1)* + ¢*y®)
@(((y — 2)y + 2)M§ — 2(M2 + ¢*(y — 1)y M3 + (M} — ¢*)*y?)

:
FO = 1-9)|ye ’

L yq2 _

FO = (1-y)] X
yq* |

FO® = (1-y) X6
| ve* |
i 1

FO = 1-9|ye 1
b yq2 -

) _ |1 =9 | 0

where the terms X ) read as:

XW = 2¢%y(g%y? — Mi(y — 1)%) ,

X® =2g%y(M; — Miy®) ,

X@ = x|

X =x@

X6 = q2(((y —2)y +2)M; — 2(M} + ¢*(y — 1)) yMZ + (M7 — qz)2y2) :
X©® = —2¢"* (((y — VM; + ¢")y — M3(y — 1)) ,

X0 =4g’(y - 1)y,

X(S) — 4q2y2 ,

X® = x|
X0 = (y — 1) XM . | (B.2)

The functions Fz(j ) can be expressed in terms of F3(j ) and X©) as follows,

F9 4 p@ = x0)
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B.2 Functions F3(J )
The functions Féj ) are defined as,

F{Y = —(y—1)((y - DM} = M}) + (v + D)F

FP = —(¢ - Mi(y—1)*)F;,

FO = (y- ) ((y —1)°M; + ¢*(1 — 2(y — L)y) M7

+q*y? — M(M2(y — 1)’ + ¢*y%)) ,

F¥ = —(1—-y) ("M + (M3((y — Yy + 1) — ¢y )M} + Mz (Mz — 7)) ,
F® = —(1/2)((My + Ma)? — ¢*)((My = M)? — @)y — V) F

FO = (y-1)(((y - )M? + ¢y - Mi(y — 1)) F3

F = 2y - )(MZ(y - 1)* — ¢'y") ,

FP=F"/y-1),

FP=F",
O = (y - ED (B2)

d)

where F} = ((y —2)M} + (M7 — ¢*)y) and the expression for F1(’2’3 is written
as:

Fy = 46! M2y = 1) — (v~ )MZ + )] (B.4)

B.3 Transition form factor diagrams

Figure B.1: Diagrams included in the case of the weak decay pseudoscalar
pseudoscalar transitions (a).

The one gluon exchange process included in the calculation of wave func-
tion (see Chapter 8) allows us to take into account the following diagrams



218 APPENDIX B. TRANSITION FORM FACTOR ...

in the investigation of the weak decay transition (see Chapter 9). Note that
all of the diagrams which can include a one gluon exchange process are not
calculated in our work but only those shown in Figs. B.1, B.2 and B.3. We
refer the reader to Chapters 7, 8 and 9 for all of the definitions.

Figure B.2: Diagrams included in the case of the weak decay pseudoscalar
pseudoscalar transitions (b).

Figure B.3: Diagrams included in the calculation of the weak decay pseu-
doscalar vector transitions.



Appendix C

Annihilation amplitudes in
B> atn—M

“Il y a un véritable agacement & essayer de trouver le mot précis pour les
pensées que l'on a. ”

Charlie Chaplin

In this appendix, we present the complete expressions for the annihilation
amplitudes in B — w¥m~M where M is m or K. We refer the reader to
Chapters 10 and 11 for all of the definitions.

C.1 Transition b —> u
—0
B —7%p"
tz = bl(Poa 7"0) + bl(TrOa PO) ’
pﬁ = b3(p07 71_0) + b3(7r°,p°) o 2b4(7r07 pO) + 2b4(p0,7r0)

1 ew ew ew
+ 5( - bgw(povﬂo) - bs (7r07 po) + b4 (7‘-0’ po) + b4 (Povﬂ'o)) ¢ (Cl)
—0
B —r'w
t:; b bl(waﬂ-o) 0 bl(ﬂ'ovw) ’

pe, = —ba(n°, w) — b3(w, 7°)

(15 0) + 5570 7)) 5 (470 + B0n) - (C2)

T3
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B~—7np°

t; = b2(7r‘,p°) - bg(po,ﬂ'_) ’

P; = b3(7r—’ PO) - b3(p0’7r_) + bgw(ﬂ'—apo) - b:esw(po77r—) .

B —nm"w

12 = by(m™,w) + ba(w,77) ,

p® = ba(m”,w) + ba(w,77) + b5¥ (77, w) + b3 (w,77) .

C.2 Transition b — s

B'SE

=0 =0
B oK w
ty, =0,
1
Pl = ba(B,w) = 585(K,w)
B~—K—p°

tZ, = bg(K—,w) )

Pl = bs(K7,w) + b5 (K™, w) .

(C.3)

(C.4)

(C.5)

(C.6)

(C.7)

(C.8)
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Enhanced direct CP violation in B*%— 7t 7~ K="

O. Leitner*
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We investigate in a phenomenological way direct CP violation in the hadronic decays B gt k=0
where the effect of p-w mixing is included. If N’;’” (the effective parameter associated with factorization) is
constrained using the most recent experimental branching ratios (to p°K°, p*K~, p*K’, p’K™ and wK*)
from the BABAR, BELLE and CLEO Collaborations, we get a maximum CP violating asymmetry a,,, in the
range —25% to +49% for B~ —n* 7~ K~ and —24% to +55% for B'—w* m~K°. We also find that CP
violation is strongly dependent on the Cabibbo-Kobayashi-Maskawa matrix elements. Finally, we show that the
sign of sin & is always positive in the allowed range of N/ and hence, a measurement of direct CP violation
in B9~ a* 7~ K*® would remove the mod(#) ambiguity in argl — ¥, V3,/ Vs Vis]-

DOI: 10.1103/PhysRevD.66.096008

I. INTRODUCTION

The study of CP violation in B decays is one of the most
important aims for the B factories. The relative large CP
violating effects expected in B meson decays should provide
efficient tests of the standard model through the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. It is usually assumed
that a nonzero imaginary phase angle 7 is responsible for the
CP violating phenomena. This is why, in the past few years,
numerous theoretical studies and experiments have been con-
ducted in the B meson system [1,2] in order to reduce uncer-
tainties in calculations (e.g. CKM matrix elements, hadronic
matrix elements and nonfactorizable effects) and increase
our understanding of CP violation within the standard model
framework.

Direct CP violating asymmetries in B decays occur
through the interference of at least two amplitudes with dif-
ferent weak phase ¢ and strong phase . In order to extract
the weak phase (which is determined by the CKM matrix
elements) through the measurement of a CP violating asym-
metry, one must know the strong phase & and this is usually
not well determined. In addition, in order to have a large
signal, we have to appeal to some phenomenological mecha-
nism to obtain a large 8. The charge symmetry violating
mixing between p° and w can be extremely important in this
regard. In particular, it can lead to a large CP violation in B
decays, such as B*%—p%(w)K**—ntm~ K9, because
the strong phase passes through 90° at the w resonance
[3-5]

*Email address: oleitner@physics.adelaide.edu.au
TEmail address: xhguo@physics.adelaide.edu.au
YEmail address: athomas@physics.adelaide.edu.au

0556-2821/2002/66(9)/096008(19)/$20.00

66 096008-1

PACS number(s): 11.30.Er, 12.39.—x, 13.25.Hw

We have collected the latest data for b to s tramsitions
concentrating on the CLEO, BABAR and BELLE branching
ratio results in our approach. The aim of the present work is
multiple. The main one is to constrain the CP violating cal-
culation in B*?— p%(w)K*%— 7+ 7w~ K*?, including p-w
mixing and using the most recent experimental data for B
— pK decays. The second one is to extract consistent con-
straints for B decays into p(PS) where PS can be either 7 or
K. In order to extract the strong phase &, we shall use the
factorization approach, in which the hadronic matrix ele-
ments of operators are saturated by vacuum intermediate
states. Moreover, we approximate non-factorizable effects by
introducing an effective number of colors, N

In this paper we investigate five phenomenological mod-
els with different weak form factors and determine the CP
violating asymmetry, a, for B*%— p%(w) K==t 7~ K=
in these models. We select models which are consistent with
all the data and determine the allowed range for Nﬁff
[0.66(0.61)<N*/<2.84(2.82)]. Then, we study the sign of
sin & in this range of N% for all these models. We also
discuss the model dependence of our results in detail.

The remainder of this paper is organized as it follows. In
Sec. II, we present the form of the effective Hamiltonian
which is based on the operator product expansion, together
with the values of the corresponding Wilson coefficients. In
Sec. IIl, we give the phenomenological formalism for the
CP violating asymmetry in decay processes including p-w
mixing, where all aspects of the calculation of direct CP
violation, the CKM matrix, p-» mixing, factorization and
form factors are discussed in detail. In Sec. IV we list all the
numerical inputs which are needed for calculating the asym-
metry, a, in B*%— pY%(w)K*0— 7w~ K=0. Section V is
devoted to results and discussions for these decays. In Sec.
VI we calculate branching ratios for decays such as B9

©2002 The American Physical Society
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—p=Ok*P and B*— wK* as well, and present numerical
results over the range of N:’ff which is allowed by experi-
mental data from the CLEO, BABAR, and BELLE Collabo-
rations. In Sec. VII, we summarize our results and determine
the allowed range of N%” which is consistent with data for
both p7r and pK decays. Uncertainties in our approach and
conclusions are also discussed in this section. -

II. THE EFFECTIVE HAMILTONIAN
A. Operator product expansion

Operator product expansion (OPE) [6] is a useful tool
introduced to analyze the weak interaction of quarks. Defin-
ing the decay amplitude 4(M—F) as

AM—F)oC(p){F|O(u)| M), (1)

where C;(u) are the Wilson coefficients (see Sec. II B) and
O,(u) the operators given by the OPE, one sees that OPE
separates the calculation of the amplitude, 4(M—F), into
two distinct physical regimes. One is related to ard or short-
distance physics, represented by C;(x) and calculated by a
perturbative approach. The other is the soft or long-distance
regime. This part must be treated by non-perturbative ap-
proaches such as the 1/N expansion [7], QCD sum rules [§]
or hadronic sum rules.

The operators, O;, are local operators which can be writ-
ten in the general form

0,=(qL'114,)(qiT n241)s )]

where I',,; and T',,; denote a combination of gamma matrices
and g the quark flavor. They should respect the Dirac struc-
ture, the color structure and the types of quarks relevant for
the decay being studied. They can be divided into two
classes according to topology: tree operators (0,,0;), and
penguin operators (O3 to O,o). For tree contributions w=
is exchanged), the Feynman diagram is shown Fig. 1. The
current-current operators related to the tree diagram are the
following:

01 =q—a7p,(1 - 75)“&5737“(1 - YS)ba’
B _ B 3
05=q7,(1— vys)usy*(1—ys)b,

where a and 8 are the color indices. The penguin terms can
be divided into two sets. The first is from the QCD penguin
diagrams (gluons are exchanged) and the second is from the
electroweak penguin diagrams (y and Z° exchanged). The
Feynman diagram for the QCD penguin diagram is shown in
Fig. 2 and the corresponding operators are written as fol-
lows:

03=q7,(1— ‘}'s)bz g'v(1-vs9q’,
q
@
04=a¥u(1=¥5)bg2 Tp7*(1= )00
q9
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q4 -l 214
Vap a4
b 5 e
q;
w
Via
q

FIG. 1. Tree diagram for B decays.

Os=qv (1= 762 §'y*(1+73)q’,
q
®)
06=227,(1~ ¥5)bp2 G571+ )40
q
where q' =u,d,s,c. Finally, the electroweak penguin opera-
tors arise from the two Feynman diagrams represented in
Fig. 3 (Z,v exchanged from a quark line) and Fig. 4 (Z,y

exchanged from the W line). They have the following expres-
sions:

3_ -
0r=5271=¥9bZ egd (14 75)a's  ©
g
3. = U
Og= EqQYﬂ(l - 75)b52' e‘l’qﬂ‘yﬂ'(l + 75)qa’
q

3_ =r 12
09=5_-qn(1—75)b2, e q' Y"(1—vs)q’,
q

3__ - !
010= eql‘yﬂ.(l - 75)b52’ eq’qﬁyu(l - ys)qa’
q

where e, denotes the electric charge of q'.

[+

W

FIG. 2. QCD penguin diagram, for B decays.

096008-2
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A
£

Q.

5=
FIG. 3. Electroweak-penguin diagram for B decays.

B. Wilson coefficients

As we mentioned in the preceding section, the Wilson
coefficients [9], C;(u), represent the physical contributions
from scales higher than p (the OPE describes physics for
scales lower than u). Since QCD has the property of
asymptotic freedom, they can be calculated in perturbation
theory. The Wilson coefficients include contributions of all
heavy particles, such as the top quark, the # bosons, and the
charged Higgs boson. Usually, the scale u is chosen to be of
order O(m,) for B decays. Wilson coefficients have been
calculated to the next-to-leading order (NLO). The evolution
of C(u) [the matrix that includes C;(u)] is given by

C(p)=U(u,My)C(My), @)

where U(u,Mp) is the QCD evolution matrix:

1-—

1+

U, Mp)= %W”4

47

ﬂ?dmew

®

with J the matrix summarizing the next-to-leading order cor-
rections and U%(u, M) the evolution matrix in the leading-
logarithm approximation. Since the strong interaction is in-
dependent of quark flavor, the C(u) are the same for all B
decays. At the scale u=m;,=5 GeV, C(u) take the values
summarized in Table I [10,11].

=
=

Qs

V;q, q;

(M

W

%

4=

FIG. 4. Electroweak-penguin diagram (coupling between Z, v,
and W) for B decays.
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TABLE 1. Wilson coefficients to the next-leading order (see the
reference in text).

Ci(u) for u=35 GeV

o —-0.3125
(e +1.1502
C; +0.0174 Cs +0.0104
C, +0.0373 Cs —0.0459
C,; -1.050% 1073 Cy -0.0101
Cs +3.839X 1074 Cuo +1.959x 1073

To be consistent, the matrix elements of the operators,
O;, should also be renormalized to the one-loop order. This
results in the effective Wilson coefficients, C; , which satisfy
the constraint

Ci(mb)(oi(mb))=C.{(Oiy’“, ©

where (0O;)"¢ are the matrix elements at the tree level.
These matrix elements will be evaluated in the factorization
approach. From Eq. (9), the relations between C; and C; are
[10,11]

C{=Cl, C£=C2’
C§=C3—PS/3, C"1=C4+Ps,
C{=Cs—P,3, Cg=Cg¢t+P,, (10)
C;=C7+Pe, Cé=Cg,
Cy=Co+P,, Cio=Cy,
where
P,=(a,/8m)C,[ 109+ G(m,,u,q%)],
(1)
P,=(@,n/97)(3Cy+ C)[10/9+ G(m, ,1n,43)],
and
1 m2—x(1—x)q?
G(mc,p.,qz)=4J- dxx(x—l)ln—c—g—z—-—q.
0 '
(12)

Here g is the typical momentum transfer of the gluon or
photon in the penguin diagrams and G(m,,x,q%) has the
following explicit expression [12]:
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TABLE II. Effective Wilson coefficients related to the tree operators, electroweak and QCD penguin

operators (see the reference in text).

C! g% /m%=03 g*/m3=0.5
Ci —0.3125 -0.3125
c; +1.1502 +1.1502
C; +2.433%X1072+1.543X 1073 +2.120X1072+2.174X 1073
Ci —5.808X1072—4.628x 1073 —4.869%x1072-1.552X 1072
Cé +1.733X1072+1.543x 1072 +1.420X1072+5.174% 1073
C —6.668%1072—4.628x 1073 —5.729X1072-1.552X 107 %
c; —1.435X1074—2.963X 107 % —8.340X 1075-9.938x 10
C; +3.839%107* +3.839x107*
o/ —1.023X1072—2.963%x 1075 ~1.017%x1072-9.938x 105}
Gl +1.959%x 1073 +1.959%1073
product expansion (see Sec. Il A), and p represents the
renormalization scale. We emphasize that the amplitude cor-
2 mg 5  m? 2 responding to the effective Hamiltonian for a given decay is
ReG= 3 11'1;"5-4‘1—2"' 1+2F independent of the scale u. In the present case, since we

mc
> 1+ 1“4—2
m, q
X 1—4——2-!1'1 s (13)
q mf
1- 1—4-—2
q

ImG 2(1+2m3)\/1 4m5
mG=—- = — —4—=
3 q° 7

Based on simple arguments at the quark level, the value of
g2 is chosen in the range 0.3<g%/m}<0.5 [3,4). From Egs.
(10)—(13) we can obtain numerical values for C;. These
values are listed in Table II, where we have taken a,(mz)
=0.112, a.,(mp)=11322, m,=5GeV, and m,
=1.35 GeV.

C. Effective Hamiltonian

In any phenomenological treatment of the weak decays of
hadrons, the starting point is the weak effective Hamiltonian
at low energy [13]. It is obtained by integrating out the heavy
fields (e.g. the top quark, /¥ and Z bosons) from the standard
model Lagrangian. It can be written as,

G
Heff=—J—25 3 VernCiw)Oi(w), 14)

where G is the Fermi constant, ¢k is the CKM matrix
element (see Sec. III A), C;(u) are the Wilson coefficients
(see Sec. IIB), O;(u) are the operators from the operator

analyze direct CP violation in B decays, we take into ac-
count both tree and penguin diagrams. For the penguin dia-
grams, we include all operators O; to Oyy. Therefore, the
effective Hamiltonian used will be

_. Gr 10
'HeAfﬁ l=_\E Vi Va(C 01+ C,y g)—V,bV;gS C,0;
+H.C., (15)

and consequently, the decay amplitude can be expressed as
follows:

Gr
NG}

10

—VaV3 2, CKPVI0i|B)

A(B—PV)= lVubV:s(C1<PVloi|B)+C2<PV|O§|B>)

+He, (16)

where (PV|0;|B) are the hadronic matrix elements. They
describe the transition between the initial state and the final
state for scales lower than gz and include, up to now, the
main uncertainties in the calculation since they invoive non-
perturbative effects.

. CP VIOLATION IN B**— p®(w)K*'— =¥ 7~ K**

Direct CP violation in a decay process requires that the
two CP conjugate decay processes have different absolute
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values for their amplitudes [14]. Let us start from the usual
definition of asymmetry,

I'(B—F)-T(B—F)

—, an
I'(B—F)+T(B—F)

a(B—F)=

which gives

_|4@B-P)-|AB-P
 AB—F)|*+|A(B-F)]P

a(B—F) (18)

where A(B—F) is the amplitude for the considered decay,
which in general can be written as A(B—F)=|d4,|e/1*i%
+|A4,|e%2*i¢2, Hence one gets

a(B—F)
_ —2|4,]|4,]sin(é; — by)sin( 8, ~ 8)
| 4,12+ 2}41]|42]cos(d) — pa)cos( 8 — &) + |4,
(19)

Therefore, in order to obtain direct CP violation, the CP
asymmetry parameter a needs a strong phase difference, 6,
— &,, coming from the hadronic matrix and a weak phase
difference, ¢;— ¢,, coming from the CKM matrix.

A. CKM matrix

In phenomenological applications, the widely used CKM
matrix parametrization is the Wolfenstein parametrization
[15]. In this approach, the four independent parameters are
\,4,p and 7. Then, by expanding each element of the ma-
trix as a power series of the parameter A =sin §,=0.2209 (6.
is the Gell-Mann—Levy—Cabibbo angle), one gets [O(\%) is
neglected]

1
1—5x2 A AN} (p—in)
~ B 1 2
Vexku= —A 1—5)\2 AN s
AN (1—p—in) —AN? 1
(20

where 7 plays the role of the CP-violating phase. In this
parametrization, even though it is an approximation in A, the
CKM matrix satisfies unitarity exactly, which means,

Vi Vexm=I=Vexn Viga- (1)

B. p-o mixing

In the vector meson dominance model [16], the photon
propagator is dressed by coupling to vector mesons. From
this, the p-w mixing mechanism [17] was developed. Let 4
be the amplitude for the decay B— p°(w)K— nw* 7K, then
one has

A=(Kn~=*|H"|B)+(K=~ =*|HF|B), 22)

BIBLIOGRAPHY
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with H” and H' being the Hamiltonians for the tree and
penguin operators. We can define the relative magnitude and
phases between these two contributions as follows:

A=(Kn~wt|HT|B)[1+re%e?],
T e
A=(Ra* =~ |HI|B)[1+re'®e™?],

where & and ¢ are strong and weak phases, respectively. The
phase ¢ arises from the appropriate combination of CKM
matrix elements, and ¢p=arg[(V,,V5.)/ (VusVis)]- As a te-
sult, sin ¢ is equal to sin y with vy defined in the standard
way [18). The parameter, r, is the absolute value of the ratio
of tree and penguin amplitudes:

(p°(w)K|H"|B)
(p*(w)K|HT|B)

. (24)

In order to obtain a large signal for direct CP violation, we
need some mechanism to make both sin § and r large. We
stress that p-w mixing has the dual advantages that the
strong phase difference is large (passing through 90° at the w
resonance) and well known [4,5]. With this mechanism, to
first order in isospin violation, we have the following results
when the invariant mass of w17~ is near the @ resonance
mass:
- o+ HT| By =-221 1
(Km~«*|H"|B) spswn""’t“’+ 5 ty,
(25)
gy

-+ gP - 8o
= —— -+ —
(Kn™ o [H71B)= 2L up+ 22

Pp-

Here ¢ty (V=p or w) is the tree amplitude and p, the pen-
guin amplitude for producing a vector meson, ¥, g, is the
coupling for p®—m¥m™, ﬁp,,, is the effective p-w mixing
amplitude, and s is from the inverse propagator of the vec-
tor meson V,

sV=s—m%,+ imVFV, (26)

with s being the invariant mass of the w* 7~ pair. We
stress that the direct coupling w— a7~ is effectively ab-

sorbed into I1 pw [19], leading to the explicit s dependence of
fl,,. Making the expansion IT,,(s)=1L,,(m2)+(s

—mi,)ﬁ",w(mz,), the p-w mixing parameters were deter-

mined in the fit of Gardner and O’Connell [20]:
meﬁpw(mf,)= —3500+300 MeV?, Jmﬁpw(mi)= —300

+300 MeV?, and ﬁ"m(mf,)=0.0310.04. In practice, the
effect of the derivative term is negligible. From Egs. (22),
(25) one has

i6 i¢=nnwpw+smpp

re'’e @27
Dputotsat,

Defining
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p P w
where 8,,05 and &, are strong phases (absorptive part).
Substituting Eq. (28) into Eq. (27), one finds

T i6
rei'5=r’ei5q———npw+ﬁe al 29
Ll . b
Se+ I'Ip,,,ae"sa

where
ae'le=f, Be'%6=b+ci, r'e%=d+ei, (30)

and using Eq. (29), we obtain the following result when Vs
~m,:
C+iD

(s—m2 +fRell )2+ (fImIL,,+ m,T )%
(31)

6=

re'

Here C and D are defined as

C=(s—m>+fRell , Md[Rell ,,+ b(s—m%)—cm,T ]
—e[ﬂmﬁpw+ bm,T ,+c(s~—m2)]}
+(fImIl,,+m, T ){e[Rell,,+b(s—m2)—cm,T ]
+d[3mﬁpw+bm,,,l"w+c(s—m,2,,)]}, (32)

and

D=(s—m>+fRell,,){e[Rell,,+d(s~m2)—cm,T ]
+d[3mﬁpw+bm,_,l'w+ c(s—mi,)]}
—(fImIl,,+m, L [ Rell ,, + b(s—m2)—cm,T ]
—e[ImIl,,+bm, T, +c(s—m2)]}. (33)

ae'®«, Bei®s, and r'e'% will be calculated later. In order to
get the CP violating asymmetry, @, sin¢ and cos¢ are
needed, where ¢ is determined by the CKM matrix elements.
In the Wolfenstein parametrization [15), the weak phase
comes from [V Vi/VusVys] and one has for the decay B
—pl(w)K,

(34)
-p

cos¢=ﬁ.

The values used for p and 7 will be discussed in Sec. IV A.
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C. Factorization

With the Hamiltonian given in Eq. (15) (see Sec. II C), we
are ready to evaluate the matrix elements for B*?
—p%(@)K*7. In the factorization approximation [21], either
p°(w) or K*¥ is generated by one current which has the
appropriate quantum numbers in the Hamiltonian. For these
decay processes, two kinds of matrix element products are
involved after factorization (i.e. omitting Dirac matrices and
color labels):  (p°(w)|(uu)|0O)(K="|(sb)|B*")  and
(K*%(4192)|0){p"(@)|(ub)|B=?), where ¢, and g, could
be u, s or d. We will calculate them in several phenomeno-
logical quark models.

The matrix elements for B—X and B— X" (where X and
X" denote pseudoscalar and vector mesons, respectively) can
be decomposed as follows [22]:

2

2
mp—my
(X\J,.BY= (PB+PI_ o)

k) Fi(k?)
n

m—md

+ T

k Fo(k?), (35)
and

2
(X7|J,,|B)= €uvpo€” "PEP XV ()
mpgtmys

r

+il € (mp+my) A (k2)—
. B o ! mB+MX*

*

: ek
X(Pp+Pys) Ay (k)= —==2m ek A3(I)

k

*

€k 5
+1k_22mX"'ky,A0(k ), (36)

where J, is the weak cument, defined as J,= 771
—ys5)b with g=u,d,s and k=pp—pxx+). €, is the polar-
ization vector of X*. F, and F, are the form factors related
to the transition 0~ — 0", while 4y, 4y, 45, A3 and ¥V are
the form factors that describe the transition 0~ — 1. Finally,
in order to cancel the poles at g>=0, the form factors respect
the conditions

F1(0)=F(0), 45(0)=4,(0), €Y
and they also satisfy the following relations:

mp+m mp—m
A3k = 2 4 () - —2—L4,(8).  (39)
2myw 2my

An argument for factorization has been given by Bjorken
[23]: the heavy quark decays are very energetic, so the
quark-antiquark pair in a meson in a final state moves very
fast away from the localized weak interaction. The hadroni-
zation of the quark-antiquark pair occurs far away from the
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remaining quarks. Then, the meson can be factorized out and
the interaction between the quark pair in the meson and the
remaining quark should be tiny.

In the evaluation of matrix elements, the effective number
of colors, Nﬁff , enters through a Fierz transformation. In
general, for operator O;, one can write

1

1
——=—+4¢; with i=1,...,10, (39)
( szf )i 3 6i
where ¢; describes non-factorizable effects. We assume §£; is
universal for all the operators O;. We also ignore the final
state interactions (FSI). After factorization, and using the de-
composition in Egs. (35),(36), one obtains, for the process

B°—p%w)K®,

i

ﬁe""p=.—m”lp"| (%[

Po

+

1

1 1
Ch+ N:CS) +(c9+ ECIO)}prl(mz)+‘
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- 1
tymmalfl| it fFmd, @0

where f, is the p decay constant [and to simplify the formu-
las we use N, for N7 in Egs. (40)-(50)}. In the same way,
we find 7,=1,, s0 that

aeile=1, @1

After calculating the penguin operator contributions, one has

1
C8+ N_,;C7”

, . ViV
relli=— ] 4 V’bV:S|, (42)
(C{+N—C§)pr1(m§) Hs
and
r 1 ’ 1 ' 1 ’
C4+1VCC3 _E C10+EC9
mx i
(T 6ol | @)

where fy is the K decay constant. In Eqgs. (42), (43), p,, has the following form:

+

- 1
Y 8 [
1

1 1 1 1
C;+ F‘-Cé) ]prl(m;zy)"'E[(C;"' FV—CC,’;) +(C;+ N—ccio)]prl(mi)

+|{ Ci+ Cil1-2 CL+ ! C! michAO(mi) +!lcl+ 1 c! 1 ' 1 ’ 2
8 Nc i B Nc 5 (m,,+md}{md+ms) 4 ]Vc 3 E C10+EC9 fKAO(mK) s (44)

and the CKM amplitude entering the b— s transition is

Vip

S

1

1 1

Vub

-t

TN VT a2 [smpl’

(45)

with B defined as the unitarity triangle as usual. Similarly, by applying the same formalism, one gets for the decay B~

—pY(w)K",
g 1 ’ /4 1 ’
‘p=mB|Pp|[ C{+A—ICC2)pr1(m‘2,)+(C2+ ¥. € )fKAO(m%() . (46)
In the same way, we find ¢,,=¢,, therefore one has, again,
ae'fa=1, 47

The ratio between penguin and tree operator contributions, which involves CKM matrix elements, is given by
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th

r'elly=— 1 7 V. | (48)
and finally,
o mlp (1 3sf( ., v N, 1 1
Be f’,s=—pw—"—[(c4+ ATCC3)fKA0(mf()+ 5[(C7+ Ecg) +(cg+ ]VCC'O) ]f,,Fl(m,z,)+(Cio+ Ivcé)fKAo(mi)
, ] L mf xAo(m)
2[(CG+ CS)*(C"*EC’) (matm)my+m) |’ @)

where the w penguin operator contribution, p,,, is

g ’ 1 ’ ' 1 ’ 1
pw=mB|ppI[2[(C3+ JVCC“) +(C5+ N—ccs)]fpﬂ(mz)*‘ 3

r l ’ 14 1 1 1 ! ' 1 ’
+ (c4+ EQ) +(c,0+ Ec;)lfKAo(m})—z[(cg+ ch) +(C6+ Ecs)]

D. Form factors

The form factors F;(k?) and 4,;(k*) depend on the inner
structure of the hadrons. We will adopt here three different
theoretical approaches. The first was proposed by Bauer,
Stech, and Wirbel (BSW) [22], who used the overlap inte-
grals of wave functions in order to evaluate the meson-
meson matrix elements of the corresponding current. The
momentum dependence of the form factors is based on a
single-pole ansatz. The second one was developed by Guo
and Huang (GH) [24]. They modified the BSW model by
using some wave functions described in the light-cone
framework. The last model was given by Ball [25] and Ball
and Braun [26]. In this case, the form factors are calculated
from QCD sum rules on the light-cone and leading twist
contributions, radiative corrections, and SU(3)-breaking ef-
fects are included. Nevertheless, all these models use phe-
nomenological form factors which are parametrized by mak-
ing the nearest pole dominance assumption. The explicit k?
dependence of the form factor is as [22,24-27]:

hi

2y —

Fl(k )— l k2 n»
m
hy

2N 0

AO(k )_(l k2 )n!

my,

or

’ 1 14 14 1 !
C7+]chs) +(C9+ ]VCCIO)}prl(m,Z,)

m
2
(mo+ my)(mp+ my) “"°"”K’]'
(50)
|
by
Fl(k2)= k2 k2 23
1—d)—+b;| —
"md 1("1%)
(51)
hAo
Ao(kz)— 2 kz 23
1—dg— +bo| —
O m3 O(mi)

where n=1.2, my, and m, are the pole masses associated
with the transition current, #; and A 4, are the values of form
factors at g>=0, and d; and b; (i=0,1) are parameters in the
model of Ball.

IV. NUMERICAL INPUTS
A. CKM values

In our numerical calculations we have several parameters:
g%,N,, and the CKM matrix elements in the Wolfenstem
parametnzatxon As mentioned in Sec. II B, the value of ¢? is
conventionally chosen to be in the range 0.3<q*/m}<0.5.
The CKM matrix, which should be determined from experi-

TABLE II. Values of the CKM unitarity triangle for limiting
values of the CKM matrix elements.

a B 14
(pmin ’ ﬂmin) 104°47 19°32 56°21
(Prmin » Mmas) 93°13 24°31 62°56
(pmuxsﬂmin) 112° 14 21°20 46°66
(Pmax > Mmazx) 99°66 26°56 53°78
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TABLE IV. Form factor values for B—p and B—K at g*=0 (see the reference in text).

hAo hy M4, my do(dy) bo(b1)
model (1) 0.280 0.360 5.27 541
model (2) 0.340 0.762 5.27 541
model (3) 0.280 0.360 5.27 541
model (4) 0.340 0.762 5.27 541
model (5) 0.372 0.341 1.400(0.410) 0.437(—0.361)

mental data, is expressed in terms of the Wolfenstein param-
eters, A, \, p, and 7 [15]. Here, we shall use the latest values
[28] which were extracted from charmless semileptonic B
decays, (|V,5|), charm semileptonic B decays, (| V.5!), s and
d mass oscillations, Am,, Amy, and CP violation in the
kaon system (€k),(p, 7). Hence, one has

A=0.2237, 4=0.8113, 0.190<p<0.268,

(52)
0.284< 7<0.366.

These values respect the unitarity triangle as well (see also
Table III).

B. Quark masses

The running quark masses are used in order to calculate
the matrix elements of penguin operators. The quark mass is
taken at the scale w=m, in B decays. Therefore one has [29]

m,(u=my)=2.3 MeV, myp=m,)=4.6 MeV,

(53)

m(u=mp)=90 MeV, my(p=my;)=49 GeV,

which corresponds to m(u=1 GeV)=140 MeV. For me-
son masses, we shall use the following values [18]:

mp==5279 GeV, mg=5279 GeV,

myg==0.493 GeV, myge=0.497 GeV,

(54)

m,==0.139 GeV, mn=0.135 GeV,

my=0.769 GeV, m,=0.782 GeV.

C. Form factors and decay constants

In Table IV we list the relevant form factor values at zero
momentum transfer [22,24-26,30] for the B—X and B—p
transitions. The different models are defined as follows:
models (1) and (3) are the BSW model where the ¢* depen-
dence of the form factors is described by a single- and a
double-pole ansatz, respectively. Models (2) and (4) are the
GH model with the same momentum dependence as models
(1) and (3). Finally, model (5) refers to the Ball model. We
define the decay constants for pseudo-scalar (f) and vector
(fy) mesons as usual by,

(P(D)q17,759210)=ifpq .,

_ (55)
V2(¥(9)|217,.9210)=fymyey,

with g, being the momentum of the pseudo-scalar meson,
my and €, being the mass and polarization vector of the
vector meson, respectively. Numerically, in our calculations,
we take [18],

fx=160 MeV, f,=f,=221 MeV. (56)
The p and o decay constants are very close and for simpli-
fication (without any consequences for results) we choose

fp=fw-

V. RESULTS AND DISCUSSION

‘We have investigated the CP violating asymmetry, a, for
the two B decays: B°—p°R%—n*w K° and B~ —p°K~
—a* 5 K~. The results are shown in Figs. 5 and 6
for B'—atn R, (a=[T(B°—n*m K%)-T(B°
—a 7 K/ [T(B— 7t 7 K% +T(B°'—»a 7 K% ]),
where k%/m2=0.3(0.5) and for N/ equal to 0.61, 0.66,
2.65, 2.6, 2.82 and 2.84. Similarly, in Figs. 7 and 8, the
CP violating asymmetry, a, (=[[(B"—# 7 K")
~T(B*—m a* K*)]/[T (B~ —a*m K")+T(B*
—a mtK*Y))), is plotted for B"— a7 K™, where
k?/m}=0.3(0.5) and for the same values of N previously
applied for B— " 7" K°. In our numerical calculations,

40 L] ] L) I L T L} l T l L] ‘ L] I
30 /.-"'"'.\ ]
L = i o
° '.f_"’ ~ .
pe 201 N -
) %
% L \\.\ -
£ 10+ \\\ =
g I %
¥ o= S
-~ '\\
I \ 7 H'ﬂ ......... :
10} N £ TEsmmzo
!
s A4 3
| B (NI [T NN SN Y TR LN

i L I L
2%0 770 780 790 800 810
S (MeV)

FIG. 5. CP violating asymmetry, a, for B®—ax* 7 K°, for
k2/m2=0.3, for N*//=0.66,2.69,2.84 and for limiting values, max
(min), of the CKM matrix elements for model (1): dot-dot-dashed
line (dot-dash-dashed line) for N¥/=0.66. Solid line (dotted line)
for N&/=2.69. Dashed line (dot-dashed line) for N*//=2.84.
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TABLE IV. Form factor values for B—p and B—K at g>=0 (see the reference in text).

ha, hl my, my do(dy) bo(by)
model (1) 0.280 0.360 5.27 5.41
model (2) 0.340 0.762 527 541
model (3) 0.280 0.360 5.27 541
model (4) 0.340 0.762 527 541
model (5) 0372 0.341 1.400(0.410) 0.437(—0.361)

mental data, is expressed in terms of the Wolfenstein param-
eters, 4, A, p, and 7 [15). Here, we shall use the latest values
[28] which were extracted from charmless semileptonic B
decays, (|V,3|), charm semileptonic B decays, (|V|), s and
d mass oscillations, Am;, Am,, and CP violation in the
kaon system (€x),(p, 7). Hence, one has

A=0.2237, A=0.8113, 0.190<p<0.268,

(52)
0.284< 7<0.366.

These values respect the unitarity triangle as well (see also
Table III).

B. Quark masses

The running quark masses are used in order to calculate
the matrix elements of penguin operators. The quark mass is
taken at the scale p==m, in B decays. Therefore one has [29]

m,(u=my)=23 MeV, mgpp=my)=4.6 MeV,

(53)

m(w=mp)=90 MeV, my(u=m;y)=49 GeV,

which corresponds to m(n=1 GeV)=140 MeV. For me-
son masses, we shall use the following values [18]:

mp==5279 GeV, mgzo=5.279 GeV,

myg==0.493 GeV, mx=0.497 GeV,

(54)

m,==0.139 GeV, m,0=0.135 GeV,

m=0.769 GeV, m,=0.782 GeV.

C. Form factors and decay constants

In Table IV we list the relevant form factor values at zero
momentum transfer [22,24-26,30] for the B—K and B—p
transitions. The different models are defined as follows:
models (1) and (3) are the BSW model where the g* depen-
dence of the form factors is described by a single- and a
double-pole ansatz, respectively. Models (2) and (4) are the
GH model with the same momentum dependence as models
(1) and (3). Finally, model (5) refers to the Ball model. We
define the decay constants for pseudo-scalar (fp) and vector
(fv) mesons as usual by,

(P(DNq17,759210)=ifpd

_ (55)
V2(V()14)7.4210)=fvmyey,

with ¢, being the momentum of the pseudo-scalar meson,
my and €y being the mass and polarization vector of the
vector meson, respectively. Numerically, in our calculations,
we take [18],

fx=160 MeV, f,=f,=221 MeV. (56)
The p and w decay constants are very close and for simpli-
fication (without any consequences for results) we choose

fo=fo-

V. RESULTS AND DISCUSSION

We have investigated the CP violating asymmetry, a, for
the two B decays: B'— p®K%— 7+ 7~ K° and B~ —p°K~
—n*n"K~. The results are shown in Figs. 5 and 6
for B'—atn KO, (@=[T(B°—=* = K%-T(B°
a1~ m K%/ [[(B°— w7 K+ (B -7 n*K%)]),
where k%/m?=0.3(0.5) and for N*/ equal to 0.61, 0.66,
2.65, 2.69, 2.82 and 2.84. Similarly, in Figs. 7 and 8, the
CP violating asymmetry, a, (=[['(B"—#*7m K)
-T(B*> 7 #*K*)]/[T(B~—=a*w"K)+T(B*
—a~w"K")]), is plotted for B~—a" 7w K™, where
k*/m%=0.3(0.5) and for the same values of N previously
applied for B®—n* 7~ K°. In our numerical calculations,

L B Ea T A LA B
30~ _.r"’”‘-'\_ =
o ;-"-f" ----- =S .\.
[ 20 \.'\. -
c% B \\:\. -
°m 10~ \\\ o
g ol N i
T I X%
i N £ \"\-._ 0
of NS
5 A WA ]

I | L il 1 i | 1 | I | 1 | i
W 770 7180 790 800 810 820 830 840
VS (MeV)

FIG. 5. CP violating asymmetry, a, for B'—#* 7~ K°, for
k2/m3=0.3, for N¥/=0.66,2.69,2.84 and for limiting values, max
{min), of the CKM matrix elements for model (1): dot-dot-dashed
line (dot-dash-dashed line) for N¥/=0.66. Solid line (dotted line)
for N/=2.69. Dashed line (dot-dashed line) for NZ7/'=2.84.
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TABLE VI. Maximum CP violating asymmetry @,,,(%) for
B~ — K~ for all models, limiting values of the CKM matrix
elements (upper and lower limit), and for k*/m%=0.3(0.5).

N =0.66(0.61) N =2.84(2.82)

cmin

model (1)
Pmax s> Tmax 47(45) - 15( . 17)
Pmin ’77min 34(35) _21(—23)
model (2)
Pmax > Mmax 45(41) —11(— 13)
Prmin > Tmin 33(32) —17(—18)
model (3)
Pmax s Mmax 47(44) —15(—17)
Pmin > Mmin 34(35) _20(—23)
model (4)
Pmax s Tmax 45(42) —12(—13)
Pmin s Mmin 33(32) - 17(“ 18)
model (5)
Pmax > Mmax 49(46) -17(-19)
Pmin s Tmin 36(35) _22(—25)

(p,7) is around 1.26(1.37). If we consider the maximum
asymmetry parameter, a,,,, for N7, =2.84(2.82), we ob-
serve a distinction between the models. Indeed, two classes
of models appear: models (2) and (4) and models (1), (3)
and (5). For models (2) and (4), one has an asymmetry,
@pax, around —6%(—7%) and around —9%(—10%) for
the upper and lower set of (p, %), respectively. The ratio
between them is around 1.50(1.42). For models (1), (3) and
(5), the maximum asymmetry is of order —14.3%
(—16.3%) for (Pmax>Mmax) and around —19.3%
(—23.0%) for (Pmin > Mmin)- In this case, the ratio between
asymmetries is around 1.34(1.41).

The first reason why the maximum asymmetry, @,,,,, can
vary so much comes from the element ¥, . The other CKM
matrix elements ¥,,, V,; and V,,,, all proportional to 4 and
A, are very well measured experimentally and thus do not
interfere in our results. Only ¥, , which contains the p and
7 parameters, provides large uncertainties, and thus, large
variations for the maximum asymmetry. The second reason
is the non-factorizable effects in the transition b—s. It is
well known that decays including a K meson (and therefore
an s quark) carry more uncertainties than those involving
only a 7 meson (u, d quarks). If we look at the asymmetries
at N7, all models give almost the same values, whereas at

cemin ®
N‘;”,;,fax , we obtain different asymmetry values (with, more-
over, a change of sign for the CP violating asymmetry). The
CP asymmetry parameter is more sensitive to form factors at
high values of N*/ than at low values of N7/ . It appears
therefore that all of the models investigated can be divided in
two classes, referring to the two classes of form factors.
For B~ —at#~K~, we have similarly investigated the
CP violating asymmetry. The values of maximum asymme-
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try parameter, a,,,,, for a range of Njff from 0.66(0.61) to
2.84(2.82), where kz/mz,,=0.3(0.5) and for the five models
analyzed, are given in Table V1. We found that for this decay,
the CP violating parameter, a, takes values around
49%(46%) to —22%(—25%) for the limiting CKM matrix
values of p and # defined before. Once again, the sign of the
asymmetry parameter, a, is positive if the value of NV, stays
below 2.7. If we focus on N%, equal to 0.66(0.61), models
(1), (2), (3), (4) and (5) give almost the same value which is
around 46.6% (43.6%) for the maximum values of the CKM
matrix elements. For the set (Pmin»>min), the maximum
asymmetry, g, is around 34.0%(33.8%). The ratio between
asymmetry values taken at upper and lower limiting p and #
values is around 1.37(1.28). Let us have a look at the CP
asymmetry values at Nﬁ{;{a,. As we observed for the decay

B~ 777 KY, all models are separated into two distinct
classes related to their form factors. For models (1), (3) and
(5), the value of maximum asymmetry, @,,,, is around
—15.6%(—17.6%) and around —21%(—23.6%) for the
maximum and minimum values of set (p,#), respectively.
The calculated ratio is around 1.34(1.34), between these two
asymmetries. As regards models (2) and (4), for the same
set of (p,7), ome gets —11.5%(—13%) and —17%
(— 18%). In this case, one has 1.47(1.38) for the ratio. The
reasons for the differences between the maximum asymme-

try parameter, a,,., are the same as in the decay B°
-t K°.

By analyzing the B decays, such as B°—a* 7~ K° and
B~ —atw K™, we found that the CP violating asymmetry,
a, depends on the CKM matrix elements, form factors and
the effective parameter N7 (in order of increasing depen-
dence). As regards the CKM matrix elements, the depen-
dence through the element, V,;, contributes to the asymme-
try in the ratio between the » penguin contributions and the
p tree contributions. It also appears that for the upper limit of
set (p,7), we get the higher value asymmetry, a, and vice
versa. With regard to the form factors, the dependence at low
values of N9/ is very weak although the huge difference
between the phenomenological form factors [models (2) and
(4) and models (1), (3) and (5)] applied in our calculations.
At high values of Njff the dependence becomes strong and
then, the asymmetry appears very sensitive to form factors.
For the effective parameter, N% (related to hadronic non-
factorizable effects), our results show explicitly the depen-
dence of the asymmetry parameter on it. Because of the en-
ergy carried by the quark s, intermediate states and final state
interactions are not well taken into account and may explain
this strong sensitivity. Finally, results obtained at k%/m}
=0.3(0.5) also show renormalization effects of the Wilson
coefficients involved in the weak effective hadronic Hamil-
tonian. For the ratio between asymmetries, results give an
average value of order 1.36(1.40) for B°—»n*#~K° and
1.39(1.33) for B~ —a*#~K~. This ratio is mainly gov-
erned by the term 1/sin B, where the values of the angles «,
B and vy are listed in Table III.

As a first conclusion on these numerical results, it is ob-
vious that the dependence of the asymmetry on the effective
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FIG. 9. sin 8, as a function of N%”, for B®~x* 7 K°, for
k%/m%=0.3(0.5) and for model (1). The solid (dotted) line at
sin 6=+1 corresponds to the case ﬁp,,,=( —3500; —300), where
p-o mixing is included. The dot-dashed (dot-dot-dashed) line cor-

responds to i1 p0=1{0;0), where p-w mixing is not included.

parameter Niff is dramatic and therefore it is absolutely nec-
essary to more efficiently constrain its value, in order to use
asymmetry, a, to determine the CKM parameters p and 7.
We know that the effects of p-w mixing only exist around w
resonance. Nevertheless, in Figs. 5, 6, 7, and 8, at small
values of N'j” , e.g. =0.6, the curves show large asymmetry
values far away from w resonance, which is a priori unex-
pected. In fact, if we assume that nonfactorizable effects are
not as important as factorizable contributions, then N/
should be much bigger [see Eq. (39)]. From previous analy-
sis on some other B decays such as B—Dw, B—w, and
B—wK, it was found that N¥ should be around 2 [31].
Therefore, although small values of N7 are allowed by the
experimental data we are considering in this paper, we ex-
pect that the value of N cannot be so small with more
accurate data. We have checked that when N7 is larger than
1 the large CP asymmetries are confined in the w resonance
region. With a very small value of Nf.H , nonfactorizable
effects have been overestimated. This means that soft gluon
exchanges between p°(w) and K may affect p-w mixing and
hence lead to the large CP asymmetries in a region far away
from w resonance. However, when \/; is very far from w
resonance, the CP asymmetries go to zero as expected.

In spite of the uncertainties discussed previously, the main
effect of p-w mixing in B— =+ 7K is the removal of the
ambiguity concerning the strong phase, sin é. In the b—s
transition, the weak pbase in the rate asymmetry is propor-
tional to sin y where y=arg{ — (Vs V33)/(VusVis)]. Know-
ing the sign of sin §, we are then able to determine the sign
of sin <y from a measurement of the asymmetry, a. In Figs. 9
and 10, the value of sin 8 is plotted as a function of N%/ for
B~ at7 K® and B~ —wt 7w K™, respectively. It ap-
pears, in both cases, when p-w mixing mechanism is in-
cluded, that the sign of sin § is positive, for all models stud-
ied, until N%” reaches 2.69(2.65) for both B~ —a* 7w~ K~
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FIG. 10. sin &, as a function of N&, for B~ —aw*w K™, for
k%/m3=0.3(0.5) and for mode! (1). The solid (dotted) line at
sin §=+1 corresponds to the case ﬁw=(—3500;—300), where
p-w mixing is included. The dot-dashed (dot-dot-dashed) line cor-

responds to ﬁpw=(0;0) where p-@ mixing is not included.

and B'— 7" 7~ K°, when k*/m3=0.3(0.5). For values of
Nﬁff bigger than this limit, sin 6 becomes negative. At the
same time, the sign of the asymmetry also changes. In Figs.
11(b) and 12(b), the ratio of penguin to tree amplitudes is
shown for B*%—n*n K*9 in the case of II,,=
(—3500,—300). The critical point around N%/=2.7 refers
to the change of sign of sin &. Clearly, we can use a measure-
ment of the asymmetry, a, to eliminate the uncertainty
mod(7r) which is usually involved in the determination of vy

ll;lllll’l‘l 101|||1||l||l

0|1||lll||!|

0051 15 2 25 3

@ N ) N

c

FIG. 11. The ratio of penguin to tree amplitudes, r, as a function
of N/, for B®—m* n~ K®, for k*/m3=0.3(0.5), for limiting val-
ues of the CKM matrix elements (p,n)max (min), for i o
=(—3500; —300)(0,0) [i.e. with (without) p-w mixing] and for
model (1). (a) For i po=1(030), solid line (dotted line) for k*/m?
=0.3 and (p,7)max (min). Dot-dashed line (dot-dot-dashed line)
for k/m%=0.5 and (p,7)max (min). (b) The same caption as (a)
but for IT,,=(—3500; —300).
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FIG. 12. The ratio of penguin to tree amplitudes, », for B~ HP“’
—7ta~K~. We have the same caption for (a) and (b) as in Fig. Y3

11.

(through sin 27). If we do not take into account p-w mixing,
the CP violating asymmetry, a, remains very small (just a
few percent) in both decays. In Figs. 9 and 10 (for the evo-
lution of sin ) and in Figs. 11(a) and 12(a) (for the evolutmn
of penguin to tree amphtudes), for Bt 7w K0,
plot sin & and r when i po={(0,0)—i.e. without p-» mixing.
There is a critical point at N*/=1 (for B®— o+ 7~ K°) and
N=0.24 (for B~— m* 2~ K™) for which the value of sin &
is at its maximum and comresponds (for the same value of
N, to the lowest value of r. The last results show the
double effect of the p-w mixing: the CP violating asymme-
try increases and the sign of the strong phase & is deter-
mined.

VI. BRANCHING RATIOS FOR B*"—p®K*?
A. Formalism
With the factorized decay amplitudes, we can compute the
decay rates by using the following expression [27]:
|p,I* |[4(B—VP)|?

'(B—-VP)= s
( ) wm%| €v'Pr |

(57)

where ];p is the c.m. momentum of the decay particles de-
fined as

\{[_m%_(ml +my)*[my—(m;—my)?]

ZmB

lpol= (58)

m; (m,) is the mass of the vector (pseudo-scalar) V(P) par-
ticle, ey is the polarization vector and 4(B—VP) is the
decay amplitude given by

A(B—>VP)—— E vT-Pa(VP|O,|B),

V2 it

(59)

FIG. 13. B decays without (upper) and with (lower) p-» mixing.

where the effective parameters, a;, which are involved in the
decay amplitude, are the following combinations of effective
Wilson coefficients:

1
a2]=C2j Neff

c

CZ j—1>
(60)

1
azj I—Czj 1+N¢ff fOl'_] ,5.

All other variables in Eq. (59) have been introduced earlier.
In the Quark Model, the diagram (Fig. 13 top) gives the main
contribution to the B— p°K decay. In our case, to be consis-
tent, we should also take into account the p-w mixing con-
tribution (Fig. 13 bottom) when we calculate the branching
ratio, since we are working to the first order of isospin vio-
lation. The application is straightforward and we obtain the
branching ratio for B— p°K:

Gl

BR(B—p"K)= T,

[VSTA‘fo(al,az)

,310)] +[V3-.A£(al ,a3)
—~ 2
fi,, |
(s,—m2)+im,T |

(61)

- VfAio(ag,, e

P 4P
- VsAw(afi’ (oo 1a10)}

In Eq. (61) G is the Fermi constant, I' is the total w1dth B
decay, and a; is an integer related to the given decay. A% and
A are the tree and penguin amplitudes which respect quark
interactions in the B decay. ¥7** [in Eq. (59)] or VI , Vf [in
Eq. (61)] represent the CKM matrix elements involved in the
tree and penguin diagrams, respectively:
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VI=|V V5l for i=12,
: (62)
vP=|V V2| for i=3,...,10.

B. Calculational details
In this section we enumerate the theoretical decay ampli-
tudes. We shall analyze five b into s transitions. Two of them
involve p-w mixing. These are B~ — p°K ™~ and B°— p°K°.
Two other decays are B°—p~K* and B~ —p K° and the
last one is B~ — wK ™. We list in the following the tree and

penguin amplitudes which appear in the given transitions.
“For the decay B~ —p°K~ [a;,=32 in Eq. (61)],

V245(ay,a2)=arf,F\(m3) +asfxdo(mi),  (63)
3
\/EA::(“;, -+ +»a10) =pr1(m,2,){E(a7+a9)] +fiedo(my)

X‘a4+a10—2(a6+as)

mg
X

] ; (64)

(mu+ms)(mb+mu)
for the decay B~ — wK ™ [a;=32 in Eq. (61)],

V24l(a1,a2)=af Fi(m))+arfido(mp),  (63)
1
24% (a3, ...,a,o)=f,,F1(m§){2(a3+a5)+5(a7+a9)]

+f1<Ao(m?(){ —2(ag+ag)

mi

Xt me)(mytm,)

+a4+a10];
(66)
for the decay B%— p°&° [, =32 in Eq. (61)],

\/5A§(a1 ,a)=a fFi(m}), (67)
3
\/—Z-A,f(as, -+ -»a10) =fPF1(mf,){5(a7+a9)] +frAo(mg)

X{a4—(2a6—a8)

mk 1 ’
% (mytmg)(my+my)| Zou
| (68)
for the decay B°— wK® [a;,=32 in Eq. (61)],
V245(ay,a2)=arf ,Fi(m}), (69)
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1
V24{(a3, . .. ,a10) =f,,Fl(mf,)[2<a3+a5)+-2-(a7+a9>]

+fKAo<mi>{a4—(2a6—as>

mi; 1 .
X (mg+my)(my+my) — 240>
(70)
for the decay B~ —p~K° [a,=16 in Eq. (61)],
A](a1,a))=arf,F\(m}), (71)

1
AX(as, ... ,a10) =fKA0(m§(){ a4~ 5aj0~ (2a6—as)

2
mg
X

J - (72)

(ms+mg)(mp+mg)
for the decay B°—p*K~ [a;=16 in Eq. (61)],

Al(ay,a5)=ayrfxdo(my), (73)

Al(as, ... ,a) =fKA0(m%()[ ast+ay—2(as+as)

mi

X

. 74
(ms+mu)(mb+mu)} i
Moreover, we can calculate the ratio between two branching
ratios, in which the uncertainty caused by many systematic
errors is removed. We define the ratio R as

- BR(B%—p*K~)

- + -+ 2 (75

BR(B*— p’K™®) )
and, without taking into account the penguin contribution,
one has

2T
FBO

o,,
Xl 1+
(sp-—mi,)+im,,,l",,,

C. Numerical results

The numerical values for the CKM matrix elements V{"*,

the p-w mixing amplitude ﬁp,,,, and the particle masses
my, p, which appear in Eq. (61), have been all reported in
Sec. IV. The Fermi constant is taken to be Gp
=1.166391% 1075 GeV~2 [18], and for the total width B
decay, I g(=1/75), we use the world average B lifetime val-
ues [combined results from ALEPH, Collider Detector at
Fermilab (CDF), DELPHI, L3, OPAL and SLAC Large De-
tector (SLD)] [28]:

R

( alf,,Fl(m,%))
1+
arfxdo(mk)
=2

(76)
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TABLE VII. The measured branching ratios by CLEO, BABAR and BELLE factories for B decays into

pK (107%) (see the reference in text).

CLEO BABAR BELLE
p°K= 8.46739+1.8% (=17)° 10+ 6+2° (=29)° <13.5°
p* - - =<23.6°
pEK* 16.0115+2.8% (<32)° - 158154130
p°K° - - =
BR(sz:) 189i1.41 - —
BR(p°K™)
wK* 3.2524+0.8° (7.9 14%13+03° 9.2128+1.0°
“Fit.

"Upper limit.

“Experimental data.

T50=1.546=0.021 ps,

(77)
T+=1.64720.021 ps.

To compare the theoretical results with experimental data,
as well as to determine the constraints on the effective num-
ber of color, N, the form factors, and the CKM matrix
parameters, we shall apply the experimental branching ratios
collected at CLEO [32], BELLE [33-35] and BABAR
[36,37] factories. All the experimental values are summa-
rized in Table VII.

In order to determine the range of N7/ available for cal-
culating the CP violating parameter, a, in B*°— pX =9, we
have calculated the branching ratios for B=—p°k*, B*
—p*K® B°—p*K*, B'—p°k° and B*—wK*. We
show all the results in Figs. 14, 15, 16, 17, and 18, where
branching ratios are plotted as a function of Njff for models
(1) and (2) [different form factors are used in models (1)
and (2)]. By taking experimental data from CLEO, BABAR

18x107°
1.6x10*
1.4x107*
€L 1.2x10%
1x10°
3x10°
6x10°
4x10®
2x10°

)

BR(B*—sp"

FIG. 14. Branching ratio for B*—p®k™ for models (1) [(2)],
k*/m%=0.3 and limiting values of the CKM matrix elements. The
solid line (dotted line) is for model (1) and max (min) CKM matrix
elements. Dot-dashed line (dot-dot-dashed line) is for model (2)
and max (min) CKM matrix elements. The notation is as follows:
horizontal dotted line: CLEO data; dashed line: BABAR data; dot-
dashed line: BELLE data.

and BELLE Collaborations, listed in Table VII, and compar-
ing theoretical predictions with experimental results, we ex-
pect to extract the allowed range of N in B—pK and to
make the dependence on the form factors explicit between
the two classes of models: models (1), (3) and (5), and mod-
els (2) and (4). We shall mainly use the CLEO data, since
the BABAR and BELLE data are (as yet) less numerous and
accurate. An exception will be made for the branching ratio
B*— wK*, where we shall take the BELLE data for our
analysis since they are the most accurate and most recent
measurements in that case. Nevertheless, we shall also apply
all of them to check the agreement between all the branching
ratio data. The CLEO, BABAR and BELLE Collaborations
give almost the same experimental branching ratios for all
the investigated decays except for the decay B™—wK™. In
this later case, we observe a strong disagreement between all
of them since they provide experimental data in a range from
0.1X107% to 12.8X 1075, Finally, it is evident that numeri-
cal results are very sensitive to uncertainties coming from the
experimental data and from the factorization approach ap-

| -

U TR |

]
=
[
T T 1

w
"
—
=)
&
1

T

FIG. 15. Branching ratio for B*—+p=K?®, for models (1) [(2)],
k*/m%=0.3 and limiting values of the CKM matrix elements. Solid
line (dotted line) is for model (1) and max (min) CKM matrix
elements. Dot-dashed line (dot-dot-dashed line) is for model (2)
and max (min) CKM matrix elements. Same notation as in Fig. 14,
but only experimental upper limits are available.
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2.8x10%
24x10%

2x10"

1.6x10°

BRB'-p*k ™

1.2x10°
8x10%=

4x10%-

FIG. 16. Branching ratio for B°—p*K7*, for models (1) [(2)],
k*/m%=0.3 and limiting values of the CKM matrix elements. Solid
line (dotted line) is for model (1) and max (min) CKM matrix
elements. Dot-dashed line (dot-dot-dashed line) is for model (2)
and max (min) CKM matrix elements. Same notation as in Fig. 14.

plied to calculate hadronic matrix elements in the B—K
transition. Moreover, for B— pK, the data are less numerous
than for B— pm, so we cannot expect to get a very accurate
range of N7,

For the branching ratio B*— p’K™= (Fig. 14) we found a
large range of values of N¥/ and CKM matrix elements over
which the theoretical results are consistent with experimental
data from CLEO, BABAR and BELLE. Each of the models,
(1), (2), (3), (4) and (5), gives an allowed range of N*7.
Even though strong differences appear between the two
classes of models, because of the different used form factors,
we are not able to draw strong conclusions about the depen-
dence on the form factors. For the branching ratio B*
—p*K° (Fig. 15), BELLE gives only an upper branching
ratio limit whereas BABAR and CLEO do not. Our predic-
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FIG. 17. Branching ratio for B’— p°K®, for models (1) [(2)],
k2/m%=0.3 and limiting values of the CKM matrix elements. Solid
line (dotted line) is for model (1) and max (min) CKM matrix
elements. Dot-dashed line (dot-dot-dashed line) is for model (2)
and max (min) CKM matrix elements.
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FIG. 18. Branching ratio for B*— wK™, for models (1) [(2)],
k*/m%=0.3 and limiting values of the CKM matrix elements. Solid
line (dotted line) is for model (1) and max (min) CKM matrix
elements. Dot-dashed line (dot-dot-dashed line) is for model (2)
and max (min) CKM matrix elements. Same notation as in Fig. 14.

tions are still consistent with the experimental data for all
models, for a large range of Nﬁff . In this case, the numerical
results for models (1) and (2) are very close to each other
and we need new data to constrain our calculations.

If we consider our results for the branching ratio B°
—p=K™ (plotted in Fig. 16), there is agreement between the
experimental results from CLEO and BELLE (no data from
BABAR) and our theoretical predictions at very low values
of Nﬁff and the CKM matrix elements. All the models (1),
(2), (3), (4) and (5) give branching values within the range
of branching ratio measurements if N7 is less than 0.07.
The tiny difference observed between models (1) and (2)
comes from the form factor 4,(k?) [where 4(k?) refers to
the B to p transition taken at k*=m%] since in that case the
amplitude computed involves only the form factor Ay(k?).
For the branching ratio B— p°k® shown in Fig. 17, neither
CLEO, BABAR nor BELLE give experimental results. Nev-
ertheless, from models (1) and (2), it appears that this
branching ratio is very sensitive to the magnitude of the form
factor F;(k?) [in our case, F(k?) is uncertain because h;
=0.360 or 0.762 in models (1) and (2), respectively] since
the tree contribution is only proportional to F;. Moreover,
from the range of allowed values of N’;’ff , We can estimate
the upper limit of this branching ratio to be of the order 20
%1078, Finally, we focus on the branching ratio B*
—wK* which is plotted in Fig. 18 for models (1) and (2).
We find that both the experimental and theoretical results are
in agreement for a large range of values of N/ But, the
models (1) and (2) do not give similar results because the
form factor F;, applied in these models, is very different in
both cases. Moreover, the dependence of the branching ratio
on the CKM parameters p and # indicates that it would be
possible to strongly constrain p and % with a very accurate
experimental measurement for the decay B~ —wK ™.

To remove systematic errors in branching ratios given by
the B factories, we look at the ratio, R, between the two
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FIG. 19. The ratio of two pK branching ratios versus N for
models (1) [(2)] and for limiting values of the CKM matrix ele-
ments: solid line {dotted line) is for model (1) with max (min)
CKM matrix elements. Dot-dashed line (dot-dot-dashed line) is for
model (2) with max (min) CKM matrix elements. Same notation as
in Fig. 14.

foliowing branching ratios: BR(B—p*K*) and BR(B*
— p°K™). The ratio is plotted in Fig. 19 as a function of N7/
for models (1) and (2) and for limiting values of the CKM
matrix elements. These results indicate that the ratio is very
sensitive to both N7 and to the magnitude of the form fac-
tors. The senmsitivity increases with the value of N/ and
gives a large difference between models (1), (3) and (5) and
models (2) and (4). We found that for a definite range of
N‘C’ff , all models investigated give a ratio consistent with the
experimental data from CLEO. It should be noted that R is
not very sensitive to the CKM matrix elements. Indeed, if we
only take into account the tree contributions, R is indepen-
dent of the CKM parameters p and 7. The difference which
appears comes from the penguin contribution and has to be
taken into account in any approach since they are not negli-
gible.

We have summarized for each model, each branching ra-
tio and each set of limiting values of CKM matrix elements,
the allowed range of N7 within which the experimental data
and numerical results are consistent. To determine the best
range of N7, we have to find some intersection of values of
szf for each model and each set of CKM matrix elements,
for which the theoretical and experimental results are consis-
tent. Since the experimental results are not numerous and not
as accurate as one would like, it is more reasonable to fix the
upper and lower limits of N%” which allow us the maximum
of agreement between the theoretical and experimental ap-
proaches. By using the limiting values of the CKM matrix
elements, we show in Table VIII, the range of allowed values
of N%/ with p-w mixing. Even though in our previous study
for B— pr, we have restricted ourselves to models (2) and
(4) rather than models (1), (3) and (5), here we cannot
exclude one of the models (1), (2), (3), (4) and (5) due to the
lack of accurate experimental data. We find that N2 should
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TABLE VIIL Best range of NY/ determined for k%/mj}
=0.3(0.5) and for B— pK decays (upper). Also range of N de-
termined previously for B— p decays [39] (updated). Finally glo-
bal range of N/ from both B decays (lower).

B—pK vy

model (1) 0.66;2.68(0.61;2.68)
model (2) 1.17;2.84(1.09;2.82)
maximum range 0.66;2.84(0.61;2.82)

minimum range 1.17;2.68(1.09;2.68)

B—pm v
model (2) 1.09;1.63(1.12;1.77)
model (4) 1.10;1.68(1.11;1.80)

1.09;1.68(1.11;1.80)
1.10;1.63(1.12;1.77)

maximum range
minimum range
v}

0.66;2.84(0.61;2.82)
1.17;1.63(1.12;1.77)

Global range

global maximum range
global minimum range

be in the following range: 0.66(0.61)<N%/<2.84(2.82),
where the values outside and inside brackets correspond to
the choice k2/ m§=0.3(0.5). Finally, if we take into account
the allowed range of Nﬁff determined for decays such as B
—p7r and B— pK we find a minimum global allowed range
of N%/ which should be in the range 1.17(1.12)<N”
<1.63(1.77).

VII. SUMMARY AND DISCUSSION

We have studied direct CP violation in decay process
such as B*9—p’k =%~ ¥ 7w~ K** with the inclusion of
p-w mixing. When the invariarit mass of the 7 7~ pair is in
the vicinity of the w resonance, it is found that the CP vio-
lating asymmetry, @, has a maximum a,,,,. We have also
investigated the branching ratios B’— p®K?, B%—p*K™,
B*—p*K® B*—p'k*, and B*— wK™. From our theo-
retical results, we make comparisons with experimental data
from the CLEO, BABAR and BELLE Collaborations. We
have applied five phenomenological models in order to show
their dependence on form factors, CKM matrix elements and
the effective parameter N’;ff in our approach.

To calculate the CP violating asymmetry, a, and the
branching ratios, we started from the weak Hamiltonian in
which the OPE separates hard and soft physical regimes. We
worked in the factorization approximation where the had-
ronic matrix elements are treated in some phenomenological
quark models. The effective parameter, Nﬁ” , was used in
order to take into account, as well as possible, the non-
factorizable effects involved in B—pK decays. Although
one must have some doubts about factorization, it has been
pointed out that it may be quite reliable in energetic weak
decays [38].

With the present work, we have explicitly shown that the
direct CP violating asymmetry is very sensitive to the CKM
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matrix elements, the magnitude of the form factors Ao(k»)
and F;(k%), and also to the effective parameter N% (in or-
der of increasing dependence). We have determined a range
for the maximum asymmetry, a,,,, as a function of the
parameter N7 | the limits of CKM matrix elements and the
choice of k?/m2=0.3(0.5). For the decay B°— w7~ K°
and from all models investigated, we found that the largest
CP violating asymmetry varies from +37%(+55%) to
—20%(—24%). As rtegards B~ —w #w K™, one gets
+49%(+46%) to  —22%(—25%). For B*?
—ata~ K>, the sign of a,,,, stays positive as long as the
value of N, is less than 2.7. In both.decays, the ratio between
asymmetry values which are taken at upper and lower limit-
ing p and 7 values is mainly governed by the term 1/sin 8. It
appears also that the direct CP violating asymmetry is very
sensitive to the form factors at high values of N%. We un-
derline that without the inclusion of p-w mixing, we would
not have a large CP violating asymmetry, a, since a is pro-
portional to both sin & and ». We found a critical point for
which sin & reaches the value +1, but at the same time,
becomes very tiny. We emphazise that the advantage of p-w
mixing is the large strong phase difference which varies ex-
tremely rapidly near the w resonance. In our calculations, we
found that for B*%— 7+ = K=, the sign of sin &is positive
until N/ reaches 2.69(2.65) when k2/m}=0.3(0.5). Then,
by measuring a for values of Ni.ff lower than the limits given
above, we can remove the phase uncertainty mod(7r) in the
determination of the CKM angle 7.

As regards theoretical results for the branching ratios
B:—*poK:, B:_)ptKO, B°—>ptK:, Bo_)poKo and Bt
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—wK*, we made comparison with data from the CLEO
(mainly), BABAR and BELLE (for B*— wK™*) Collabora-
tions. We found that it is possible to have agreement between
the theoretical results and experimental branching ratio data
for B*— p°k*, B*—p*K°, B*— wK*, B’—p K™, and
R. For B®— p'K?, the lack of results does not allow us to
draw conclusions. Only an estimation for the upper limit
(20X 10~%) has been determined. Nevertheless, we have de-
termined a range of value of N¥7, 0.66(0.61)<N*/
<<2.84(2.82), inside of which the experimental data and the-
oretical calculations are consistent. We have to keep in mind
that, because of the difficulty in dealing with non-
factorizable effects associated with final state interactions
(FSI), which are more complex for decays involving an s
quj{;k, we have weakly constrained the range of value of
N,

From the CP violating asymmetry and the branching ra-
tios, we expect to determine the CKM matrix elements. In
order to reach our aim, all uncertainties in our calculations
have to be decreased: the transition form factors for B—p
and B— X have to be well determined and non-factorizable
effects have to be treated in the future by using generalized
QCD factorization. Moreover, we strongly need more numer-
ous and accurate experimental data in B— pK decays if we
want to understand direct CP violation in B decays better.
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We study direct CP violation in the hadronic decay B*—p°#~, including the effect of p— w mixing. We
find that the CP violating asymmetry is strongly dependent on the CKM matrix elements, especially the
Wolfenstein parameter 7. For fixed N, (the effective parameter associated with factorization), the CP violating
asymmetry a has a maximum of order 30%-50% when the invariant mass of the ar* 7~ pair is in the vicinity
of the w resonance. The sensitivity of the asymmetry a to N, is small. Moreover, if N, is constrained using the
latest experimental branching ratios from the CLEO Collaboration, we find that the sign of sin § is always
positive. Thus, a measurement of direct CP violation in B* - p”#* would remove the mod( ) ambiguity in

argl —[ ViV ip! VuaVus -
DOI: 10.1103/PhysRevD.63.056012

1. INTRODUCTION

Even though CP violation has been known of since 1964,
we still do not know the source of CP violation clearly. In
the standard model, a non-zero phase angle in the Cabibbo-
Kobayashi-Maskawa (CKM) matrix is responsible for CP
violating phenomena. In the past few years, numerous theo-
retical studies have been conducted on CP violation in the B
meson system [1,2]. However, we need a lot of data to check
these approaches because there are many theoretical
uncertainties—e.g. CKM matrix elements, hadronic matrix
elements and nonfactorizable effects. The future aim would
be to reduce all these uncertainties.

Direct CP violating asymmetries in B decays occur
through the interference of at least two amplitudes with dif-
ferent weak phase ¢ and strong phase 8. In order to extract
the weak phase (which is determined by the CKM matrix
elements), one must know the strong phase &, and this is
usually not well determined. In addition, in order to have a
large signal, we have to appeal to some phenomenological
mechanism to obtain a large &. The charge symmetry violat-
ing mixing between p° and w can be extremely important in
this regard. In particular, it can lead to a large CP violation
in B decays such as B*—p%(w)7m*— a7~ 7*, because
the strong phase passes through 90° at the w resonance
[3-5]. Recently, CLEO reported new data [6] on B—pr. It
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is the aim of the present work to analyze direct CP violation
in B*—p%w)m*— w7~ 7%, including p— w mixing, us-
ing the latest data from the CLEO Collaboration to constrain
the calculation. In order to extract the strong phase 8, we use
the factorization approach, in which the hadronic matrix el-
ements of operators are saturated by vacuum intermediate
states.

In this paper, we investigate five phenomenological mod-
els with different weak form factors and determine the CP
violating asymmetry for B*—p%(w)m*—a*m m* in
these models. We select models which are consistent with
the CLEO data and determine the allowed range of N,
(0.98(0.94)<N,<2.01(1.95)). Then, we study the sign of
sin & in the range of N, allowed by experimental data in all
these models. We discuss the model dependence of our re-
sults in detail.

The remainder of this paper is organized as follows. In
Sec. II, we present the form of the effective Hamiltonian and
the values of Wilson coefficients. In Sec. III, we give the
formalism for the CP violating asymmetry in B*
—p%w)m* = at oo, for all the models which will be
checked. We also show numerical results in this section
(asymmetry, @, and the value of sinéd). In Sec. IV, we calcu-
late branching ratios for BY —p°nr* and B'—p* 7~ and
present numerical results over the range of N, allowed by the
CLEO data. In the last section, we summarize our results and
suggest further work.

[I. THE EFFECTIVE HAMILTONIAN

In order to calculate the direct CP violating aymmetry in
hadronic decays, one can use the following effective weak

©2001 The American Physical Society
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Hamiltonian, based on the operator product expansion [7]:

2 ViusVig(€107+¢,03)
g=d,s

Hap=1= —T
10

- V,,,V,*,,Z3 ¢,0;|+He, (1)

where c,(i=1, ...,10) are the Wilson coefficients. They are
calculable in renormalization group improved perturbation
theory and are scale dependent. In the present case, we use
their values at the renormalization scale u=~m, . The opera-
tors O; have the following form:

O1=qavu(1— ¥s)ugugy*(1—vs)ba,

05=q7,(1— ys)uuy*(1—ys)b,

03=t7n(1—75)b2 g’ Y (1—-vs)q',
q
04=‘;a7,4(1—75)b52, g7 (1= 75)q 4,
q

05=37,(1=¥)b2 §' Y"1+ ¥5)a',
9 .

06=qa¥u(1 = ¥9)bp2 Gpv*(1+ 7540,
q
3" ot} ’
01=527, (1= )b epq’ (1 +¥5)q’,
q
3— =1 A 12
Os=§qan(l—7s)b32 e d g (1+ ¥5)q 4,
q
3_
0y= 2qn(1 ys)bz e q Y (1-vs)q’',

3_ N :
010=3727u(1=75)bp2 €@y (1= 1300 @)
q

where @ and 8 are color indices, and ¢’ =u, d or 5 are
quarks. In Eq. (2), O} and O} are the tree level operators,
03-0g are QCD penguin operators, and 0;~0, arise from
electroweak penguin diagrams.

The Wilson coefficients, c¢;, are known to the next-to-
leading logarithmic order. At the scale u=m,=5 GeV, they
take the following values [8,9]:

c=—03125, ¢,=1.1502, (3)
C3=0.0174, Cy4= _0.0373,
=0.0104, cs=—0.0459,
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c7=—1.050X1073, ¢z=3.839X107%,

co=—0.0101, c;=1.959X1073,

To be consistent, the matrix elements of the operators O;
should also be renormalized to the one-loop order. This re-
sults in the effective Wilson coefficients, c; , which satisfy
the constraint

Ci(mb)(oi(mb))=C;(Oi)"ee, ©))

where (0,)""*¢ is the matrix element at the tree level, which
will be evaluated in the factorization approach. From Eq. (4),
the relations between ¢; and c; are [8,9]

r_ '
C1=Cy,» Cr=Co,

=c3—~P,/3, cy,=c4t Py,

—C5 P/3 Cé=C6+PS,

ci=cs+P,, cg=cy,

[ r
cg=cotP,, cp=¢Cip, &)

where
P,=(a,/8m)c,(10/9+ G(m,,1.q°)),
P,=(a,,/9%)(3¢c;+¢3)(109+ G(m, , 1,q%)),
with
G(mc,u,q2)=4jldxx(x— 1)lnmf—L2—x)q2-
0 w

Here ¢° is the typlcal momentum transfer of the gluon or
photon in the penguin diagrams. G(m,,u.q 2) has the fol-
lowing explicit expression [10]:

2 mf 5 mg mg
RG==| h——7-—4—+| 1+2—
3 ur 3

¢

I—4F
1~4-—In |

m,
1—4—
q

2 mf mz
JG=-= 1+2—2— 1—4—2. 6)
3 q q

Based on simple arguments at the quark level, the value of
g° is chosen in the range 0.3<¢*/m3<0.5 [3 4] From Egs.
(5),(6) we can obtain numerical values for ¢/

When ¢2/m=0.3,
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c;=—03125, ¢;=1.1502,
c4=2.433X10"2+1.543X107%,
ch=—5.808X1072—4.628x 1077,
l=1.733X1072+1.543%X107%,
ch=—6.668X10"2—4.628X 1072,
c4=—1.435%x10"*-2.963x 1077,
c4=3.839X107%,
cy=—1.023X10"2-2.963X 1073},
cjo=1.959%x1073, ™
and when ¢%/m2=0.5, one has
c;=—03125, c;=1.1502,
¢5=2.120X1072+2.174X 1073,
ch=—4.869X1072—1.552Xx 1072,
c4=1.420X1072+5.174X 1073,
c4=—5.729%1072—1.552X 107 %,
c}=—8.340X10"5—9.938X 1077,
c4=3.839%1074,
cy=—1.017x10"2-9.938X107%,
clo=1.959%1073, ®

where we have taken a,(mz)=0.112, a,(m;)=1/132.2,
m,=5 GeV, and m,=1.35 GeV.

. CP VIOLATION IN B*—p%(@)n*—ata o™

A. Formalism

The formalism for CP violation in hadronic B meson de-
cays is the following: Let 4 be the amplitude for the decay
BY¥—atw 7", and then one has

A=(n* o~ at|H|BYY+{n*m~a*|H"|B*), (9)

with HT and H” being the Hamiltonians for the tree and
penguin operators, respectively. We can define the relative
magnitude and phases between these two contributions as
follows:

A=(mta w*|HT|B*)[1+re'%'?), (10)

A=(m* w7 |HT|B™)[1+re'Se™?], an
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where & and ¢ are strong and weak phases, respectively. The
phase ¢ arises from the appropriate combination of CKM
matrix elements, which is ¢=arg[(V,,Vi)/(V,sV3a)]- As a
result, sin ¢ is equal to sine with « defined in the standard
way [11]. The parameter r is the absolute value of the ratio
of tree and penguin amplitudes:

()t |HP|B*)|

r= % (12)
(p°(w)7*|HT|B)|
The CP violating asymmetry, a, can be written as
4|2-14)? —2r sin §sin
lap-iap ¢

|4]2+]4]? " 1+2rcos Scos p+r?

It can be seen explicitly from Eq. (13) that both weak and
strong phase differences are needed to produce CP violation.
In order to obtain a large signal for direct CP violation, we
need some mechanism to make both sind and r large. We
stress that p— » mixing has the dual advantages that the
strong phase difference is large (passing through 90° at the
w resonance) and well known [4,5]. With this mechanism, to
first order in isospin violation, we have the following results
when the invariant mass of w*#~ is near the o resonance
mass:

&p = g
-+ |yl g+ =22 Ep
(n~w*a*|H|BT) —Spsw potot s‘,t"’ (14)
_ gp ~ g
(7 ot |HP|BT)=—2 pulot -—ppp. (15)
SpSw Sp

Here, t,{(V=p or o) is the tree amplitude and py is the
penguin amplitude for producing a vector meson, ¥, g, is the
coupling for p®—7* 7™, I pw 18 the effective p— w mixing
amplitude, and s is from the inverse propagator of the vec-
tor meson V,

SV=S—m%/+imVFV, (16)

with Vs being the invariant mass of the 77" 7~ pair.

We stress that the direct coupling w— 7" 7~ is effec-
tively absorbed into IT,,, [12], leading to the explicit s de-
pendence of ﬁp,,,. Making the expansion ﬁp,,,(s)
=1'~Ip,,,(m§,)+(s—m3v)ﬁ"m(m3,), the p— w mixing param-
eters were determined in the fit of Gardner and O’Connell
[13}: M, (m2)=-3500£300 MeV?, Jil,,(m})
=—300%300 MeV? and 11/,(m%)=0.03+0.04. In prac-
tice, the effect of the derivative term is negligible. From Eqs.
(10),(14),(15) one has

is ,.¢=H,,a.p¢,,+sa,pp

re‘le ~ 17)
Mputet sty

Defining
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. t .
p"’Errel(64+¢), ©_ e‘sa

Po_ 4,8
t p —Be B9 (18)

P t, ©

where 8, ,685 and &, are strong phases, one finds the follow-
ing expression from Eq. (18):

. TI,+ Be'dss
reid=pleitg 2 — 2 _B — (19)
Set prae“sa

It will be shown that in the factorization approach, we
have ae’®==1 in our case. Letting

Bei%=b+ci, r'es=d+ei, 20)

and using Eq. (19), we obtain the following result when \/;
~m,:

o C+Di i
e T (s—mi+mil )2+ (0, +m,T )2 @n
@ pw pw ' o

where

C=(s—m2+R, )[R, +b(s—m)—cm L]
—e[3M1,,+bm, T ,+c(s—m2)]}
+(Jﬁ,,a,+ma,r",){e[ﬁﬁpw+ b(s—mf,)—cmwr,,,]

+d[ I, +bm o+ c(s—mi)1}

D=(s—m+RI, {e[RM1,,+d(s—mb)—cm,T,]
+d[3,,+bm, T+ c(s—m2) ]} = (ML, + m,T )
X{d[ R o +b(s—m2)—cm T 1= e[ I, +bm, T,
+e(s—m)l} (22)

Bei®s and r'e’® will be calculated later. Then, from Eq.
(22), we can obtain rsiné and rcosd. In order to get the CP
violating asymmetry, a, in Eq. (13), sin¢ and cos¢ are
needed, where ¢ is determined by the CKM matrix elements.
In the Wolfenstein parametrization [14], one has

7
Ve =-p)= 7 T+7*

sin ¢= (23)

p(1=p)—7*

: 24
Vp(1=p)— 7+ 7 =

cos =
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B. Calculational details

With the Hamiltonian given in Eq. (1), we are ready to
evaluate the matrix elements for B¥ — p®(w)7™. In the fac-
torization approximation, either the p%(w) or the 7™ is gen-
erated by one current which has the appropriate quantum
numbers in the Hamiltonian. For this decay process, two
kinds of matrix element products are involved after
factorization. Schematically (i.e. omitting Dirac matrices
and color labels) {(p°(w)|(xw)|0){m*|(db)|B*) and
(¥ |(du)|0){p°(w)|(ub)|B*). We will calculate them in
some phenomenological quark models.

The matrix elements for B—X and B—X* (where X and
X* denote pseudoscalar and vector mesons, respectively) can
be decomposed as [15]

2_m§{

(XIJu|B>=(PB+PX—MBk2 k

F (k)

Fo(k?), (25)

2
X*|J,|By= ———€uupo€” PED TV (K
( l y,l > B+m uvpa DD x+ ( )

L 4

+i{ € (mp+my) A, (k) -
mB+me

X(Pg+Pys) ,A2(k?)

*

€k >
Iz 2mye -k, A3(K7)

*

€k 2
+l—k2—2mx--kqu(k ), (26)

where J, is the weak current ) #=¢;'y"(1—75)b with ¢
=u,d), k=pp—Pxx and €, is the polarization vector of
X*. The form factors included in our calculations satisfy
Fi(0)=Fy(0), A3(0)=40(0) and A43(k})=[(mp

+my)2m A, (k2) = [(mp—my=)2my:]4,(k*).  Using
the decomposition in Egs. (25), (26), one has
ng ' 1 I 2
to=mplp,l|| c1+ AL foF1(my)
c
] 1 ’ 2
+|ept Tl faAo(ms) |, 27N

where f, and f ;. are the decay constants of p and 7, respec-
tively, and 1;,, is the three momentum of the p. In the same
way, we find ¢,=1,, so that

ae'le=1, (28)

After calculating the penguin operator contributions, one
has
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1 1
Bei®o= ;lppl[( c3)[ pr](m2)+f,,.Ao(m M+ = [( Nccé + c§+KC{O)]pr,(m,2,)
1 1 2m2f Ag(m?) 1
(e pet) et et | ey to* 7 e[ rimy+rotuto .
r,e,-gq:_ Po VrbV:d| (29)
ub® ud

1 1
(et qres)romindy+ et 3t ot

where
. 1 1 ] , 1, 2
Po=mg|p, {2 03+N o) Tlest Ce foFi(m? )+ NCCs + C9+N;"lo oF1(my)
’ 1 ' ’ 1 ' m?’;‘f""A (m‘"') ! 1 ]
-2 (c8+]vcc7)+(c6+1'v—ccs)] (mu+md)(0mb+mu) +(c4+JVCC3)U7rA0(mEr)+prl(m§)]
’ 1 ’ 2 1 2
Flewt 36 fon(mﬂ)—Eprl(mp) p
I
and 7, hAo
Fi(k)= =, oK)= > (33)
V,,,V*,,| a-p)+ 7 _(1 x_Z)-'gﬂ - -
d| (1—-A 2/2)\/p2+172 2 sinB|’ ’”% mio

(30)

C. Numerical results

In our numerical calculations we have several parameters:
g%, N, and the CKM matrix elements in the Wolfenstem
parametrization. As mentioned in Sec. II, the value of q*is
conventionally chosen to be in the range 0.3<q*/m}<0.5.
The CKM matrix, which should be determined from experi-
mental data, has the following form in term of the Wolfen-
stein parameters, 4,\,p, 7 [14]:

AN (p—im)

1—=)\2 AN? )

ANX(1—p—iy) —AN? 1

(1)

where O(\*) corrections are neglected. We use A =0.2205,
A=0.815 and the range for p and 7 as the following [16,17]:

0.09<p<0.254, 0.323< 7<0.442. (32)

The form factors F l(mf,) and Ao(mf,.) depend on the inner
structure of the hadrons. Under the nearest pole dominance
assumption, the k* dependence of the form factors is:

for model 1(2) [15,18]:

where hy=0.330(0.625), k4, =0.28(0.34), m;=5.32 GeV,
m4,=5.27 GeV,
for model 3(4) [15,18,19]:

5 hy ) Ay
Fi(k )-T, Aok )—T' (34)
1~ b
i 4

where /1, =0.330(0.625), h, =0.28(0.34), m; =532 GeV,
m4,=5.27 GeV, for model 5 [20,211:

2 h
Fl(k )" k2 kz 2
1-a,—+b)
"‘B mﬁ
2 hAo
Aok = ——— o, 35)
1—a0—+b0( 2)
’”B mpg
where h,=0305, k, =0372, a;=0.266, b;=—0.752, aq
=14, by=0437.

The decay constants used in our calculations are: f,=f,
=221 MeV and f,=130.7 MeV.
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P i L j 1 , L \
e 770 780 790 w0

VS (MeV)

FIG. 1. Asymmetry, a, for K*/m3=0.3, N.=0.98(2.01) and
limiting values of the CKM matrix elements for model 1. Solid line
(dot line) stands for N,=0.98 and max (min) CKM matrix ele-
ments. Dashed line (dot dashed line) stands for N,=2.01 and max
(min) CKM matrix elements.

In the numerical calculations, it is found that for a fixed
N,, there is a maximum value, @, , for the CP violating
parameter, a, when the invariant mass of the 7™ ™ is in the
vicinity of the @ resonance. The results are shown in Figs. 1
and 2, for k*/m2=0.3(0.5) and N, in the range 0.98(0.94)
<N,<2.01(1.95)—for reasons which will be explained later
(Sec. IV). We investigate five models with different form
factors to study the model dependence of a. It appears that
this dependence is strong (Table I).

The maximum asymmetry parameter, @,,,,, varies from
—24%(—19%) to —59%(—48%) for N, in both the chosen
range k%/m2=0.3(0.5) and the range of CKM matrix ele-
ments indicated earlier. If we look at the numerical results
for the asymmetries (Table I) for N p,,=2.01(1.95) and
k2/m§=0.3(0.5), we obtain for models 1, 3, and 5 an asym-

(]

=1

a @ |
=M

-30

N 1 L L i
e 770 750 790 ]

VS (MeV)

FIG. 2. Asymmetry, a, for kz/m§=0.5, N,=0.94(1.95) and
limiting values of the CKM matrix elements for model 1. Solid line
(dot line) stands for N,=0.94 and max (min) CKM matrix ele-
ments. Dashed line (dot dashed line) stands for N.=1.95 and max
(min) CKM matrix elements.
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TABLE I. Maximum CP violating asymmetry a,,, (%) for
B*— @t @~ ™, for all models, limiting values of the CKM matrix
elements (upper and lower limit), and for k2/m3=0.3(0.5).

Nopin=0.98(0.94) N,par=2.01(1.95)

model 1

Pmax > Tmax —33(-27) —29(—23)
Pmin > Mmin —52(—43) —47(—-37)
model 2

Pmax > Mmax —36(—29) —37(-28)
Pmin s Mmin —57(—48) —59(—46)
model 3

Pmax > Mmax —32(—26) —29(—23)
Pmin s Mmin —51(—43) —47(—37)
model 4

Pmax s max —36(—29) —37(—28)
Pmin > Tmin —57(—48) —59(—46)
model 5

Pmax > Mmax —29(-24) —24(-19)
Prmin » Tmin —48(—40) —39(=31)
metry, @p.., around —27.3%(—21.6%) for the set

(DPmax » Mmax)» and around —44.3%(—35.0%) for the set
(Bmin » Tmin)- We find a ratio equal to 1.62(1.62) between the
asymmetries associated with the upper and lower limits of
(p, 7). The reason why the maximum asymmetry, d,,,,, can
have large variation, comes from the b—d transition, where
Vs and V,, appear. These are functions of (p,7) and con-
tribute to the asymmetry [Eq. (31)] through the ratio between
the @ penguin diagram and the p tree diagram.

For models 2 and 4, one has a maximum asymmetry,
Qpax» around —37%(—28%) for the set (pmaz > Mmax) and
around — 59%(—46%) for the set (PminsImin)- We find a
ratio between the asymmetries equal to 1.59(1.64) in this
case. The difference between these two sets of models comes
from the magnitudes of the form factors, where Fi(K?) is
larger for models 2 and 4 than for models 1, 3, and 5. Now,
if we look at the numerical results for the asymmetry for
N_opin=0.98(0.94), we find, for models 1, 3, and 5, kz/mg
=0.3(0.5), and the set (Ppnaxs Tmax)> AN aSYMmetry, a, .,
around —31.3%(—25.6%), and for the set (Pyin > Mmin) WE
find an asymmetry, @pnqy, around —50.3%(—42.0%). In
this case, one has a ratio equal to 1.61(1.64). Finally, for
models 2 and 4, we get —36%(—29%) for the set
(pmax"”max) and —57%(—48%) for the set (pmirnﬂmin)
with a ratio equal to 1.58(1.65).

These results show explicitly the dependence of the CP
violating asymmetry on form factors, CKM matrix elements
and the effective parameter N,. For the CKM matrix ele-
ments, it appears that if we take their upper limit, we obtain
a smaller asymmetry, a, and vice versa. The difference be-
tween k2/m%=0.3(0.5) in our results comes from the renor-
malization of the matrix elements of the operators in the
weak Hamiltonian. Finally, the dependence on N, comes
from the fact that N, is related to hadronization effects, and
consequently, we cannot exactly determine N, in our calcu-
lations. Therefore, we treat N, as a free effective parameter.

056012-6



264

ENHANCED DIRECT CP VIOLATION IN B*—pl#*

TABLE II. Values of the CKM unitarity triangle for limiting
values of the CKM matrix elements.

(P, ”)min (Pa 7’)rmur
«a 86°02 89°23
B 19°50 30°64
y 74°43 60°11

As regards the ratio between the asymmetries, we have found
a ratio equal to 1.61(1.63). This is mainly determined by the
ratio siny/sinB, and more precisely by #. In Table II, we
show the values for the angles a,3,7y. From all these nu-
merical results, we can conclude that we need to determine
the value of N, and the hadronic decay form factors more
precisely, if we want to use the asymmetry, a, to constrain
the CKM matrix elements.

In spite of the uncertainties just discussed, it is vital to
realize that the effect of p— @ mixing in the B— par decay is
to remove any ambiguity concemning the strong phase, sin 6.
As the internal top quark dominates the b—d transition, the
weak phase in the rate asymmetry is proportional to sin @
(=sin ¢), where a=arg[ —(V 4V 1/VuaVup)], and knowing
the sign of sind enables us to determine that of sine from a
measurement of the asymmetry, a. We show in Fig. 3 that
the sign of sin & is always positive in our range, 0.98(0.94)
<N,<2.01(1.95), for all the models studied. Indeed, at the
77 7~ invariant mass, where the asymmetry parameter, a,
reaches a maximum, the value of sin d is equal to one—
provided p— @ mixing is included—over the entire range of
N, and for all the form factors studied. So, we can remove,
with the help of asymmetry, a, the uncertainty mod(),
which appears in « from the usual indirect measurements [5]
which yield sin 2a. By contrast, in the case where we do not
take p— @ mixing into account, we find a small value for
sin 8. In Figs. 3 and 4 we plot the role of p— @ mixing in our

T i T : 1 1 . I
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|
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FIG. 3. Determination of the strong phase difference, sind, for
k?/m%=0.3(0.5) and for model 1. Solid line (dot line) at sin §=+1

stands for II pw={(—3500; —300) (i.e. with p— @ mixing). Dot
dashed line (dot dot dashed line) stands for II p0=1(0;0), (i.e. with
no p—  mixing).
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0zs T T [ A SRR A T

0z =

FIG. 4. Evolution of the ratio of penguin to tree amplitudes, 7,
for k%/m%=0.3(0.5), limiting values of the CKM matrix elements
(p,7) max(min), I po0=(—3500; —300)(0,0), [i.e. with(without)
p— mixing] and for model 1. Figure 4(a) (left): for ﬁpw=(0;0),
solid line (dot line) stands for k>/m3=0.3 and (p,7) max (min).
Dot dashed line (dot dot dashed line) stands for k2/m%=0.5 and
(p,n) max (min). Figure 4(b) (right): same caption but for ﬁp,,,
={(—3500; —300).

calculations. We stress that, even though one has a large
value of sin & around N,=1 with no p— @ mixing, one still
has a very small value for r (Fig. 4). Hence, the CP violating
asymmetry, g, remains very small in that case.

IV. BRANCHING RATIOS FOR Bt—p®n*
AND B'—p*n~

A. Formalism

With the factorized decay amplitudes, we can compute
the decay rates by using the following expression [19]:

lpol* |4(B—VP)|?

I(B—VP)= (36)

»
87wm3| €D |

where

VIma=(my+my)? [ mi—(my—m3)?]

ZmB

|pol= 37)

is the c.m. momentum of the decay particles, m(m,) is the
mass of the vector (pseudoscalar) V(P), and 4A(B— VP) is
the decay amplitude

G
A(B—VP)=—= vI-Pa(VP|O,B).

F
38
\/Ei=21,10 “ 38)
Here V¥ is CKM factor
Vi= |V Vi | for i=1,2

and V5=|thV:d| for i=3,...,10
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where the effective parameters are the following combina-
tions:

cy;i+

!
a j 'IV_CCZJ'—I’

j=

1
i_1=ch_ 1+ =c3; i=1,...
dj-1=C21 ¥ Jrey for j=1,...,5
and (VP|O;|B) is a matrix element which is evaluated in the
factorization approach. In the quark model, the diagram
coming from the B*— p%7™* decay is the only contribution.
In our case, to be consistent, we should also take into ac-
count the p— w mixing contribution when we calculate the
branching ratio since we are working to the first order of

isospin violation. Explicitly, we obtain, for Bt—pin™,

BR(B*—p°x™)
2lp,l?
327rl.,:+ [VTA 0(a19a2) ;':0(03,' ° ',aIO)]
+[VTAL(a;,a,)—VEAL a3, --,a10)]
~ 2
11,,
£ (39)

><(sp—mi)+im,i,,l"ml ’
where the tree and penguin amplitudes are
V2450(ay,a3) = arf Fr(m}) +aaf pAo(my),
\/EA:,o(as » e sai0) =ag[ —foFy (mf,) +fado(m3)]

1
+a10{'2—prl(m,2;) +f1rA0(mfr)]

3
+ 5 (a7 +ag)fpF1(my) = 2(ag+ as)

m2f e Ao(m>)

(my+mg)(my+m,) |

V24%(ay ,a)=a\f Fi(m2)+asf pAo(mb),

1
V245(a3,- - +,a100=| 2(as +as)+ 3 (ar+as) | F1(mp)
[ mifrdo(m?)
_2(a8+a6) (mu+md)(mb+mu)
+aqfado(m7) +foF1(m))]

1
+010[fon(m3r)— Epr1(mf,)},

where (poluu|0)— 1\2fm €, and (m*|ud|0)=ifnp .
For B'—p* 7~ we obtain
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:
i

)

+

>p'%

——

BR@®"-

FIG. 5. Branching ratio for B—p*#~ for models 1(2),
k*/m%=0.3 and limiting values of the CKM matrix elements. Solid
line (dot line) stands for model 1 and max (min) CKM matrix
elements. Dot dashed line (dot dot dashed line) stands for model 2
and max (min) CKM matrix elements.

_._GHp,?
BR(B®—p™*m )=T67F£;;|V5A:+(a2)
-Vl (a3, a0l (40)

where
A5 (a2)=arf Fi(m)),
,a10)=(as+a10)f pF1(m}).

P
A (as, -

Moreover, we can calculate the ratio between these two
branching ratios, in which the uncertainty caused by many
systematic errors is removed. We define the ratio R as

_ BR(B%—p*7)
BR(B*—p'w™%) g

and, without taking into account the penguin contribution,
one has

@1

_ 2FB+
rBO

f,, )
X| 1+ ———————
(sp—my)+im, I,

B. Numerical results

The latest experimental data from the CLEO Collabora-
tion [6] are

(al Fado(m?, ))
a2 prl(mz)

-2
(42)

BR(B*—p’w*)=(10.4133+2.1)x 1075,
BR(B°—p*w)=(27.6184+x4.2)x 1075,

R=2.65*1.9.
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FIG. 6. Branching matio for B*—p%#* for models 1(2),

k%/m%=0.3 and limiting values of the CKM matrix elements. Solid

line (dot line) stands for model 1 and max (min) CKM matrix

elements. Dot dashed line (dot dot dashed line) stands for model 2
and max (min) CKM matrix elements.
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FIG. 7. Calculation of the ratio of the two ps branching ratios
versus N, for models 1(2) and for limiting values of the CKM
matrix elements. Solid line (dot line) stands for model 1 with max
(min) CKM matrix elements. Dot dashed line (dot dot dashed line)
stands for model 2 with max (min) CKM matrix elements.

TABLE IfI. Summary of the range of values of N, which is determined from the experimental data for
various models and input parameters (numbers outside (inside) brackets are for k2/m2=0.3(0.5)). The
notation: (number;number) means that there is an upper and lower limit for N,. (number; *%) means that
there is no upper limit for N, in the range N, [0;10). ( — ; —) means that there is no range of N, which is

consistent with experimental data.

B* B® R

model 1

Prmax s Tmax 0.76;1.69(0.73;1.62) 5.50; #x (—;-) 0.92;2.57(0.90;2.52)
Pomin s Mmin 0.52;1.04(0.49;0.98) -5 =(=39) 0.97;2.88(0.94;2.76)
Pmax s Tmin 0.61;1.25(0.59;1.20) —=(=3-) 0.92;2.58(0.91;2.54)
Prmin s Mmax 0.69;1.46(0.66;1.39) - =(=-3-) 0.95;2.75(0.90;2.66)
model 2

Prmas > Mmax 1.44;3.06(1.40;2.95) 0.54;1.33(0.54;1.38) 0.86;1.89(0.84;1.86)
Prmin s Tmin 1.00:2.01(0.96;1.90) 1.10; »% (1.15; »+) 0.92;2.09(0.89;2.01)

Pmax > Tmin
Pmin > Mmax

model 3

Pmax > Tmax
Pumin > Mmin
Pmax s Tmin
Pmin > Mmax
model 4

Pmoax s Umax
Pumin > Mmin
Pmax > Tmin
Pmin s Mmax
model 5

pmax 2 ”max
Pmin > Tmin
Pmax s Mmin

Pmin s Mmax

1.15;2.32(1.12;2.22)
1.32;2.78(1.25;2.60)

0.74;1.65(0.72;1.60)
0.51;1.02(0.49;0.98)
0.60;1.22(0.57;1.19)
0.67;1.43(0.65;1.37)

1.41;3.04(1.36;2.92)
0.98;1.96(0.94;1.87)
1.14;2.29(1.10;2.21)
1.30;2.74(1.24;2.59)

0.75;2.18(0.73;2.10)
0.50;1.08(0.47;1.03)
0.58;1.38(0.55;1.34)
0.66;1.71(0.64;1.62)

0.70; ** (0.72; **)
0.63;2.77(0.62;3.12)

0.87;1.89(0.85;1.86)
0.90;2.00(0.84;1.94)

—;=(-3-) 0.92;2.65(0.92;2.60)
e 0.97;2.95(0.94;2.85)
=;=(=3-) 0.93;2.66(0.92;2.61)
—i=(=3-) 0.92;2.79(0.92;2.71)

0.56;1.44(0.57;1.52)
1.16; »# (1.23; #%)
0.72; %% (0.74; =%)

0.86;1.91(0.85;1.87)
0.90;2.10(0.89;2.03)
0.86;1.92(0.85;1.88)

0.64;3.49(0.66;4.03) 0.89;2.01(0.86;1.95)
—5=(=;9) 1.03; =% (1.02; »*)
—i=(=;-) 1.09; »* (1.06; **)
(=39 1.03; xx (1.02; %%)
—i=(=3;) 1.04; wx (1.04; »%)
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TABLE IV. Determination of the intersection of the values of N, which are consistent with various
subsets of the data for all models and all sets of CKM matrix elements [numbers outside (inside) brackets are
for k2/m3=0.3(0.5)]. The notation: ~ ( —) means that no common range of N, can be extracted from the

data.

{Ne}g+N{N }po {N}p+ N {N }r {N}poN{N.}x
model |
Pmax s Tmax - ( _) 092,169(0-90’162) - ( _)
Prin s Mmin -(-) 0.97;1.04(0.94;0.98) -(9
Pmax s Mmin - ( ") 092,125(091’120) - ( _)
Prmin > Mmasx -(-) 0.95;1.46(0.90;1.39) -(9)
model 2
Pmax > Mmax - (=) 1.44;1.89(1.40;1.86) 0.86;1.33(0.84;1.38)
Pumin > Tmin 1.10;2.01(1.15;1.90) 1.00;2.01(0.96;1.90) 1.10;2.09(1.15;2.01)

1.15;2.32(1.12;2.22)
1.32;2.78(1.25;2.60)

Pmax > Tmin

Pmin > Tmax

model 3

Pmax > Tmax - ( —)

Pmin > Tmin - ( —)

Pmazx > Mmin - ( —)

Pmin > Tmax = ( —)

model 4

Pmax > max 141,144(136,152)
Prmin s Mmin 1.16;1.96(1.23;1.87)
Pmasx > Tmin 1.14;2.29(1.10;2.21)
Pmin > Mmax 1.30;2.74(1.24;2.59)
model 5

Pmax > Tmax - ( —)

Pmin s Mmin . ( —)

Pmax » Mmin - ( '—)

Pmin > Mmax - ( —)

1.15;1.89(1.12;1.86)
1.32;2.00(1.25;1.94)

0.92;1.65(0.92;1.60)
0.97;1.02(0.94;0.98)
0.93;1.22(0.92;1.19)
0.92;1.43(0.92;1.37)

1.41;1.91(1.36;1.87)
0.98;1.96(0.94;1.87)
1.14;1.92(1.10;1.88)
1.30;2.01(1.24;1.95)

1.03;2.18(1.02;2.10)
-(=9)

1.03;1.38(1.02;1.34)

1.04;1.71(1.04;1.62)

0.87;1.89(0.85;1.86)
0.90;2.00(0.84;1.94)

-(-)
-(=
- ()
-(-)

0.86;1.44(0.85;1.52)
1.16;2.10(1.23;2.03)
0.86;1.92(0.85;1.88)
0.89;2.01(0.86;1.95)

-(-)
-(2
-(-)
-(-)

We have calculated the branching ratios for B—p*#~ and
for B*— p®#™* for all models as a function of N, . In Figs. 5
and 6, we show the results for models 1 and 2 in order to
make the dependence on form factors explicit.

The numerical results are very sensitive to uncertainties
coming from the experimental data. For the branching ratio
B%—p*n~ (Fig. 5), we have a large range of values of N,
and CKM matrix elements over which the theoretical results
are consistent with the experimental data from CLEO. How-
ever, all models do not give the same result: models 2 and 4
are very close to the experimental data for a large range of
N, , whereas models 1, 3 and 5 are not. The reason is still the
magnitude of the form factors. As a result, we have to ex-
clude models 1, 3 and 5 because their form factors are too
small.

If we consider numerical results for branching ratio B*
—p%7r" (Fig. 6), it appears that all models are consistent
with the experimental data for a large range of N,. The
effect of p— @ mixing (included in our calculations) on the
branching ratio B*—p®n™ is around 30%. Numerical re-
sults for models 1, 3, and 5, as well as for models 2 and 4,
are very close to each other. The difference between the two
branching ratios can be explained by the fact that for the
B%—p* @~ decay, the tree and penguin contributions are
both proportional to only one form factor, (k%). Thus, this

branching ratio is very sensitive to the magnitude of this
form factor [ F,(k?) is related to h;=0.330 or 0.625 in mod-
els (1,3) and (2,4), respectively]. On the other hand, for the
decay B* —p®wr*, both Fy(k?) and A(k?) are included in
the tree and penguin amplitudes, and this branching ratio is
less sensitive to the magnitude of the form factors.

If we look at the ratio R between these two branching
ratios, BR(B*—p°n*) and BR(B®—p* 7~)—shown in
Fig. 7—the results indicate that R is very sensitive to the
magnitude of the form factors, and that there is a large dif-
ference between models 1, 3, and 5 and models 2 and 4. We
investigated the ratio R for the limiting CKM matrix ele-
ments as a function of N, finding that R is consistent with
the experimental data over the range 0.98(0.94)<N,
<2.01(1.95) [the values outside (inside) brackets correspond
to the choice g2/m2=0.3(0.5)]. It should be noted that R, in
particular, is not very sensitive to the CKM matrix elements.
The small difference which does appear comes from the pen-
guin contributions (which may be neglected). If we just take
into account the tree contributions in our calculations, R is
clearly independent of the CKM matrix elements [Eq. (42)].

From a comparison of the numerical results and the ex-
perimental data, we can extract a range of N, , within which
all results are consistent. In Table III, we have summarized
the allowed range of N, for B* —p°w*, B°—p* 7~ and R,

056012-10
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TABLE V. Best range of N, determined from Table IV for
kZ/m,,——O 3(0.5). One takes the maximum interval of N, from
Table IV, for each model (2,4). To determine the maximum (mini-
mum) range, one considers all models (2,4) and the largest (small-
est) range of N, . In comparison, we show the range of N, deter-
mined without p— w mixing.

{N_} with mixing  {N,} without mixing

0.85;1.74(0.85;1.74)
0.84;1.76(0.84;1.75)
0.84;1.76(0.84;1.75)
0.85;1.74(0.85;1.74)

1.00;2.01(0.96;1.94)
0.98;2.01(0.94;1.95)
0.98;2.01(0.94;1.95)
1.00;2.01(0.96;1.94)

model 2
model 4
maximum range
minimum range

for models 1, 2, 3, 4 and 5, according to various choices of
the CKM matrix elements. To determine the best range of
N, , we have to find some intersection of the values of N, for
each model and for each set of CKM matrix elements, for
which the theoretical and experimental results are consistent.
This is possible and the results are shown in Table IV. In our
study, it seems better to use the range intersection
{NC}B+0{NC}R rather than {Nc}Bon{Nc}B+’ for ﬁxmg the
final interval N,, since the experimental uncertainties are
smaller in the former case, and since we are working to the
first order of isospin violation (p— w mixing). Finally, after
excluding models 1, 3 and 5, which are pot consistent with
all the experimental data, we are able to fix the upper and
lower limit of the range of N, using the limiting values of
the CKM matrix elements (Table V). We find that N, should
be in the range 0.98(0.94)<N_.<2.01(1.95), where N,
and Ncmax correspond to (pmin ’ ﬂmin) and (pmax, 7’max)’ re-
spectively.

V. SUMMARY AND DISCUSSION

The first aim of the present work was to compare our
theoretical results with the latest experimental data from the
CLEO Collaboration for the branching ratios B —p%z*
and B®—p* 7. Our next aim was to study direct CP vio-
lation for the decay B* —p%(w)m*— @t 7~ w*, with the
inclusion of p— w mixing. The advantage of p— w mixing is
that the strong phase difference is large and rapidly varying
near the w resonance. As a result the CP violating asymme-
try, a, has a maximum, a,,,,, when the invariant mass of the
ot~ pair is in the vicinity of the @ resonance and sin &
=+1 at this point.

In the calculation of CP violating asymmetry parameters,
we need the Wilson coefficients for the tree and penguin
operators at the scale m; . We worked with the renormaliza-
tion scheme independent Wilson coefficients. One of the ma-
jor uncertainties is that the hadronic matrix elements for both
tree and penguin operators involve nonperturbative QCD.
We have worked in the factorization approximation, with N,
treated as an effective parameter. Although one must have
some doubts about factorization, it has been pointed out that
it may be quite reliable in energetic weak decays [22,23].

We have explicitly shown that the CP violating asymme-
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try, a, is very sensitive to the CKM matrix elements and the
magnitude of the form factors, and we have also determined
a range for the maximum asymmetry, @, , as a function of
the parameter N, the limits of CKM matrix elements and
the choice of k2/m +=0.3(0.5). From all the models investi-
gated, we found that CP violating asymmetry, a,,,,, varies
from —24%(—19%) to —59%(—48%). We stressed that
the ratio between the asymmetries associated with the limit-
ing values of CKM matrix elements would be mainly deter-
mined by 7. Moreover, we also stressed that without p—
mixing, we cannot have a large CP violating asymmetry, a,
since a is proportional to both sin 6 and . Even though sin §
is large around N_=1, r is very small. As a result, we find a
very sma.ll value for the CP violation in the decay B
—p%7* (of the order of a few percent) without mixing.

Once mixing is included, the sign of sin d is posmve for
N,:0.98(0.94)<N,<2.01(1.95). Indeed, at the w* =~ in-
variant mass, where the asymmetry, a, is maximum, sin &
=+1 independent of the parameters used. Thus, by measur-
ing a, we can erase the phase uncertainty mod(#) in the
determination of the CKM angle «, which arises from the
conventional determination of sin2a.

The theoretical results for the branching ratios, B*
—p%7* and B'—p* 7™, were compared with the experi-
mental data from the CLEQ Collaboration [6]. These calcu-
lations show that it is possible to have theoretical results
consistent with the experimental data without needing to in-
voke contributions from other resonances [24,25)]. This data
helped us to constrain the magnitude of the various form
factors needed in the theoretical calculations of B decays.'
We determined a range of value of N., 0.98(0.94)<N,
<2.01(1.95), inside of which the experimental data and the
theoretical calculations are consistent for models 2 and 4.

We will need more accurate data in the future to further
decrease the uncertainties in the calculation. If we can use
both the CP violating asymmetry and the branching ratios,
with smaller uncertainties, we expect to be able to determine
the CKM matrix elements more precisely. At the very least,
it appears that one will be able to unambiguously determine
the sign of sin a and hence, remove the well known discrete
uncertainties in @ associated with the fact that indirect CP
violation determines only sin 2a. We expect that our predic-
tions should provide useful guidance for future investigations
and urge our experimental colleagues to seriously plan to
measure the rather dramatic direct CP violation predicted
here.
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Abstract. Based on the QCD factorization approach we analyse the branching ratios for the channel
B — pr. From the comparisons with experimental data provided by CLEO, BELLE and BABAR
we constrain the form factor F="(m2) and propose boundaries for this form factor depending on
the CKM matrix element parameters p and 7.

1. NAIVE FACTORIZATION

The investigation of B decays requires a knowledge of both the soft and hard interactions
which control the dynamics of quarks and gluons. Because the energy involved in B
decays covers a large range, from m, down to A,-p, it is necessary to describe the
phenomenon with accuracy. Recently, the BELLE,QEABAR, and CLEO facilities have
been providing more and more data which can be compared with theoretical results and
hence increase our knowledge in this area.

In any phenomenological treatment of the weak decays of hadrons, the starting point is
the weak effective Hamiltonian at low energy [1, 2, 3, 4, 5]. It is obtained by integrating
out the heavy fields (e.g. the top quark, # and Z bosons) from the Standard Model
Lagrangian. It can be written as,

ey = T B xuCOW), 0

where G- is the Fermi constant, ¥y, is the CKM matrix element, C;(1t) are the Wilson
coefficients, O,(1t) are the operators entering the Operator Product Expansion and y
represents the renormalization scale. In the present case, since we analyse direct CcP

1 Presented at Fourth Tropical Workshop, Cairns, Australia, 9-13 June 2003.
2 xhguo@physics.adelaide.edu.au

3 oleitner@physics.adelaide.edu.au

4 athomas@physics.adelaide.edu.au
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violation in B decays into pr, we take into account both tree and penguin operators and
the effective Hamiltonian is,

off /2| P

where g = d. Consequently, the decay amplitude can be expressed as follows,

10
splb=1 _ OF [V Vi (CLOT+C,08) =V, V7, ZC,.O,.] +he., @

AB—PV)= %F_z- [VubV,;"q (C1 (PV|0%|B) +CZ(PV|Og|B)) -
10
V,bV,’;Z'iCi(PHO,.lB)] +he, ()

where (PV|0;|B) are the hadronic matrix elements, and P(¥) indicates a pseudoscalar
(vector) meson. The matrix elements describe the transition between initial and final
state at scales lower than y and include, up to now, the main uncertainties in the
calculation because it involves the non-perturbative physics.

The computation of the hadronic matrix elements, (PV|O;|B), is not trivial and re-
quires some assumptions. The general method which has been used is the so-called
“factorization” procedure [6, 7, 8], in which one approximates the matrix element as a
product of a transition matrix element between a B meson and one final state meson and
a matrix element which describes the creation of the second meson from the vacuum.
This can be formulated as,

(PY|O,|B) =(V [/5;{0) (P1/,1B) ,
or (PV|0,|B) =(PJ;[0) (V1/3,|B) , 4)

where the J;; are the transition currents. This approach is known as naive factorization
since it factorizes (PV|O;|B) into a simple product of two quark matrix elements, (see
Fig. 1). Analytically, Fig. 1 can be written down as,

10
A(B— PV) o< ; VCKMCi(ﬂ)(M1M210i|B>:|

10
e [ziVCKMCi(u)(Ml|J2i|0><M2|J1i|B> 6]

A possible justification for this approximation has been given by Bjorken [9]: the heavy
quark decays are very energetic, so the quark-antiquark pair in a meson in the final
state moves very fast away from the localised weak interaction. The hadronization of
the quark-antiquark pair occurs far away from the remaining quarks. Then, the meson
can be factorized out and the interaction between the quark pair in the meson and the
remaining quark is tiny.
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FIGURE 1. Naive factorization, where M, and M, represent the final meson states.

The main uncertainty in this approach is that the final state interactions (FSI) are
neglected. Corrections associated with the factorization hypothesis are parameterized
and hence there maybe large uncertainties [10]. In spite of this, there are indications
that should give a good estimate of the magnitude of the B decay amplitude in many
cases [11, 12]. In order to improve the estimate of the hadronic matrix element, we will
briefly present in Section 2 the formalism of QCD factorization, which is an extension
of naive factorization. We will see how it is possible to incorporate QCD corrections
in order to include the FSI at the first order in ¢ into the factorization approach. In
Section 3, we will list our numerical results for the branching ratios related to the
channels B — pr and B — ox. In Section 4, we will constrain the form factor Ff"’"
and propose boundaries for this form factor depending on the CKM matrix element
parameters p and 7). Finally, in the last section we will summarize our analysis and
draw some conclusions.

2. QCD FACTORIZATION

Factorization in charmless B decays involves three fundamental scales: the weak inter-
action scale My, the b quark mass scale m,, and the strong interaction scale Aycp. It is
well known that the non-leptonic decay amplitude for B — PV is proportional to:

A(B = PV) = T C{R)(PYO,(R)IB) ©

where we have omitted the CKM factor and Fermi constant for simplicity. The matrix el-
ements (PV|O,()|B) contain non-perturbative effects which cannot be accurately eval-
uated. The coefficients C,(1) include strong interaction effects from the scales M, down
to m,, and is under control. The aim is therefore to obtain a good estimate of the matrix
elements without assuming naive factorization. In QCD factorization (QCDF), assum-
ing a heavy quark expansion when m, > Aycp and soft collinear factorization where
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the particle energies are bigger than the scale Ay, the matrix elements (PV)0,(1)|B)
can be written as [13]:

(PV|O,(1)|B) = (Plj,IB){V1/,|0) |1+ D 10y + O(Apcp/my)| Q)

where r,, refers to the radiative corrections in o and j; are the quark currents. It is
straightforward to see that if we neglect the corrections at the order a5, we recover the
conventional naive factorization in the heavy quark limit. We can rewrite the matrix
elements (PV|O;(i)|B), at the leading order in A,-p/m,, in the QCDF approach by
using a partonic language and one has [13, 14, 15, ?60, 17, 18]:

(PYIOIB) = FP7 () [ axTix)0y )+ 4 () [ dvTh) 0509
+ [ a [ ax [ 165005000, 000, ®

where ¢,, (with M = V, P, B) are the leading twist light cone distribution amplitudes
(LCDA) of valence quark Fock states. The light cone momentum fractions of the con-
stituent quarks of the vector, pseudo-scalar and B mesons are given respectively by
x,y, and &. The form factors for B — P and B — V' semi-leptonic decays evaluated at
I = 0 are denoted by F5~F(mi;) and 47~ (m3}). Eq. (8) can be understood via Fig. 2
where a graphical representation of the factorization formula is given. The hadronic

FIGURE 2. Graphical representation of the QCD factorization formula.

decay amplitude involves both soft and hard contributions. At leading order, all the non-
perturbative effects are contained in the form factors and the light cone distributions
amplitudes. Then, non-factorizable interactions are dominated by hard gluon exchanges
(in the case where the O(A 5 /m,) terms are neglected) and can be calculated pertur-
batively, in order to correct %Ce naive factorization approximation. These hard scattering
kernels [13, 14, 15, 16, 17, 18, 19], T and T}, are calculable order by order in pertur-
bation theory. The naive factorization terms are recovered by the leading terms of T ,;:
coming from the tree level contributions, whereas vertex corrections and penguin cor-
rections are included at higher orders of ¢ in T,.{c. The hard interactions (at order O(as))
between the spectator quark and the emitted meson, at large gluon momentum, are taken
into account by /.
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2.1. The QCD coefficients a;

The coefficients a; [20, 21], have been calculated at next-to-leading order. They
contain all the non-factorizable effects at order in 0;. In order to clearly separate every
contribution, the coefficients a; are written as the sum of,

a=a;;+a;, ©

where the first term includes the naive factorization, the vertex and penguin corrections,
while the second term contains the hard spectator interactions. According to the final
states, the terms a; have to be expressed for two different cases: case A corresponds
to the situation where the recoiling meson M; is a vector and the emitted meson M,
is a pseudoscalar, and vice-versa for case B. For case A, the coefficients g; take the
form {20, 21],

a1’1=C1+N—§§-—f 1+CF°‘S %] - ay ;= ’J’\ifg’czH(BMl,Mz),
a =G+ %}7 1+ Cfas M- ; = ?Fascl (BMy, M)
ay;=Cy+ Ivcff? 1+ %&VM_ , a5 = ’]’ﬁ;}’f C,H(BM,,M,),
ag;=C4+ % :1 + C::s VM: +af"’1,b , AQn= tfpasQ (BM,,M,) ,
as;=Cs+ ]%,7 1- CZ:S Vil —a5 ;= ’]ﬁ%c H'(BM,,M,)
ag’I—C6+N€}f 1—6C::s]+a61b, a6’”_0,
ay;=Cy+ % 1- —CZF%VM , —ay = ’Irvcc;}'ff CoH'(BM,, M)
asJ—C8+NC;}f 1_6C::s] +a§,1,b’ 08,11=0’
ag;=Co+ ﬁc;}jfof :1 + Cj: - VM] , a9 = ﬁ?ﬁs CioH(BM,,M,) ,
oy, =Cio+ NC;f [1+ CL‘:S Vol + 01 G100 = nC’;gsch(BMl,M ), (10)
where the terms a? AT af 1b° aé’ 1 and afo, 1 A€
a = 9"&5“?_2 P = Cros Pt
415 = "am Ne/T’ 616 = "4 Ne/T’
P, pr.ew
1y = ;:,2;; , alors = 9():,; A};;fzf : an
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In Egs. (10) and (11) ¥}, V), represent the vertex corrections, H ,H' describe hard
gluon exchanges between the spectator quark in the B meson and the emitted meson
(pseudoscalar or vector). Py ,, Py 3,P;}§W,PI€I’§W are the QCD penguin contributions and
electroweak penguin contrilbutior,ls, re’spectively. These quantities are a result of the
convolution of hard scattering kernels G, with meson distribution amplitudes, ®. We
refer the reader to Refs. [13, 14, 15, 16, 17, 18] for more details. Other parameters are
C; =C,(1) (in NDR), 05 = 0;(1) (next to leading order), and Cr = (N? —1)/2N, with

Ny =3.

3. NUMERICAL RESULTS

Assuming that all of the parameters involved in QCD factorization are constrained by
independent studies where the input parameters related to factorization were fitted,
we concentrate our efforts on the form factor F2~” depending on the CKM matrix
parameters p and 7). In order to reach this aim, we have calculated the branching ratios
for B decays such as BY — p°n%, B® — p*n® B® — p*a¥, BY — pOn0 and B* — wn*
where the annihilation and p — @ mixing contributions were taken into account. All the
results are shown in Figs. 3, 4 and 5, and the branching ratios are plotted as a function
of the form factor FIB""‘ and as a function of the values of p and 1 as well.

By taking into account experimental data from CLEO [22, 23, 24, 25, 26, 27],
BELLE [28, 29, 30, 31, 32, 33, 34, 35, 36] and BABAR [37, 38, 39, 40, 41, 42, 43, 44],
and comparing theoretical predictions with experimental results, we expect to obtain a
constraint on the form factor FIB"" depending on the CKM matrix element parameters
p and 7. Because of the accuracy of the data, we shall mainly use the CLEO and BELLE
data for our analysis rather than those from BABAR. We expect that our results should
depend more on uncertainties coming from the experimental data than those from the
factorization approach (as opposed to naive factorization) applied to calculate hadronic
matrix element (p7|J,|B) since in B decays, 1/m, corrections are very small.

3SFE-FI-F - T 3-Td-LJ-- 31+ PO T35, AR ERNA50 S ERCRAY B TSR (NEFER BRSO R A0EA JYERL A
L a- - _

— it
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FIGURE 3. Branching ratio for B — p%n®, for limiting values of the CKM matrix elements (Left
hand-side). Branching ratio for B* — p*n?, for limiting values of the CKM matrix elements (Right
hand-side). Solid line (dotted line) for max (min) CKM matrix elements. Notation: horizontal dotted
lines: CLEO data; horizontal dashed lines: BABAR data; horizontal dot-dashed lines: BELLE data.
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For the branching ratio B* — p%z* (Fig. 3), we found total consistency between
the theoretical results and experimental data from CLEO and BELLE. However, these
results allow us to determine an upper limit (between 0.40 and 0.65) for the value of
the form factor FIB"”. The weak dependence of the branching ratio on the form factor,
FIB"’” , is related to the tree and penguin amplitudes which are mainly governed by the
form factor Ag"’P rather than F?~*7. Therefore, this branching ratio cannot be used as

an efficient way to constrain the form factor F;>*%. Note also that the comparison with
BABAR data shows agreement between theory and experiment when FZ77 is bigger
than 0.5.

For the branching ratio BX — p*n® (Fig. 3), CLEO gives only an upper limit for the
branching ratio whereas BABAR and BELLE do not. Based on this upper limit, the value
of the form factor F;'~*" must be lower than 0.62. We emphasize that this branching
ratio is strongly dependent on the form factor Ff‘”‘ and hence provides an efficient
constraint for the value of FZ~7. For the branching ratio B® — p* ¥ (shown in Fig. 4),
BELLE, BABAR and CLEO give consistent experimental data. The decay amplitude
related to this branching ratio is proportional to the form factor FIB”" and thus allows
us to constrain the form factor effectively. Requiring agreement between experimental
values and theoretical results yields a central value for =" which is about 0.3. Note
that for these three branching ratios their dependence on the CKM matrix elements p
and 7 is strong. Hence we expect to be able to determine limits for their values when
more B decay channels are taken into account.
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FIGURE 4. Branching ratio for B° = p*x¥, for limiting values of the CKM matrix elements (Left
hand-side). Branching ratio for BY — p°x?, for limiting values of the CKM matrix elements (Right hand-
side). Solid line (dotted line) for max (min) CKM matrix elements. Notation: horizontal dotted lines:
CLEO data; horizontal dashed lines: BABAR data; horizontal dot-dashed lines: BELLE data.

For the branching ratio B® — p%z0 (Fig. 4), BABAR, BELLE and CLEO only give
an upper limit for the branching ratio. However, the branching ratio does not appear to
be very sensitive to the CKM matrix elements p and 7). That could help us to obtain an
upper limit for =" which is not sensitive to p and 7]. We therefore need new data to
go further in this case. Finally, we focus on the branching ratio BE — on*, plotted in
Fig. 5. There is no agreement with the CLEO data for values of the form factor 1'"1"3"”t
lower than 0.25 whereas there is a good agreement with BABAR and BELLE for any
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value of FIB"’” . Note that in this case the sensitivity of the branching ratio to the CKM
matrix elements is bigger than that to the form factor F£=" and does not allow us to
draw any conclusions regarding the value of FIB"""' .

To remove systematic errors in branching ratio data given by the B factories, we
can look at the ratio R, of the two following branching ratios: Z(B° — p*n¥) and
B(B* — p°n*). In Fig. 5 we show the ratio, Ry, as a function of the form factor F> 7.
All the B factory data are in good agreement with theoretical predictions. The results
indicate that the ratio is not sensitive to the CKM matrix elements p and i whereas it
is very sensitive to the value of F#~". Comparison with the data shows that F;°~7 is
between 0.13 and 0.30 (BELLE), 0.05 and 0.20 (BABAR), and 0.10 and 0.35 (CLEQ),
respectively. Assuming that the value of FIB‘”’ at k2 = mg is around 0.30, we have

B(B® - p*n®) ~ 14.2 x 107 and B(B° — p°2%) < 1 x 1078
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14

BRB'>0 ') x 10°

2 1 SN 1

PRI 0 AT T PR MUY SR S0l PR M
09 1 0 01 02 03 04 05 06 07 08 09 1
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2 B- 2,
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FIGURE 5. Branching ratio for B* — @=n*, for limiting values of the CKM matrix elements (Left
hand-side) . The ratio of two px branching ratios limiting values of the CKM matrix elements (Right
hand-side). Solid line (dotted line) for max (min) CKM matrix elements. Notation: horizontal dotted
lines: CLEO data; horizontal dashed lines: BABAR data; horizontal dot-dashed lines: BELLE data.

It has to be pointed out that the annihilation contributions in B decays play an
important role since they contribute significantly to the magnitude of the amplitude.
The annihilation diagram contribution to the total decay amplitude strongly modifies
(in a positive or negative way) the branching ratio B~ — p®n~ according to the value
chosen for the phase ¢,. This contribution could be bigger than that of p — @ mixing
but carries more uncertainties because of its endpoint divergence. We emphasise that
these two contributions (p — ® mixing effects and annihilation contributions) are not
just simple corrections to the total amplitude, but are important in obtaining a correct
description of B decay amplitude.

4. FORM FACTOR F}—"

Form factors play a major role in the factorization method (naive or QCDF) since they
represent the transition between two hadronic states. Their computation is non trivial and
may carry large uncertainties, depending on models being used. These models include,
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say, QCD sum rules, heavy quark effective theory, lattice QCD and light cone QCD.
With the available experimental data for the branching ratios, it is now possible for us to
constrain F2~" in a model-independent way in QCDF.

It has to be noticed that the branching ratios depend on both F IB**" and Ngf /. InFig. 6
we show the results regarding the form factor Ff‘”‘(mf,) as a function of N¢/7, where
we require that all the branching ratios for B decaying into pr and @7 be consistent with
the experimental data provided by CLEO and BELLE. We have excluded the data from
BABAR since they are currently not numerous and accurate enough. We have included
uncertainties from the CKM matrix element parameters p (0.190 < p < 0.268) and n
(0.284 < 1 < 0.366) and we have applied the QCD factorization method where all of
the final state interaction corrections arising at order o are incorporated. We emphasize
that the results are model independent.

0.7 T T T T T T

FIGURE 6. FP~7" as a function of N¢/7. Plot obtained by comparing theoretical results from QCFD
with experimental data from BELLE and CLEO for the branching ratios B — px and B — w. The plot
includes the uncertainties from the CKM matrix element parameters p and 7.

We found a large common region between BELLE and CLEO for the B decay into
pr. From our analysis, F# " (m?) varies between 0.3 and 0.57 and N;// can take values

from 1.25 to 2.25. Their central values are FlB""‘(mf,) = 0.43 and N*// = 1.75. The
result obtained for the form factor FlB‘"‘(mf,) reduces one of the main uncertainties

in the factorization process. That obtained for the effective number of colours, Ngf 1,
confirms previous analysis where naive factorization was applied for the same decays.
It is well known that the CKM matrix element parameters p and 7 are the main
“key” to CP violation within the Standard Model. Recall that the weak phase is mainly
governed by the parameter 7 that provides the imaginary part which is absolutely
necessary to obtain an asymmetry between matter and antimatter. Based on our analysis,
we are not able to efficiently constrain the CKM matrix parameters p and 7 from the
branching ratios for B — p. In fact, the common region allowed by CLEO and BELLE
data for branching ratios for B — p7 does not constrain the parameters p and 7. In
the analysis we used the values 0.190 < p < 0.268 and 0.284 < 1 < 0.366 [45, 46],
to which the common region corresponds. However, we can try (as an example) to get
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some constraints on p and ) by only taking into account the central values for the form
factor FB-"(m2) and for the effective number of colours N¢//. According to our work,
we find the following limits: 0.205 < p < 0.251 and 0.300 < 1 < 0.351.

5. CONCLUSION

The calculation of the hadronic matrix elements that appear in the B decay amplitude
is non trivial. The main difficulty is to express the hadronic matrix elements which
represent the transition between the meson B and the final state.

We have investigated the branching ratios for B — pn,B — @wrn within the QCDF
approach. Comparisons were made with experimental results from BABAR, BELLE
and CLEO. Based on our analysis of branching ratios in B decays, we have constrained
the form factor, F2="(m?2), and the effective number of colours, Nef7. More accurate
experimental data regarding branching ratios in B decays will provide more accurate
results, which will be helpful in gaining further knowledge of direct CP violation in B
decays.

This work could be extended to more B decays. It would be very interesting to
constrain our parameters by investigating channels other than pz for branching ratios
and asymmetries. By including more channels, we will use more experimental data
and hence be able to obtain better results for our parameters. In the QCD factorization
framework, annihilation contributions could be subject to discussions. Clarifying this
point would be very helpful in obtaining more accurate theoretical predictions. For
example, it is important to solve the problem related to the end point integral diver-
gence [13] which is parameterized without any strong physical motivation. Moreover,
the annihilation contributions have not been included within the QCDF method. To
obtain a consistent framework, it would be better to find a way to include them within
QCDF.
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1 Introduction

Understanding the physical origin of the violation of CP (Charge Conjugation xParity)
symmetry is one of the main goals of Particle Physics at the present time. Recent ex-
periments at ete™ colliders (BaBar, Belle) have produced fundamental results which
strengthen the CKM picture of C'P violation [1, 2] in the B meson sector [3, 4]. How-
ever, the main results of these two collaborations are related to B decays into pairs of
pseudo-scalar mesons or into a vector plus a pseudo-scalar meson.

A very broad physics program can also be carried out in the sector with two vector
mesons in the final state, following B decay. Apart from measuring the standard angles,
a, B and 7 of the Unitary Triangle (UT), the vector mesons are polarized and their decay
products (usually long-lived 0~% mesons) are correlated. This opens the possibility of
making interesting cross-checks of the Standard Model predictions as well testing some
specific models of C P violation beyond the SM approach (BSM).

In the special case of two neutral vector mesons, the orbital angular momentum, £,
and the total spin, S, of the V?V}? system satisfy the equality £ = § = 0,1,2. The CP
eigenvalues are defined as (—1)1. Because of the allowed values for the angular momentum,
¢, one has a very clear indication of any mizing of different C' P eigenstates and hence of
C P non-conservation. The separation of the different C'P eigenstates requires a detailed
analysis of the final angular distributions [5]. However, because this analysis can be
carried out in a model-independent way, it provides a significant constraint on any model.

After explaining the helicity formalism (Section II), a special study is devoted to the
final state interactions (FSI) and the key role of p° — w mixing (Section III). A complete
and realistic determination of the helicity amplitudes, in the framework of the effective
Hamiltonian approach, is introduced in Section IV. Then, the main results of the Monte-
Carlo simulations, providing estimates of the various density matrix elements h;;, are
shown in Section V. In the following section (Section VI) the numerical analysis and
discussions about the branching ratios and asymmetries for B decays into two vectors
(B = p°(w)Va, with V, = K*, K*0, K*= K**,p*,p~) are given in detail. These two
vectors, p°(w) and V2, each decay into two pseudo-scalars. Emphasis is put on the angular
distributions of the pseudo-scalar mesons in both the helicity and transversity frames.
Finally, in the last section, we summarize our results for the different channels which will
be investigated in future experiments at pp colliders and make some concluding remarks.

2 General formalism for B — V;V; decays

2.1 Helicity frame

Because the B meson has spin 0, the final two vector mesons, V; and V,, have the same
helicity, A; = A2 = —1,0,+1, and their angular distribution is isotropic in the B rest
frame. Let H, be the weak Hamiltonian which governs the B decays. Any transition
amplitude between the initial and final states will have the following form:

Hy = (Vi(\)V2())|Hu|B) , (1)

where the common helicity is A = —1,0,+1. Then, each vector meson V; will decay into
two pseudo-scalar mesons, a;, b;, where a; and b; can be either a pion or a kaon, and the
angular distributions of a; and b; depend on the polarization of V.

il
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The helicity frame of a vector-meson V; is defined in the B rest frame such that the
direction of the Z-axis is given by its momentum, p;. Schematically, the whole process
gets the form:

B— Vi+V; — (a1 +b1) + (a2 + b2) .

The corresponding decay amplitude, M. ,\(B — Z?=1(a,- + b;)), is factorized out according
to the relation,

My(B = _(ai+5)) = Hx(B = Vi + Vo) x [J Ai(Vi = a: + 87, (2)

=1 i=1
where the amplitudes A;(V; — a; + b;) are related to the decay of the resonances V.. The
A;(Vi = a; + b;) are given by the following expressions:

1

A(Vi »ar+b)= Y aD},(0,6,,0),

my=-1
1!
Ay(Va 2 ag+b2) = Z CzDi,m(ﬁb, b3, —9) - 3)
ma=-—1

These equalities are an illustration of the Wigner-Eckart theorem. In Eq. (3), the ¢; and
¢, parameters represent, respectively, the dynamical decays of the Vi and V2 resonances.
The term Dj ,.(¢i,0:;, —:) is the Wigner rotation matrix element for a spin-1 particle
and we let /\(a,) and A(b;) be the respective helicities of the final particles a; and b; in
the V; rest frame. 8, is the polar angle of a; in the V; helicity frame. The decay plane of
V; is identified with the (X-Z) plane and consequently the azimuthal angle ¢, is set to 0.
Similarly, 6; and ¢ are respectively the polar and azimuthal angles of particle a; in the
Vs helicity frame. Finally, the coefficients m; are defined as:

m; = Xa;) — A(bi) (4)
Our convention for the Dj ,,.(a, 3,7) matrix element is given in Rose’s book [6], namely:
D} (@, 8,7) = exp[~i(Ae + mi7)] &5, (B) - (5)

The most general form of the decay amplitude M (B — Z?=l(a,~ +b;)) is a linear super-
position of the previous amplitudes My (B— Z?=1(a,- + b;)) denoted by,

M(B—>Z(a,+b))—ZMA B-—)Z(a,-}-b)) (6)

=1
The decay width, ['(B — V;V3), can be computed by taking the square of the modulus,
M(B - 2 (ai+ bi))‘, which involves the three kinematic parameters 6,,6; and ¢.
This leads to the following general expression:

FT(B > ViVa) o \Z MA(B = > (a4 8) N = 3 haarFax(8)Gax(6a:) , (7)

i=1 AN
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which involves three density-matrices, hy x, F,x(61) and Gy x(02,4). The factor hyy =
H) H3, is an element of the density-matrix related to the B decay, while F), y/(8;) represents
the density-matrix of the decay Vi — a1 + bi. In a similar way, G x(62, ¢) represents the
density-matrix of the decay V2 — a3 + ba.

The analytic expression in Eq. (7) exhibits a very general form. It depends on neither
the specific nature of the intermediate resonances nor their decay modes (except for the
spin of the final particles). This approach also presents three key advantages. The first
one comes from the fact that all the dynamics of the B decay is introduced into the
coefficients hy . This allows us to use various theoretical models involving different
dynamical processes and form factors. The second is associated with the fact that the
formal expressions for Fy x(81) and G, (62, ¢), which are related to the polarization of
the intermediate resonances, remain unchanged whatever the coefficients ) x»» happen to
be. Finally, correlations among final particles arise in a straightforward way because of
the previous expression which relates the angles 8;, 6, and ¢. Consequently, a probability
density function (pdf) can be inferred from the general expression and one gets:

&ET(B = VW)

f(61,62,9) = I'(B — ViV;)d(cos 61)d(cos 83)d¢ D (8)

where the angles 6,,8; and ¢ were defined earlier and I'(B — V; V%) is the partial decay
width. This function allows one to compute three other pdfs separately for the variables
01,0, and ¢.

The previous calculations are illustrated by the reaction B® — K*0p° where K*° —
K+r~ and p° — ntn~. In this channel, since all the final particles have spin zero, the
coefficients m, and my, defined in Eq. (4), are equal to zero. The three-fold differential
width has the following form:

&PT(B — V1 Vs)
d(cos 6,)d(cos 0;)d¢

+ {%e(h+o)cos ¢ — Im(hyo)sin ¢ + He(ho-)cos ¢ — Fm(ho-)sin <;5}sin 26,sin 26, /4
+ {.%e(h+_)cos 2¢ — Im(hy-)sin 2<;5}sin291sin202/2 , (9)

o (hys + h__)sin®6;sin’0 /4 + hoocos?0;cos?0;

where all the terms in Eq. (9) have been already specified. It is worth noticing that the
expression in Eq. (9) is completely symmetric in 6, and §; and consequently, the angular
distributions of a; in the V; frame is identical that of a; in the V; frame. From Egs. (8)
and (9) the normalized pdfs of 8;, §; and ¢ can be derived and one finds:

f(COSlez) = (3h00 - 1)005291,2 + (1 - hoo) )
9(¢) =142 Ze(hy_)cos2¢ — 2 Im(h,_)sin2¢ . (10)

2.2 Transversity frame

Initially, the transversity frame (TF) was introduced by A. Bohr [7] in order to facilitate
the determination of the spin and parity of a resonance decaying into stable particles. It
can be extended to a system of two vector mesons coming from a heavy meson, B or B, in
order to perform tests of C' P symmetry. In displaying new angular distributions, the TF

3
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provides complementary physical information to that seen in the standard helicity frame.
The construction of the TF and its use require several steps. For a clear illustration, see
Fig. 1, where the channel B® — p° K™ is chosen.

Departing from the B rest frame, the common helicity axis, (Ag), is given by the
direction of the momentum p;. This and the decay plane, (IIp), of the vector meson
(K*® — K*n~) are the main ingredients of the TF. The vector meson p° is taken at rest
(origin of the frame) and the X-axis is given by (Ax). In the decay plane, (Ilp), the
Y-axis which is orthogonal to the X-axis, is chosen in such a way that the K* meson has
the Y-component of its momentum greater than or equal to zero. The Z-axis, which is
orthogonal to the plane (IIp), is obtained by the classical relation €7 = Ex Xé&y.

The angular distributions of the 7* coming from the p® decay are referred to the new
Z-axis. It is worthy noticing that, in the TF, the flying meson and its decay products are
very energetic compared to the B frame. Explicitly, the p° energy is given by the relation,

'Ep = (mp® — m? —my?)/2m; &~ 17 GeV (11)

where m; and m; refer to the masses of the K*° and p° resonances, respectively. As far as
the transition amplitudes in the TF are concerned, they are a simple linear combination
of the helicity amplitudes, namely:

_H,+H_ H,-H_
V2 Ve
while Hy remains unchanged. We can rewrite the angular distributions given in Eq. (10)

by using the relations from Eq. (12) and angles 8, », ¢ expressed in the transversity frame.
Thus one gets,

Hp , and Hr = (12)

fr(cosby2) = (3|HT|2 — l)coszal'g + (1 - |HT|2) s
gr(P) = (1 + |H0|2 - {Hp|2)c052¢ . (13)

3 Final state interactions and p° — w mixing

3.1 Factorization hypothesis

Final state interactions (FSI) represent unavoidable effects in hadronic physics and they
play a crucial role in heavy resonance decays [8]. In the case of a B meson, characterized
by a center-of-mass energy /s = 5.3 GeV, the charmless weak decays of the b-quark lead
to light energetic quarks which can exchange several gluons amongst themselves as well
as with the spectator quark in the B meson. This fundamental process occurs in decays
described by tree, penguin and annihilation diagrams and is characterized by two regimes:
perturbative and non-perturbative. In order to handle the FSI in both regimes, the usual
method is inspired by the effective Lagrangian approach. Perturbative calculations at
next-to-leading order (NLO) are performed for a scale higher than m (since our analysis
is focused on B decays) and the non-perturbative effects are inserted for a scale lower
than ms. This general method is called the factorization procedure [9) and further details
are given below.

In the factorization approximation, either the vector meson p°(w) or the K™ is gener-
ated by one current in the effective Hamiltonian which has the appropriate quantum

4
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numbers. For the B decay processes considered here, two kinds of matrix element
products are involved after factorization (i.e. omitting Dirac matrices and color labels):
(°()] () [0) (K*|(@i05) | BES) and (K*|(395)10)(p°(w)] ()| B=9), where g; and g; could
be either u, s or d. We will calculate them in two phenomenological quark models.

The matrix elements for B — X* (where X* denotes a vector meson) can be decom-
posed as follows [10],

(XILIB) = ety PV (K) + i{e;:(mg + mxe) A (k2)

*

ek -k
- O A (k%) —
mB+mx-(PB+PX )u 2(k) k2

2mX. . kl‘Aa(kz)}

-k

k2

+1 2mxs - k,Ao(K?) , (14)

where J, is the weak current, defined as J, = ¢7*(1 — ;)b with ¢ = u,d,s and
k = pp — px- and ¢, is the polarization vector of X*. The form factors Ao, A), A2, A3 and
V describe the transition 0~ — 1~. Finally, in order to cancel the poles at ¢ = 0, the
form factors respect the condition:

A3(0) = Ao(0) , (15)

and they also satisfy the following relations:

mp + mx-
2th

mp—Mmx-=

As(k?) = Ai(k?) — Az(K?) . (16)

2mx-
In the evaluation of matrix elements, the effective number of colors, N¢//, enters through
a Fierz transformation. In general, for an operator O;, one can write,

E]:ffi-:%-{-&,wnhi:l’”.’lo, ) (17)
here &; describes non-factorizable effects. ; is assumed to be universal for all the operators
O;. Naive factorization assumes that we can replace -in a heavy quark decay- the matrix
element of a four fermion operator by the product of the matrix elements of two currents.
This reduces to the product of a form factor and a decay constant. This assumption is
only rigorously justified at large values of N.. But it is known that naive factorization
may give a good estimate of the magnitude of the B decay amplitude in many cases [11].

3.2 FSI at the quark level: strong phase generated by the pen-
guin diagrams

Let A be the amplitude for the decay B — p°(w)K* — w*7~K* (a similar procedure
applies in the case where we have a p* [12] instead of the K*), then one has,

A= (K*r~n*|HT|B) + (K*r~n*|HF|B) , (18)
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with HT and HF being the Hamiltonians for the tree and penguin operators. We can
define the relative magnitude and phases between these two contributions as follows,

A= (K*n~nt|HT|B)[1 + ree”] ,
A= (K*n*tn~|HT|B)[1 + re¥’e™™] , (19)
where & and ¢ are strong and weak phases, respectively. The phase ¢ arises from the
appropriate combination of CKM matrix elements, ¢ = arg[(VisV;:)/ (Vs V5)]. As a result,
sin ¢ is equal to sin~, with v defined in the standard way [13]. The parameter, r, is the
absolute value of the ratio of tree and penguin amplitudes:
|k H7|B)
~ [{p(w)K*|HT|B) |

(20)

3.3 Strong phase generated by the p° — w mixing

In the vector meson dominance model [14], the photon propagator is dressed by coupling
to vector mesons. From this, the p° —w mixing mechanism [15] was developed. In order to
obtain a large signal for direct C P violation, we need some mechanism to make both sin é
and r large. We stress that p° — w mixing has the dual advantages that the strong phase
difference is large (passing through 90° at the w resonance) and well known [12, 16]. With
this mechanism, to first order in isospin violation, we have the following results when the
invariant mass of the #*7~ pair is near the mass of the w resonance,

(K*n~*|HT|B) = sg" f,ute, + gﬁtp ,
P

pSw

(K*n~n*|HF|B) = 2 11,p, + Zp, . (21)
SpSw Sp

Here ty (V = p or w) is the tree amplitude and pv the penguin amplitude for producing
a vector meson, V, g, is the coupling for p® — n 1™, Il,, is the effective p° — w mixing
amplitude, and sy is the inverse propagator of the vector meson V/,

Sy =8 — m%, +imyly , (22)

with /3 being the invariant mass of the #*m~ pair. We stress that the direct coupling
w — w17~ is effectively absorbed into flpw [17], leading to the explicit s dependence of
I1,,. Making the expansion M,.(s) = M,u(m2) + (s — m%)IL,, (m?2), the p° — w mixing
parameters were determined in the fit of Gardner and O’Connell [18]): Ze M, (m2) =
—3500 + 300 MeV?2, Im II,,(m2) = —300 + 300 MeV?, and II), (m?2) = 0.03 £0.04. In
practice, the effect of the derivative term is negligible. From Egs. (18) and (21) one has

reiteit — LpoPu T SuPp (23)
prtw + sut,
Defining
Eﬁ = Tlei(5q+¢) , t_w = aei5° 5 EL = Beisﬂ , (24)
2 e Puw

(=]
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where 4,85 and &, are partial strong phases (absorptive part) arising from the tree and
penguin diagram contributions. Substituting Eq. (24) into Eq. (23), one finds:

/ei5q HPW —+ Igezsﬂsw

= , 25
s, + [, aeia (25)

re? =r

where the total strong phase, §, is mainly proportional to the ratio of the penguin and
tree diagram contributions.

3.4 Importance of the strong phase for BB asymmetry

Under a C P transformation the strong phase, §, remains unchanged, while the weak phase,

¢, which is related to the CKM matrix elements, changes sign. Thus, the asymmetry
parameter, a&p, which can reveal direct C P violation, can be deduced in the following

way:
g AT A? —2 7 siné sin¢g

aCP:AZ-I—Az:1+r2+2rcosc$cos¢' (26)

It is straightforward to see that the parameter a&p depends on both the strong phase
and the weak phase and, consequently, that the maximum value of o, can be reached
if sind = 1. This is why the strong final state interaction (FSI) among pions coming
from p° — w mixing enhances the direct C'P violation in the vicinity of the mass of the w
resonance.

In the Wolfenstein parametrization [19], the weak phase comes from [VisVj5/VisVyi]

and one has for the decay B — p°(w)K*,

. -n
sing = ——,
_/,02 + 772
cos¢ = - (27)

V/ET

while the weak phase comes from [ViVy5/ Vi V2] for the decay B — p°(w)p,

sing = 1
Vil =p) =P+ 72’
cosh = p(l—p)—n , (28)

Ve =p) = +n2

The values used for p and 7 will be discussed in Section V.
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4 Explicit calculations according to the effective
Hamiltonian

4.1 Generalities concerning the OPE for weak hadronic decays
4.1.1 Operator product expansion

The operator product expansion (OPE) [20] is an extremely useful tool in the analysis of
weak interaction processes involving quarks. Defining the decay amplitude A(M — F') as

A(M — F) o« Ci(p)(F|0:(1)|M) , (29)

where C;(u) are the Wilson coefficients (see Section 4.1.2), O;(p) are the operators given
by the OPE and  is an energy scale, one sees that the OPE separates the calculation of the
amplitude, A(M — F), into two distinct physical regimes. One is related to hard or short-
distance physics, represented by C;(¢) and calculated by a perturbative approach. The
other is the soft or long-distance regime. This part must be treated by non-perturbative
approaches such as the 1/N expansion [21], QCD sum rules [22], hadronic sum rules or
lattice QCD.
The operators, O;, are local operators which can be written in the general form:

Oi = (q:'rnlqj)(‘jkrn2q1) ) (30)

where I,; and I, denote a combination of gamma matrices and g the quark flavor. They
should respect the Dirac structure, the color structure and the types of quarks relevant
for the decay being studied. They can be divided into two classes according to topology:
tree operators (O, 0;), and penguin operators (O3 to Oyo). For tree contributions (where
W2 is exchanged), the Feynman diagram is shown in Fig. 2 (left). The current-current
operators related to the tree diagram are the following:

03 = Govu(1 — 75)updp7*(1 — 75)ba
05 = gru(1 — y5)usy*(1 — 75)b, (31)

where o and 8 are the color indices. The penguin terms can be divided into two sets.
The first is from the QCD penguin diagrams where gluons are exchanged, while the
second is from the electroweak penguin diagrams (where either a v or a Z° is exchanged).
The Feynman diagram for the QCD penguin diagram is shown in Fig. 2 (right) and the
corresponding operators are written as follows:

Os = gn(1—715)bY_av" (1 - )7
ql

Os = @ru(1 = 15)bs Y_ Tpr*(1 — ¥5)ds » (32)

q/

Os = gru(1 —7s)b > I (L +75)4
ql

O6 = Gavu(1 = 715)bs Y Gp7*(1 +75)dk » (33)

ql
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where ¢ = u, d, s, c. Finally, the electroweak penguin operators arise from the two Feyn-
man diagrams represented in Fig. 3 (left) and Fig. 3 (right) where Z,~ is exchanged from
a quark line and from the W line, respectively. They have the following expressions:

3 _
Or = 571~ 15)b Y e v (1+15)q

q

3. )
Os = '2'qa7u(1 — 75)bs E ep@p7*(1 +75)¢,
q

3_ _
Os = 5q7u(1 — 75)b Y erdr (1 —s)d

q

w

O10 = 3umu(l = 75)bs > €@s7*(1 — ¥5)4 » (34)

g

2
where e, denotes the electric charge of ¢'.

4.1.2 Wilson coefficients

As we mentioned in the preceding subsection, the Wilson coefficients [23], C;(u), represent
the physical contributions from scales higher than p (the OPE describes physics for scales
lower than p). Since QCD has the property of asymptotic freedom, they can be calculated
in perturbation theory. The Wilson coefficients include the contributions of all heavy
particles, such as the top quark, the W bosons, and the charged Higgs boson. Usually, the
scale y is chosen to be of O(my) for B decays. The Wilson coefficients have been calculated
to next-to-leading order (NLO). The evolution of C(u) (the matrix that includes C;(u))
is given by,

C(u) = Uy, Mw)C(Mw) , (35)

where U(u, Mw) is the QCD evolution matrix:

Uy, M) = [1 + %J] U, M) [1 - as(f:“’).f] , (36)

with J the matrix summarizing the next-to-leading order corrections and U°(pz, Mw ) the
evolution matrix in the leading-logarithm approximation. Since the strong interaction
is independent of quark flavor, the C(u) are the same for all B decays. At the scale
p = my = 5 GeV, C(u) take the values summarized in Table 1. To be consistent, the
matrix elements of the operators, O;, should also be renormalized to the one-loop order.
This results in the effective Wilson coefficients, C}, which satisfy the constraint,

Ci(ms)(0:(my)) = C{(O:)"™*° , (37)

here (0;)""* are the matrix elements at the tree level. These matrix elements will be
evaluated within the factorization approach. From Eq. (37), the relations between C; and
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C; are [24, 25]:

C{ = C] 3 Cé = C2 3
Cé=03—P_g/3, C£=O4+Ps1
Cé=05"Ps/3a Cé=06+Ps,
C—;=C7+Pe, Cé=05,
Cé=c9+Pea C;O=CIO7 (38)
where,
P, = (a,/87)C2(10/9 + G(mc, 4,4%)) »
P. = (aem/97)(3C1 + C2)(10/9 + G(mc, 1,4%)) , (39)
and

2

! m
G(me,p,q%) = 4/ dr z(z — 1)ln—=
: 0

- x(12 —2)¢* (40)

Here ¢ is the typical momentum transfer of the gluon or photon in the penguin diagrams
and G(m., i,¢*) has the following explicit expression [26],

2

9 2 2 2 2 144/1—4%
#2072 iy (1427 4TV = ),

H q q T 1-4/1-4%%

2 m2\ | m?2
ﬂmG=—§(l+2q2) 1—47. (41)

Based on simple arguments at the quark level, the value of ¢* is chosen in the range
0.3 < ¢2/m? < 0.5 [12, 27]. From Egs. (38-41) we can obtain numerical values for C;.
These values are listed in Table 2, where we have taken a,(mz) = 0.112, @em(ms) =
1/132.2, my =5 GeV,and m.=1.35 GeV.

4.1.3 Effective Hamiltonian

In any phenomenological treatment of the weak decays of hadrons, the starting point is
the weak effective Hamiltonian at low energy [28]. It is obtained by integrating out the
heavy fields (e.g. the top quark, W and Z bosons) from the standard model Lagrangian.
It can be written as:

Hets = % E VermCi(p)O:i(p) , (42)

where Gr is the Fermi constant, Voxar is the CKM matrix element (see Section 4.3),
Ci(u) are the Wilson coefficients (see Section 4.1.2), O;(u) are the operators from the
operator product expansion (see Section 4.1.1), and p represents the renormalization
scale. We emphasize that the amplitude corresponding to the effective Hamiltonian for
a given decay is independent of the scale p. In the present case, since we analyze direct
C P violation in B decays, we take into account both tree and penguin diagrams. For the

10
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penguin diagrams, we include all operators Os to Oyo. Therefore, the effective Hamiltonian
used will be,

.. G
AB=1 F
Hepp = [

V2

and consequently, the decay amplitude can be expressed as follows,

Vs (C107 + C203) — Vs Vg Z Ci O] + He., (43)

=3

G
A(B— Vi) = ZE ViV (CM IOl B) + Ox(ViVAlO} ) —

10
Valis Y- CAVYAIONB) | + He. (44

=3

where (V1V;|0;|B) are the hadronic matrix elements. They describe the transition be-
tween the initial state and the final state for scales lower than y and include, up to now,
the main uncertainties in the calculation since they involve non-perturbative effects.

4.2 New expression of helicity amplitudes h;; according to Wil-
son Coeflicients

4.2.1 General helicity amplitude

The weak hadronic matrix element is expressed as the sum of three helicity matrix ele-
ments, each of which takes the form Hy(B — p°(w)V3) = (Vi Va|H,*//|B), and is defined
by gathering all the Wilson coefficients of both the tree and penguin operators. Llnear
combinations of those coefficients arise, such as c;' (tree diagram contrlbutlon) and c};
(penguin diagram contribution). Then, in the case of B — PP (w)Vz, (Vi = p° or w), the
helicity amplitude H, (B — po(w)Vz) has the general following expression:

H(B = P ()V) = (VaVid, = Valises ) { Breasmseiz (M VPR,
+i(Bn (M) - ﬂs’(eaz(A)-PBxe;(AyPB))} + (VaVarct, — VaVies, )

{Btcamas NI PEPS + (Bt (N6t ) - ﬂé’(e:(x)-PB)(e*vz(A)-PB))}

e}

pw

m2) + mm,[y

+

EM

(8o~

.(VubVJsctl Vi Ve pl) {:31 EQBWJE*V:()‘)E:;B(’\)PEP&
+i(B5 (VS 0) ~ B (6,00 Pa)(C V) Pa) | + (VioVisey = VaVis).
{ﬂ?eaawaé" NGENVPEES +i(B5eL(Nei, (X) — B3 (L (X)- P)(e5, (V) - Pr) }} , (49)

with ey, , () being the K*, p° and w polarization vectors expressed in the B rest frame.
Finally eqp4s is the antisymmetric tensor in Minkowski space.

11
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In Eq. (45) the parameters B; are mainly the form factors describing transitions be-
tween vector mesons. They take the form:

G 2

v, _ YUF BoW,V, 2

1.11 = 2'fV1.V2mV1.V2mB +mV2,VlV z l(mVl,V2) s (46)
Gr

W B>,V

26 =5 fuvmv v (me + myu) AL 2 (M) (47)
G 2

Vi F B—W,,V; 2

3= vy | r—— (my, ) » (48)

. BV,
here fy, v, is either the p°,w or K* decay constant. VEB=V2V1 and A7 are respec-

tively the vector and axial form factors defined in Egs. (14-16). It is worth noticing that
the tensorial terms which enter H) (B - po(w)Vg) become simplified in the B rest frame

because the four-momentum of the B is given by Pg = (mp, 0). Then, using the orthog-
onality properties of ey;()), the helicity amplitude Hx(B — p°(w)V2) acquires a much
simpler expression than above:
Hy(B — p°(@)Va) = iB ViV, — ViViseh,) +iCE(VaaViach, = VaoVireg,) +
1,
( - m2) + me w

where the terms BY! ' and cY +* take the following forms for the helicity (A) values, —1,0, +1:

—[iBY(VaVinct — VaoVise) +iC (VW = VaVises)] o (49)

_ 2
Bty = pp bt ) g PP (50
C,\ i = v1 m% - (m%/z +m%,1) _ 5;{' |p1*m% ; (51)
= 2my, my, my,my,
By, = FB'malp - 87" (52)
C)\ = :Fﬁ:; mp|p| — ﬂs . (53)

In the above equations, |5] is the momentum common to the V; and V; particles in the B
rest frame. It takes the form:

7l = VImp — (my, + mvgi]imzs — (my, — my,)?] , (54)

where m; and m; are the vector masses. Taking into account the previous relations, we
arrive at the final form for the amplitudes Hj (B — po(w)Vz):

Hyey, (B = F°@)V2) =

,\z{ [R’{Bj\’:o* + RCE, ] + [I{Bj\’:o* O ]}

f'[ 2 w
+ [ ided - [‘w |:AA { [RWBA=3:1 + chA-iI]

(s, —mZ) +1ma
[I{”B g, + 505 ]}] , (55)

12
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where one defines,
RI' = nX2¢)! — Im(c)}) (56)
I = pA2eft + Ze(c)}) (57)

with V; being either p° or w. From Eq. (55), the density-matrix elements hj can be
derived automatically and on has:

h,\,)‘l = H, (B - po(w)Vg)H,(, (B — po(w)‘/g) 0 (58)

Because of the hermiticity of the matrix (hy,), only six elements must be calculated.

4.2.2 Explicit amplitudes for the B decays investigated

By applying the formalism described in Section III, one gets in the case of the p® produc-
tion, the following linear combinations of the effective Wilson coefficients:
for the decay B° — K*°p°:

=+ Z : ¢ =3(Co+ f\;" +Cp+ ]c;;‘ )
(2 !
Cfg =0, sz = (C4 JC\;C) 2 (CIO i’, ) s (59)

where C! are listed in Table 2. The coefficients, cf,, relate to the tree diagrams and cj, to
the penguin diagrams. To simplify the formulas we used N, for N/ in the expresswns

(Egs. (59)-(62)).
for the decay B~ — K*~p°:

(4 3 (0 C;
— (Y ~2 2 7 10
=C1+ N, cp, 5 (C A Nc) s
@ C} Cs
Ct2 02 + F o C’;z = C‘; N + C;O + F (60)

In the case of w production one obtains the following linear combinations of effective

Wilson coefﬁcignts: B
for the decay B® — K*%w:

;;:C{+%, ¢ (C’+%+C’ 1%) 2(0’ 1\30 -,-!-%). (61)
for the decay B~ — K*~w:

cﬁ:Cé-{—%, v = C)+ C3+(c10 f;)

;;=0;+%, e, =2(Ch+ f;+o' f;:)%(cg f\;°+o7 f;*) (62)

We refer to Appendix A for details of the helicity amplitudes, while for the channel
B* — p%(w)p* we refer to Appendix B.

13
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4.3 CKM matrix and form factors

In phenomenological applications, the widely used representation of the CKM matrix is
the Wolfenstein parametrization [19]. In this approach, the four independent parameters
are A, A,p and 7. Then, by expanding each element of the matrix as a power series in
the parameter A, = sin 8, = 0.2209 (4. is the Gell-Mann-Levy-Cabibbo angle), one finds
(O()%) is neglected)

. 1-3% A AXN(p—in)
Vexkm = —Ac 1—3A2 AN - (63)
AX(1—p—in) —AX 1

where 7 plays the role of the C P-violating phase. In this parametrization, even though
it is an approximation in )., the CKM matrix satisfies unitarity exactly, which means,

Virs - Verxmr = 1= Verm - Vg - (64)

The form factors, V(k?) and A;(k?), depend on the inner structure of the hadrons. Here we
will adopt two different theoretical approaches. The first was proposed by Bauer, Stech,
and Wirbel [10] (BSW), who used the overlap integrals of wave functions in order to
evaluate the meson-meson matrix elements of the corresponding current. In that case the
momentum dependence of the form factors is based on a single-pole ansatz. The second
approach was developed by Guo and Huang (GH) [29], who modified the BSW model by
using some wave functions described in the light-cone framework. Nevertheless, both of
these models use phenomenological form factors which are parametrized by making the
assumption of nearest pole dominance. The explicit k* dependence of the form factor
is [10, 30]:

V(k?) = =t (65)

(-%)
v

where m4; and my are the pole masses associated with the transition current and hy and
hg4; are the values of the form factors at > =0.

5 Monte-Carlo simulations: computation of h;; and
general results

5.1 Numerical inputs
5.1.1 CKM values

In our numerical calculations we have several parameters: ¢?, N¢// and the CKM matrix
elements in the Wolfenstein parametrization. As mentioned in Section IV, the value of q*
is conventionally chosen to be in the range 0.3 < q?/my? < 0.5. The CKM matrix, which
should be determined from experimental data, is expressed in terms of the Wolfenstein
parameters, A, A, p, and n [19]. Here, we shall use the latest values [31], which were
extracted from charmless semileptonic B decays, (|Vis|), charmed semileptonic B decays,

14
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(|Vis|), s and d mass oscillations, Am,, Amy, and C P violation in the kaon system (ex),
(p,m). Hence, one has,

Ae =0.2237, A=0.8113, 0.190 < p < 0.268 , 0.284 <7 < 0.366 . (66)

These values respect the unitarity triangle as well (see also Table 3). In our numerical
simulations, we will use the average values of p and 7.

5.1.2 Quark masses

The running quark masses are used in order to calculate the matrix elements of penguin
operators. The quark mass is evaluated at the scale i >~ m; in B decays. Therefore one
has [32],

my(p = mp) = 2.3 MeV mq(p = mp) = 4.6 MeV
ms(p = mp) = 90 MeV , my( = mp) =4.9 GeV , (67)

which corresponds to ms(u = 1 GeV) = 140 MeV. For meson masses, we shall use the
following values [13]:

mpz = 5.279 GeV , myeo = 0.896 GeV , m, = 0.782 GeV ,
mpe = 5.279 GeV , m,x = 0.770 GeV m.+ = 0.139 GeV ,
myez = 0.892 GeV myp = 0.770 GeV , mqo = 0.135 GeV . (68)

5.1.3 Form factors and decay constants

In Table 4 we list the relevant form factor values at zero momentum transfer [10, 29, 33]
for the B - K*, B = p and B — w transitions. The different models are defined
as follows : model (1) is the BSW model where the ¢* dependence of the form factors
is described by a single-ansatz. Model (2) is the GH model with the same momentum
dependence as model (1). Finally, we define the decay constant for vector (fv) meson as
usual by,

\/5(,0(‘1)[@1’)";(12]0) = f,m,¢, for p and otherwise ,
(V(D)a17u2/0) = fvmver , (69)

with ¢ being the momentum of the vector meson and my and ey being the mass and
polarization vector of the vector meson, respectively. Numerically, in our calculations, we
take [13],

fi» =214 MeV | f, =221 MeV , f, =195 MeV . (70)

Finally, the free parameter (effective number of color, N¢//) is taken to lie between the
lower(upper) limits 0.66(2.84) for b — s transition. Nevertheless, we focus our analysis
on values of N°/f bigger than 1, as suggested in [34]. Regarding the b — d transition, the
lower(upper) limits for N¢// are 0.98(2.01) [34].
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5.2 Simulation of the p° — w mixing

All the channels studied here include at least one p® meson which mixes with the w meson.
The other vector mesons are either a K*%* or a p*. Thus, the mass of each resonance is
generated according to a relativistic Breit-Wigner:
do TrMp
e = N E Ty z
M (M? — Mg)" + (TrMR)

(71)

where Cy is a normalization constant. In Eq. (71), Mg and ['r are respectively the mass
and the width of the vector meson which have been determined experimentally. M is
the mass of the generated resonance. A simple and phenomenological relation describing
the amplitude for p° — w mixing is used for the Monte-Carlo simulations [35]. In the
expression for the Breit-Wigner, the p°-propagator is replaced by the following one:
L=i+&r{9w, (72)

Spw Sp T, 5,8,

where T,, and T, are respectively the w and p production amplitudes. In addition, IL,,
is the mixing parameter for which recent values come from ete™ — n7~ annihilations.
Explanations have been already been given in Section III. Finally, 1/sy has the same
definition as in Eq. (22). Because the same physical processes enter the production of
both the p° and w resonances (they are both made out from u# and dd quark pairs with
the same weight 1/2), it seems natural to choose T,,/T, = 1. So, the invariant mass
distribution of the mt7~ system becomes simplified, being given by,

do/dm? o< | AP @))[" , (73)

where A(p%(w)) is the amplitude of the two mixed Breit-Wigner distributions and m is
the 7+7~ invariant mass. In Fig. 4, the 77~ invariant mass spectra for p° — w mixing
is displayed. Because of the very narrow width of the w, (T, = 8.44 MeV), we notice a
high and narrow peak at the w pole (= 782 MeV).

5.3 Density matrix h)

Three main parameters remain free in our simulations: the ratio ¢°/m{ (related to the
penguin diagrams), the form factor model (GH or BSW) and the effective number of
colors, N¢/f (associated with the factorization hypothesis). The histograms plotted in
Fig. 5 display spectra of the diagonal and normalized density matrix elements h;;, for
the channels B® — p®(w)K*° (left hand-side) and Bt — p°(w)p? (right hand-side). The
input numerical parameters are ¢*/m?% = 0.3, Neff = 2.84 (left hand-side figure) or
N¢/f = 2.01 (right hand-side figure), and the GH form factor model is applied for both
decays. Note also that the average values of CKM parameters p and 7 are used. The wide
spectrum of values of the density matrix element k), is caused by the resonance widths
(especially that of the p) which provides, in turn, a large spectrum for the common
momentum py in the B rest-frame. Whatever the p°(w)V, channel is, hoo = lHolz,
which corresponds to longitudinal polarization, is the dominant value. Numerically, for
the B® — p°(w)K*° decay, the mean value of hqo is around 0.87 while it is of order
0.90 for B* — p°(w)pt. The dominance of the longitudinal polarization has already
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been confirmed experimentally, since recent experimental data related to the channel
B - J/ ’k/)K * show clearly that the longitudinal decay amplitude dominates in that case,
with |Hp|? = 0.59 + 0.06 £ 0.01 [36]. Extrapolating these results to the charmless vector
meson final states requires some modifications of the form factors without a big change of
the relative contributions of the polarization states. Regarding h__ = = |H_,|?, it represents
less than 0.5% of the total amplitude for both decays. This numerical result is confirmed
by complete analytical calculations.

In Figs. 6 and 7, the real and imaginary parts of the non-diagonal and normalized den-
sity matrix elements k; ; are shown for the channels B® — p°(w)K*? and B* — p%(w)p™,
respectively. The input parameters are the same as previously mentioned. The main
feature of the non-diagonal matrix elements, k; ;, is the smallness of both the imaginary
and real parts — the imaginary part being at least one order of magnitude smaller than
the real part one. For the BT — p°(w)p* decay, we observe that the mean value of all
the imaginary parts is zero, whereas it can vary for the other decay. Note also that each
of the three real parts are quite similar for both decays. Because of the tiny value of
ho_ = |H_1|2, the moduli of the non-diagonal elements, h+- = H; H* and ho- = HoHZ,
are very small, while the modulus of h,o = H; Hg is around 0.3 for both decays. As a
first conclusion, the general behavior of the density matrix seems to be similar whatever
the decay is. Experimentally, only the mean values of the diagonal elements and A4 will
be able to be measured through the angular distributions.

These angular distributions are plotted in Figs. 8 and 9 in the helicity frame and in the
transversity frame, respectively for B® — p°(w)K*® and for the usual input parameters.
Their normalized pdfs have been displayed above in Eq. (10). As a consequence of the
small value of (h,_), the azimuthal angle distribution in the helicity frame is nearly flat,
whereas it is sinusoidal in the transversity frame. From the distribution as a function
of polar angle (in the TF) displayed in Eq. (13), one can infer a mean value of the Hr
amplitude. This represents an additional piece of information through whlch one can
access the dynamics of B(B) decays into two charmless hadrons.

6 Branching ratio and asymmetry in B decays into
two vector mesons

The analytic expressions for the density matrix elements, h;; allow us to calculate the
hadronic branching ratios &(B — p°(w)V2) and to estimate the asymmetries related to
B and B decays. All these physical observables depend primarily on a subset of the
parameters mentioned previously, such as the form factors, the ratio ¢*/ms? (where ¢°
is the mass of the virtual gluon in the penguin diagram), the effective number of colors,
N¢// (used as a free parameter in the framework of the factorization hypothesis), and the
CKM matrix element parameters p and 7.

6.1 Branching ratio: results and discussions
Departing from the definition of the branching ratio (#(B — f)),

L(B — f)

#(B - f)= (B = All) (74)
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the width I'(B — V;V2) can be inferred from its differential form given by the standard
relation [37):

dB Vi) = —— MB= VW) TB B pp ). (1)

8riM 2E; 2FE,
In Eq. (75), P = (M, 6), where M = my and (Ey,p1) and (E»,p>) are the 4momenta
of Vi and Vi, respectively, in the B rest frame. Because of the large width of the P°
meson ([, ~ 150 MeV) and the K* meson (Tx+ = 50 MeV), the energy, E;, and the
momentum, p;, of each vector meson vary according to the generated event. Computa-
tion of I'(B — p°(w)V;) could not be done analytically but numerically by Monte-Carlo
methods. A total number of 50000 events have been generated in order to obtain a precise
estimate of this decay width.

In Tables 5 and 6 we list (respectively) the branching ratios for B — p°(w)V; and
B — p°(w)V; and their dependence on the form factor models (BSW and GH), q?/mi,
N¢S/ and the average values of the CKM parameters p and 7. For a fixed value of ¢%/m?,
there are important variations of the branching ratios, depending on the form-factor
model. They can vary by up to a factor two. In the framework of a given form-factor
model, some branching ratio modifications appear with g°/m,?, especially in the channels
including a K*. However, these changes do not exceed 34%. Regarding the ratio between
B(B° - p°(w)K*®) and B(B* — p°(w)K™*), its value is found to be of the order 0.40
for the BSW model and 0.34 for the GH model.

Finally, we observe that the relative difference between two conjugate branching ratios,
B(B — f) and B(B — f), is almost independent of the form-factor models, for a fixed
value of ¢%/m;?. It can be computed from the two tables just mentioned and, usually, it
does not exceed 20%. The exception is for the K**p°(w) channels, where it reaches 39%.

6.2 Asymmetry: results and discussions

A search for direct CP violation requires asymmetries between conjugate final states
coming from B and B decays respectively. In our case, these searches are performed
in two complementary ways. We consider first the global C P-violating asymmetry acp,
calculated from branching ratios:

_.%'(Bﬁf)—?(f?—)f)

@B HiBE]) (76)

acp

Secondly, we use the partial widths of B(— f) and B(— f), calculated as described
above together with the differential asymmetries investigated as a function of the 7~
invariant mass in the whole range of the p° Breit-Wigner resonance. Hence, acp(m) takes
the following form:

_Tn(B— f)=Tm(B= )
acp(m) = Th(B— f)+Tm(B—1) "

where m is the 7~ invariant mass. [m(B — f) and T,n(B = f) in Eq. (77) are the
partial widths written as a function of m. B

In Table 7 we list the global C P-violating asymmetry between the B and B decays
for the channels under investigation. It can be noticed that, for a fixed value of ¢*/ms?,

(77)
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the two form factor models provide quite similar results. For different g%/m;? values, the
corresponding results could vary, especially in the K**p°(w) channels. In Figs. 10 and 11
we show, respectively, the histogram of the direct C P-violating asymmetry parameter
acp(m), for the decays B® — p°(w)K*® and B* — p°(w)p™, as a function of the n¥m~
invariant mass in the w mass region and for both form factor models. The asymmetry
reaches its maximum when /s is around 780 MeV. However, outside the displayed win-
dows, the asymmetry goes to zero in any case. The peak of the asymmetry is emphasized
when the GH form factor model is used in our simulations. For the K*°p%(w) channels,
the maximum of the C P violating asymmetry is around 13% and 16%, for the BSW model
and the GH model, respectively. Finally, we emphasise that the p*p°(w) channels present
the most intriguing results because, in any case, their asymmetry is at least 80% (BSW
model) and can reach 95% (GH model). This last channel is highly recommended for a
direct search for C'P violation.

7 Perspectives and conclusions

We have studied direct C'P violation in decay process such as B = p%(w)Ve = ¥t~ V5,
where V; is either K*%* or p*, with the inclusion of p® — w mixing. When the invariant
mass of the 717~ pair is in the vicinity of the w resonance, it is found that the C'P-
violating asymmetry, acp(m), reaches its maximum value. In our analysis we have also
investigated the branching ratios for the same channels. Thanks to the standard helicity
and transversity formalisms, rigorous and detailed calculations of the B%* decays into two
charmless vector mesons have been carried out completely. Using the effective Hamilto-
nian based on the operator product expansion with the appropriate Wilson coefficients,
we derived in detail the amplitudes corresponding to B — p°(w)V, — n#¥n~V; decay and
the density matrix, hyx as well.

In order to apply our formalism, we used a Monte-Carlo method for all the numer-
ical simulations. Moreover, we dealt at length with the uncertainties coming from the
input parameters. In particular, these include the Cabibbo-Kobayashi-Maskawa matrix
element parameters, p and 7, the effective number of colors, N¢//, coming from the naive
factorization and two phenomenological models in order to show the possible dependence
on form factors, GH or BSW. These form factors vary slightly according to the final
states. Recall that this work was achieved by applying a phenomenological treatment,
where some assumptions regarding the evaluation of the hadronic matrix elements have
been made. In this approach, corrections associated with the limit of validity of the
factorization hypothesis were parameterized phenomenologically and may involve large
uncertainties.

As a major result, the predominance of the longitudinal polarization, kg, has been
pointed out in all the investigated decays. We also found a large direct C P-violating
asymmetry in these B decays into two charmless vector mesons. We stress that, without
the inclusion of p°—w mixing, we would not have a large C' P-violating asymmetry. Finally,
we predicted branching ratios to be of the order 0.7 — 2.1 x 1076 for K*°p°(w) and of the
order 2.3—6.6 x 10~ for K**p°(w) (depending on the different phenomenological models).
For the channel p*p°(w), we found the branching ratios to be of the order 11 —24 x 107¢.

Two main conclusions can be drawn. The first is the relative importance of the form
factor model which is used, since some branching ratios in B — p%(w)V; could change by
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up to a factor two. The second is the important role of p° — w mixing, which can enhance
considerably the asymmetry parameter acp, between the conjugate final states coming,
respectively, from B and B decays.

Beside the “standard” ways to look for direct C'P violation, such as the difference
between branching ratios and/or discrepancies in the angular distributions of the decay
products, we have presented a detailed discussion of a new method. This involves the
variation of acp as a function of the 7¥7 invariant mass over the whole range of the p°
resonance [12, 34]. We believe that this method will be very fruitful for future experiments
and has already been implemented in the generator of the LHCb experiment. Indeed, we
look forward to being able to apply the formalism developed here to the analysis of
experimental data for decays such as B — p°(w)V; (with V; being either a K™ or a %)
in the near future.
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Appendix

A Practical calculations of the helicity amplitudes

The helicity formalism in the case of vector mesons requires the introduction of three
polarization four-vectors for each spin 1 particle [38]:

1) = (0,&1), «?)=(0,2), and «(3) = (|Fl/m,Bb/m).  (18)
They also satisfy the following relations as well:
(i) =—1, and €(i)-€(j) =0, withi#J, (79)

where m, E and k are respectively the mass, the energy and the momentum of the vector
meson. k is defined as the unit vector aleng the vector momentum, k = k/|k|. The
three vectors €(1), €(2) and €(3) = Ek/m form an orthogonal basis. €(1) and &2) are the
transverse polarization vectors while &3) is the longitudinal polarization vector. These
three vectors allow one to define the helicity basis:

eo(+) = (6_(1)_;%—6(22 , (-) = (f(_l)‘T;j‘(Q)—) , and €0)=€3).  (80)
These 4-vectors are eigenvectors of the helicity operator H corresponding, respectively,

to the eigenvalues A = +1,—1 and 0. In the B%% rest-frame, the vector mesons have
opposite momentum k; = —k; and their respective polarization vectors are correlated.

This implies the following expressions,
L k sin 8 cos ¢
kx = —k,=k=| ksinfsing | ,
k cos 8
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where 8 and ¢ are respectively polar and azimuthal angles of the produced K*. In our
case, one has for the transversal polarization vectors (K* and p) the expressions:

cos 8 cos ¢

€x(l) = | cosfsing | =¢E,(1),
—sind

and,

—sin ¢
€k(2) = ( cos ¢ ) =—&(2).
0

Regarding the longitudinal polarization, ex(3) and ¢,(3) take the form:

ex(3) = (iﬂj—’;k) L 6(3) = (M,&(_,;)) . (81)

m, m,

By applying the relations from Eq. (80), one can expressed vectors €(¢) in the helicity
basis and one gets €(+):

cosfcos¢ — tsin¢
€x(+)=| cosfsing+icos¢ /\/5 =&g(—) =&(-), (82)
—siné
cosfcosgp+ising
€x(=) = ( cosfsin ¢ — i cos ¢ /\/5 = ex(+) = €(+) . (83)
—sinf

The weak hadronic amplitude is therefore decomposed, in the helicity basis, according to
the general method developed by Bauer, Stech and Wirbel [10]. This will allow one to
obtain two interesting results. Firstly, one can isolate the contribution of each helicity
state to the total amplitude. Secondly, the contributions of the tree and penguin operators
to the total amplitude can be separated via the helicity states.

The knowledge of the main input parameters p,n, A,sinf.(= A.) and the masses and
widths of the intermediate resonances allow a complete determination of the three helicity
amplitudes Hy(B — p°(w)V2), where the helicity A can take the values -1,0 or +1.

B Channel B — p%(w)p*

The formalism applied in case of B — p®(w)K™ can be extend to B* — p°(w)p*. Nev-
ertheless, in the last case one has b — d transition instead of & — s. The amplitude
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H\(B - p°(w)V2) has the form:
Hy=y, (B = p"(0)V) =
AN { [R;’B;’:& +RCY, ] + 4 [1{3;’:& + 0, ]}

I,

(sp —m?2) +im Ty

+ lA»”'{ [riBsg, + sy |

T [I;”B;;oﬂ + I ] }] . (84)

where one defines,
Vi A, v V;
Ril = (]' - ?)nct.'l +7 '%e(cp.‘l) - (1 - P) ‘ﬁm(cp.l) ’ (85)
A2
I = (1= F)eat +n Im(eh) + (1= p) Ze(cy)) (86)
with V; being either p° or w.
If Vi=pandi=2then R’ =I}"=0. (87)
The expressions for cZ‘ and cz‘,/}, which correspond to the investigated channel, take the

following form:
for the decay B~ — p%~:

cy c
< =C{+—N2 +C;+—N1 :
3 cy ' cy
°;‘=5(C;+M+CQ+TVIZO+C;°+F?:)' (88)

In the case of w production, one obtains the linear combinations of the effective Wilson

coeflicients:
for the decay B~ — wp™:

w Cl w ! Cl
c“:CéJrFi‘ cp1=C;+F‘Z+(C{O+Fi),
w C: Ci Cs
Ctz=01+ﬁ2c’ CP2=2(Cé+I_VZ+Cé+M)

1y Clo, v, Cs_ _Co
+5(C+ e+ R -Clm ) - @)

All the terms used in the appendix have been defined in Section IV.
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Figure captions

e Fig. 1 Transversity frame for B — p°K*.
e Fig. 2 Tree diagram (left), and QCD-penguin diagram (right), for B decays.

e Fig. 3 Electroweak-penguin diagram (left), and electroweak-penguin diagram with
coupling between Z,v and W (right), for B decays.

e Fig. 4 Spectrum of p° —w mixing (in MeV/c?), simulated by the interference of two
Breit-Wigner curves.

e Fig. 5 Spectrum of h__, koo, h4+. Histograms on the left correspond to the channel
B® = p°(w)K*® where the parameters used are: ¢2/m?, = 0.3, N/ = 2.84, p =
0.229,n7 = 0.325 and form factors from the GH model . Histograms on the right
correspond to the channel B — p%(w)p* for the same parameters with N&// = 2.01.

e Fig. 6 Spectrum of Ze(h;;) and Fm(h;;) where i # j. Histograms correspond to the
channel B® — p°(w) K*® where the parameters used are: ¢2/m?% = 0.3, N&// = 2.84,
p = 0.229, 7 = 0.325 and form factors from the GH model.

e Fig. 7 Spectrum of Ze(h;;) and S#m(h;;) where i # j. Histograms correspond to the
channel B+ — p%(w)pt where the used parameters are: ¢°/m?, = 0.3, N&// = 2.01,
p = 0.229,n = 0.325 and form factors from the GH model.

e Fig. 8 Spectrum of polar angle (upper figure) and azimuthal angle (lower one) in
the helicity frame for the channel B® — p°(w)K*°. Parameters are: ¢*/m?, = 0.3,
Nt =284, p =0.229,n = 0.325 and form factors from the GH model.

e Fig. 9 Spectrum of polar angle (upper figure) and azimuthal angle (lower one) in the
transversity frame for the channel B® — p°(w)K*°. Parameters are: ¢?>/m?, = 0.3,
Neff =284, p =0.229,1 = 0.325 and form factors from the GH model.

e Fig. 10 CP-violating asymmetry parameter acp(m), as a function of the m¥=~
invariant mass in the vicinity of the w mass region for the channel B® — p°(w)K™.
Parameters are: ¢?/m?, = 0.3, N// = 2.84, p = 0.229,n = 0.325. Solid triangles
up and circles correspond to the BSW and GH form factor models respectively.

e Fig. 11 CP-violating asymmetry parameter acp(m), as a function of the 7*m~
invariant mass in the vicinity of the w mass region for the channel B* — p°(w)p*.
Parameters are: ¢?/m?, = 0.3, N¢// = 2.01, p = 0.229,7 = 0.325. Solid triangles
down and circles correspond to the BSW and GH form factor models respectively.
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Table captions

Table 1 Wilson coefficients to the next-leading order.

Table 2 Effective Wilson coefficients related to the tree operators, electroweak and
QCD-penguin operators.

Table 3 Values of the CKM unitarity triangle for limiting values of the CKM matrix
elements.

Table 4 Form factor values for B — p, B — w and B — K at ¢* = 0.

Table 5 B°, B~ branching ratios (in units of 10~¢) using either the BSW or GH form
factor models, for ¢2/m?2 = 0.3(0.5), with N>7s = 2.84(2.82), N&% = 2.01(1.95),
p = 0.229 and n = 0.325.

Table 6 B®, Bt branching ratios (in units of 10~®) using either the BSW or GH form
factor models, for q%/m? = 0.3(0.5), with N%72, = 2.84(2.82), N22¢ = 2.01(1.95),
p = 0.229 and n = 0.325.

Table 7 Global C P-violating asymmetries (in percents) using either the BSW or
GH form factor models, for g?/m? = 0.3(0.5), with N%73 = 2.84(2.82), N;7d =
2.01(1.95), p = 0.229 and 7 = 0.325.
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Figure 1: Transversity frame for B — p°K™.
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Figure 2: Tree diagram (left), and QCD-penguin diagram (right), for B decays.
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45~ 4574

Figure 3: Electroweak-penguin diagram (left), and electroweak-penguin diagram with
coupling between Z,y and W (right), for B decays.
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Figure 4: Spectrum of p° — w mixing (in MeV/c?), simulated by the interference of two
Breit-Wigner curves.
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Figure 5: Spectrum of hA__, koo, h+4+. Histograms on the left correspond to the chan-
nel B® — p°(w)K™ where the parameters used are: ¢°/m? = 0.3, N/ = 2.84,
p = 0.229,7 = 0.325 and form factors from the GH model. Histograms on the right
correspond to the channel Bt — p°(w)p* for the same parameters with N&// = 2.01.
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Figure 6: Spectrum of Ze(h;;) and #m(hi;) where i # j. Histograms correspond to
channel B® — p%w)K*® where the used parameters are: ¢?/m? = 0.3, NJI = 2.84,
p = 0.229,7 = 0.325 and form factors from the GH model.
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Figure 7: Spectrum of Ze(h;;) and #m(h;;) where i # j. Histograms correspond to
the channel Bt — p°(w)pt where the used parameters are: ¢2/m?%, = 0.3, N/ = 2.01,
p = 0.229,7 = 0.325 and form factors from the GH model.
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Figure 8: Spectrum of polar angle (upper figure) and azimuthal angle (lower one) in the
helicity frame for the channel B® — p°(w)K™®. Parameters used are: ¢/m?% = 0.3,
Nefi = 2.84, p = 0.229,7 = 0.325 and form factors from the GH model.
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Figure 9: Spectrum of polar angle (upper figure) and azimuthal angle (lower one) in
the transversity frame for the channel B® — p°w)K*°. Parameters are: ¢2/m?, = 0.3,
Nt =284, p=0.229,7 = 0.325 and form factors from the GH model.
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Figure 10: C P-violating asymmetry parameter acp(m), as a function of the #+n~ invari-
ant mass in the vicinity of the w mass region for the channel B® — p°(w)K *0_ Parameters
are: ¢?/m?, = 0.3, N¢/f = 2.84, p = 0.229,n = 0.325. Solid triangles up and circles
correspond to the BSW and GH form factor models respectively.
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Figure 11: C P-violating asymmetry parameter acp(m), as a function of the 7#*7~ invari-
ant mass in the vicinity of the w mass region for the channel B* — p°(w)p*. Parameters
are: ¢°/m?, = 0.3, N/ = 2.01, p = 0.229,n = 0.325. Solid triangles down and circles
correspond to the BSW and GH form factor models respectively.
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Ci(p) for p =5 GeV

Cy -0.3125

C +1.1502
Cs +0.0174 Cs +0.0104
Cs —0.0373 Ce —0.0459
C; —1.050 x 107° Co —0.0101
Cs +3.839 x 107* Cho +1.959 x 1073

Table 1: Wilson coefficients to the next-leading order (see the reference in text).

C! g¢¢/m? =103 ¢*/m2=10.5
7 —0.3125 —0.3125
C; +1.1502 +1.1502
Ci +2.433 x 102 +1.543 x 10737 +2.120 x 1072 +2.174 x 1073
C; —5.808 x 1072 — 4.628 x 10737 —4.869 x 1072 — 1.552 x 10723
Ci¢ +1.733 x 1072 4+ 1.543 x 10737 +1.420 x 1072 +5.174 x 1073
Ci; —6.668 x 1072 — 4.628 x 10~37  —5.729 x 10~2 — 1.552 x 1072%;
Cy, —1.435 x 107 —2.963 x 1075 —8.340 x 1075 —9.938 x 10~°%¢
C +3.839 x 1074 +3.839 x 10~4

s —1.023 x 10~2 —2.963 x 1057 —1.017 x 102 — 9.938 x 10~°¢
Clo +1.959 x 1073 +1.959 x 1073

Table 2: Effective Wilson coefficients related to the tree operators, electroweak and QCD

penguin operators (see the reference in text).

Table 3: Values of the CKM unitarity triangle for limiting values of the CKM matrix

elements.

o

B Y

(pmin, T’min) 104°47

19°32  56°21

(Pmim nmax) 93°13

24°31 62°56

(Pmamnmin) 112°14

21°20 46°66

(Pmn.m nmax) 99°66

26°56 53°78
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B—p
hy  ha, = ha, ha, ha, my (GeV?) my, (GeV?)
model (1) 0.329  0.281 0.283  0.283 5.32 5.32
model (2) 0.394  0.345 0.345  0.345 5.32 5.32
B-ow
hv  hay = ha,  ha ha, my (GeV?) my, (GeV?)
model (1) 0.328  0.280 0.281  0.281 5.32 5.32
model (2) 0.394  0.345 0.345  0.345 5.32 5.32
B — K*
hv  hay =ha,  ha ha, mv (GeV?) my, (GeV?)
model (1) 0.369  0.321 0.328  0.331 5.43 5.43
model (2) 0.443  0.360 0.402  0.416 5.43 5.43

Table 4: Form factor values for B — p, B — w and B —+ K* at ¢®> = 0 (see the reference
in text).

channel ;’% BSW GH
- 03 21 10
B° — K*0p°(w)
0.5 1.5 0.73
0.3 6.6 3.9
B~ = K* p%w)
05 62 3.6
0.3 24 13
B~ = p=p°(w)
0.5 24 14

Table 5: B°, B~ branching ratios (in units of 1076) using either the BSW or GH form
factor models, for ¢?/m? = 0.3(0.5), with N%7°, = 2.84(2.82), Ni7d = 2.01(1.95), p =
0.229 and n = 0.325.
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channel 7—‘% BSW GH
0.3 2.1 1.0
B® = K*%°(w)
0.5 1.7 0.88
0.3 58 34
Bt = K**p%(w)
0.5 38 23
0.3 20 11
BY — p*pw)
0.5 20 11

Table 6: B°, B* branching ratios (in units of 107°) using either the BSW or GH form
factor models, for q?/m? = 0.3(0.5), with N%72 = 2.84(2.82), Nid = 2.01(1.95), p =
0.229 and n = 0.325.

channel -7-22- BSW GH

b
0.3 4036 —0.45
K*O(K*)p°(w)
0.5 +4.70 +5.90
0.3 —-6.6 —6.37
K= (K*)p°(w)
0.5 —=23.0 -22.0

03 -85 —9.6

p~(p*)e°(w)
05 —87 —9.9

Table 7: Global CP-violating asymmetries (in percents) using either the BSW or GH
form factor models, for g?/m2 = 0.3(0.5), with N52s, = 2.84(2.82), NEd = 2.01(1.95),
p = 0.229 and 1 = 0.325.
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Abstract

In this paper, a complete description of the channels B — ViV, is given.
Emphasis is put on the determination of the dynamical density matrix which
elements are computed according to the Wilson operator product expansions
entering into the formulation of the weak effective hamiltonian.

Kinematical consequences related to the particular channel B — K*p%(w) are
described in details.
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1 Introduction

In a previous note [1], an exhaustive study of the channel simulations:

B — WV, 1V, PV, PP,

(V = 17,P = 07) has been performed by stressing the helicity formalism and its
consequences. General formulas have been established, notably those giving the final
angular distributions in the case of the production of two vector mesons decaying into

pseudoscalar mesons.
The squared modulus of the decay amplitude has the following form:

|A]? o< by Fa (1) Gax (62, 9), (1)
where (summation over A()\’) is omitted):

e h, v is the matrix density element constructed from the weak effective hamiltonian
He! taken between the initial state (By) and the final state f.

o F,x(6) and G, x (6, ¢) are the matrix elements related to the decays Vi1 — a1+ b
and V5 — ay + b, respectively.

e 0, is the polar angle of particle a; in the rest frame of the resonance V; while ¢ is
the angular difference ¢ — ¢; , where ¢; is the polar angle of a; in V; rest frame.

A(X) being the helicity state of the vector mesons; A = —1,0,+1.

As it can be noticed, the essential parameters for the determination of the decay
dynamics are the unknown matriz elements hy y; while the two other omes, F) x (61)
and G, x (02, ¢), are kinematic (or geometric) parameters because they are completely
determined from the Wigner rotation matrices. The reader is referred to the note 99—051
for a full kinematic description of the B® decay and the physical significance of the angles
01,2 and @.

Before dealing with the mathematical determinations of the hy » elements, a simple
justification of the two vector meson channel is given below.

2 Quantum numbers of the V12,0 system

In the case of two vector meson B° decay, the most interesting case is the one related to
neutral mesons supplemented by the condition C|V?;) = —|V?,;), where C is the charge
conjugation operator and V; is a neutral vector meson eigenstate of C. Some examples
of these channels are:

P00, J/TS, J/TD, B ..

2
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These vector mesons have, in addition, the parity quantum number equal to —1.
Noticing that the total angular momentum of the VOV system: J=0+S=spis equal
to zero and because the total spin S = §1 + $3, with s; = s = 1, the orbital angular
momentum can have three different values: £ =S5 = 0,1, 2.

Thus, parity, charge conjugation and CP quantum numbers of the VRV system can
be computed:

PVZ) = (-1(-1), COWV) = (-1)%,
4
CPWYVY) = (1)

We are led to the important result that the CP value of V V7 is a mixing of two
different eigenvalues +1 and —1 whatever the initial state (B® or B?) is. A direct
consequence of this result is that CP symmetry is not an ezact one.

The above relation does not hold for reactions involving a neutral K™ like:

BY — K*°0° J/UK*...

because K*° and K* are two distinct particles; C|K*®) = |K*0) # |K*0).
However, it is worth noticing two interesting features for channels with an intermediate
resonance like K*0(K*0):

K*O - Ktn~ , KOTFO,

K* - K-nt, Kon°

The decay channels are in the ratio 2/3 and 1/3 respectively. On one hand, the sign
of the charged kaon shows clearly the nature of the neutral K™ from which it comes and
consequently the flavour of the original BY(BY). So, a neutral K* decay is a direct way
for B flavour tagging.

On the other hand, when a neutral K *0( {*0) decays into K°(K0°)x®, the neutral kaon
K°(K?) is not the true physical particle, because approximately 50% of the K°(K°) go
into K and 50% into K3 respectively and the true detectable particle is K3 which goes
to wto~.

Thus, in the special channel:

B%(B°) — K*(K*)’,
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— K3,

tagging the original B is no longer possible but, the K370 being a common final state
to both B® and B°, the above relation CP = (—1)* is still available [2].

In the following, emphasis will be put on the channels K *0(#) p%(w) and the physical
importance of the p%(w) mixing for the determination of CP violation.

B;—> K¥ ' (0)

Tree Penguin

Figure 1: Tree and Penguin diagrams for the decay B® — K*0p%(w).

3 p%w) mixing and its consequence

It is well known from hadronic physics that the neutral isovector ps and the isosinglet
ws mix together, leading to the ”true” physical resonances p° and w. On the
phenomenological level, this mixing is made possible because of the existence of a common
final state to both p° and w decays [5]:

P —atr~,  (BR=~100%),
w—ortr”, (BR=22%).

In the same framework, it has been established that the 7w final state interaction
provides a phase shift § which reaches 90° when the n7 invariant mass is at the w pole
(M, =782 MeV) [6].
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Penguin

Figure 2: Tree and Penguin diagrams for the decay B* — K ** ¥ (w).

This interesting physical property has important consequences in the case where a o°
resonance is produced in some B%* decays like:

B® — K*00°,  (Fig.1)

B* = K**p°, B~ — K*p°, (Fig:2)

These decays require both tree (T) and penguin (P) diagrams. As it is emphasized in
reference (7], the amplitude A and A respectively for B* and B~ decays can be set in the
following form:

A= AT + A = AT(1 + rexp (i6) exp (i9)), 2)
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A= AT + AP = AT(1 + rexp (i) exp (—i9)), (3)
where:
AP
r= F ’ (4)
AT = AT, AP = |AP|exp (i8) exp (—id). (5)

Expressions of A and A displayed above suppose that final state interactions (FSI)
arise essentially from the penguin diagrams; this hypothesis is supported by the fact that,
to order Gra, (Gr and o, are respectively the Fermi constant and the QCD fine-structure
constant), the absorptive part of the transition amplitude is obtained from the penguin
diagrams [8].

In the special case of p° — w mixing, another hypothesis is made using more intuitive
arguments: the phase shift due to the mixing is included in the FSI and it is predominating
at the w pole, justifying the above expressions of A and A that the phase shift § is
principally the one generated by the p° — w mixing.

By CP transformation, the strong phase § remains unchanged while the weak phase
¢, which is related to the CKM matrix elements, changes sign. Thus, the asymmetry
parameter a7, which can reveal direct CP violation can be deduced in the following way:

o8 A?— A2 —2sind sing ©)
CP™ A2+ A2 14724 2rcosécosg’

It is straightforward to notice that the parameter a%% depends both on the strong
phase and the weak phase and, consequently, the maximum value of a&% can be reached
if sind = 1, which allows us to state that the strong final state interaction (FSI) among
pions coming from the p° — w decays enhances the direct CP violation in the vicinity of

the resonance w mass.

Simulation of the p° — w mixing

A simple and phenomenological relation describing the amplitude of the p° — w mixing is
used for the Monte-carlo simulations [9]. In the p° Breit-Wigner, the (0°) propagator is
replaced by the following one:

II

8pSw

?

1
A=g+ , (7)

3|3

where
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Figure 3: Spectrum (in GeV/c) of p° Breit-Wigner (upper histogram) and p° —w mizing
(lower histogram,).
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e 1/sy = 1/(s — My® + iT'vMy) is the V resonance propagator, My and I'v being
respectively the mass and the width of the resonance V.

e T, and T, are respectively the w and p production amplitudes.

e I, is the mixing parameter for which recent values come from e*e™ annihilations:
Re(Il,,) = —3500 £ 300 MeV? and Sm(11,,) = —300 + 300 MeV?2.

Due to the same physical processes which enter into the production of the p° and w
resonances (they are both made out from u4 and dd quark pairs with the same weight
1/2), it seems natural to choose T,,/T, = 1. So, the squared mass distribution of the 77
system becomes simplified and it is given by:

do/dm? o [A(p°W))]%, 8)

where A is the amplitude of the two Breit-Wigner given above and m is the nm
invariant mass.

In Figure 3, are displayed the 7w invariant mass spectra for the p° Breit-Wigner and
the p° — w mixing respectively. Because of the very narrow w width (I, = 8.44 MeV),
we notice a high and narrow peak at the w pole (=~ 782 MeV').

4 Dynamics of the B — ViV, decay

The formalism describing the B%®) decay into two vector mesons is derived from the
general formalism related to the hadronic weak decay of a heavy meson (or heavy quark).
1t is based on the new concepts introduced by the Heavy Quark Effective Theory (HQET)
which involves additionnal symmetry due to the high mass of the heavy quark (b or c
quark) [10]. Technical calculations require a weak effective hamiltonian, HE7 | by using
the ” Operator Product Expansions” (OPE) pioneered by Wilson and which involve field
operators describing both tree and penguin diagrams, the last ones include both QCD and
electroweak penguins (Figures 1 and 2).
The general form of Hf/ is given by:

e G * * 10
H¥ = TI;Z‘Z= ” (Vuquq(C101 + ¢20s) — ththZi=3Cin), 9)

where ¢; are the Wilson coefficients and O; are field operators with dimension d > 4;
they are computed at an energy scale u which is identified, here, with the b quark mass
myp.

In the case of charmless B decays, Wilson coefficients have been calculated by Buchalla
et al [11]. These coefficients represent the perturbative part of the weak hamiltonian, they
are estimated by the Renormalization Group techniques and their values depend on the
renormalization scheme which is used. Their physical significance is the weight of each
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field operator O;(p) entering in the weak hamiltonian HE/f. From reference [12], the
values of ¢; which have been computed at the energy scale p = m; are:

cg = —0.3125, ¢ =1.1502,

c3 =0.0174, ¢4=-0.0373,

cs = 0.0104, ¢g = —0.0459,

cr = —1.050 x 1073, ¢z = 3.839 x 1074,

co = —0.0101, ¢;0 = 1.959 x 1073, (10)

The first two coefficients, ¢; and cp, are related to the tree diagrams and they show

clearly their dominance with respect to the penguin ones. Coefficients c3 — ¢g correspond
to QCD penguin operators while ¢; — ¢1o are related to the EW ones.

However, those values of ¢; must be modified when renormalization of operator O; at
one-loop order is taken into account.

Detailed expressions of operators O;() and their physical interpretation are given in
reference [13].

Thus, a general form for the weak decay amplitude into a final state f can be expressed
like:

A(B® — f) = (f|HE|B%) = %ZEVQ(M)(J’I@(M)IEO), (1)
i=1g=d,s

where /\qi is the product of two CKM matrix elements: VyV, (fori =1, 2) or (VVig)
(for i =3,...,10).

The hadronic matrix elements (f|O;(u)|B°% represent the non-perturbative
contribution to the amplitude A(B® — f). Usually, they are estimated according to some
specific models: Non Relativistic Quark Model (NRQM), Form Factor models (BSW) and
especially the Lattice QCD calculations.

In the following, calculation of the hadronic matrix elements is performed in the
framework of the BSW model [14] from which form factors are derived by the knowledge
of the hadronic wave functions for both initial and final states.

5 Determination of the density-matrix elements
The B° decay into two vector mesons requires the helicity formalism which has been

intensively used in the previous paper [1]. To each vector meson (spin 1) is assigned a set
of three polarization 4-vectors defined in this way:

a=(0,8), e=(068), &= /(|k/mEk/m), (12)

9
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and verifying the following relations:
&2=-1, €-¢=0, withi# j, (13)

where m, E, k are respectively the mass, the energy and the momentum of the vector
meson; k is defined as the unit vector along the vector momentum, & =k/|k.

The three vectors €, €; and & = Ek /m form an orthogonal basis; €; and €; are called
the transverse polarization vectors while €3 is the longitudinal polarization one.
From that basis, an helicity basis is defined according to:

(61 + ’i€2) (61 — iez)
e(+)=—F—=, e(—)=—=", €0) =€ 14
These 4-vectors are eigenvectors of the helicity operator H with the eigenvalues
A = +1,-1 and O respectively. For a clear account of the helicity basis for a spin 1
particle, the reader can consult the book of Dewitt-Smith [15].

In the case of two vector mesons coming from the B decay, their 4-momenta are defined
in the B rest frame and their corresponding polarization vectors are correlated because
k:1 —kz For an explicit calculation of their spatial components, see the appendix A.

The weak hadronic amplitude is then decomposed on the helicity basis according to
the general formalism developed by the authors BSW [14]. This method allows one to

obtain two interesting results:
e the contribution of the tree and penguin operators to the global amplitude via the

helicity states.
e the total contribution of each helicity state.

A way of illustrating this method is to study the channel: B%(B°) — K*0(K*?)p°.

(i) First of all, the mass of each resonance (K*° and p° ) is generated according to a
relativistic Breit-Wigner:

do c I'rMp
dM? (M2 — M2)* + (TrMg)*’

C being a normalization constant.

(15)

(it) The weak hadronic matrix element is expressed as the sum of three helicity
matrix elements; each one of the form, Hy = (ViV3|H,*/f|B), is defined by gathering all
the Wilson coefficients of both tree and penguin operators. Linear combinations of those
coefficients arise like: cf, ¢p;, and cp, (see Appendix B) and the helicity amplitude H)
gets the following expression:

10
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Hy = (VaaVad, — ViV, ) { Breapmacié (Ve (V) P3PE
+i(Baeic Nes(N) — Bs(k (V)-Pa)(€(X)-Pa)) }
( Vi Vi pl) {/3451113766 *(NeZ(\PEPS
+i( B (Ve ) - ﬂ6<e:(x).PB)<e;<<A).PB>)} (16)

with:
® £qp4s: antisymmetric tensor in the Minkowski space.

2 B—»K'.p(

= Cr 2 2
O ﬂ1v4 - 2 fvampaK. m5+mKu'pV mva‘).

o Bos = & fo kM (Mp + mKe 2AT TP (m M2 g+)-

® B3g = -G-gﬂfp,Kmp,K‘7,,'B_+«,2nEA2B_»K"p(m;2),K‘)'

e fx, f»: respectively K*° and p° decay constants.

o VB—=K"p AB=K". respectively Vector and Axial form factors (see Appendix C).

o ex ,()\): K*, p° polarization vectors expressed in the B rest frame.

It is worth noticing that the tensorial terms which enter H) become simplified in
the B rest frame because the B 4-momentum is given by Pg = (my,0). Then, using
the orthogonality properties of €;(A), the helicity amphtude H) acquires a much simpler
expression than above:

HN) = iBO)(VaVisl, — VaViscls) +iC0) (~VaVal,), (1)
with:
BO) = 372 ;;”jn:m D _ g, 'f;m
o) = pE STkt ) _ g tolmE

2mgm, mgm,’

B(+1) = F1mp|p| — B2,

C(£1) = FBsmslp| — Bs, (18)

11
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|5] being the common momentum to V; and V; particles in the B rest frame.

(i4i) Expressing the CKM matrix elements according to Wolfenstein parametrization
[16]:

1-& A AX3(p —in) )
Vokm = -2 -x AN? + O\, (19)
AN(1—p—in) —AN 1

where we use[17]:

A=0.815 X =0.2205: well known
0.09 < p < 0.254, 0.323 < 9 < 0.442.

Taking into account the preceding relations, we arrive at the final form for the
amplitudes Hj:

a(8) -4 - () -ome(2)]

+i [(p/\2cfl + %e(cﬁz))B( iol) + §Re(c;l)0< :31)] } (20)

from which the density-matrix elements h) ) can be derived automatically;
= hax = Hy\Hy".

Due to the hermiticity of the matrix (hy v ), only six elements must be calculated and,
furthermore, a normalization condition is applied:

N (hys + hoo + h__) = 1, (21)

(N being the normalization constant) which makes easier the comparison of the
modulus of the different matrix elements.

In the next histograms (Fig.4 - Fig.9) are displayed the spectra of hy x for different
values of the Wolfenstein parameters p and 7. In our study, these spectra are obtained
for the four couples of values: (0.09, 0.323); (0.09,0.442); (0.254,0.323) and (0.254, 0.442).
But, due to the fact that some density matrix elements do not vary too much with p and
7, in most cases only the spectra corresponding to the first couple of values are shown.
All the histograms correspond to a sample of 20000 generated events.

It is important to notice that large spectrum of values for h, ) are obtained and not
single ones because of the broad range of both the p° resonance mass and the common
momentum |7] (see the analytical expressions of B(\) and C()\) given above).

12
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e Whatever the values of p and 7 are, the dominant value of A4y = |H,|? is < 1072,
numerical result which is proved too by complete analytical calculations. Thus the
dominant polarization state is the longitudinal one because ho = IHOI2 > 60%,
its mean value being around 85% (Fig.4).

e Due to the tiny value of |[H4|, the modulus of the non-diagonal elements h,_ =
H,H_* and hyo = H,Hp" are usually smaller than 0.2; while the modulus of
h_o = H_Hy* can reach 0.5 (Fig.5).

Fig.6 and Fig.7 display the variations of the diagonal matrix elements h__, hoo and A4
with respect to the four sets of p and 7 values: it can be seen that h,, has always a tiny
value and hgg is always dominant. Other physical features appear: hg is very sensitive to
the parameter 7; its spectrum is rather wide for = 0.323, while it is bounded between 0.8
and 1.0 for n = 0.442. For a fixed value of 7, no noticeable variation with the parameter
p is seen.

Fig.8 shows the real and imaginary parts of the non-diagonal elements h_q, A+, hio
respectively for p = 0.09 and = 0.323. It is worth noticing that both real and imaginary
parts of h,_ and h.o are too small and close to zero.

Due to the importance of h,_ matrix element in the ¢ angle distribution (see Section
6), a full study of both real and imaginary parts of h,_ has been done. Fig.9 shows the
corresponding spectra according to the values of p and 7. It can be deduced that the
real and imaginary parts have very similar distributions and both are dominated by small
values (< 0.05).

13
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Figure 4: Diagonal matriz elements: h__, hoo, hy+ respectively for p = 0.09, n = 0.323.
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6 Decays of vector mesons V; V; into two pseudoscalar
mesons

The matrix elements derived above allow us to compute the degrees of polarization of each
resonance like K* or p°. The angular distributions of the pseudoscalar mesons in each V;
rest frame depend on:

(4) the spin 1 of the vector meson V;.

(42) the weight of each helicity state.

(#61) the correlations among the helicity states of the two vector mesons.

Complete analytical expression of the final angular distributions is the following one:

d’T 20 o2 2 2
Toos B.d cos 6add o< (hyy + h__)sinf;sin®0,/4 + hgocos“f1cos“0,
+ (Re(hyo)cos ¢ — Sm(ho)sin ¢ + Re(ho-)cos ¢ — Im(ho_)sin ¢) sin 26;sin 26, /4
+ (Re(h_)cos 2¢ — Sm(h._)sin 2¢) sin®6;sin%6/2. (22)

Angles 6, , 6; and ¢ have been defined in Section 1.

Explicit angular distributions for polar and azimuthal angles can be derived from the
relation above. It is interesting to notice that, due to the pseudoscalar nature of the final
particles, angles 6; and 6, have the same distributions:

e do/dcosf; 5 ox (3hgy — 1) cos? 612 + (1 — hoo).
o do/dp «x (1+ 2(Re(hy-)cos2¢ — Sm(h,_)sin 29)).

In Fig.10 are displayed respectively the cos@ distribution and the azimuthal angle ¢
one. Some comments on these curves are necessary:

e The cos§ distribution is practically the same whatever the values of p and 7 are; no
sensitivity to particular values of p and 7 is seen.

e As far as angle ¢ is concerned, its distribution depends on the matrix element k.
Despite the fact that Re(hy_) and Sm(h;—) do not exhibit sensitive differences
(see Fig.9), those parameters present some dependence upon p and 7: full curve
corresponds to p = 0.09,7 = 0.323; while dashed one is related to p = 0.254,n =
0.442. A visible discrepancy among these two curves is seen.
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Figure 10: Cosf distribution (upper figure) and azimuthal angle ¢ distribution (lower
figure) for p = 0.09,n = 0.323 (full line) and p = 0.254,n = 0.442 (dashed line)

respectively.
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7 Perspectives and conclusion

e Thanks to the HQET approach and the OPE formalism which is used, we have at our
disposal rigorous and complete calculations of the dynamics of the B%* decays into two
vector mesons. This formalism is available for all charmless B decays provided the spin
of the intermediate resonance(s) is less or equal 1; the only changes which must be taken
into account are the Vog s matrix elements, the masses and the widths of the resonances
involved in each decay.

e In the case of leptonic decay of one resonance, like J/¥ — e*e™, u*u~, the angular
distributions are modified because of the spin 1/2 final leptons; which require the use of
other Wigner rotation matrices. Those calculations have been already done in our first

paper [1].
e In the case where a (c€) bound state or a charmed meson is produced like:

B® — J/Up®, D*X(X = p° w, K*°),

the Wilson coefficients involved in the effective hamiltonian have to be modified, but
we do not expect big change with respect to the c;(cj) coefficients used in the present

paper.

e Other interesting consequences arise from this formalism: it can be easily extended
to the numerous channels like: B — VP, PP where one or two pseudoscalar mesons
(P = 0*) are produced directly from the B decay. Because of the simple equality
A(P) = A(V) =0, the number of helicity states is reduced from 3 to 1.

e An important point which has been mentionned in the present note is the role of
the p° —w mizing and its consequence for the determination of the direct CPV parameter
(Section 3 and reference [7]). Tagging of B* and B~ is made easy thanks to the K*
and K~ mesons coming from the cascade decays. In our opinion, we can also exploit all
the angular distributions of the final particles (and their correlations) in order to detect
an eventual discrepancy which can arise between the B* and B~ decays respectively.
However, a complete study of those channels and their simulations require the knowledge
of the strong phase shift § (mentionned in Section 3) according to the 77 invariant mass.
Work is in progress.

e Those calculations and simulations can be implemented into SICBMC, the Monte-

Carlo generator of the LHCDb experiment, in order to perform afterwards a full analysis
of the simulated channels.
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Appendix

A Polarizations in BY rest frame

. L ksinfcos¢
kx =—-k,=k=| ksinfsing |,

Momentum:

kcos@

where 6 and ¢ are respectively polar and azimuthal angles of the produced K *0,

Longitudinal polarization:
= ) 5B .
B ﬁk) . 0= (ﬂ, —"(—k)) .
K Mk My, My

Tranversal polarizations :

cos @ cos ¢
éx(1) = | cosfsing | =§&,(1),

—siné

—sin¢
ex(2) = ( cos ¢ ) = —§,(2).
0

Helicity frame :

ex(+) = (e(1) +i€(2)) /V2, ex(~) = (e(1) —ie(2)) /V2,

cosfcos¢p —isin g
cosfsin ¢ + ¢ cos ¢ /\/5 = &g (-) = &(-),

—siné

€x(-) = »
- Sin

cosf cosp + isin ¢
cosfsing —icosp | /V2=&(+) = &(+).

B Wilson’s coefficients

We use, in the case of the p® production, the following linear combinations of the effective
Wilson coefficients:
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4= +2,
%y, 1 &
g =—(a+ 7))+ 3Gt 5
§ / C,B / c,10

where ¢/, relative to tree diagram, cf; relative to penguin diagram and 0.98 < N, < 2.01.

P
When ¢%/m? = 0.3:
¢, = —0.3125, ¢, =1.1502,
cy = 2.443 x 1072 + 1.543 x 1073,
i = 1.733 x 1072 + 1.543 x 1073,
¢y = —1.435 x 107% — 2.963 x 1075,

ch = —1.023 x 1072 — 2.963 x 1075,

When ¢%/mj = 0.5:
¢, = —0.3125, ¢, = 1.1502,

¢y = 2.120 x 1072 + 2.174 x 1073,
¢, = 1.420 x 1072 + 5.174 x 1073,
¢, = —8.340 x 10~° — 9.938 x 107%,

¢y = —1.017 x 1072 — 9.938 x 10-5,

¢, = —5.808 x 102 — 4.628 x 1073,
¢} = —6.668 x 102 — 4.628 x 10734,
¢ = 3.839 x 1074,

¢ho = 1.959 x 1073,

¢, = —4.869 x 10~2 — 1.552 x 1072,
¢ = —5.729 x 10-2 — 1.552 x 1072,
¢, = 3.839 x 1074,

¢jo = 1.959 x 1072,
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C Form factors (BSW model)

174 A, Az

B — K* 0.369 0.328 0.331
T=mi(Gev?)/5.432(GeVE)  1-m2(GeV?)/5.435(GeVE)  1-m3(GeV?)/5.435(GeV?)

B — 0.329 0.283 0.283
p 1-mZ2,. (GeV'?)/5.32%(GeV'?) 1-m%., (GeV?)/5.322(GeV?) 1-mZ,, (GeV?)/5.322(GeV?)

For further details, see reference (7] and literature quoted therein.
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