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Abstract

Verma modules play an important part in the theory of invariant operators

on homogeneous spaces. If G is a semisimple Lie group and P a parabolic

subgroup of G, then there is often a differential geometry for which the ho-

mogeneous space G f P represents the flat model. An example is conformal

geometry, where G is the special orthogonal group SO(n,A). A Verma mod-

ule homomorphism will corresponds to an invariant operator on the flat space.

The obvious question is: how can we generalize these operators to cases where

there is curvature?
In this thesis we will look at a variation of Verma modules called semi-

holonomic Verma modules, introduced by Bastwood and Slovák. They have

studied the conformal case in detail, but here we will investigate instead the

exceptional case of G :,80. We will investigate when a Verma module homo-

morphism lifts to a semi-holonomic Verma module homomorphism. When this
happens, we can deduce that there is a curved analogue of the corresponding

invariant operator.
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1 Introduction
Verma modules play an important part in the theory of invariant operators on

homogeneous spaces . If G is a semisimple Lie group and P a parabolic subgroup of

G, thJn there is often a differential geometry for which the homogeneous space G f P

represents the flat model. A Verma module homomorphism then corresponds to an

invariant operator on this flat space. When (G, P) is a general Hermitian symmetric

pair, these Verma module homomorphisms are well understood (see [4, 7, 8], where

lhe classical and exceptional cases are all discussed). The corresponding differential

geometries are the almost Hermitian symmetric (AHS) geometries of Baston [1].

Minkowski space fits into this picture, bY taking G to be GL(4, C) and P to be

the appropriate parabolic (such that GIP is the Grassmannian Gr2(CÍ), which can

be identified with complexified compactified Minkowski space). This example is

discussed in detail in [10]. Furthermore, this article also looks at invariant operators

on general curued space-times. This is really four dimensional conformal geometry.

Invariant operators Ìor higher dimensional conformal geometries are looked at in [9],

but we will follow more closely the approach presented in [11].

In this article, a variation of Verma modules called seni-holonomic Verma rnod-

ules are introduced. Although Verma module homomorphisms correspond to in-

variant operators in the flat case, this is not always so for general curved manifolds.

Ho*ever, a homomorphism of semi-holonomic Verma modules does give an invariant

operator on curved space. So our aim is to lift holonomic Verma module homo-

morphisms to the semi-holonomic case. For conformal geometry, the existence and

non-existence of these lifts is completely classified in [11]. In this thesis we will turn

our attention to the exceptional case when G : Eø (and P is chosen appropriately).

So the results presented herein are completely algebraic in nature, but are mo-

tivated by the geometric considerations mentioned above. Although we don't quite

arrive ut . 
"omplete 

classification of which Verma module homomorphisms lift to the

semi-holonomic case, we do achieve a great deal. In fact, we show that the majority

of the Verma module homomorphisms do lift; there are just five exceptional families

for which we are unable to find lifts. Furthermore, for one of these families we prove

that no lifts exist. For the remaining four families, the problem can be reduced to

proving the existence or otherwise of a lift of just one initial case (i.e. one from each

iumily). These four cases could be decided by a direct assault, involving a large (but

finite) calculation, but it seems there should be an easier way.

Of course, our ultimate goal would be to arrive at a complete classification of the

invariant operators on the general curverl spaces, or rather which invariant operators

on the flat spaces admit curved analogues. As yet this is still an outstanding problem,
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even for conformal geometry. By lifting Verma module homomorphisms to the semi-

holonomic case, we can show that a lot of invariant operators do admit curved

analogues. However, when a lift does not exist, this does not necessarily imply

that no curved analogue exists. Indeed there are cases where a curved analogue

exists despite the fact that the Verma module homomorphism does not lift to the

semi-holonomic case. For exampie, in [13] it is shown that various powers of the

Laplacian are conformally invariant on general curved manifolds; these incìude the

long operator in even dimensions, for which a lift to the semi-holonomic case is

known not to exist. In general, showing that a curved analogue does not exist is a

very delicate matter.
We begin i¡¡ Section 2 with some preliminaries. We dcscribe the basic properties

of E6 that will be necessary in later chapters (the weight system, the Weyl group,

the l1l-grading), as well as describing some of the more general objects and results

that we will need (AHS structures, homogeneous vector bundles, decomposing tensor

products of representations).
In Section 3 we introduce invariant differential operators, the main subject of our

study, and show how in the flat case they are related to Verma module homomorph-

isms. We give some motivation of why it is necessary to look at semi-holonomic

jets and semi-holonomic Verma modules when studying operators on general curved

manifolds. In fact, we show how a lift of a Verma module homomorphism to a semi-

holonomic Verma module homomorphism gives rise to a curved analogue of the

corresponding operator. We also look at the structure of Verma modules and semi-

holonomic Verma modules, and give an example of a (holonomic) homomorphism

and a lift to the semi-holonomic case.

We present a theorem which classifies the Verma module homomorphisms in

Section 4. We then introduce the translation principle, and using the above theorem,

are able to find out a great deal about which operators can be obtained from others

by translating.
Finally in Section 5, we show that the translation principle remains valid in the

semi-holonomic case. Then using the results of Chapter 4, we can obtain lifts to bhe

semi-holonomic case of most invariant operators, after (trivially) Iifting just a few.

There remains just a few exceptional families of operators, and we prove that one

of these families does not admit lifts to the semi-holonomic case.

We conclude in Section 6 with some speculation concerning the other exceptional

families of operators. The appendices contain various tables and diagrams which

are referred to throughout the thesis.
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2 Preliminanes

2.L Almost Hermitian Symmetric Structures

The following work is inspired by conformal differential geometry. Recall that the

flat modelof conformalgeometryis a sphere,S". This can be written as GIP where

G : SOo(n i I,1) is the group of conformal motions of S" and P is the isotropy

subgroup of some basepoint in ,S". In general, if (G, P) is a Hermitian symmetric

pair, there is a differential geometry for which Gf P represents the flat model. A

general curved manifold M in. this differential geometry will come equipped with a

principle P-bundle, which in the flat case is simply given by G -+ G I P. These are

the almost Hermitian symmetric (AHS) manifolds introduced by Baston [1, 2].

Whilst most of the following results apply for general semisimple Lie group G
and parabolic subgroup P, we shall primarily be concerned with the case when G

is the exceptional Lie group 86, and P is the parabolic subgroup corresponding to

the Lie subalgebra with Dynkin diagram

where we are using the same notation as that which appears in [3]. Note that we

will let Eo denote the Lie group corresponding to the exceptional Lie algebra, which

we shall write âs e6. Howevet, we will usually continue to write simply G, g, and P,

and it will be clear when we are using specific properties of 86.

Observe that P has a reductive subgroup consisting of a direct sum of the Lie

group SO(10) and a one-dimensional abelian part. The irreducible representations of

P areobtained from representations of this subgroup (see below). The homogeneous

space GIP is sixteen-dimensional.

2.2 The \Meight System of E6

Most of our work will be carried out with the Lie algebras g and p of G and P, but

sometimes we will need to refer to the groups themselves. We can pass freely from a

representation of the group, p : G -+ GL(y), to the corresponding representation of

the Lie algebra. For simplicity we will use the same notation, namely p : g -+ End(V)
(and the same treatment will apply to representations of p and P). We present here

some information about the weight system of the Lie algebra of. 86.

Recall that the Lie algebra of Eo has Dynkin diagram
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Its root system is generated by simple roots ûr, . . . , a6 satisfying

\o,,ot) - ^ .

T;;õ: 
a'j¡

where {a;¡} is the Cartan matrix

2
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0

0

0

0

I
2

I
0

0

0

0

I
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1

0

1

0

0

0

1

2

0

0

0

-1
2

-1
0

0

0

I
0

0

2

These roots correspond to the nodes of the diagram as follows

r2345

This root system can be thought of as sitting inside C! if we let

6

6

t2
18

t2
6

I

4

8

12

10

5

6

I
Q¡:

d2:

03:

d4:

Ag:

d6:

2
€z-€t
€z-€z
€4-€z
€s-€q

4lez,

(.r+.r-€2-...-rr)

where {.r,...,es} is a basis of C!. The fundamental weights of E6 are given by the

change of basis

01

d.2

03

A4

d5

Q.6

23
46
69
,)o
43
36

45
510
612
48
24
36

I:-
3

Àr

^2)3
Àa

)s
)o



2.2 The Weight System of E6

Writing the fundamental weights in terms of e1,.' ., €8, we find

Ð

)r

À2

)e

Àe

À5

)o

1

3
1:
3
1

2

)
!(-.u-€r+e8)
1

i{-s.t *3e2*3e3 *3ea*3e5-5eo -\ez *5es)

ezteq*es-e6-e7!es
(3rn + 3es - 2ea - 2ez * 2ee)

(3.u- e6-€.7+€.8)

(r, + rr* e¡ * eq * es - €6 - e7 + €.8)

In particular, the lengths of these weights are

l),1 : tFø
l)rl : tl*lt
lÀ'l : J6

lÀnl : tlrry
l)ul : tFn
l)ul : '/r.

We will need these results later on.

An irreducible representation V of g will have highest weight ø)r * . .. * /)o
where a,. . .,/ are non-negative integers, and we will write this weight as

abcde

We will call such a weight g-dominant. It is also common to use this same nota-

tion to denote V itself. However, to denote irreducible representations we will use

instead minus the lowest weight, which is the highest weight of the dual represent-

ation. The reason for this choice will become apparent later on, but note that it is

really just a notational convenience. An irreducible representation of þ is given by
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an irreducible representation of the subalgebra so(10) (corresponding to the nodes

in the Dynkin diagram) and an irreducible representation of the abelian subalgebra
(corresponding to the cross). The representation of so(10) will have minus lowest

weight b)z * . . .* fÀu, where b,. .., f arc non-negative integers, and the represent-

ation of the abelian part will have minus lowest weight given simply by a complex
number ø. The direct sum of these subalgebras gives a reductive subalgebra of p,

and irreducible representations of p are given by irreducible representations of this

subalgebra extended trivially to p. Overall, we can write such a representation as

abcde

Regarding this as a weight now, we call it p-dominant, meaning that it is minus

the lowest weight of some irreducible þ-module.

2.3 The Weyl Group

The Weyl group W of Eo is the group generated by the simple reflections in the

weight space, i.e. by the reflections in the walls perpendicular to the simple roots.

For example, reflection in the wall perpendicular to the first simple root o1 will take

the weight
abcde

À-

-aa*b c d e

À - (),c1)o1 :
f

We call this reflection s1. Similarly, we get

f

to

S2

S¿:

+

+

+

S3

abcde

f

abcde

abcde

a*b -b btc d e

a b*c -c c*d e

c*f

a b c*d -d d+e



2.4 lll-graded Lie Algebras

ssl

7

abcde

abcde

abcde

a b c d*e-e+

+ a b c*f d e

S6

For a general element u €W) we write

-î

abcde
u èw(

or simply t¿ : ) r-+ u).
The walls perpendicular to the roots divide the weight space into chambers. The

Weyl group acts transitively on these chambers. In particular, the fundamental Weyl

chamber consists of the g-dominant weights, and every other weight is related by
a unique Weyl group reflection to a unique g-dominant weight.

The Weyl group can also act ffinely on weights. This means we first translate
the weight by the sum of the fundamental weights

ff

111116-

then allow the Weyl group element to act, and finally translate back by subtracting
ô. We will denote this by a dot; thus the affine action of ur € W on the weight ) is

tr.):u(À*ó) -ó.
In general, we will often talk of properties of weights when $re are really refer-

ing to properties of the translated weight. For example, we may call a weight À

g-dominant, when we really mean that À * ô is in the fundamental Weyl chamber.

We may also call ) regular, when what we mean is that ) + ó does not lie on the
wall of a Weyl chamber. We will usually clarify such statements, especially when

the meaning is not clear from the context.

2.4 lll-graded Lie Algebras

For g : eo,, the adjoint representation of g on itself is the representation

00000
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As a representation of the subalgebra p, this decomposes into the followinB conxpos-

ition serie.s (we will describe precisely what is meant by composition series a little
later)

0 0 0 0 0 0 0 0 0 0 -l 0 0 I 0 -2 I 0 0 0

++
o o

00
O
0 00

0

which we write as g - g-r *go *0r. Note that [g;,9¡] C g;1¡ (where 9+z: 0);

in particular, g-r and 91 are abelian. We call such a Lie algebra lll-graded. The
subalgebra þ : go *gr. Then gs is just the Levi part Iof p and this decomposes

into a semisimple Lie algebra [t, fj (namely so(10)) and a one-dimensional centre.

Both g-1 and 91 have dimension 16, and [f,f] : so(10) has dimension 45. In
Appendix A there is a table of lowering operators At,Yz¡.' .,Yzt¡Uzz.. ' , y36 for e6,

i.e. these elements generate the negative root spaces of the Lie algebra. Similarly,
the generators of the positive root spaces could be explicitly written out (we will
assume they are labelled symmetrically with y;'s, so that c; and y; belong to opposite

root spaces for each i : I,. . . ,36). Also, let ht,. . ., å6 be generators of a Cartan
subalgebra of eo. Then g-r is generated by {yr,U2z,.",Us.^}, 91 is generated by

{*r,*rr,...,rza}, [f,f] is generated by {hr,..',hu,X2,..'rXzt,Yr,...,Yrr}, and the
one-dimensional centre of ge is generated by H : ä(+nr+5h2*6hs*4hqI2hs+3å6).

We find that the action of the one-dimensional centre is invariant on each term,
and we have in fact chosen I/ so that [//,g;l : ¿n-. Indeed, on an ir¡educible

P-moduleabcde

E_

f/ will have eigenvalue -trØo + 5b + 6c * 4d * 2e * 3/) on the entire representation.

We will call this linear functional on weights (., \'e.

abcde 1

5
+ (aaI5b*6c +4d+2e+3f)

It is important to note that we clo not inc.lucle the minus sigu wheu calculating /
on an individual weight, but we do when letting (. act ott a p-module (since such a

module is denoted by minus the lowest weight). Since the weights of ì8. are minus

(.

f



2.5 Decomposition of Tensor Products

those of IE, on the dual representation E* we obse¡ve that

/(E'): -qD'
Consider a general irreducible g-module V. We can decompose V into eigen-

spaces of H, i.e. into components with distinct values of /. Indeed, if we do this we

get a series
V:Vo*Va+t+...+Vo4",,

where o is some number and we call n the length of the composition series. The

action of .FI on Vo1¡ is by multiplication by o + 7. Recall that [//' 9;] : ig;. This

implies that the lowering operators of g-r take Vo..¡ to Voa¡-r (or zero), the raising

operators of 91 take Vo.'¡ to Va*j*l (or zero), and the elements of g¡ take Vo.'¡ to
itself. Thus each Vo4; is a gs-module (not necessarily irreducible), and g-1 and 91

move us backwards and forwards (respectively) along the series.

Restricting V to be a representation of p, we get the same series, only now we

can only move forwards along the series (not backwards as no lowering operators

from g-1 lie in p). This is what we mean by a composition series. It is only a direct

sum if we regard the representations as ge-modules. However, we get an inclusion

Vo+,, -) V : V. + Vo+r * ... * Vo+,

of the last term, which is p-invariant as Va*n must be killed by the raising operators

of gr, and we get a Projection

V : Vo * Vo+r + ... + Vo+, -t Vo

onto the first term, also þ-invariant as the raising operators of 91 will take Vo to

Vo+r, which will be mapped to zero under the projection. Composition series for

the six fundamental representations of. 86, restricted to P, are given in Appendix B.

2.6 Decomposition of Tensor Products

Given two irreducible representations IE and IF of g, we would like to decompose

their tensor product into a direct sum of representations. Suppose IE has minus

lowest weight p and the set of all weights of F is \Úp, with z € Üu' occurring with
multiplicity m,. Let W be the Weyl group of g. Then it follows from Kostant's

Theorem (see, for example, [15]) that

E g F : O (-1)lensttrlu") m,M*,.1u-,¡,
y€ür

9
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where u.t, e W is the Weyl group element (acting affinely) which takes ¡t - u into
the dominant Weyl group chamber, if this is possible (otherwise we omit that term),
length(u,) is the length of ru,, or in other words the minimum number of simple

affine reflections required to move p - u into the dominant chamber, and

M-,.1r-r¡

is the representation with minuslowest weight u,.(p-u). In other words we begin

with minus the lowest weight ¡.r of E and add minus each of the weight s u of F to it in
turn. Then we apply simple affine reflections to tt- v to rlrove it into the dominant

chamber (if possible), giving ts tu,.(¡,t- rz). Then

Mr,.1¡r-r¡

occurs in the decomposition with multiplicity (-1)1"""'h(-")mv.

As an example, consider what happens when we take the tensor product of

abcde 10000
and

both considered as representations of go. The latter representation we will call W,

and its weights appear in Appendix C. 1 . It is actually a representation of g, but we

will regard it as a representation of go by restriction. As such, it is not irreducible,

but we would get the same set of weights if we first decomposed it into a direct sum

of irreducible representations and then decomposed each tensor product separately,

c.ombining them at the end. Taking p to be minus the lowest weight of the first
representation, consider what we get when we add minus each weight u of W to p.

This sum could be gs-dominant (i.e. each of the integers over the nodes is non-

negative, not counting the cross as a node of course), but if it is not then it must be

because one or more of these integers is equal to -1 (with the others non-negative)'
Then an affi.ne reflection in one of the nodes with -1 above it will fix the weight,
and furthermore, it will not be possible to move the weight into the dominant Weyl

chamber by using affine reflections. According to the a,bove result we would omit
these weights. So overall, the decomposition consists of representations with minus

lowest weights equal to those p, - y which are Ss-dominant. More explicitly,

0



2.5 Decomposition of Tensor Products 11

abcde r0'000

o

atl b c d e a-l b*l c d e

a

O

O

O

O

O

o

O

e

O

O

e

O

O

O

O

O

O

O

O

O

a b cd*l e

a b-lc*l d e

a b c d-le*l

Í

z b c-l d*l e

f+l

a b c*l d-l e*l

f-r

a

a b c d e-l

f+l

a b+l c-l d e*l

f-l

f+l

d e*l

a-l b c d*l e-l a*l b-l c4l d-l e a-l b c*l d-l e

a-lbc

f-1

d efl

f+r

f+r

b c*l d e-l a*l b-l c a b*l c-l d*l e-l
e

a+l b-l c d*l e-l a b*l c d-f e

O

O

a*lb c-l d e

f

a-l b*l c-l d e a+l b c d e

a bl c d e a-l b+l c d e

f+l

f-l

o

O

O

f-1

a b'l c*l d e

f-r

a b c-l d*l e a b c d-l etl a b c d e-l

where any term with a -1 above a node would be omitted. We can get a similar
decomposition with the representation W replaced by its dual W, whose weights

appear in Appendix C.2.
Now what we really want is similar decomposition for representations of p.

However, as a p-module, W has composition series

f

1000110000 10000

0

1 0 00

+ +
o 0
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It follows that we also get a composition series for the above tensor product, i.e.

abcde 10000
a

O

O

+(

O

O

as representations of p

0

f b c d e

)

abc

+(

O

O

a-lb*l c d e

a b cd*l e

a Llc*l d e a b c-ld*l e

O

O

O

O

O

O

O

f

f+r
O

O

O

0

O

f+l

f-r

f-r

@

a b c d-l e*l a b c*l d-l e*l

f-r

d e-l

f+r

d e*l

a b*l c-l d e*l a b c*l d e-l

f

a*l þl c

a-lbcde*la-lb

a b*l c-l d*l e-l a*l b-l c d*l e-l
o

O
f+1

a*1 b d

f-1

c d*l e-l a-l b c*l d-l e

a b*l c d-l e a*l b-l c+l d-l e all b c-l d

e

I f

a-l b*l c-l d e

f+1

a b'l c*l d

f-1

f+r

a b c-l dll e

a Ll c d e a-lb+l c d e

O

e

O

f-1

a b c d-le*l

f

abcde-l
)

Of course, we get a similar result using W*, which has
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composition series

13

00001 00001 10000 loooo

0

+ +
0 0 I

2.6 Homogeneous Vector Bundles

Suppose we have a finite-dimensional representation p : P -+ Aut(E) of P. Then
we can form a vector bundle

E::GXplE: = ,7'U,
(g, 

") - (gp', p(p-')")

on G I P (see [5]). There is an action of G on this vector bundle which is compatible
with the action on G I P and is linear on the fibres. In general, a homogeneous uector

bundle E + GIP is any vector bundle over Gf P with an action of G on E which is

compatible with the action on GIP and linear on the fibres. Thus the above bundle

is a homogeneous bundle. In fact, given a homogeneous bundle E -+ G I P, we can

get a representation E of P by taking the fibre over the identity coset. Then we

find that E : G x p IE, so there is actually a one-to-one correspondence between

the finite dimensional representations of P and the homogeneous vector bundles on

G I P of finite rank. Recall that \¡/e can write an irreducible representation of P as

abcde

We will denote the corresponding homogeneous vector bundle on G I P by this same

diagram.
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3 fnvariant Differential Operators

3.1 fnvariant Differential Operators and Jet Bundles
We are interested in invariant differential operators on the homogeneous space G I P.
Let D : t -+ F be a differential operator, where € and F are sheaves of germs of
sections of the vector bundles E and F respectively. Then D takes a local section
of E to a local section of F. If E and F are homogeneous vector bundles then there
is an induced action of G on local sections. A differential operator is invariant if it
commutes with this action of G.

Suppose D : t -+ F is a differential operator of order k. This means that the
operator factors through the operator t -+ Jkt which takes a germ of a section
to the germ of its k-jet. Furthermore, the operator Jkt -+,F comes from a

vector bundle homomorphism D : Jk E ) F, where Jk E is the leth associated jet
bundle of E (it's fibres consist of germs of sections of E up to order fr). Since E
is a homogeneous vector bundle, so is JfrE (i.e. we get an induced action of G on
the jet bundles, and this action takes fibres to fibres and is linear on fibres). We
denote the corresponding representation of P by JkF'. There are natural projections
Jk+tE -> JkE, and hence surjective P-module homomorphisms Jß+rlE -+ JkE.
Taking the projective limit of these surjections, we arrive at

"/-lE -+ . . . -t 7ß+tp -+ ,/frE -+ JË-tE -+ ... -+ JrE -+ E.

Furthermore, "/-lE is actually a g-module; elements of g-1 act like 'derivatives',
taking something in "IfrE C J-lE into a lower jet bundle Jk-rE c J-8. The action
of elements in gs and 91 is of course induced from the action of P on each JÈlE C J-E
(*þ:go*9r).

Now if D is invariant under G, then D is actually induced by a homomorphism
of P-modules, D : JklB -+ lF. Furthermore, this homomorphism induces P-module
homomorphisms ¡k+mp -+ J-F for all m, and hence J-lE + J""lF. In fact, this
final map is really a homomorphism of g-modules. (This final observation is often
called Frobenius reciprocity.)

There is an exact sequence of bundle

o * CoAt g E -+ JkE -+ Jk-r E -+ o

where ¡r is the cotangent bundle on G I P. This sequence is induced by the exact
sequence of P-modules

o -+ QÈør I E -+ ,IfrE -+ /Ë-rlE -+ o,
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as !1 is the P-representation with minus lowest weight
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21000

o

which induces the cotangent bundle ¡1. The composition

O*At Ø E -+ JkÐ -+ F

is called the symbol of the operator D.If D is G-invariant, then this vector bundle

homomorphism is also induced by a homomorphism of P-modules

Oun, I E -+ JfrE -+ F'

3.2 Semi-Holonomic Jets

This subsection is somewhat non-rigorous, but the discussion has been included to

motivate the development of the semi-holonomic jets, and describe why it would

be necessary to consider such objects when we study invariant operators on general

curved manifolds.
The exact sequence of bundles

o - eoAt I ø -+ JkE + Jk-r E + o

mentioned above involves the symmetric product of the cotangent bundle. This sym-

metric product in some way reflects the fact that in the flat case derivatives commute;

i.e. in local coordinates {qr,...,gro} in a neighbourhood on Gf P,if l(qt, "',8ro) is

a local section of E then

a^f a^ r
oq¿, . . .oq¿^ oq;,¡t...oqr,r^r'

for o a permutation of {1,...,*}. In the curved case' we would replace these

derivatives with a connection. In general, the connection will not commute, because

curvaturetermswillarise(eg.V'V6V"_ YuVoV":Rob"d%).Wewanttoalterthe
jet bundles to reflect this. To be more precise, we would like to somehow define

bundles JÈE such that we have an exact sequence of bundles

o * SoAt 8E -+ JkE -+ ik-t E -+ o.
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We define ikE as follows.
Firstly, JoE: E and JrE: JrE. We define the rest inductively, so suppose

wehave ikEfo, someA. Wewilldefine Jk+tE asasubbundleof JrjkE. Thereare
two maps JrikE - ¡ri*-rE. The first is obtained by applying Jr to the natural
projection ikE --+ ik-'8, and the second is obtained by taking the composition
of the projection JrikE ) ikE with the inclusion ikE -> ¡ri*-rB. We define
Jk+tE to be the subbundle of JrJkE on which these two maps agree. The bundles
ikE are known as semi-holonornicjet bundles (ordinary jet bundles are holonomic).

To see why this definition gives us the exact sequence we were hoping for,
let us first look at the case k : 2. Elements of the bundle Jr Jr E look like

U,,Í,,),f[,),f:l'\.The two maps to JrE take the above element to (,f,¡(r)) and

U, f l'\ respectively. So on J2 8,, where these maps agree, we have .fjt) : ,fj'). Ttr"tt

StAt 8 E is essentially included into the f!!') p"rt of J2 E, and the remaining part,
(/,flt)), is projected onto JI.E. Note that for J2E we would still have O'At 8 ø
included into the f!['l p"tt, but we would also requir. fll') to be symmetric.

In general, elements of Jr . . . Jr E (k times) look like

(/, /Í,t), . . .,/,(,0), f!,t;),..., f!!,,t'o),f|,';f;,. .., ¡!il.:.:!,I¡.

Elements of ik| would h""" /j,t) : ...: /,0), f!:;) :...: f!!n,t'o), "t". Then

$u[t 8 E is essentially included into the ¡!ii"r'.:.:Pr part of JkE, and. the remaining

part is projected onto ik-rE Elements of JkE would also requir" Í!ll),f!:72,...,
¡!ii,.:.'j)r to be symmetric; OeAt I E would be included into th" Í(,T 'fl part with the
remaining part projected onto Jk-r E.

So we see that we do get the required exact sequence

o - SoAt 8E -+ JkE -+ ik-t E -+ o

from this definition. More importantly, these semi-holonomic jet bundles were
defined entirely by using first jets (i.e. taking first jets of first jets, etc.), and this
fact shall have useful consequences later on.

Since Jk E i" a homogeneous vector bundle, we can associate a P-module JeE to
it. Similarly to the holonomic case, there is a projective limit of surjective P-module
homomorphisms

J-E -+ . .. -+ Je+18 -+ JkE -+ Jfr-18 -+ . . . -+ JrrE -+ E.

There is also a canonical differential operator Jk E -+ JkE, *hich is essentially just
inclusion.
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3.3 fnvariant Operators in Curved Space

We stated earlier that there is a class of differential geometries such that G I P

represents the flat model. In the flat case, G -+ GIP is a principal P-bundle;
furthermore, in the curved case there also exists a principal P-bundle, X ) M,
where M is a curved manifold. This means that given a representation lE of P,
we can construct a vector bundle E over the curved space M. We have already

seen this construction for the flat case, where E: G xp lE is called a homogeneous

bundle. In the curved case we just replace G by the principal P-bundle X, to get

E:XxpE.
Once we have constructed the bundle E, we could take its first jet bundle Jl,E.

Alternatively, there is the representation ./lE of P (since Jr E is a homogeneous

bundle in the flat case, it comes from a representation of P; this representation is

,/tE). We could use this representation to construct a vector bundle in the curved

case as well. However, it is a fact that these two vector bundles can be canonically
identified (see [6]), that is,

JrE:xxpJrw.
(For the curved geometry associated with ^86, there is an invariant torsion whose

vanishing characterizes flat space. Even with torsion, this canonical identification
still holds.) Thus a general P-module homomorphism ,./18 -+ IF gives rise to a
homomorphism of vector bundles, Jr E -+ F, and hence we get a first order invariant
differential operator in the curved case. For higher orders this does not always work.

For example, in [12] Graham has shown that in four dimensional conformal geometry

the cube of the Laplacian (a sixth order operator) does not have a curved analogue.

So in this case a canonical identification

JkE: X xp JkF.

cannot exist for k : 6. In general, there are likely to be many other values of k for
which such a canonical identification will not exist'

However, the semi-holonomic jets are constructed entirely by iterating the first
jet construction. Hence the vector bundle constructed from JfrE in the curved case

really will be the semi-holonomic jet bundle JfrE. This mean that a P-module
homomorphism JÈE + F will give us a homomorphism of vector bundles ik E -+ p.
By composing with the operator JkE -+ ikE, we obtain an invariant differential
operator ,lk E -+ F.

So suppose we have an invariant operator JkE -+ F in the flat case. lf we can

lift the P-module homomorphism to the semi-holonomic jets
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then we can construct a curved analogue (i.e. an invariant operator with the same
symbol as in the flat case). Our aim in this thesis is to completely classify which
homomorphisms lift to the semi-holonomic jets, thereby giving curved analogues of
the corresponding operators. Of course, we have not shown that the existence of a
curved analogue necessarily impiies that the P-module homomorphism ./ÈE -+ F
must lift to the semi-holonomic jet. In fact, this is not true in general; there exist
some curved operators which a¡ise even when a lift to the semi-holonomic jets does
not exist. However, this is rather an exceptional occurrence, and we shall see that
the majority of operators do lift to the semi-holonomic case and hence do have
curved analogues.

3.4 Verma Modules
From now on when considering G-modules (respectively P-modules) we will imme-
diately pass to the corresponding representations of the Lie algebra g (respectively
þ). Let 1l(g) be the universal enveloping algebra of g, and let p* : p -) End(E.)
be the dual of the representation p : p -+ End(E). Consider the f(g)-module
1l(g) ø IE*, where g acts trivially on IE . Now factor out the left f(g)-submodule
generated by

{Pø"-18 P.(P)"},
where p e P. The resulting ll(g)-module is called a generalized Verma module,
denoted Y(E).

The grading of 11(g) induces a grading of Iz(E)

y(E) r ...)V*+t(E) I y/.(E) )V*-t(E) t...I yr(E) ) yo(E) - 8..

As p-modules, these are duals of the sequence of jets

. -+ JÀ+18 -+ ,IÈE -) ,Ifr-rE + . .. -+ JlE -+ E.

Indeed, as 1l(g)-modules, J*lE is the dual of V(E).
In this dual picture, the exact sequence of p-modules

o -+ Q*0, I E -+ .rklB -+ "Ifr-rE -+ o

F'

JKE,

j

EkJ



20

becomes
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0 -+ Vt -t(E) -+ V,(E) * Qoo-, I E* -+ 0,

recalling that g-1 and 91 are dual þ-modules.
Suppose that F is another p-module. We saw before that an invariant differential

operator D : t -+ F induces a g-module homomorphism ,/-lE -+ ./-lF. Dually,
this corresponds to a [(g)-module homomorphism I/(F) -+ V(E). Conversely, a

1I(g)-module homomorphism lz(f) -+ Iz(E) will give us an invariant differential
operator D:t-+F.

Suppose further that the operator is frth order. Then we have a homomorphism
of p-modules, JfrlE -> IF, or dually, It* -+ yß(E). The symbol

Cog'8 8 -+ F

looks like
kF*-O 9-r 8lE*

when we take its dual.
Recall that in Subsection 2.4 we introduced /, a linear functional on weights

given by

F+ (4a -t5å * 6c + 4d + 2e + 3f).
f

In fact, (. was defined as the eigenvalue of the one-dimensional centre of 90, generated

by H, on a weight vector in that weight space. On an irreducible p-module, 11 will
have fixed eigenvalue (* gt must act trivially, and 1l is central in go). Furthermore,
this eigenvalue will be invariant under homomorphisms, i.e. I is a homomorphism
invariant on irreducible p-modules. So consider the p-module homomorphism
lt* -+ Yr,(E). As a gs-module,

KJ
Yr(E) : OOs-,8 8.,

j=o

and since qg-r) - -1, we have

qös-rø 8.) : -i - /(E).

In particular, we must have -l(F) : -i -l(E) for someJ € {0,".,k}. Infact it
must be for j - k, otherwise the operator would have order less than k. It follows

thal, lhe order of the operator is given b

k:/(F) -/(E).

abcde 1

5
(.
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Furthermore, the image of F lies in Oo g-, I E. C W(E). So the p-module
homomorphism it* -+ Vk(E) is really just the symbol IF* -+ Oog-, I IE*, and indeed
the entire homomorphism of Verma modules I/(F) -+ 7(E) is determined by this
symbol.

3.5 The Stucture of Verma Modules
Suppose we have a Verma module

An element of this module looks like

D p"(yrr Azz, . . ., UzlrYzr .' . rYrr r hr, . . . r hur Xzr " . r Xzrr ûr r t22r. ", rso) I u
u€lE

where p, is some 'polynomial' type expression in the generators of g, but note that
the order of elements in the p, is important. However, we can commute all of
Yzr...rYzt, htr...rhu, Xzr...rXrr, tr,, I22,,...rr'16 € þ past the y; and then allow
them to act on u according to p*. Thus we can rewrite the above element as

D q-(vt,uzz, " ', Yso) I ?r,'

u€lE'

where q., is a genuine polynomial in y; (i.e. order no longer matters as the yr commute
with each other).

Now let IE and lF be two representations of p with minus lowest weights

abcde mnpq¡
and

f

respectively. Of course, these are the highest weights of the dual representations
which appear in the Verma modules (this is why it is more convenient from the
outset to adopt the convention whereby we denote representations by minus their
lowest weights). In order to find a Verma module homomorphism V(F) -+ I/(E) we
need to find an element of Iz(E) which has weight

mnpqr

s
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and is killed by all raising operators Xzr".,Xzt, tr,tzz,'.'r136, i'e' a maximal

weight vector. Then we simply map the highest weight vector of V(o) to this

maximal weight vector and this will extend to give us the desired homomorphism.

We know that the elements of I/(E) look like

D q-fut,az2,.' .,Yza) Ø w,
u€lE'

so we just need to choose the q- so that this element has the appropriate weight

and is killed by all raising operators (to see how a raising operator acts on the above

element we commute it past the y¿ and then allow it to act on u.'). In fact, if the

element is killed by the raising operators X2,...,Xu, then it will also be killed by

Xz : lXr, Xr), Xe : ÍX", Xn), . . ., Xz, : lXq, X2sl; i.e. by all the raising operators

in þ. Then what we get is a sYmbol

O*A'ØE-+F'
If we then allow ø1 to act on the element, we get the obstruction to this symbol

lifting to an invariant operator, for if the element is killed by *, and X2,. . . , Xrt,
then lt will clearly be killed by ,rr: ["r, Xr], rr": lrt, Xr), ..', irr6: lXu,r35] as

well.
As an example, consider the second order operator

-30000

-30000

-50001
-)

0

In terms of Verma modules, this becomes

o

-50001
v( )<-v(

0 0

Now the p-module
-30000

o

is one-dimensional, generated by tl say. So we need to find a maximal weight vector

u : q(At,azz,..',Uso) A tl e V(
-30000

0
)
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with weight

23

50001

o

The restriction on the weight immediately forces u to look like

(Ayrat" * Byzzyzz * C azsvza * Dyz¿yzs) Ø u,

where A, B, C, and D arc constants. Using the commutation table in Appendix A,
we find

Xzu : (Aytyr, - Byryrr) Ø *,,

Xsu : (Byzzyza - CAzzAza) Ø w,

Xau : (Cyzsyzs - Dyzsyzs) Ø w,

Xsu : 0,

Xøu : (CAzsAze-DAzqAzs) ør.

Thus choosing A: B:C: D givesus a weight vectoru which is killedby all the

raising operator in p, and so we get a symbol

-30000

(
0

-50001
O,A'ø -+

o

The obstruction to this being the symbol of an invariant operator is x1u. However,
we find that

rtu : A(hryre * Yzazz * yzzYq * YzAzø * yzsYs I Yoyzs * UzeYt) Ø to

: A(hryze * Yzazz * YrYzo * Yovzs) Ø w

: A(-Jvr" * yr" I vr" * yzr) I t,
:0,

after applying the relevant commutation rules. Therefore taking the highest weight

vector of

0

50001
).

to

u: A(atazaIUzzUzz*Uzzyzaiyzqazs) Attl € V(
-30000

0
)
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gives us a homomorphism of Verma modules (which is, of course, non-zero if we

choose A +0). It follows that there exists an inva¡iant operator

-30000-50001
-+

0 o

onGlP

3.6 The Central Character of a Representation

Suppose we have a representation E of p with minus lowest weight

abcde

f

Then we can form the ll(g)-module I/(E). Recall that we can write elements of
7(E) as

Ð q-(Yt,uzz, "',Yze) Ø w,
t¿€ÌE'

where q- \s apolynomial \n y;. In fact, we can write elements tu € IE* as

u :DYj,...Yj.u,
J

where u is a highest weight vector of IE*. So in fact, the entire Verma module V(E)
can be generated by allowing the lowering operators of g to act on the highest weight
vector u, which is unique up to scale. We call such a ll(g)-module a highest weight
mod.ule.

Let l(^fl(g)) be the centre of the algebra 1I(g), and let , e 3([(g)). Since z

commutes with every element in Í(g), we find that h¿z.u: zhi.u for i : 1,...,6,
so z.u has the same weight as u. However, the highest wcight vcctor u is, up to
scale, the only weight vector in V(E) with that weight (every other weight vector
is obtained by lowering u, so must have a lower weight). Therefore it follows that
z.?.1,: ó(")", where d '3(1l(g)) 

-+ C is some function. Indeed

$(az2)u .1.2,u
: 21.þ(22)u

: þ(21)þ(22)u,
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so / is really a homomorphism of algebras, and since 3(U(g)) is abelian, / is called a

character. Thus for each highest weight module Iz(E) of 11(g) we get a homomorph-
ism / ' 3(1-1(g)) -+ C which we call the central character of Iz(E) (sometimes we will
simply call it the central character of E).

Again let z € 3(Í(g)). Since z commutes with all other elements in Í(g), when
it acts on u € IE* we get

z.u : DVr, ...y¡.2.u
l

: ';,i:, 
Y¡'þ(z)u

and similarly, when it acts on any element of the Verma module 7(E) we get

t.(D q.(yt,.. .,urc) I .,) : ó(t)(Ð q-(yt,...,urc) a ,).
u€lE' r¿€lE'

Hence z rcally acts by scalar multiplication by $(z) on the entire Verma module.
Now suppose we have an invariant operator E -+ F between two homogeneous

bundles. This is equivalent to a Verma module homomorphism D : Iz(F) -+ Iz(E).
If u is some arbitrary element of Iz(F), then by what we have seen above,

z;u : ós(r)r,

where " e 3(fk)) and /¡. is the central character of Iz(F'). Now we have

þp(z)D(u) : z.D(u)

D(z.u)

D(þs(z)u)

þe(z)D(u),

where we have used the facts that D(u) e V(E) and D is a Í(g)-module homo-
morphism. Since D is a non-zero homomorphism, it follows that we must have

óø(r): fu(")

for all z e 3(tl(g)), i.e. V(E) and V(F) must have the same central character if there
exists a non-zero operator E -+ F.
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Let E and lF have minus lowest weights

and
f

respectively. Then we have the following theorem due to Harish-Chandra (see, for
example, [14]).

Theorem 3.6.1 The highest weight modulesV(E) andV(F) haue the sarne central

character if and only if their highest weights

abcde

abcde

mnpqr

mnpqr

J

and

are in the same affine Weyl group orbit. In this case, we will use the notation

Xs,h,i,j,k,t to denote their central character, where

is the (unique) g- dominant weight in the affine Weyl group orbit of the highest

weights.

Actually, we really have

ghijk

hijk
+6

is g-dominant, which means that one or more of g,...,/ may be equal to -1 if the
highest weights are singular (i.e. if the weights plus ó lie on a wall of a Weyl chamber).

However, even if they are singular, there will still be a unique g-dominant weight

in their orbit, as after applying Weyl group reflections we can move the weights onto

a wall of the dominant Weyl chamber. In particular, it could not end up on two
distinct walls in the dominant Weyl chamber, as these adjacent walls are not related
by a reflection.

3.7 Semi-Holonomic Verma Modules

The holonomic jets ,/-E are duals of the generalized Verma modules y(E). We

would also like to construct semi-holonomic Verma rnodules y(E), such that the
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semi-holonomic jets -/-lE are duals of I/(E). Recall that the universal enveloping
algebra 1I(g) of g is the quotient of the tensor algebra - (g) bV the ideal

(x Ø A - A Ø, - [*,y]lx,V € ù.
In particular, since [y,,A¡]:0 in the Lie algebra g, the /; commutein the universal
enveloping algebra 1l(g) (we have factored out by (y, Ø yj - y¡ Ø A;)). Define g(g)
to be the quotient of - (g) by the ideal

(" Ø y - v Ø, - l*,all* eþ,y € g).

We have no longer factored out by (A; Ø y¡ - y j Ø g;) (since U; € g\p), and hence the
y¿ do not commute in 1I(g).

We define the semi-holonomic Verma module I/(E) to be the quotient of the
f(g)-module l1(g) I E. by the left f(g)-submodule generated by

{Pø"-18 P'(P)"}'

The structure of these semi-holonomic Verma modules is the same as the holonomic
Verma modules except that now the order of the y¡ in the 'polynomial"' q- is im-
portant. Homomorphisms are found in the same way as before, but at all stages we

must be wary that the y; are not allowed to commute.
For example, let us try to find a semi-holonomic lift of the second order operator

-30000

-30000

-30000

50001
-f

0 0

We saw in Subsection 3.5 that the maximal weight vector

u : A(atyze I azzUzz I uzsyzo * yz&zs) Ø u e V(

gives us a homomorphism of Verma modules

-30000

0

v( )<-v(
0 0

which is non-zero for A I 0. Now we wish to find a semi-holonomic Verma module
homomorphism

-50001

-50001
V ( )<-v(

o o
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which is a lift of the above (holonomic) Verma module homomorphism. In other
words, we want to find a maximal weight vector

u : Q(at,Uz2¡. . .,Y1a) Ø w e V(

with the appropriate weight, where Ç is not really a polynomial anymore since the
y;'s are no longer allowed to commute. Furthermore, for this to be a lift, we must
be able to recover u from u by allowing the y;'s to commute.

Now as before, weight considerations force u to look like

(Agßzst AzUzaAt* Bßzzazt* BzUztazzIC ßzsUzø*CzUzeUzsl Dúz&zs* DzAzsUzaþtt,

where At, Az, Bt, Bz,, Ct,, Cr, D1, and D2 ate constants. Applying raising operators
we find

Xzu : (Atytyzz * AzUzzUt - Búflzz - BzAzzyt) Ø u,
Xsu : (Bgzzyzø * BzAzøUzz - CúzzAza - CzUzaAzz) I ur,

Xqu : (CtAzsYzs*CzAzsUzz- DßzsAzs- DzUzsAzs) 8t¿,
Xsu : 0'

Xau : (CtUzz|zsiCzUzaazs- DßzaUzs- DzUzsAzq) øt'
Thus we need tochoose At: Az: Bt: Bz:Ct- Cz: Dt: D2fot allthese
terms to vanish. Finally

rru : At(hgzs* yzaht *YzUzz * azzYt*YaUzzl yzzYz *Yazol azzYs *
lYzyzz * yzeY I Youzs * azqYt * Yßza I yzsYo) Ø u

: Alhßza* azeht *Yzazz *Ya,Uzz *Yyzø *YsUzs*Yoazs lYtlyzqJ Ø u)

: A(-Jar"- 3yr" * yzs* Uza * Uze I Uzs * Uza * yza) Ø u)

rìu,

after commuting the Y¡'s past the y;'s. Thus the maximal weight vector

u: At(ytyz¿* UzaUt*UzzAzz * azzyzzl Uzzyza* UzaUzs*az&zs* Yzsazs) Øw

_-30000

-50001

0

-30000
in V( ) gives us a semi-holonomic Verma module homomorphism

0

-30000
v ( )*7(

0 o
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Choosing 4 : Al2 gives us a lift of the holonomic Verma module homomorphism,
and hence the operator

-30000 -50001
-+

0 0

has a curved analogue
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4 Holonomic Case and Translation

4.1 Classification of Homomorphisms of Verma Modules

In the previous section we saw that the classification of all G-invariant diffe¡ential
operators on Gl P is equivalent to the classification of all ll(g)-module homomorph-
isms I/(F) -+ V(E). We now wish to investigate these homomorphisms in the case of
G : Ea. The classification is due to Boe and Collingwood [4], and involves certain
patterns which appear in Appendix D. First we will describe how these patterns are

obtained.
We begin with the Hasse diagram of the parabolic þ C g, which appears in

Appendix D.1. The Hasse diagram gives an inclusion of the quotient of Weyl groups

Wn/W, into the Weyl group )rvn bV representing cosets by minimal length elements.

We allow the reflections in the Hasse diagram to act affinely on the weight

abcde
)-

where ) + d is g-dominant (i.e. a, . ..,, Í are all greater than or equal to -1).
Then we take the corresponding Verma modules with highest weights given by the
p-dominant weights in the diagram. If a weight in this diagram is not þ-dominant,
then no Verma module will occur in that place. For example, to get the fourth Verma
module from the top, we would perform simple affine reflections on the nodes '3',
'2', and '1', in that order (which we would write as 's1s2.s3'), to get the weight

-a.bc-4
a
b
c*d*l
e

Then provided a,, b, c+ d + 1, e, and c * f * I are all non-negative, we would take
the corresponding Verma module

v(

Now the arrows represent Verma module homomorphisms. In fact, the patterns
that appear in the appendix involve the corresponding vector bundles rather than
the Verma modules. Hence the arrows are really invariant operators between vector
bundles, and the corresponding Verma module homomorphisms would of course go

-a-b-c-4
a
b
c+d+l
e
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-2 lo00 10000
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o

10001
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-32000

0

0 o0 11000
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0

-2 1000
a

0

o0

0

o

001

)ov(

)o v(

)e v(

)o v(

-20loo

-20

)

10000

-3 I

0

0

0

0 0l o0

0

10000 -32000
and

0 o

have the same central character fl,o,o,o,o,0r and hence we deduce an operator (this
operator will be non-zero, although not obviously so)

10000 -32000

o

10000

o

+

We can also tensor with the dual of W, i.e. W*, which has composition serles

00001 00001

0

+
0 0
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This allows us to recover the original operator. In fact, this shows that the translated
operator must have been non-zero, as claimed above.

This is the basic idea of how the translation principle applies; we will look at the
underlying principles in the next subsections. For instance, it is not always obvious
that the homomorphism resulting from a translation will be non-zero (i.e. we may
not always be able to recover the original operator by translating with the dual),
and in some cases it will be zero. However, we will prove a result which tells us that
the resulting homomorphism must be non-zero in a large number of cases.

The main point is that by using the translation principle we can generate a large
number of invariant operators beginning with just a few, rather than try to construct
them all directly. To be more specific, we will take as ow initial data the following
operators (all of which will be first order):

¡ the standard operators in the case ø : ... : f :0, i.e. the de Rham sequence,

o the standard operators in each of the basic singular cases, namely a : -1,
b-...:f:0,etc.

We will see that most of the invariant operators can be obtained just by translating
these initial operators.

4.3 The Tbanslation Principle: The General Description
Recall that given a representation E of P (and hence of p), we get a homogeneous
vector bundle on G I P which we denote by E. Let E be the representation

We will use this same notation to denote both E and .O (precisely what we mean
will be clear from context). We have also seen how to construct the (holonomic)
Verma module y(E), which we will also denote by

abcde

abcde

mnpqr

v(
f

Let F be another representation of P (and p) with minus lowest weight

s
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let F be the corresponding vector bundle and let Iz(F) be the corresponding Verma

module, also denoted by

v(
s

Suppose we have an invariant differential operator from E to F, or equivalently,

a JJ(g)-module homomorphism I/(F) -+ V(E). We wish to construct new Verma

module homomorphisms (and hence new invariant operators from this one). Let W
be the representation of G (and hence of g) with minus lowest weight

mnpqr

10000

o

We can tensor W onto the representations IE and IF, and then couple our Verma

module homomorphism with the identity on W*, to get

Y(FSW : Y([') s\M -+ Y(E) sV\Ë: Y(EsW)'

Now F I W and E A W will rarely be irreducible. However, we can decompose both
of these þ-modules into direct sums of ge-modules (recall that þ : 9o * 9r), and

hence
F'øW: eF,

and 
EøW:(EB,

where F; and E are also p-modules, but the above tensor products only decompose

into direct sums as gs-modules.

Now suppose that Fr has different central character to all other F; (i l1). Since

the central character is an invariant under the action of g, it follows that we can

write the Verma module Y(F I W) as

y(F,)o y(on),
i+r

or in other words, there exists a 1l(g)-invariant projection

Y(F s w) -+ Y(F )

and a 1l(g)-invariant inclusion

v(F'8 w) <- v(F ).
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Similarly, if lE1 has different central character to all other F. (i + 1) then we also

get a ll(g)-module splitting of 7(88 W), with V(Er) splitting off. Combining these

splittings with our coupled Verma module homomorphism, we get

Y(F ) -+ Y(F s W) -+ V(E s W) -r Y(Er ),

i.e. a new Verma module homomorphism and hence a new inrrariant operator from
Et to Ft.

4.4 Criteria for the Non-vanishing of the Tlanslated Oper-
ator

We have seen how to obtain a new invariant operator from an old one. However, it is

possible that this new operator will vanish. We will describe here a general criteria
which will ensure that the new operator is non-zero. This criteria will apply in a

vast number of cases and will enable us to construct most of the invariant operators
that we want, starting with just our initial data.

Lemma 4.4.L Let E and F betwohornogeneousuectorbundles onGlP. LetW be

the triuial bundle with f,bre W, coming frorn the representaúion W of G with rninus
lowest weight

10000

and let W* be its dual bundle (i.e. the bund,le obtained, from the d,ual representation
\\I/. Let D\fr(E,,F) be the uector space of inuo,riant linear differential operators

from E to F. Then there is a canonical isomorphism

Diff(E, F ØW): Diff(E ØW*,F).

Proof: We will use the notation FA for F ØW,,and Ea for E ØW*.Let e r+ KAe
be an operator in Diff(E, FÁ) and let f B * L" f " 

be an operator in Diff(86, F).
We will also write eB é KA"s (in Diff(En,Fo")) for the above operator coupled
with the identity on W*, and similarly for other examples like this one.

Now define
!Þ : Diff(E, Fo) -, Diff(.E'B, F)

by (O/fá)" l" : 6A8 KA f B, and

ü : Diff(En, F) -+ Diff(8, FÁ)

0
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by (úLB)Ae: LB(6¡le). We want to show that Õ and Ü are inverses, and hence

that we have a canonical isomorphism between Diff(,E, F/) and Ditr(EB, F).
Start with e r+ IiAe in Diff(8, FÁ). Applying Õ we get

.f B ,+ @Ii\B TB : 6tB KA f n

in Diff(E¿r, .F). Now applying \I we get back to

e ,-+ (ü(ÕKo)")" 
" 
: (OKA)B@"" 

") 
: 6tB KA6f ": Iic e,

and hence üoÕ: Id. Similarly,starting with/¡ à L"fa in Diff(86,F) and

applying ü we get
er+(úLu)o":tB(6!e)

in Diff(E, F1). Then when we apply Õ to this we get back

fc,+ (o(ür¿B)/)" f": df;lvrB¡Afc:6f L"(¿íf"): Lc fc,
showing that Õ o ü : Id, which completes the proof. ¡

Remark: The above lemma will actually hold when W is any irreducible represent-

ation of G.

We can also rewrite this result in terms of Verma modules. Let Hom(V(F), y(E))

be the space of lf(g)-module homomorphisms from I/(F) to y(E). Then the above

lemma says that

Hom(V(F) I \Ar, v(E)) : Hom(V(F), v(E) s W).

We will now describe a condition that will ensure that the translated operator is
indeed non-zero.

Theorem 4.4.2 Suppose that in the direct surn decomposition (as gs-modules)

EaW:OE,

IEr has central character d,ifferent to all ot'h", ry (i + I), anil similarly for ß1

in the decomposition of F' I W. This allows us to obtain a neu Verma module

homomorphismV(W1) -+ V(81) from the existing one V(F) -+ y(E)'
Suppose furtherrnore that E splits off frorn the tensor product Er I \M with dis-

tinct central character, and so doesE fromthe tensor product Fr 8W*. This would

mean that we could also translate bacle to a homomorphism V(F) -+ V(E) from
y(ltì)-+ V(81). Moreimportantly, if these conditions are all satisfi,ed, thenth.e ho-

momorphisms we obtain from these translations will all be non-zero; i.e. translation

in this instance will giue us a new non-zero operator'
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Proof: Denote lry þl the space of f(g)-modules. Let p : M -+ M be projection
to f(g)-modules with central cha¡acter equal to the central character of E (note
that this is also the central character of IF, since there is a non-zero Verma module
homomorphism from lz(f) to y(E)). Similarly, Iet p1 : M -+ M be projection to
f(g)-modules with central character equal to the central character of E1 (and F1).

Define two maps ó, M -+ Jvl and tþ : M -+ M by

d'M*+pr(MSW)

and

ú:M-+p(MSV\r)
Note that we have

d(v(E)) : y(Er ),

d(Y(F)) : v(Fr),

,þ(V(E )) : V(E)'

and
,þ(V(E')) : Y(F).

We also get an induced map on homomorphisms between f(g)-modules. For ex-

ample, if D : M -+ N is a homomorphism then ó(D) , d(M) -+ d(N) is given by

ó(D) -- pr(D I Idw), and similarly for ,þ(D).
Now by Lemma 4.4.1, we have

Hom(V(E' ), d(v(E))) : Hom(|z(81), y(E) Ø W)

Hom(V(E )8W,Y(E))
Hom(/(V(E')), Y(E)),

and similarly

Hom({(v(E)), v(8, )) : Hom(v(E), ú(v(m' ))).

The same equations hold when IE is replaced by F.

As a consequence of the above, we obtain

Hom(/(v(E)), ó(v(E))) : Horn(,id(v(E)), v(E))
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In particular, the identity on the left hand side must correspond to some non-zero

homomorphism
a: tþþ(V(E)) -+ lz(E)

on the right. Similarly, we can also find a non-zero homomorphism

B:v(E) + 1þó(v(E)).

The compositions
a o p: Iz(E) -+ Y(E)

and

0 o o: tþó(V(E)) -+ tþó(v(w))

must both be identities (up to scale), as the only non-zero homomorphisms of a

Verma module to itself are multiples of the identity (the highest weight vector can

only be mapped to a multiple of itself, and this generates the Verma module).
Therefore, up to a constant multiple, o and B are inverses.

Furthermore, o induces isomorphisms

Hom(V(E), v(F)) = Homþþþ(v(E)), v(F))

and
Hom(tþ þ(v( E) ), v (F) ) = Hom(tþ ó( v(E) ),,rd( v ( F) ) ),

which together imply an isomorphism

Hom(V(E), v(F')) = Hom(tþS(v(E)), ,i d(v(F))).

It follows that the action of / on Hom(V(E), y(F)) is a bijection, with inverse
given by ú (up to a scalar multiple); i.e. translation (the action of /) gives us an

isomorphism

Hom(V(E), v(F)) = Hom(/(v(E)), ó(v(F))) : Hom(V(Er ), v(F1)),

whose inverse is just translation by W. (the action "f ,þ). In particular, when we

translate an operator the new operator will indeed be non-zero. !

4.6 Applications of Theorem 4.4.2

We now wish to apply Theorem 4.4.2 Á a number of different settings



4.5 Applications of Theorem 4.4.2 4T

4.5.1 Regular Standard Operators

Our starting point will be the de Rham resolution, i.e. the standard operators in the
BGG resolution when e, : . . . : f :0. All the operators that occur in this pattern
are first order, and the maximal weight vectors that give the corresponding Verma
module homomorphisms could be easily found. We want to translate this initial
set of operators to obtain the standard operators in all of the regular classifying
patterns. This can be done merely by translating with the g-module W with minus
lowest weight

loo00

0

and with its dual W*. We will apply Theorem 4.4.2 to ensure that all these trans-
lations result in non-zero operators.

We will work inductively, so suppose that we have all the standard operators in
the regular classifying pattern for some a,, b, c, d, e and. / (all non-negative integers).
Our aim is to be able to increase each of these numbers by 1, then by induction we

will have all the standa¡d operators for every regular pattern. Let w and u' be two
elements of the yl group W such that the¡e is an operator

abcdeabcde
u.( ) -+ .,'.(

where
abcde

w,( )

has the obvious meaning, i.e. the bundle obtained from the representation of p with
minus lowest weight given by to acting affinely on the weight

bcde

Translation is carried out by first tensoring with W or \M*, then projecting out
the part we are interested in. Firstly we will show that these translations will always

fit into the criteria of the theorem, and secondly that we really can obtain all the
operators we are after in this way.

According to our notation for labelling central characters,

,bcde
w.(

I

f



42 4 HOLONOMIC CASE AND TRANSLATION

has the same central character as the p-module

which has a g-dominant minus lowest weight. Indeed, they both have central
character \a,b,cd,e,f . The weight

abcde

abcde

abcde

w.(

being regular, lies inside the Weyl chamber corresponding to u e W. To find the
central character of any weight in this Weyl chamber, we merely need to apply tl-l
to the weight so as to obtain the unique g-dominant weight with the same central
character.

Now consider minus the lowest weights of the representations in the decomposi-
tion of the tensor product

f

abcde
)sw.

The highest weight of W is just the fundamental weight )6, which has Buclidean

length tFß, as we saw in Section 2. Indeed, all the weights of W are obtained

by allowing the Weyl group to act on this highest weight (as can be seen from the

diagram in Appendix C.1), so they must all have Euclidean lengtn \Ftl. This is

also true for the weights of \\r, which are obtained by allowing the Weyl group to
act on the fundamental weight )1 (see Appendix C.2). Next consider the distance

of the regular weight
bcde

from the walls of the Weyl chamber. The walls are the planes perpendicular to the
simple roots o1,...,t6, and thus the distance to each of these walls will be

w.(
f

f

dist;
ai

f
'lorl

1

t/,
(¿ár;+..'*,fde¿),
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since the fundamental weights a¡e defined so that À;.a¡ : ó;¡. So a regular weight will
be distance at least ll/, from each wall (note that o, ...,f are only non-negative,
so they could be zero; what we really mean here is that the weight translated by
d will be distance at least Il/2 from each wall). Hence the distance between two
regular weights in distinct Weyl chambers must be at least twice this, namely J2,
which is greater than the lengths of the weights of W that we are translating with
(i.e. greater than ,F¡ In particular, when we add minus the weights of W to the
minus lowest weight

u

we cannot move into a new Weyl chamber. At worst we could move onto the
boundary of the Weyl chamber we started in.

It follows from the above argument that to find the central characters of minus
the lowest weights of the representations in the tensor product decomposition, we

need to apply u.'-r to each weight, to bring it back to the fundamental Weyl chamber
(or onto the boundary of the fundamental Weyl chamber). Suppose then that two
distinct minus lowest weights of representations in this decomposition, B1 and B2

say, have the same central character. Then we must have r.u-l .(0t) : .-t.(þr),
which would imply þt : þ2, a contradiction. It follows that all the þ-modules in
the decomposition of

abcde
w.( )sw

must have distinct central characters. Of course, the same is true for

abcde

f
)

f

abcde
a'.( )8w

and when W is replaced by W*. Indeed whenever we translate one of these regular
operators with \W or W*, everything will split off with unique central character, and

hence Theorem 4.4.2 will always be applicable.
This is one of the reasons why we only want to translate using W and W*,

which have as minus lowest weights the fundamental weights Àr and À5. The other
fundamental weights all have lengths greater than or equal t" J2. So if we were to
translate with representations which have as minus lowest weights the fundamental
weights Àr, Àr, À4, or )6, then minus the lowest weights of some of the representations
in the tensor product decomposition could move into a new Weyl chamber. It is
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then possible that two or more terms will occur with the same central character,
making it impossible to apply Theorem 4.4.2.

Next we will show that we can increase each of a, b, c, d, e and / by 1 by
performing these translations. Firstly, consider just a. In the orbit of the lowest
weight

-l 0000

0

of W under the action of W, we must get the weight

10000

Therefore this weight will occur in W. Then in the tensor product

w(

u.(

) -.(

)8w

o

abcde

abcde

there will be a component of minus lowest weight

abcde -l 0000 lb c d e

u ) u
o f

Similarly,

-',(

will contain a component of minus lowest weight

)øw

,
u)

Therefore we will obtain the operator with ø increased by 1. By using W* instead
of W, we can increase e by 1.

Next we want to increase ô by 1. To do this, we first perform a translation so as

to increase ø by 1; then observe that the weight

lb c d e

I -t 0 0 0

f
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occurs in the orbit of the lowest weight

45

under the action of W. Hence the weight

-1 0000

0

I -l 0 0 0

0

l-l 000

must also occur in this W-orbit, and so when we translate again we will obtain a

component of minus lowest weight

w(

)-r(

0

a*lb c d e abtlc d e

w ( ) w (

I

The same is true with t¿ replaced by .',, and hence we can increase b by 1. Similarly,

by translating with \\I twice we can increase d by I'
Finally, by observing that

ol-lo0 01000

I
and

both occur in the orbit of
10000

o

under the action of W, it follows that we can also increase c and / (respectively)

by 1, by performing three translations with W. In fact, we could obtain the same

result by performing three translations with \AI instead, and it is also possible to

increase / by translating once with \M and once with W*.
In conclusion, by induction we can obtain all standard operators in the regular

patterns simply by starting with the de Rham resolution and applying the translation
principle.

We should point out here that we haven't actually used any special property of

the standard operators here, so the above arguments will also apply to the regular

non-standard operators, provided we have the necessary initial operators (i.e. those

that occur when o, : ... : f - 0). However, these initial non-standard operators

have orders four, six and eight; in particular, it is no trivial matter to try to find them
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directly by looking for maximal weight vectors in the appropriate Verma modules.

Instead we will adopt a different approach. Later we will see that some of these initial
regular non-standard operators can be obtained by translating singular non-standard

oplrators, which in turn can be obtained by translating singular standard operators.

In other words, the standard operators that we specified as our initial data will be

all that is required to construct nearly all of the other operators. However, there will
be some remaining operators that cannot be reached by translating simpler (lower

order) operators, and we will see the consequences of this fact when we look at the

semi-holonomic case and curved analogues.

4.6.2 Singular Standard Operators

We have just seen how to obtain all the regular standard operators by beginning

with the first order standard operators occurring in the de Rham sequence and using

translation. We would now like to obtain a similar result for the singular standard

operators. We will concentrate on the singular pattern obtained by putting a : -1,
but the other cases can be done analogously. Recall that in this pattern we get a

sequence of standard operators and one non-standard operator (see Appendix D'a)'
We shan't be concerned with the non-standard operator just yet. We will try to get

all of the standard operators by translating the initial case of b - ... : r : 0, and

using induction as before.
The main difference in the singular case is that minus the lowest weights are now

on walls of Weyl chambers, rather than inside the Weyl chambers as in the regular

case (of course, we really mean the weights translated by ó here). Therefore if we

(affinely) reflect in the wall that the weight is on (call this reflection too), then the

weight will be fixed. Consequently the weight can be written in two different ways

lbcde -lbcde
ut.( ) and wow.(

This means that an operator

lbcde lbcde
u.r.( ) -+.,''( )

between two bundles will also occur twice, because each bundle can be written in
lwo clifferent ways. This repetition can clearly be seen in the singular patterns in

Appendix D.4. The reason that the bundles occur exactly twice is that the weight

is on one wall only, so there is a unique reflection 1o' which fixes it.
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As before, we can increase e by tensoring with the dual representation W*. In
the tensor product

-l b c d e 00001

0

u:.( )ø

there will be a term with minus lowest weight

-l b c d e 0000-l -l b c d"+l
w.( ) -.( ):t'(

We need to know that this is the unique term in the decomposition with this central
character. We know that

0

fbcde I b c de* 1

)w.( and w.(
f

both lie on the same wall of a Weyl chamber. Minus the other lowest weights in the
decomposition of the tensor product will either lie on this same wall, or lie inside or
on a different wall of one of the adjacent Weyl chambers (this follows by considering
the Euclidean lengths of the weights we are translating with, similarly to the regular
case). In particular, since the Weyl group is generateð.by reflections in walls (not
rotations), none of these minus lowest weights could possibly be in the same Weyl
group orbit as

-l b c de* I
)u (

f

Therefore, this bundle splits off with unique central character. Of course, the same

is true when we translate back using W, and of course it is also true when we replace

w by w'. So by Theorem 4.4.2, this translation results in a non-zero operator in both
directions, and hence we can increase e by 1.

In fact, the above argument shows that the criteria of Theorem 4.4.2 are satisfied
whenever we translate minus our lowest weight from one point on the wall to another.
Next we need to show that we can actually increase each of b, c, d, and / by 1 just
by translating with W and W*.

As in the regular case, we can increase d by I by translating with \\I twice, and

c and / by translating with W three times. The difficulty lies with b. In the regular
case we first increased a by 1 before increasing b, but in the singular case we cannot

do this, as ø is fixed at -1 (if we did try to increase ø we would get back the regular
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case, which we don't want; furthermore, the conditions of Theorem 4.4.2 would not
be satisfied). However, we observe that

0-1 000

I

occurs amongst the weights of W*, and hence after translating with W. three times
to increase ,f by 1, we can translate with V\/* once more to increase å by 1. Hence by
induction we can obtain all the standard operators in the singular pattern a : -1.

Similarly, applying the same arguments to the five other singular patterns (each
of ó : -1, c- -1, d : -7, e : -L,and / - -1) enables us to obtain all the
standard operators in the singular patterns by translation, starting only with our
initial data.

4.6.3 Singular Non-Standard Operators

So far we have looked only at standard operators. The non-standard operators in
the singular patterns can also be obtained by translating the initial cases, and we
will not repeat the argument here (i.e. it is the same as the argument for the singular
standard operators). However, the initial cases are all oforder greater than one, and
so maximal weight vectors are considerably more difficult to find directly. Instead,
we will see that all of the non-standard initial cases can be obtained by translating
the standard initial data.

To begin with, Iet us show that when we translate the first order operator

-4 0 0 0 0

-30000

-50010
-+

o

using W, then we get a non-zero second order operator

-50001
-+

and we also get a non-zero operator if we tra,nsìate hack. In fact, this translation
fits into the criteria of Theorem 4.4.2, as we shall see.

Firstly, we can decompose the tensor product

o 0
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-4 0 0 0 0

-50010

8W:(

O

8W:(

8w:(

8W:(

+(

-30000

-30000

)+(

)+(

)+(

)+(

)+(

O

O

O

O

O

)+(

)+(

-5 lo00

-50001

-40010

-5 1000

o

o

o

o

0

-30000
Observe that only has central character f0,0,-1,0,o,0. Similarly, in

o

o0

-4 0 010 -61010-50001

o I

-50001-5 1000 -60011-60100
oOO

o 0 0

-50001
only

we decompose

has central character Xo,o,-r,o,o,o. In the other direction, when

-30000

o

0

-30001 -4 0 0 0 0 -4 0 0 0 0

o

we find that only

I

-4 0 0 0 0
has central character f,o,o,g,-r,o,0, and in

50001 -50002

0

50010-40000
O

o

0

o0

-60001-61000 -60001

01

-50010
only has central character Xo,o,o,-r,o,o. Therefore by Theorcm 4.4.2,

or when we translate in either direction, but most import-
second order operator from the first order one.

we get a non-zero oPerat
antly, we can obtain the
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Next, we will show that by translating the second order operator

-30000

0

-20000

-20000

s0001
-+

o

by W, we get the fourth order operator

-60002
-+

0

We decompose the tensor product

-30000

-50001

-4 1000

0

61001

-30000

-40001

0

8W:(

8W:(

ø\\I: (

)+(

)+(

O

)+(

0
)+(

O

)+(

o

0

-2 0 0 0 0
and observe that only

the decomposition

has central character X0,-1,0,0,0,0. Similarly, in
0

-4 0 0 0l -50000

-50000

)
000

-6001o

o
+(

-60002

0

O )

-60002
has central character Xo,-r,o,o,o,o. In the other direction, we

o

-20000 20001 -30000
)

o 0 I o

-30000
has central character Xo,o,-r,o,o,o. Finally, in the decompos-

0
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-60002

50001

0

10000

8w:(

8W:(

-70002

-60003 -60011

7to01

2t000

500

o

and

O

)+(

O
oo 0

only

+( e )+(
I o 0

has central character Xo,o,-r,o,o,o. Therefore by Theorem 4.4.2,

-70002

-20001

translation gives a non-zero operator in both directions. In particular, we can obtain
the fourth order operator by translating the second order one.

Similarly, we can translate the fourth order operator to obtain a sixth order
operator

-10000-70003
-+

0 o

However, when we try to translate again we find that

00000

0

contains two terms,

oo

-2 1000

)+(

, which both have central
00000

0 0

character Xo,o,o,o,o,o. Hence translation breaks down at this stage and we do not
obtain the eighth order operator

o0000 -80004
-+

o

Indeed, this is a regular operator, and so we cannot reasonably expect to obtain it
this easily.

If we look at the adjointl operators, we find that we can also translate from the
first order operator

-90010-101000
-+

lThere is a natural notion of adjointness between operators which we will not describe in detail.
This essentially reflects the symmetry of the classifying patterns, with operators in the bottom
half of the pattern being adjoints of the corresponding operators in the top half.

0

0o
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to the second orde¡ operator

from this second order operator to the fourth order operator

-80001 90000

0

-100 0 0 0

o

0

0

-+

-+

-+

-+

-+

0

o

o

0

0

-80002

and from this fourth order operator to the sixth order operator

-8 0 0 0 3 -ll 0 0 0 0

However, we cannot obtain the eighth order operator

-8 0 0 0 4 -12 0 0 0 0

-+
0

by translating the sixth order one.

In a similar way we can get the second order operator

-60000

70100

0

70001

-8 looo
-+

either by translating the first order operator

-8 1001

by W, or by translating the first order operator

-80100

0

by w..
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We would then like to translate from this second order operator to the fourth
order one

-60000-102000
-f

If we try to translate with W or W*, we find that it is not possible to get the fourth
order operator in one step. However, we know that we can translate the second

order operator to obtain a whole family of operators

2 0

-f

X

"¿o--¿

i
In particular, putting a : b: d, : I :0 and e : I, we get

70000

-50010

-9 1000

I

70loo

-¿-2b-2d-e-1-8
a*b*l
d
f
b

o

0

-a-Þd-e-f-6
a
b
Í
d

2

_>

-+

-)

-+

By translating this operator with W, we can obtain the fourth order operator we

were after.
This leaves just two singular non-standard initial operators, namely

and

0

I

-+
0 o

both of second order. These can be obtained by translating the first order operators

-E0100

-60010

-90010

-70101

and
-90101-101010

0

by W and W* respectively.
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4.6 One \May Tlanslation

So far we have described a criteria which ensures that translation gives us a new

non-zero operator when we translate in either direction, and we have used this result

to obtain a large number of operators beginning with just our first order initial data.

Our translation procedure relied on the fact that the appropriate Verma modules

split off from the tensor products with unique central character. Theorem 4.4.2 also

required that this be true in the reverse direction, in which case we could deduce

that the new operator would be non-zero.

However, we can still perform translations in the case that the appropriate Verma

modules don't split off from the tensor products with unique central character'

Immediately it is clear that Theorem 4.4.2 will not apply, but this does not mean

that the translated operator must necessarily be zero. Indeed, we will see that there

are cases where the new operator will be non-zero, but we will get the zero operator if
we try to translate back to the original operator. We shall refer to these translations

as one uøy translations. The examples of these one way translations that we shall

be concerned with is the translations from the singular non-standard operators to
the regular non-standard operators. We shall begin with a general description of

how this kind of translation works, and why it gives a non-zero operator'
First consider what happens when we try to translate in the other direction; i.e'

suppose we have with a regular operator

I/(E) <- V(F)

that we would like to translate to get the singular operator

Y(E')+- Y(Fr).

When we consider the tensor products

Y(Esw) :Y(E) s\ry.

and
Y(F'8 W) : Y(F) S 14¡'

it is clear that V(81) and y(F ) (respectively) each split off with unique central

characters. This is because we are going from a regular highest weight (inside a

Weyl chamber) to a singular highest weight (on a wall of that Weyl chamber); as

all the highesl, weights for telms in the tensor product necessarily lic cithcr in that
Weyl chamber or on one of its walls, then they could not possibly be related to our

singular weight by a Weyl reflection.
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So the appropriate maps (inclusion and projection of Ve¡ma modules) exist for
us to be able to perform the translation, and hence we get

V(E) <_ Y(EøW)
\1

y(F, ) -f y(['s vv).

However, we are going to show that this new operator is really zero, by looking at
the diagonal operator that appears here and showing that it is zero.

The first step is to apply Lemma 4.4.L, which says that it is equivalent to consider
the following diagonal operator

V(Er a W.) (- v(E)
\1

v(F).

We need to know how I/(81 A V\F) decomposes. Obviously V(E) will occur, but
not with unique central character. As we are translating a singular highest weight
(on a wall of a Weyl chamber) to a regular highest weight (inside an adjacent Weyl
chamber), we will also get a second regular highest weight with the same central
character (i.e. the weight on the opposite side of the wall, related to the first regular
weight by a reflection in that wall). If we call the second regular highest weight
module V(W), then what we have is a composition series which looks like

v(8, a \Ar) : (.. .) + (y(B) o ...) + (y(E) o ...),

or
v(E' aw) : (v(B) o...) + (v(E) o...) + (...),

where we have not shown modules with other central characters. This means that
we have invariant operators, inclusion

v(E) + v(Er 8\r),
and projection

V(E'a\M)+Y(E).
Note that the order of the composition series is important, as the two regular Verma
modules do not split off completely; i.e. there does not exist an invariant projection

V(E' a \M) -+ Y(E ),
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nor does there exist an invariant inclusion

V(E) -+ y(Er I W).

The order is determined by where the þ-modules lE and lE occur in the decom-
position of the tensor product lEr I W*, bearing in mind that W* has composition
series

0

+

We have written the composition series for I/(E¡ I W* ) with V (E!) occuring to the
left of V(E) as it is what we require for our arguments (of course, when we apply
this result to specific examples, it must be checked that the composition series really
does follow this order).

Now consider the composition

Y(E) <_ Y(Ersw) <_ Y(E)
\1

v(F).

The composition of the top two operators must be zero) as there does not exist a

differential splitting (y(E) does not split off from the tensor product). It follows
that the diagonal operator can depend only on V(E'), i.e. it factors through V(E:)

V(Er I w) F Y(E )

\
v(F).

Finally we will assume that there does not exist an operator

Y(B) <_ Y(F')

and so the diagonal operator must necessarily be zero. When we apply this result
to specific examples, this assumption can easily be checked from the classification
of homomorphisms of Verma modules, Theorem 4.1.1. It then follows that trying
to translating the regular operator to the singular operator results in zero.

Next consider translating in the opposite direction, from the singular operator
to the regular operator. We have already assumed that we have a composition series
which looks like either

v(E' 8w) : (...) + (v(B) o...) +(v(E) o...),

00001 00001

0

0 -1 o000

0

+



4.6 One Way Translation Ði

or
v(E' a w) : (v(W) o...) + (v(E) o. ' )+ (...)'

where we have not shown modules with other central characters. We also need to

assume that the composition series for v(F1 I w.) looks like either

/(F, 8\^r) : (...) + (v(F) o...) + (v(F") o...),

or
v(F, 8 w) : (v(F) o ...) + (v(r)o ...) + (...),

not showing terms with other central characters; i.e. we assume that V(F) occurs to

the left of 71n). Thus the necessary inclusions and projections of Vermamodules

will exist for us to be able to translate the singular operator to obtain

Y(E) F Y(81 8w)
\1

Y(F) -+ I/(Fr I W.).

Again, we apply Lemma 4.4.1 and consider instead

v(E s w) (_ v(E' )

\1
v(Fr ).

We know that V(81) splits off from y(ESW) with unique central character' Suppose

that the diagonal operator is zero. Then so too is the composition with

Y(E )F Y(E8w),

i.e. the following composition gives zero

V(Er) þ Y(E s W) <- Y(E')
\1

Y(F )'

However, the composition of the top two operators is just the identity on V(81), as

this is a differential splitting. It follows that the original singular operator

Y(Et) e Y(Fr)

that we are translating is zero, which is absurd. This contradiction implies that the

diagonal operator cannot be zero.
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Then by Lemma 4.4.I, ìt follows that the following diagonal operator is also

non-zero
Y(E) 

{ 
Y(E'rø w)

I/(Fr A W.).

Finaliy, we have assumed that we have either

7(F,a\^r) :(...) +(v(F) o...) +(v(F') o...),

or
v(r' ø \M) : (v(F) o ...) + (v(F') o ...) + (.. .),

not showing terms with other central characters. Our last assumption will be that
there does not exist an operator

tz(E) +_ y(F 
)

(again, in our examples this assumption will be easily checked from the classification
of homomorphisms of Verma modules, Theorem 4.lJ), and, therefore, when we

compose the diagonal operator with the inclusion

V(F 8\^r)+- Iz(F)

we necessarily get a non-zero compositio

v(E) +- Y(F).

Thus we have shown that, assuming all the composition series occur in the appro-
priate orders, and assuming that we know of the non-existence of certain operators,
we can translate the singular operator

Y(E )F Y(Fr)

to obtain the regular orÌe

v(E) <- v(F),

but if we try to translate back we get the zero operator. Let us now apply this to a
specific situation, to see how it works in practice.

We would like to consider what will happen when we translate between the
regular non-standard operator

70010 -112 0 I 0

-+
0
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and the singular non-standard operator

59

7 0 I 0 0 -12 3 0 0 t

2

-+

a

a

a

0

o

We will write down the vector bundles directly here, instead of the Verma modules.

This will mean that all the arrows will be in the opposite directions. Consider first

going from the regular operator to the singular one. The diagram looks like

-7olo0-7001000001 a
2

-11 3 0 0 I

o

2

-122 0 I o ooool

o

I

0

First we need to check that the horizontal operators really do exist. Decomposing

-70100

2

-7001o

t

-122 0 1 0

oo001

we see that

only

really does split off as the unique term with central

0

o

character fo,l,o,o,o,-1, and in

00001

-tl3 0 0 1

o

o

has central character !0,1,o,0,0,-r. So the horizontal operators
o

do exist, and we can perform the translation shown above

By Lemma4.4.l, we consider the diagonal operator appearing in the diagram

-7 0 I o o I 0 0 0 0 -7 0 0 1 0

a
2 2

I

-112 0 1 0

o
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Decomposing the tensor product here, and only showing terms of central character

Xo,o,o,o,o,or we get the composition series

70100 I W: (...) + (

-+

o...) +(

a

o

0

7001o

2

-60000
O

2 3

So we get an inclusion

7001o 70100 10000

2 2

7010010000

0

but when we compose it with the diagonal operator above we get zero, as

70010

2

70010
-+

-112 0 1 0

-

-12 3 0 0 I 10000

2

a

_>

-+

a

2

must be zero (there does not exist a differential splitting). Hence the diagonal oper-
-60000

ator can depend only on (i.e. it factors through the projection onto
3

this term). However, from the classification of homomorphisms of Verma modules,

i.e. Theorem 4.1.1 (in particular, looking at the regular classifying pattern with
a,: ...: f :0), we see that there is no non-zero operator

-6 0 0.0 0 -11 2 0 I 0

3

and hence the diagonal operator is zero also. It follows that translation applied to
the regular operator will give us the zero operator.

Next we consider going from singular to regular'

-70010-7010010000
a

o2

I

o 0

We want to show that the diagonal composition is non-zero. Firstly, let us check

that what we have written so far really does make sense. We have already seen
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the composition series for

exists an invariant inclusion

7010010000

61

, and we know that therea
I o

70010 -70100 10000

2

-+

-+

->

a
2 o

-f

Similarly, we get the composition series

-12 3 0 0 1

-70100

2

-112 0 I 0

70010

2

-r2 3 0 0 0

ol

0

I W: (...) + ( o...) +( O

not showing terms with central characters different to Xs,s,s,s,e,6. Hence there also

exists an invariant projection

-r2 3 o 0 1 I 0 0 0 0 -11 2 0 I O

-+

so the operators we need in order to perform this translation really do exist

By Lemma 4.4.1,, we can consider the following composition'

-7001000001-70100

2

-t2 3

)
0 0 0

a

02

ooo

a

I

o

We have seen that splits off from the tensor product with unique

central character, and hence there exists a differential splitting

70100 ooo01
a

t

Thus if the diagonal operator above is zero, the composition

70100 70010 00001 -t2 3 0 0 I
a

t 2 o
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2

would also be zero, which is impossible since this is the singular operator that we

began with. Hence the diagonal operator is non-zero, and then so is the following

diagonal operator.

-70010-7010010000

2

a

a

oo

0

-t2 3 0 0 I I O 0 0 0

0 o

Finally, we have already seen that

-12 3 0 0 1 -tl20lo

2

7 0 0 1 0 -112 0 1 0

-t2 3 0 0 0

I W: (...) + ( o...) +( o...),

not showing terms with central characters different to X0,0,0,0,o,0. By the classification

of homomorphisms of Verma modules, i.e. Theorem 4.1.1 (in this instance, by looking

at the regular classifying pattern with ¿ : . . . :,f : 0), we know that there is no

non-zero operator
-7 0 0 I o -12 3 0 0 0

-+

o

0

and therefore it follows that the regular operator

2
-)

-)

0

70102

obtained by translating the singular one is non-zero. This is precisely the result we

wanted.
The usefulness of this one way translation is evident. By translating from the

singular lon-standard operators we can obtain many of the regular non-standard

operators. In particular, we have just obtained the fourth order regular operator

-70010-112010
->

2

Using one way translation, we can also get the fourth order regular operator

-30100

0

0o
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by translating the fourth order singular operator

63

-3 lo00 71o02

0

-8 1003

-)t

bV W and the sixth order regular operator

0

0

0

I

2t000
-+

by translating the sixth order singular operator

-+

-+

-+

o

o

I

10000 70003
-+

o

by W. We can also obtain the adjoints of these operators, namely the fourth and

sixth order regular operators

o

-100102-120100

and
-90003 -12 0 0 0 0

by translating the fourth and sixth order singular operators

and

-90002

-80003

-110 0 0 0

-110 0 0 0
-+

o

respectively, by W*. Then, as we mentioned at the end of Subsection 4.5.1, these

regular non-standard operators form the initial operators which can be translated to
obtain all of their corresponding families of operators. This just leaves several other
families of non-standard regular operators which cannot be obtained by translating
from simpler operators. We summarize these in the next subsection.

o
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4.7 Operators Not Obtainable by Tlanslation

Beginning with our initial data, we have used translation to obtain all of the standard

operators, in both the regular and the singular patterns, and all of the non-standard

operators in the singular patterns. We have also obtained some of the non-standard

operators in the regular patterns, but there are several that we have not been able

to reach by translation. We will call these operators and their families eaceptional,

and summarise them below.

We have been unable to obtain the following operators by translation:

1. the eighth order operator

00000 -80004

o

and its associated family

2. the adjoints of 1

3. the family of operators

X
,J

o--¿
j

_>

X
n,l

o--¿
¿
¿

4. the adjoints of 3

-a-b'c-f-5
a
b
c*dtf*2
e

-aL2c-2d-e-f-9
a
b*c*d*2
f
c

-a-2L2c-d-f-8

a*b*c*d*e*4

-a-213c-2d-e-21-12
î.

c
bt
a

-a-L2c-2d-ef-9
a
btc*d*2
f
c

-a-2b-3c-2d-e-f-1 1

c

d
b+c+f+2
ò

b
c
f

z
b
c
d
e

-+
o

-a-2b-2c-d-f-8
b
c-f
f
a*b*c*d*e*4

X
.{
.--1

a
¿

x
¿1

F¿

t

X
.¿

F¿

i
.ð

o--¿
¿
¿

-+

X

"¿o--¿

i
-+

x
.¿

F¿

i
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5. the family of operators

65

X

"¿}J
i

-a-Lc-d-e-6 -a-2L3c-2d-*21-12
a*b*c*f*3
d
c
b

c+d*e a
b

c
d

-+

We will refer to the above families as the first enceptional family of operators, the
second exceptional family oJ operators, etc. On the other hand, when d,. . . , f are

all zero, we will refer to the above operators as the first exceptional operator, the
second erceptional operator,, etc.
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5 Semi-Holonomic Case

5.1 Lifting of the Initial Data

We want to investigate which operators admit lifts to the semi-holonomic case,

allowing us to construct curved analogues. Firstly we will show that all low order

operators must lift, where by low order we mean first or second order operators.

Since the first holonomic jet and the first semi-holonomic jet are the same thing,

all of the first order operators automatically lift to the semi-holonomic case. This

includes all of our initial data, namely the standard operators in the de Rham

resolution and the standard operators in each of the basic singular patterns (i.e.

each of a : -I, b - ... : f :0, etc.). So we immediately acquire curved analogues

of all these operators.
In fact, we can automatically get lifts of all the second order operators too. This

follows from the following lemma'

Lemma 5.1.1 There is a homomorphism of p-modules V2(B) -i %(E) that splits

the projectton Vr(E) -+ Vz(E) '

Proof: We define the homomorphism by the identity map on yt (E) : yt(E) C V2(E)

and by 
IxYe+ ,txv +YX rlX,Yl)e,

where X,,Y e g and e € E*. This is well-defined, as

XYe : YXe*lX,Yle

F> !V* + xY + [Y,x])e *lx,Yle
2',

: !rr, +YX- [x,Y])e+ lX,Yle2'
: '=t*t +YX *lx,Yl)e.2'

It is also þ-equivariant, for if we allow Z e P to act on the left we get

Z(XYe)
I .- -..-- a,1- a,, 1

'+ rtlz, 
xlY + Ylz, xl + llz, xl,Y))e + ;(xÏz'Yl + lz,Ylx +

+lx,lz,rll)e+ 

"trt 

+Yx+ [x, v])(ze)
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IUt, xlye + x[z,y]e * xy(ze)) * ]ttt,ylxe -t

+Y[2, x]e -r y' x (ze)) + lfnz, Xl,yle + [x,e,yl]e + [x,y](z e))

jz çxv 4 *'rz 1v * a + |z xx,yl")
I: Z(;(XY +YX +[X,Y]),),

where we have,r."Í ,n" Jacobi identity [2,[X,y]l : [lZ, X],,y1+[X,V,y]l.Finally,
it is clear that this mapping splits the projection. 

-- J/ J ' L ' r Ì J) 
tr

If we have a second order operator E -+ F , then we have a (holonomic) Verma
module homomorphism I/(F) -+ v(E) which is determined by F -+ W(E). Com-
posing this with the above splitting gives a lift F* -+ V2(E) to the semi-holonomic
case, so all second order operators automatically admit lifts as claimed.

Recall that we were able to obtain a great number of the remaining operators by
translating the initial data. We will show that translation also works in the semi-
holonomic case. Then since the initial data lifts to the semi-holonomic case, we can
apply the translation principle as before to get lifts to the semi-holonomic case of
all but the five families of exceptional operators.

We were unable to reach these families of exceptional operators by translating
from the initial data. In fact, we will show that the first exceptional operator
does not admit a lift to the semi-holonomic case at all, and hence neither does
its corresponding family of operators. This means that we do not obtain curved
analogues for this family of operators by this method. Whether or not they admit
curved analogues at all is a much more difficult problem, and we will not discuss it
here. For the other four families it is not even clea¡ that the operators do not lift
to the semi-holonomic case, and indeed it is possible that they may admit lifts. We
discuss this further in the following section.

6.2 The Tlanslation Principle in the Semi-Holonomic Case
We need to show that the translation principle is still applicable in the semi-
holonomic case. The critical aspect of the translation principle that we need to
look at is the differential splittings associated with terms in the decompositions of
tensor products. This is the main ingredient of the translation principle, and we will
show that because W and W* have composition series of length two, then the split-
tings (invariant projections and inclusions) that occur when we tensor with these
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representations will be of order at most two. We know from the above discussion

that second order operators automatically lift to the semi-holonomic case, and hence

the invariant splittings must lift.
Consider a general irreducible g-module V. Decomposing V into eigenspaces of

the one-dimensional centre of go, as in Section 2, we get a composition series

V:Vo*Vo+r+...+Vo*n

of length n. Let lE be a þ-module, and suppose that y(Et ) splits off from y(ESV).

In fact, first suppose we just have an invariant inclusion

Y(E') -+ Y(E I V),

and suppose that this is a kth order operator. Then the symbol of this operator is

8.8v.-ég-r8Ei.
Since this is a homomorphism of gs-module, the action of Il must be preserved.

Now on the left, 11 will act by multiplication by -¿(E) - a - 7, for j e {0, . ",n}'
On the right, 11 will act by multiplication by -k - l(E ), and hence

-¿(E)-o-j:-le-l(Er)
for some J € {0,...,n}. In Particular,

n - te 
: tn*!, 

- r(E) - a. (r)

On the other hand, since IE1 occurs in the decomposition (into a direct sum of

gs-modules)

E,AV : E8V.+EAVo+r*... +E8Vo+'
: @E'

we know that the action of I{ on IE1 must be equal to the action of 11 on one of the

terms IE S Vo.'-, i.e.
/(E,,):/(E) *a*m,

for some rn e {0, . . . , n}. In particular,

o 
: iu,, - /(E) - a. (2)
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Combining Equations 1 and 2 we get n ) k. In other words, the order of the
inva¡iant inclusion

V(Er) -+ y(E s V)

is not greater than the length of the composition series of V. Using similar argu-
ments, we can also show that the order of an invariant projection

v(F, Ø \¡) -+ v(Er)

must also be less than or equal to the length of the composition series of V.
Now suppose that we have an invariant inclusion

Y(E' ) -+ v(8, s W).

Since W has a composition series of length two, this invariant operator must have
order at most two. Therefore, by the discussion in the previous subsection, we
automatically get a lift to the semi-holonomic case, i.e.

y(8,) -+ y(E s w).

Similarly, an invariant projection

Y(E I w) -+ Y(E' )

will also lift to the semi-holonomic case,

Y(E I W) -+ V(E' ),

and the same is true if we replace W by \Äl in each situation above. We can now
prove the following theorem.

Theorem 6.2.L Suppose that the Verma module homomorphism

D :V(E) -+ Y(E)

lifts to the semi-holonornic case,

D : v(F) -+ Y(E).

Suppose further that we can translate the operator (in the holonomic case) by W (or
åy W./ to get a neu operator

Y(F') -+ Y(Er).

Then translation in the semi-holonomic case will giue us a lift of the new operator,
i.e. there exists a lift

Y(F') -+ Y(Er).



5.3 Non-exjste nce of Lifts of tåe Fi¡sú Exceptional Family 7l

Proof: The fact that we can translate the operator in the holonomic case means

that there exists a non-zero composition

v(F')-+ v(F sW) : v(F) a\^r --tV(E) a\\,- :V(EsW) -+ v(Er),

where the first operator is an invariant inclusion, the second operator is D 81, and

the third operator is an invariant projection. Since W has composition series of

length two, we know that the invariant inclusion and projection must lift to the

semi-holonomic case. Also, D81 is a lift to the semi-holonomic case of the operator

,D81. Thus we get a commutative diagram

7(n,) -+ 7(FsW) :v(F) stlr -> 7(E) sw*:7(EsW) -+ 7(E')
TI}JTJ

Iz(Fr) + y(r'8W) :v(F') S\M -+ v(E) s\M:v(EsW) -+ v(E)'

Composition along the top row gives us a semi-holonomic lift of the translated

operator. Of course, the same argument works when W is replaced by V\|* . !

We have seen that all the initial data trivially lifts to the semi-holonomic case, as

all these operators are first order. Hence what this theorem shows is that for every

operator that could be obtained from the initial data by translation, there will exist

a lift to the semi-holonomic case, which can be obtained by performing the same

sequence of translations beginning with the semi-holonomic initial data. Therefore,

at this stage we get lifts of all the invariant operators except for the five exceptional

families mentioned at the end of the previous section. Next we will investigate the

first of these families, and we will show that a lift to the semi-holonomic case does

not exist for this exceptional family.

5.3 Non-existence of Lifts of the First Exceptional Family

We are going to show that the first exceptional operator

00000 -80004
-f

0 0

-t2ù2c-d-1-8

a*btc*d*e*4

from the family
Xrl
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¿
¿
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b
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d
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n,l
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¿

b
c
t
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does not admit a lift to the semi-holonomic case. If any operator in this family
admitted a lift to the semi-holonomic case, then by translating, we could obtain
semi-holonomic lifts of all the operators in this family. Thus by showing that the
operator above does not lift, it follows that none of the operators in bhis family
admits a lift to the semi-holonomic case.

Notice that this operator looks remarkably like the long operator in the eight-
dimensional conformal case (where G : SO(10, C)). Indeed, if we ignore the fifth
nodes of the terms in the classifying pattern then what we get is precisely the
classifying pattern for the parabolic

sitting inside SO(10, C), which is eight-dimensional conformal geometry (see, for ex-

ample, [11]). This is hardly surprising, as SO(10,C) itself sits inside 86. In termsof
the corresponding Lie algebras, 50(10, C) can be realized inside e6 as the root spaces

whose roots do not include CI5; i.e. if X €. e6 belongs to the root space Xatat+...+o,.",a¡

then the subalgebra {X e ealas - 0} with Cartan subalgebra (hr,hr,hz,ho,,å6) is

isomorphic to ro(10, C). Furthermore, the parabolic

intersects this so(10, C) subalgebra in the parabolic

n

Now if we restrict our attention to the part of the classifying pattern (with
o,: ...: f : 0) which looks like the classifying pattern for SO(10,C), up to

-80004
the vector bundle , then we see that there are no reflections in the

0

fifth node. This is especially obvious if we look directly at the Hasse diagram in
Appendix D.1. So as far as this operator is concerned, all of the action is essentially
taking place in the so(10, C) subalgebra. To make this clearer, let us rewrite minus
the lowest weights of the relevant bundles in terms of the simple roots {o1, . . . , ûo}
instead of the fundamental weights {)t,. . ., )u}. We get

00000 : (0,0,0,0,0,0)
o
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and

73

-80004 : (-8, -8, -8, -4,0, -4)
0

Recall that to find a Verma module homomorphism

00000 -80004
v( ) +-v( )

0 o

we need to find a maximal (i.e. killed by all raising operators) element

u : Q(UtrUzzr'", Yso) I ?ll

00000
in Iz( ) with the appropriate weight, where ur is a highest weight

o0000
vector for ( ). and q is a polynomial in the y;'s (actually, not really

a polynomial in the semi-holonomic case since the y;'s don't commute). Now from

what we have seen above, choosing the appropriate weight will mean precisely that

the polynomial q will involve only lowering operators y; which belong to root spaces

X-oror-...-ouou with ds : 0, i.e. q only involves lowering operators belonging to the

subalgebra isomorphic to øo(10, C). Furthermore, to test that u is maximal we only

need to act on it with each of the raising operators rt ¡ Xz¡ . . . , Xu corresponding to

the simple roots o1, ...¡e6.Since all the lowering operators y;in q belong to root

spaces with ø5 : 0, we immediately know that Xs will commute with them all, and

hence commute with q. Therefore we automatically have

Xsu

nv,

since t¿ is a maximal weight vector. So we need to choose g in such a way that

tyn : X2u : Xeu - X& - Xeu - 0. It is now clear that øll of the action really is

taking place inside the so(10, C) subalgebra.

So suppose such a maximal element u exists, which gives a homomorphism of

semi-holonomic Verma modules. Then we could take precisely the same'polynomial'
q and use it to construct a maximal weight vector in the eight-dimensional conformal
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case. Thus there would exist a lift to the semi-holonomic case of the so-called long
operator

ooo0-8000

However, in [11] it is shown that the long operator does not admit a lift to the semi-
holonomic case in any even-dimensional conformal geometry. This contradiction
implies that there cannot exist a lift to the semi-holonomic case of the operator

-+
00

o0000-80004
-+

0 0

From our discussion earlier, it follows that none of the operators

-a-2b-2c-d-f-8x
r1

ts¿

i
-)

.Í.J
i

b
c
f

a
b
c
d
e a*b*c*d*e*4

in the first exceptional family lift to the semi-holonomic case.
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6 Conclusions and Outlook

The classification of invariant operators on the homogeneous space G I P is well

understood. This is precisely Theorem 4.I.L, due to Boe and Collingwood ([4]).

Our main aim in this thesis was to investigate which of these invariant operators

have curved analogues which remain invariant on a general curved (AHS) manifold,

and, ultimately, we would like to arrive at a complete classification. Since invariant

operators on the flat space G f P correspond to homomorphisms of Verma modules,

if is natural to try to extend these ideas to apply to the curved case' This is precisely

what we have done by introducing semi-holonomic verma modules.

Unfortunately we were unable to obtain a complete classification of which Verma

module homomorphisms lift to the semi-holonomic case, thereby giving a curved ana-

logue of the corresponding operator. However, we have shown by using the transla-

tiJn principle that most homomorphisms do lift, and there are just five exceptional

families for which this approach fails. Furthermore, we were able to show that the

first family does not lift, by using an analogous result from conformal geometry. We

will now say a little about the remaining four families'

The second family of exceptional operators are the adjoints of the first family.

Because of this, it would be absurd to suspect that they might lift to the semi-

holonomic case when the first family do not. However, to make this into a rigorous

argument, we really need to reformulate the notion of adjointness in terms of Verma

-ãd.rt" and. semi-holonomic Verma module homomorphisms. We have made some

partial progress with this approach; namely, given a maximal weight vector which

induces a Verma module homomorphism, we know how to construct the maximal

weight vector which induces the adjoint Verma module homomorphism. The next

stef is to duplicate this result for semi-holonomic Verma module homomorphisms.

This would allow us to use the fact that the first family does not lift to conclude

that the second family does not lift, a result which we strongly suspect is true.

We cannot be as certain about the fifth family. At first it appeared that this

family was related to the family of long operators in six-dimensional conformal geo-

metry. Then since this family of long operators does not lift to the semi-holonomic

case, it seemed that neither should the fifth family. Indeed, this was to be our ap-

proach for all of the exceptional families, with the first and fifth families looking like

lhe family of long operators in eight-dimensional geometry, and the third and fourth

families like the family of long operators in four-dimensional conformal geometry'

It worked for the first family, where we were able to show that all of the action

was taking place inside of an 50(10,c) subalgebra. However, for the fifth family it

is more complicated; the action is no,t sìmply taking place inside an 5o(8, c) sub-
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algebra. Similarly, for the third and fourth families the action is not taking place

i.rIid" so(6, C) sutalgebras, and for the second family this approach fails for other

reasons.

Of course, the fifth family also appears to be related to the second longest fam-

ily of operators in eight-dimensional conformal geometry. Indeed, there is strong

evidence to suggest that this is really the case. This evidence involves taking fourth

direct images ái ,h"uu"r on flag manifolds related to G I P. Again, to arrive at rig-

orous results we would need to reinterpret direct images in terms of Verma module

and semi-holonomic Verma module homomorphisms, and it is not at all clear what

they look like in this context. This approach could, in principle, show that the

fiftú fanrily cloes lift to the semi-holonomic case, as the second longest family in

eight-dimensional conformal geometry lifts.

It is also possible that the third and fourth families are related to the third longest

operators in eight-dimensional conformal geometry. This may enable to show that

th"r" two family lift to the semi-holonomic case, as the third longest operators admit

lifts in conformal geometry. However, this is more speculative than the fifth family,

for which we actually have some evidence in terms of direct images. Finally, we

should point out that formalising adjointness in terms of semi-holonomic Verma

module homomorphisms would also allow us to conclude that the fourth family of

exceptional operators lift to the semi-holonomic case if and only if the third family

do, as these families are adjoint.

The problem of classifying which Verma module homomorphisms lift to semi-

holonomic Verma module homomorphisms is only a small step towards the com-

plete classification of curved analogues. Furthermore, we could decide this problem

àirectly by looking for maximal weight vectors for the four remaining exceptional

op"rutå.r. Although this would involve some large calculations, there would only

be a finite number of possibilities (so this is a possible 'last resort' approach). Once

we have done this, we will know that curved analogues exist for all those operators

that admit lifts to the semi-holonomic case. However, for those that do not admit

lifts we can say very little. 'I'he existence or non-existence of curved analogues for

these operators is a very delicate matter.

In conformal geometry, it is known that curved analogues can still exist when

a lift to the semi-holonomic case does not; for example, the long operator has a

curved analogue (see [13]) but does not lift (see [11]). Indeed, there is only one

operator (in fãur-àimensiãnal conformal geometry) for which we know that a curved

u.rulogrr" ìertainly does not exist (this was shown by Graham in [12])' We would

hop" 
-to 

be able to deduce some results about curved analogues for the exceptional

geåm"try discussed in this thesis by using results from conformal geometry. However,



I(

even in conformal geometry the classification of curved analogues is not completely
understood.
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A Lowering Operators for E6 with Commutation
Rules
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B Composition Series for the Fundamental Rep-
resentations
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C Weyl Group Orbits of Highest Weights
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C.2 Weights of W*
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D Classifying Patterns

D.l The Hasse Diagram

V

1

2

3

6/ 4\

4\ 6/ 5\

3/ 5\ 6/

3//

2//

5\

2//

2//

5\ 4\

5\v4\

4\ r/ 3\

3\v6\

6\2/ t/

6\ 2//

3

4l

o



86

D.2 The Regular Patterns

D CLASSIFYING PATTERNS
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D.3 The De Rham Sequence
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D.4 The Singular Patterns

D CTASSIFYING PAT"ERNS
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