The Primary and Secondary Structure Determination of Bioactive Amphibian Peptides

A thesis submitted for the Degree of Doctor of Philosophy

by

Craig Steven Brinkworth B. Sc. (Hons)

from the

The Department of Chemistry
The University of Adelaide

THE UNIVERSITY OF ADELAIDE
AUSTRALIA

May 2003
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>Statement of Originality</td>
<td>viii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Schemes</td>
<td>xix</td>
</tr>
<tr>
<td>The 20 Common Amino Acids</td>
<td>xx</td>
</tr>
</tbody>
</table>

Part 1. The Isolation and Sequencing of Amphibian Peptides using Mass Spectrometry and Automated Edman Sequencing

Chapter 1 – Amphibians and their Peptides

1.1 Preface | 2
1.2 Amphibians | 2
1.3 The Frog’s Skin | 3
1.4 Peptide Biosynthesis | 4
1.5 Collection of the Frog Secretion for Analysis | 5
1.6 Australian Amphibians and their Peptides | 6
1.7 Biological Activity of Amphibian Peptides | 9
 1.7.1 Neuropeptides | 9
 1.7.2 Neuronal Nitric Oxide Synthase Inhibitors | 10
 1.7.3 Antibiotics | 10
 1.7.4 Anticancer Agents | 10
 1.7.5 Pheromones | 10
 1.7.6 Other Groups | 11
1.8 HPLC Analysis | 11
1.9 Peptide Sequencing | 12
 1.9.1 Mass Spectrometry | 12
 1.9.2 Automated Edman Sequencing | 13
 1.9.3 Enzyme Digestion | 14
 1.9.4 Determination of the C-terminal End Group | 15
1.10 Bioactivity Testing | 15
Chapter 2 - Mass Spectrometry of Peptides - Positive and Negative Ion Fragmentations

2.1 Introduction
 2.1.1 The Mass Spectrometers
 2.1.1a The Q-Tof 2 Mass Spectrometer
 2.1.1b The LCQ Mass Spectrometer
 2.1.2 Electrospray (ES) Ionisation
 2.1.3 Solvent Effects
 2.1.4 Positive Ion Mass Spectrometry of Peptides
 2.1.5 Negative ion Mass Spectrometry of Peptides
 2.1.5a Backbone Fragmentations Involving the Peptide Bond
 2.1.5b Fragmentations Characteristic of the Side Chains
 2.1.5c Backbone Cleavages which are Initiated from an Side Chain

2.2 Results and Discussion
 2.2.1 α and β Fragmentation Revisited
 2.2.2 β' Cleavage - a New Backbone Cleavage
 2.2.3 Asp and Asn Initiated Backbone Cleavages (Also Phe, Tyr, His and Trp)
 2.2.4 γ and δ Cleavages of Glu and Gln
 2.2.5 Ser and Thr: Side Chain and Backbone Fragmentations
 2.2.6 Summary of the Backbone Cleavages
 2.2.7 Other Backbone Cleavage Process

2.3 Conclusions

2.4 Experimental
 2.4.1 Peptide Synthesis
 2.4.2 Mass Spectrometry
 2.4.3 Calculations

Chapter 3 - Studies of the Dermal Secretion of Litoria eucnemis

3.1 Introduction

3.2 Results
 3.2.1 Isolation of the Active Peptides from Litoria eucnemis
 3.2.2 Identification of the Peptide sequences
 3.2.2a Maculatin 1.3
 3.2.2b Maculatin 1.4
 3.2.2c Maculatin 4.1
 3.2.2d Caerin 1.11
 3.2.2 Identification of the Peptide sequences

3.3 Discussion

3.4 Conclusions

3.5 Experimental
 3.5.1 Collection and Preparation of the Secretion
 3.5.2 HPLC Separation of the Granular Secretion
 3.5.3 Mass Spectrometry Analysis
 3.5.3a Determination of the Peptide Terminal Group
 3.5.4 Automated Edman Sequencing
 3.5.5 Preparation of Synthetic Peptides
 3.5.6 Antibacterial Testing
Part 2. Bioactive Peptides: Their 3D Solution Structures and Mechanisms of Action

Chapter 4 – Bioactive Peptides and their Mechanisms of Action

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>102</td>
</tr>
<tr>
<td>4.2 The Cell Membrane</td>
<td>102</td>
</tr>
<tr>
<td>4.2.1 Cancer Cells</td>
<td>103</td>
</tr>
<tr>
<td>4.2.2 Gram-positive Bacteria</td>
<td>105</td>
</tr>
<tr>
<td>4.2.3 Gram-negative Bacteria</td>
<td>107</td>
</tr>
<tr>
<td>4.3 Why are Some Peptides Active Against These Cells?</td>
<td>108</td>
</tr>
<tr>
<td>4.4 Mechanism of Action</td>
<td>110</td>
</tr>
<tr>
<td>4.4.1 Barrel-Stave Mechanism</td>
<td>110</td>
</tr>
<tr>
<td>4.4.2 Dimerisation – A Modification of the Barrel-Stave Mechanism</td>
<td>112</td>
</tr>
<tr>
<td>4.4.3 The Toroidal Mechanism</td>
<td>113</td>
</tr>
<tr>
<td>4.4.4 The Carpet Mechanism</td>
<td>116</td>
</tr>
<tr>
<td>4.5 Nitric Oxide Synthase</td>
<td>118</td>
</tr>
</tbody>
</table>

Chapter 5 - 3D Structure Determination of Peptides

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>125</td>
</tr>
<tr>
<td>5.2 Nuclear Magnetic Resonance Spectroscopy</td>
<td>126</td>
</tr>
<tr>
<td>5.3 One-Dimensional Nuclear Magnetic Resonance Spectroscopy</td>
<td>128</td>
</tr>
<tr>
<td>5.4 Assignment of 1H and ^{13}C signals within Peptides</td>
<td>129</td>
</tr>
<tr>
<td>5.4.1 Correlation Spectroscopy (COSY)</td>
<td>131</td>
</tr>
<tr>
<td>5.4.2 Total Correlated Spectroscopy (TOCSY)</td>
<td>134</td>
</tr>
<tr>
<td>5.4.3 Nuclear Overhauser Spectroscopy (NOESY)</td>
<td>135</td>
</tr>
<tr>
<td>5.4.4 Heteronuclear Single-Quantum Coherence (HSQC)</td>
<td>137</td>
</tr>
<tr>
<td>5.4.5 Heteronuclear Multiple-Bond Correlation (HMBC)</td>
<td>138</td>
</tr>
<tr>
<td>5.5 Chemical Shift and Structure</td>
<td>139</td>
</tr>
<tr>
<td>5.6 Notations for Inter-proton Distances in Peptides</td>
<td>141</td>
</tr>
<tr>
<td>5.7 NOESY Patterns in a α-Helical Peptide</td>
<td>142</td>
</tr>
<tr>
<td>5.8 Coupling Constants</td>
<td>144</td>
</tr>
<tr>
<td>5.9 Structure Calculations</td>
<td>146</td>
</tr>
<tr>
<td>5.9.1 Generation of the Distance Restraints</td>
<td>146</td>
</tr>
<tr>
<td>5.9.2 Ambiguous NOEs</td>
<td>148</td>
</tr>
<tr>
<td>5.9.3 Stereo-specific Assignments</td>
<td>149</td>
</tr>
<tr>
<td>5.9.4 Dihedral Angle Restraints</td>
<td>149</td>
</tr>
<tr>
<td>5.9.5 Restrained Molecular Dynamics and Simulated Annealing</td>
<td>150</td>
</tr>
<tr>
<td>5.9.6 The Potential Energy Function</td>
<td>152</td>
</tr>
<tr>
<td>5.9.7 The Quality of the Structures</td>
<td>154</td>
</tr>
<tr>
<td>5.9.8 2,2,2-Trifluoroethanol as a Membrane Mimic</td>
<td>157</td>
</tr>
</tbody>
</table>
Chapter 6 - The Relationship Between Structure and Bioactivity158

6.1 Introduction ... 158
 6.1.1 Charge State ... 158
 6.1.2 Helicity and Amphipathicity .. 159

6.2 The Solution Structure of Ala4Lys14-citropin 1.1 160
 6.2.1 Introduction ... 160
 6.2.2 The Relationship Between Primary Structure and Bioactivity .. 161
 6.2.2a Introduction and Methods ... 161
 6.2.2b Bioactivity Test Results .. 163
 6.2.2c Discussion of Bioactivity Tests 166
 6.2.3 3D Structure Determination of Ala4Lys14-citropin 1.1 168
 6.2.3a Solvent Conditions ... 169
 6.2.3b NMR Studies - Assignments 169
 6.2.3c Secondary Shifts .. 172
 6.2.3d NOE Connectivities .. 174
 6.2.3e Coupling Constants .. 175
 6.2.3f Structural Calculations ... 176
 6.2.4 Discussion ... 179

6.3 A Study into the Importance of the Hinge in Caerin 1.1 183
 6.3.1 Introduction ... 183
 6.3.2 The Solution Structure of Gly15Gly19-caerin 1.1 184
 6.3.2a Solvent Conditions ... 185
 6.3.2b NMR Studies - Assignments 186
 6.3.2c Secondary Shifts .. 189
 6.3.2d NOE Connectivities .. 190
 6.3.2e Coupling Constants .. 192
 6.3.2f Structural Calculations ... 192
 6.3.3 Discussion ... 196

6.4 3-Dimensional Structural Studies of Frenatin 3 199
 6.4.1 Introduction ... 199
 6.4.2 3-Dimensional Solution Structure of Frenatin 3 in TFE/water ... 200
 6.4.2a Solvent Conditions ... 200
 6.4.2b NMR Studies - Assignments 200
 6.4.2c Secondary Shifts .. 205
 6.4.2d Structural Calculations ... 206
 6.4.2e Discussion ... 209
 6.4.3 3-Dimensional Solution Structure of Frenatin 3 in water 210
 6.4.3a NMR Studies - Assignments 210
 6.4.3b Secondary Shifts .. 212
 6.4.3c NOE Connectivities and Coupling Constants 213
 6.4.3d Structure Calculations ... 214
 6.4.3e Discussion ... 214

6.5 Conclusions ... 216

6.6 Experimental .. 216
 6.6.1 Materials ... 216
 6.6.2 Bioactive Assays .. 217
 6.6.3 Antimicrobial Testing .. 217
 6.6.4 Anticancer Activity Testing ... 217
6.6.5 Neuronal Nitric Oxide Synthase Inhibition..217
6.6.6 Data Analysis for nNOS Studies...218
6.6.7 Solution NMR Spectroscopy...218
 6.6.7a Sample Preparation..218
 6.6.7b NMR Spectroscopy...219
 6.6.7c Structural Restraints..220
 6.6.7d Structure Calculations...221

Chapter 7 - Summary and Future Directions...222
 7.1 General Backbone Fragmentations..222
 7.2 Characteristic Backbone Fragmentation of Specific Residues.............222
 7.3 3-Dimensional Characteristic Backbone Fragmentations..................223
 7.4 Litoria eucnemis..224
 7.5 Structure/Activity Relationships...224

Chapter 8 - References..226

Appendix – HSQC and HMBC Spectra..243
Publications..247
Abstract

Amphibians secrete a mixture of biologically active compounds from within glands under the skin in response to attack by predators. One of the major class of compounds secreted in this biological arsenal are bioactive polypeptides. These peptides possess many biological functions including acting as antibiotics, anti-cancer agents and inhibiting the formation of NO by nNOS. These functions make them interesting from a therapeutic viewpoint as potential drugs.

Negative ion mass spectrometry of peptides contains significant sequencing information differing from that obtained in the positive ion mode. Information unique to negative ion mass spectrometry of peptides includes fragmentations (i) identifying the presence of a specific amino acid in the sequence (Ser, Thr, Asp, Asn, Gln, Glu) and (ii) identifying the position of specific amino acids within the peptide sequence (Phe, Ser, Thr, Asp, Asn, Gln, Glu).

The skin secretion of the _Litoria eucnemis_ contains four novel peptides belonging to two peptide families – the caerin 1s and maculatins and is the first Australian frog investigated to demonstrate this property. Three of the peptides exhibit antibacterial and anticancer activities. However, the three peptides are some of the least active, among their respective families.

Primary and secondary structural properties are important factors in determining the biological activity of polypeptides. The solution structures of three peptides Ala4Lys14-citopin 1.1 (amphipathic α-helix), Gly15Gly19-caerin 1.1 (a less-defined α-helix) and frenatin 3.1 (amphipathic α-helix with a flexible C-terminal end) are presented in a discussion about this structure/activity relationship.