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Abstract

Verma modules play an important part in the theory of invariant operators
on homogeneous spaces. If G is a semisimple Lie group and P a parabolic
subgroup of G, then there is often a differential geometry for which the ho-
mogeneous space G/P represents the flat model. An example is conformal
geometry, where G is the special orthogonal group SO(n,C). A Verma mod-
ule homomorphism will corresponds to an invariant operator on the flat space.
The obvious question is: how can we generalize these operators to cases where
there is curvature?

In this thesis we will look at a variation of Verma modules called semi-
holonomic Verma modules, introduced by Eastwood and Slovak. They have
studied the conformal case in detail, but here we will investigate instead the
exceptional case of G = Es. We will investigate when a Verma module homo-
morphism lifts to a semi-holonomic Verma module homomorphism. When this
happens, we can deduce that there is a curved analogue of the corresponding

invariant operator.
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1 Introduction

Verma modules play an important part in the theory of invariant operators on
homogeneous spaces. If G is a semisimple Lie group and P a parabolic subgroup of
G, then there is often a differential geometry for which the homogeneous space G/ P
represents the flat model. A Verma module homomorphism then corresponds to an
invariant operator on this flat space. When (G, P) is a general Hermitian symmetric
pair, these Verma module homomorphisms are well understood (see [4, 7, 8], where
the classical and exceptional cases are all discussed). The corresponding differential
geometries are the almost Hermitian symmetric (AHS) geometries of Baston [1].
Minkowski space fits into this picture, by taking G to be GL(4,C) and P to be
the appropriate parabolic (such that G/ P is the Grassmannian Gry(C*), which can
be identified with complexified compactified Minkowski space). This example is
discussed in detail in [10]. Furthermore, this article also looks at invariant operators
on general curved space-times. This is really four dimensional conformal geometry.
Invariant operators for higher dimensional conformal geometries are looked at in [9],
but we will follow more closely the approach presented in [11].

In this article, a variation of Verma modules called semi-holonomic Verma mod-
ules are introduced. Although Verma module homomorphisms correspond to in-
variant operators in the flat case, this is not always so for general curved manifolds.
However, a homomorphism of semi-holonomic Verma modules does give an invariant
operator on curved space. So our aim is to lifi holonomic Verma module homo-
morphisms to the semi-holonomic case. For conformal geometry, the existence and
non-existence of these lifts is completely classified in [11]. In this thesis we will turn
our attention to the exceptional case when G = Eg (and P is chosen appropriately).

So the results presented herein are completely algebraic in nature, but are mo-
tivated by the geometric considerations mentioned above. Although we don’t quite
arrive at a complete classification of which Verma module homomorphisms lift to the
semni-holonomic case, we do achieve a great deal. In fact, we show that the majority
of the Verma module homomorphisms do lift; there are just five exceptional families
for which we are unable to find lifts. Furthermore, for one of these families we prove
that no lifts exist. For the remaining four families, the problem can be reduced to
proving the existence or otherwise of a lift of just one initial case (i.e. one from each
family). These four cases could be decided by a direct assault, involving a large (but
finite) calculation, but it seems there should be an easier way.

Of course, our ultimate goal would be to arrive at a complete classification of the
invariant operators on the general curved spaces, or rather which invariant operators
on the flat spaces admit curved analogues. As yet this is still an outstanding problem,
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even for conformal geometry. By lifting Verma module homomorphisms to the semi-
holonomic case, we can show that a lot of invariant operators do admit curved
analogues. However, when a lift does not exist, this does not necessarily imply
that no curved analogue exists. Indeed there are cases where a curved analogue
exists despite the fact that the Verma module homomorphism does not lift to the
semi-holonomic case. For example, in [13] it is shown that various powers of the
Laplacian are conformally invariant on general curved manifolds; these include the
long operator in even dimensions, for which a lift to the semi-holonomic case is
known not to exist. In general, showing that a curved analogue does not exist is a
very delicate matter.

We begin in Section 2 with some preliminaries. We describe the basic properties
of Eg that will be necessary in later chapters (the weight system, the Weyl group,
the |1|—grading), as well as describing some of the more general objects and results
that we will need (AHS structures, homogeneous vector bundles, decomposing tensor
products of representations).

In Section 3 we introduce invariant differential operators, the main subject of our
study, and show how in the flat case they are related to Verma module homomorph-
isms. We give some motivation of why it is necessary to look at semi-holonomic
jets and semi-holonomic Verma modules when studying operators on general curved
manifolds. In fact, we show how a lift of a Verma module homomorphism to a semi-
holonomic Verma module homomorphism gives rise to a curved analogue of the
corresponding operator. We also look at the structure of Verma modules and semi-
holonomic Verma modules, and give an example of a (holonomic) homomorphism
and a lift to the semi-holonomic case.

We present a theorem which classifies the Verma module homomorphisms in
Section 4. We then introduce the translation principle, and using the above theorem,
are able to find out a great deal about which operators can be obtained from others
by translating.

Finally in Section 5, we show that the translation principle remains valid in the
semi-holonomic case. Then using the results of Chapter 4, we can obtain lifts to the
semi-holonomic case of most invariant operators, after (trivially) lifting just a few.
There remains just a few exceptional families of operators, and we prove that one
of these families does not admit lifts to the semi-holonomic case.

We conclude in Section 6 with some speculation concerning the other exceptional
families of operators. The appendices contain various tables and diagrams which

are referred to throughout the thesis.



2 Preliminaries

2.1 Almost Hermitian Symmetric Structures

The following work is inspired by conformal differential geometry. Recall that the
flat model of conformal geometry is a sphere S™. This can be written as G/P where
G = SOg(n + 1,1) is the group of conformal motions of 5™ and P is the isotropy
subgroup of some basepoint in S™. In general, if (G, P) is a Hermitian symmetric
pair, there is a differential geometry for which G//P represents the flat model. A
general curved manifold M in this differential geometry will come equipped with a
principle P-bundle, which in the flat case is simply given by G' — G/P. These are
the almost Hermitian symmetric (AHS) manifolds introduced by Baston [1, 2].

Whilst most of the following results apply for general semisimple Lie group G
and parabolic subgroup P, we shall primarily be concerned with the case when G
is the exceptional Lie group Es, and P is the parabolic subgroup corresponding to
the Lie subalgebra with Dynkin diagram

where we are using the same notation as that which appears in [3]. Note that we
will let E denote the Lie group corresponding to the exceptional Lie algebra, which
we shall write as eg. However, we will usually continue to write simply G, g, and P,
and it will be clear when we are using specific properties of Es.

Observe that P has a reductive subgroup consisting of a direct sum of the Lie
group SO(10) and a one-dimensional abelian part. The irreducible representations of
P are obtained from representations of this subgroup (see below). The homogeneous
space G/ P is sixteen-dimensional.

2.2 The Weight System of Es

Most of our work will be carried out with the Lie algebras g and p of G' and P, but
sometimes we will need to refer to the groups themselves. We can pass freely from a
representation of the group, p : G — GL(V), to the corresponding representation of
the Lie algebra. For simplicity we will use the same notation, namely p : g — End(V)
(and the same treatment will apply to representations of p and P). We present here
some information about the weight system of the Lie algebra of Es.

Recall that the Lie algebra of Fg has Dynkin diagram

g
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Its root system is generated by simple roots ay,...,as satisfying
2(a,~, aj)
= Gy,
(ajv aJ)

where {a;;} is the Cartan matrix

2 -1 0 0 0 0
-1 2 -1 0 0 O
0o -1 2 -1 0 -1
0 0 -1 2 -1 0
o 0 0 -1 2 0
o 0 -1 0 0 2

This root system can be thought of as sitting inside C° if we let

a; = 5(614—68—62—...—67)
az = €2 —€
03 = €3 —€
Qg = €4 — €3
5 = €5 — €4
ag = € t €,

where {¢i,...,€s} is a basis of C*. The fundamental weights of Es are given by the
change of basis

A\ 4 5 6 4 2 3 ay
I 5 10 12 8 4 6 Qs
s | 1|6 12 18 12 6 9 o3
M| T34 8 12 10 5 6 ay
As 2 4 6 5 4 3 as
X6 36 9 6 36 as
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Writing the fundamental weights in terms of €y, ..., €s, we find
2
M= g(“fs — €7+ €g)

1
/\2 = g(—361 - 362 + 363 + 364 + 365 e 566 - 567 + 568)
A3 = €3+€s+€5—€g— €7+ €s

1

/\4 = 5(364 + 365 . 266 - 267 + 268)
1

/\5 = 5(365 — €g — €7 + 68)

1
Ae = §(€1+52+63+54+55—66_€7+58)—

In particular, the lengths of these weights are

Ml = 4/3
Pl = V10/3
ol = V6
Al = V1073
|As| = \/‘—1/—3
he| = V2.

We will need these results later on.
An irreducible representation V of g will have highest weight aX; + ... + fAe

where a, ..., f are non-negative integers, and we will write this weight as

®

o

a
-

=9

1

We will call such a weight g—dominant. It is also common to use this same nota-
tion to denote V itself. However, to denote irreducible representations we will use
instead minus the lowest weight, which is the highest weight of the dual represent-
ation. The reason for this choice will become apparent later on, but note that it is
really just a notational convenience. An irreducible representation of p is given by
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an irreducible representation of the subalgebra s0(10) (corresponding to the nodes
in the Dynkin diagram) and an irreducible representation of the abelian subalgebra
(corresponding to the cross). The representation of s6(10) will have minus lowest
weight bA; + ...+ fAe, where b,. .., f are non-negative integers, and the represent-
ation of the abelian part will have minus lowest weight given simply by a complex
number a. The direct sum of these subalgebras gives a reductive subalgebra of p,
and irreducible representations of p are given by irreducible representations of this
subalgebra extended trivially to p. Overall, we can write such a representation as

Regarding this as a weight now, we call it p—dominant, meaning that it is minus
the lowest weight of some irreducible p—module.

2.3 The Weyl Group

The Weyl group W of Es is the group generated by the simple reflections in the
weight space, i.e. by the reflections in the walls perpendicular to the simple roots.
For example, reflection in the wall perpendicular to the first simple root «; will take

the weight
A=

o

o

a
-

[«

o

to
-;aa+b ¢ d e

A= (/\,al)al =

:

We call this reflection s;. Similarly, we get

a b c d e at+b -b b+c d e
S &—®# g
f {
a b ¢ d e a b+c -c c+d e
S3 ¢ —
f c+f
a b ¢ d e a b c+d -d dte
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a b ¢ d e a b ¢ d+te -e
Sy —>
f f
a b ¢ d e a b c+f d e

or simply w : A — wA.

The walls perpendicular to the roots divide the weight space into chambers. The
Weyl group acts transitively on these chambers. In particular, the fundamental Weyl
chamber consists of the g—dominant weights, and every other weight is related by
a unique Weyl group reflection to a unique g—dominant weight.

The Weyl group can also act affinely on weights. This means we first translate
the weight by the sum of the fundamental weights

then allow the Weyl group element to act, and finally translate back by subtracting
5. We will denote this by a dot; thus the affine action of w € W on the weight A is

w = w(\+8) — 6.

In general, we will often talk of properties of weights when we are really refer-
ing to properties of the translated weight. For example, we may call a weight A
g—dominant, when we really mean that A + 4 is in the fundamental Weyl chamber.
We may also call A regular, when what we mean is that A + 6 does not lie on the
wall of a Weyl chamber. We will usually clarify such statements, especially when
the meaning is not clear from the context.

2.4 |l|-graded Lie Algebras

For g = ¢, the adjoint representation of g on itself is the representation
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As a representation of the subalgebra p, this decomposes into the following compos-
ition series (we will describe precisely what is meant by composition series a little

later)

o 0 0o 0 0 o 0 0 0 o -1 0 0 1 O 2 1 0 0 O
= = -
1 1 0 0
O
o 0 0 0 o

which we write as g = g_; + go + ¢1. Note that [g;,g;] C 8i+; (where g+, = 0);
in particular, g_; and g, are abelian. We call such a Lie algebra |1|—graded. The
subalgebra p = go + g1. Then go is just the Levi part [ of p and this decomposes
into a semisimple Lie algebra [[, (] (namely s0(10)) and a one-dimensional centre.
Both g_; and g; have dimension 16, and [[,{] = 50(10) has dimension 45. In
Appendix A there is a table of lowering operators yi, Y2,...,Ya1,¥22- .., Y36 for e,
i.e. these elements generate the negative root spaces of the Lie algebra. Similarly,
the generators of the positive root spaces could be explicitly written out (we will
assume they are labelled symmetrically with y;’s, so that z; and y; belong to opposite
root spaces for each i = 1,...,36). Also, let hy,...,he be generators of a Cartan
subalgebra of es. Then g_; is generated by {y1,Y22,---,Y36}, 1 is generated by
{z1, &2, ..., T36}, [, [] is generated by {ha, ..., he, X2,...,X2,Y2,..., Y21}, and the
one-dimensional centre of go is generated by H = %(4h1 +5hy+6hs+4hs+2hs+3he).
We find that the action of the one-dimensional centre is invariant on each term,
and we have in fact chosen H so that [H,g]] = ig,. Indeed, on an irreducible

p—module

H will have eigenvalue —%(4a + 5b+ 6¢ +4d 4 2e + 3f) on the entire representation.
We will call this linear functional on weights ¢, i.e.

a b ¢ d e 1
A- — =(4a + 5b + 6¢ + 4d + 2¢ + 3f).
|f 3

It is important to note that we do not include the minus sign when calculating ¢
on an individual weight, but we do when letting £ act on a p—module (since such a
module is denoted by minus the lowest weight). Since the weights of E* are minus
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those of E, on the dual representation E* we observe that
((E*) = —¢(E).

Consider a general irreducible g—module V. We can decompose V into eigen-
spaces of H, i.e. into components with distinct values of £. Indeed, if we do this we
get a series

V=V0+Va+1+...+va+n,

where o is some number and we call n the length of the composition series. The
action of H on V.4, is by multiplication by e + j. Recall that [H,g;] = ig;. This
implies that the lowering operators of g_; take Vay; to Vi1 (or zero), the raising
operators of g; take Vo4 to Vaiji1 (or zero), and the elements of go take Vaq; to
itself. Thus each V.4, is a go—module (not necessarily irreducible), and g-; and g
move us backwards and forwards (respectively) along the series.

Restricting V to be a representation of p, we get the same series, only now we
can only move forwards along the series (not backwards as no lowering operators
from g_; lie in p). This is what we mean by a composition series. It is only a direct
sum if we regard the representations as go—modules. However, we get an inclusion

Va+n—+V:Va+Va+1+...+Va+n

of the last term, which is p—invariant as V44, must be killed by the raising operators
of g1, and we get a projection

vzva+va+l+---+va+n_)va

onto the first term, also p—invariant as the raising operators of g, will take V, to
Va41, which will be mapped to zero under the projection. Composition series for
the six fundamental representations of Fg, restricted to P, are given in Appendix B.

2.5 Decomposition of Tensor Products

Given two irreducible representations E and F of g, we would like to decompose
their tensor product into a direct sum of representations. Suppose E has minus
lowest weight 1 and the set of all weights of F is ¥r, with v € ¥r occurring with
multiplicity m,. Let W be the Weyl group of g. Then it follows from Kostant’s
Theorem (see, for example, [15]) that

EQF= @ (_1)length(w.,)myMwu.(”_u),

veWUF
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where w, € W is the Weyl group element (acting affinely) which takes u — v into
the dominant Weyl group chamber, if this is possible (otherwise we omit that term),
length(w,) is the length of w,, or in other words the minimum number of simple
affine reflections required to move p — v into the dominant chamber, and

Mwu (u—v)

is the representation with minus lowest weight w,.(u —v). In other words we begin
with minus the lowest weight x of E and add minus each of the weights v of F to it in
turn. Then we apply simple affine reflections to x — v to move it into the dominant
chamber (if possible), giving us w,.(# — v). Then

Mwu.(u-u)

occurs in the decomposition with multiplicity (—1)lensth(w)

As an example, consider what happens when we take the tensor product of

both considered as representations of go. The latter representation we will call W,
and its weights appear in Appendix C.1. It is actually a representation of g, but we
will regard it as a representation of go by restriction. As such, it is not irreducible,
but we would get the same set of weights if we first decomposed it into a direct sum
of irreducible representations and then decomposed each tensor product separately,
combining them at the end. Taking g to be minus the lowest weight of the first
representation, consider what we get when we add minus each weight v of W to p.
This sum could be go—dominant (i.e. each of the integers over the nodes is non-
negative, not counting the cross as a node of course), but if it is not then it must be
because one or more of these integers is equal to —1 (with the others non-negative).
Then an affine reflection in one of the nodes with —1 above it will fix the weight,
and furthermore, it will not be possible to move the weight into the dominant Weyl
chamber by using affine reflections. According to the ahove result we would omit
these weights. So overall, the decomposition consists of representations with minus
lowest weights equal to those y — v which are go—dominant. More explicitly,
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[
+
—
o
o
o

c a-1b+1 ¢ d a blc+l d e

]

i
;
1

a b c1d+1 e a b ¢ d+l1 e a b ¢ d-1e+1
f+1 -1 f+1
a b c+1d-1e41 a b ¢ d el a b+lcl d e+l
& & S?) x_'_I_'_'
f-1 f+1 f

a b c+l d e-l a+l1b1 ¢ d e+l a b+41 c-1d+1 e-1
& ®
f-1

i
%

a-l1 b ¢ d e+l a+1b-1 ¢ d+1e-1 a b+l ¢ d-1

@

D

;
;
;

a-l1 b ¢ d+le-1 a+1 b-1c+1 d-1 b c+1 d-1

(1]
®
—
a

& &)
{ f f
at+l b c-1 d e a-lb+lc1 d e a+l b ¢ d e
S &
f+1 f+1 f-1
a b1 ¢ d e a-lb+1 ¢ d e a blct+l d e
S5 @
f+1 -1 f-1
a b c1d+1 e a b ¢ d-le+4l a b ¢ d el
® ®

%
i

where any term with a —1 above a node would be omitted. We can get a similar
decomposition with the representation W replaced by its dual W*, whose weights
appear in Appendix C.2.

Now what we really want is similar decomposition for representations of p.
However, as a p—module, W has composition series

1 0 0 0 o 1 0 0 0 o -1. 1 0 0 O -1 0 0 0 1
= + + :
0 0 0 0
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It follows that we also get a composition series for the above tensor product, i.e.

03¢
I

d

[g]
o

a+1l b

a-1b+1 ¢ d a b c-1d+1 e

a
4]

S

Bii
@ —
®
v
a
t -
- Q.

f+1
b

a
=9
+
—
a
[

b ¢ d-1e+1 a b c+l1d-1e+1
. ]

»

S5
¥

f+1 f-1

o
o
a
<9
aQ
U
[ =

a b+lcl d e+l a b ct+l d e-1

@ @

-T

f+1 f-1

at+l b1l ¢ d e+l a b+41c-1d+1e-1 a+1b-1 ¢ d+1e-1
7]

;
;
;

a b+l ¢ d-1 e a+1b-1c+1d-1 e at+l b c1 d e
b X—'—I—"—' S x—’_I_"_' &b
f f f+1
a+tl b ¢ d e
@ )
f-1

a-l b ¢ d e+l a1 b ¢ d¥le-1 a-l b c+1d-1 e

+( @

;
;
:

a-1b+1c-1 d b-1 ¢ d e a-lb4+l ¢ d e

@®
o

@

&
&b

+ f+1

w
-
—
]
+
-
Q.
o
w

b c1d+1 e a b ¢ d-le+l

2
¥

o
o
o
o
4]
U
—

S5

as representations of p. Of course, we get a similar result using W*, which has
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composition series

o 0o 0 0 1 0O o0 0 0o 1 -1 0 0 0 O -1 0 0 0 O
= + + ;
0 0 1 0
2.6 Homogeneous Vector Bundles

Suppose we have a finite-dimensional representation p : P — Aut(E) of P. Then
we can form a vector bundle

G xE
(9:€) ~ (gp, p(p~1)e)

EZZGXP]E=

on G/P (see [5]). There is an action of G on this vector bundle which is compatible
with the action on G/P and is linear on the fibres. In general, a homogeneous vector
bundle E — G/P is any vector bundle over G/P with an action of G' on E which is
compatible with the action on G/P and linear on the fibres. Thus the above bundle
is a homogeneous bundle. In fact, given a homogeneous bundle E — G/P, we can
get a representation E of P by taking the fibre over the identity coset. Then we
find that £ = G xp E, so there is actually a one-to-one correspondence between
the finite dimensional representations of P and the homogeneous vector bundles on
G/ P of finite rank. Recall that we can write an irreducible representation of P as

We will denote the corresponding homogeneous vector bundle on G/ P by this same

diagram.
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3 Invariant Differential Operators

3.1 Invariant Differential Operators and Jet Bundles

We are interested in invariant differential operators on the homogeneous space G/ P.
Let D : £ — F be a differential operator, where £ and F are sheaves of germs of
sections of the vector bundles £ and F respectively. Then D takes a local section
of F to a local section of F'. If £ and F' are homogeneous vector bundles then there
is an induced action of G on local sections. A differential operator is invariant if it
commutes with this action of G.

Suppose D : &€ — F is a differential operator of order k. This means that the
operator factors through the operator & — J*€ which takes a germ of a section
to the germ of its k—jet. Furthermore, the operator J¥€ — F comes from a
vector bundle homomorphism D : J*E — F, where J*E is the k** associated jet
bundle of E (it’s fibres consist of germs of sections of E up to order k). Since F
is a homogeneous vector bundle, so is J¥E (i.e. we get an induced action of G on
the jet bundles, and this action takes fibres to fibres and is linear on fibres). We
denote the corresponding representation of P by J¥E. There are natural projections
J*E — JFE, and hence surjective P—module homomorphisms J*'E — J*E.
Taking the projective limit of these surjections, we arrive at

JE = ... JHE 3 J'E -5 J*'E— ... - J'E = E.

Furthermore, J*E is actually a g—module; elements of g_; act like ‘derivatives’,
taking something in J*E C J°E into a lower jet bundle J*'E C J*E. The action
of elements in g and g; is of course induced from the action of P on each J*E C J*E
(asp =go+ @) .

Now if D is invariant under G, then D is actually induced by a homomorphism
of P—modules, D : J*E — F. Furthermore, this homomorphism induces P—module
homomorphisms J**™E — J™F for all m, and hence J®E — J®F. In fact, this
final map is really a homomorphism of g—modules. (This final observation is often

called Frobenius reciprocity.)
There is an exact sequence of bundles

05 ON @E — JEE = J*'E 5 0

where A' is the cotangent bundle on G/P. This sequence is induced by the exact
sequence of P—modules

0 O'a®E = J'E - J*'E — 0,
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as g, is the P—representation with minus lowest weight

which induces the cotangent bundle A'. The composition
koAl k
ON QE—= J'ES F

is called the symbol of the operator D. If D is G—invariant, then this vector bundle
homomorphism is also induced by a homomorphism of P—modules

‘a1 ®E - J*E - F.

3.2 Semi-Holonomic Jets

This subsection is somewhat non-rigorous, but the discussion has been included to
motivate the development of the semi-holonomic jets, and describe why it would
be necessary to consider such objects when we study invariant operators on general

curved manifolds.
The exact sequence of bundles

0= ON ®E— JE—» J'E =0

mentioned above involves the symmetric product of the cotangent bundle. This sym-
metric product in some way reflects the fact that in the flat case derivatives commute;
i.e. in local coordinates {q,...,qis} in a neighbourhood on G/P, if f(q1,- .., q1e) is
a local section of E then

_oF
0giy - 0in  Oiygyy -+ iy

for o a permutation of {I,...,m}. In the curved case, we would replace these
derivatives with a connection. In general, the connection will not commute, because
curvature terms will arise (eg. V,V,V. — V,V,V, = RadeVd). We want to alter the
jet bundles to reflect this. To be more precise, we would like to somehow define
bundles J*E such that we have an exact sequence of bundles

0—+®k/\1®E—>JkE—>J_k‘1E—>O.
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We define J*E as follows.

Firstly, J°F = E and J'E = J'E. We define the rest inductively, so suppose
we have J*E for some k. We will define J¥*!'E as a subbundle of J'J*E. There are
two maps J!J*E — J'J*"'E. The first is obtained by applying J! to the natural
projection J*E — J*'E, and the second is obtained by taking the composition
of the projection J'J*E — J*E with the inclusion J*E — J1J*~1E. We define
J**1E to be the subbundle of J'J*E on which these two maps agree. The bundles
J*E are known as semi-holonomic jet bundles (ordinary jet bundles are holonomic).

To see why this definition gives us the exact sequence we were hoping for,
let us first look at the case £k = 2. Elements of the bundle J'J'E look like
(f, fQ ,f(2>,f§,§2)). The two maps to J!E take the above element to (f, f{!)) and
(f, ) respectively. So on J2E, where these maps agree, we have f() = f(2) Then
®2A! ® E is essentially included into the fi;z) part of J2E, and the remaining part,
(f, f, is projected onto J'E. Note that for J2E we would still have O’A! ® E
included into the f;;z) part, but we would also require fé;z) to be symmetric.

In general, elements of J'...J'E (k times) look like

1 (12) (k—1,k) (123 (12..k
(f)fﬁ)a" Mﬂl Lﬂlw7 v Sy )7 ﬁiﬁz"” 1112.. l)

Elements of J*E would have f,-(ll) E L5 ,1 , f,(ll,z) = f,(lknlk), etc. Then
*A! @ F is essentially included into the f(12 *) part of JkE, and the remainin
® y iig.ik P &
part is projected onto J*~!E. Elements of J*E would also require f,ll,z2 , ,(11,22:2, ce
(12-%) 1 he symmetric; OFA! ® E would be included into the f,”2 ,2 part with the

1112.. tk
remaining part projected onto J*~'E.

So we see that we do get the required exact sequence
0+ QN ®@E > JFE - J*'E 5 0

from this definition. More importantly, these semi-holonomic jet bundles were
defined entirely by using first jets (i.e. taking first jets of first jets, etc.), and this

fact shall have useful consequences later on. .
Since J*E is a homogeneous vector bundle, we can associate a P—module J*E to
it. Similarly to the holonomic case, there is a projective limit of surjective P—module

homomorphisms
JE = ... JMES JFES J¥'E—» ... o> J'E S E

There is also a canonical differential operator J*E — J*E, which is essentially just

inclusion.
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3.3 Invariant Operators in Curved Space

We stated earlier that there is a class of differential geometries such that G/P
represents the flat model. In the flat case, G — G/P is a principal P—bundle;
furthermore, in the curved case there also exists a principal P—bundle, X — M,
where M is a curved manifold. This means that given a representation E of P,
we can construct a vector bundle E over the curved space M. We have already
seen this construction for the flat case, where £ = G xp E is called a homogeneous
bundle. In the curved case we just replace G by the principal P—bundle X, to get
EF=X Xp E.

Once we have constructed the bundle £, we could take its first jet bundle J!E.
Alternatively, there is the representation J'E of P (since J'E is a homogeneous
bundle in the flat case, it comes from a representation of P; this representation is
J'E). We could use this representation to construct a vector bundle in the curved
case as well. However, it is a fact that these two vector bundles can be canonically
identified (see [6]), that is,

J'E = X xp J'E.

(For the curved geometry associated with Es, there is an invariant torsion whose
vanishing characterizes flat space. Even with torsion, this canonical identification
still holds.) Thus a general P—module homomorphism J'E — F gives rise to a
homomorphism of vector bundles, J'E — F', and hence we get a first order invariant
differential operator in the curved case. For higher orders this does not always work.
For example, in [12] Graham has shown that in four dimensional conformal geometry
the cube of the Laplacian (a sixth order operator) does not have a curved analogue.
So in this case a canonical identification

JEE = X xp JFE

cannot exist for k = 6. In general, there are likely to be many other values of k for
which such a canonical identification will not exist.

However, the semi-holonomic jets are constructed entirely by iterating the first
jet construction. Hence the vector bundle constructed from J*E in the curved case
really will be the semi-holonomic jet bundle J*E. This mean that a P—module
homomorphism J¥E — F will give us a homomorphism of vector bundles JEE = F.
By composing with the operator J*E — J¥E, we obtain an invariant differential
operator J*E — F.

So suppose we have an invariant operator J¥£ — F' in the flat case. If we can
lift the P—module homomorphism to the semi-holonomic jets
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k

JE
j F
J*E —

then we can construct a curved analogue (i.e. an invariant operator with the same
symbol as in the flat case). Our aim in this thesis is to completely classify which
homomorphisms lift to the semi-holonomic jets, thereby giving curved analogues of
the corresponding operators. Of course, we have not shown that the existence of a
curved analogue necessarily implies that the P—module homomorphism J*E — F
must lift to the semi-holonomic jet. In fact, this is not true in general; there exist
some curved operators which arise even when a lift to the semi-holonomic jets does
not exist. However, this is rather an exceptional occurrence, and we shall see that
the majority of operators do lift to the semi-holonomic case and hence do have

curved analogues.

3.4 Verma Modules

From now on when considering G—modules (respectively P—modules) we will imme-
diately pass to the corresponding representations of the Lie algebra g (respectively
p). Let tl(g) be the universal enveloping algebra of g, and let p* : p — End(E*)
be the dual of the representation p : p — End(E). Consider the {(g)—module
i(g) ® E*, where g acts trivially on E*. Now factor out the left {{(g)—submodule

generated by
{r®@e—10p"(p)e},

where p € p. The resulting U(g)—module is called a generalized Verma module,

denoted V(E).
The grading of {{(g) induces a grading of V(E)

V(E) D ... D Vig1(E) D Vi(E) D Vi (E) D ... D VI(E) D W(E) = E".
As p—modules, these are duals of the sequence of jets
oo > JHE 5 JFE - JFIE o .. J'E o E.

Indeed, as {l(g)—modules, J*E is the dual of V(E).
In this dual picture, the exact sequence of p—modules

05 (' ®E — J'E — J*1E - 0
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becomes
0= Vi) (E) - Vi(E) — @kg_l QE — 0,
recalling that g_; and g; are dual p—modules.

Suppose that IF is another p—module. We saw before that an invariant differential
operator D : & — F induces a g—module homomorphism J*E — J*F. Dually,
this corresponds to a {(g)—module homomorphism V(F) — V(E). Conversely, a
H(g)—module homomorphism V(F) — V(E) will give us an invariant differential
operator D : £ = F.

Suppose further that the operator is k*" order. Then we have a homomorphism

of p—modules, J*E — F, or dually, F* — Vi(E). The symbol

O'a@E>F

looks like i
F - O d-1 ® E*
when we take its dual.
Recall that in Subsection 2.4 we introduced ¢, a linear functional on weights

given by
a b ¢ d

e 1
4 ® — —(4a + 5b+ 6¢ + 4d + 2e + 3f).
|f 3

In fact, £ was defined as the eigenvalue of the one-dimensional centre of go, generated
by H, on a weight vector in that weight space. On an irreducible p—module, H will
have fixed eigenvalue (as g; must act trivially, and H is central in go). Furthermore,
this eigenvalue will be invariant under homomorphisms, i.e. £ is a homomorphism
invariant on irreducible p—modules. So consider the p—module homomorphism

F* — Vi(E). As a go—module,
k3
Vi(E) =P o1 ® E,
7=0
and since £(g_;) = —1, we have
J
(g1 ®E) = —j — L(E).

In particular, we must have —¢(F) = —j — £(E) for some j € {0,...,k}. In fact it
must be for j = k, otherwise the operator would have order less than k. It follows
thal the order of the operator is given by

k = £(F) — ¢(E).
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Furthermore, the image of F* lies in Ofg_; ® E* C Vi(E). So the p—module
homomorphism F* — V,(E) is really just the symbol F* — ®Fg_; @ E*, and indeed
the entire homomorphism of Verma modules V(F) — V/(E) is determined by this
symbol.

3.5 The Stucture of Verma Modules

Suppose we have a Verma module

U(g) ® E*

) = (p®e—1®p*(p)e)

An element of this module looks like

Z pv(y13y22a'"11‘/367}/2,""}/21’/7/1,'"7h6aX2a'-'3X21)$17$22’---7x36)®v
veE*

where p, is some ‘polynomial’ type expression in the generators of g, but note that
the order of elements in the p, is important. However, we can commute all of
Yo, ., Yo, by, hey, Xoy. oo, Xa1, T4, 292,..., %36 € p past the y; and then allow
them to act on v according to p*. Thus we can rewrite the above element as

z QU;(yl, Y22, .-, y36) ® w
wek*

where g, is a genuine polynomial in y; (i.e. order no longer matters as the y; commute

with each other).
Now let E and F be two representations of p with minus lowest weights

o—o—ITo—c and H—ITO—O

respectively. Of course, these are the highest weights of the dual representations
which appear in the Verma modules (this is why it is more convenient from the
outset to adopt the convention whereby we denote representations by minus their
lowest weights). In order to find a Verma module homomorphism V(F) — V(E) we
need to find an element of V(E) which has weight
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and is killed by all raising operators Xa,..., Xo1, T1,T22,...,Z36, 1.€. maximal
weight vector. Then we simply map the highest weight vector of V(o) to this
maximal weight vector and this will extend to give us the desired homomorphism.

We know that the elements of V/(E) look like

Z quw(Y1, Y22 - - - Y36) ® W,
wekE*

so we just need to choose the g, so that this element has the appropriate weight
and is killed by zll raising operators (to see how a raising operator acts on the above
element we commute it past the y; and then allow it to act on w). In fact, if the
element is killed by the raising operators Xa, ..., Xe, then it will also be killed by
X7 = [X2, Xa], Xz = [X3, X4], - - -, Xa21 = [X4, Xoo); i.e. by all the raising operators
in p. Then what we get is a symbol

O'N' ®@E = F.

If we then allow z; to act on the element, we get the obstruction to this symbol

lifting to an invariant operator, for if the element is killed by z; and Xo,..., Xo,
then it will clearly be killed by x4y = [z1, X2, T23 = [21, X7), .. ., T3s = [ X6, 35) as
well.

As an example, consider the second order operator

3 0 0 0 O 5 0 0 0 1
— .
0 0
In terms of Verma modules, this becomes
3 0 0 0 O 5 0 0 0 1

V( H_I—O’_.)(_V( x—o——I—oo—-)_

Now the p—module

is one-dimensional, generated by w say. So we need to find a maximal weight vector

-3 0 0 0 O

u = q(y1, Y22, .-, Yss) @w € V( x—o—I—H)
0



3.5 The Stucture of Verma Modules 23

with weight

The restriction on the weight immediately forces u to look like

(Ay1Y2s + Byzayar + Cyasyze + Dya4y25) @ w,

where A, B, C, and D are constants. Using the commutation table in Appendix A,
we find

Xou = (Ayiyer — Byiyer) ® w,
Xzu = (Byaayze — Cyzys) ® w,
Xqu = (Cyasyzs — Dyazyzs) @ w,
Xsu = 0,

Xeu = (Cyasyas — Dyaay2s) @ w.

Thus choosing A = B = C = D gives us a weight vector u which is killed by all the
raising operator in p, and so we get a symbol

2,1 3 0 0 0 © 5 0 0 0 1
ON ® — ;
0 0
The obstruction to this being the symbol of an invariant operator is z;u. However,
we find that

riu = A(hiys + Yoyar + y22Y14 + Yryae + y23Y13 + Yioyes + Y2aY11) @ w
= A(h1y2s + Yayor + Y7y26 + Yioyes) @ w
= A(—3y2s + Y28 + Y28 + y28) @ w
= 0,
after applying the relevant commutation rules. Therefore taking the highest weight
vector of

to
3 0 0 0 O

u = A(y1y28 + Y22¥27 + Y23Y26 + Yaayas) @ w € V( H—I—H )
0
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gives us a homomorphism of Verma modules (which is, of course, non-zero if we
choose A # 0). It follows that there exists an invariant operator

on G/P.

3.6 The Central Character of a Representation

Suppose we have a representation [E of p with minus lowest weight

Then we can form the i(g)-module V(E). Recall that we can write elements of
V(E) as

Z qw(yl, Yaz2,.. ., y36) @ w,
weE*

where ¢q,, is a polynomial in y;. In fact, we can write elements w € E* as

w=YY, .. Yu,
)

where u is a highest weight vector of E*. So in fact, the entire Verma module V(E)
can be generated by allowing the lowering operators of g to act on the highest weight
vector u, which is unique up to scale. We call such a {(g)-module a highest weight
module.

Let 3(44(g)) be the centre of the algebra i(g), and let z € 3(4U(g)). Since z
commutes with every element in i{(g), we find that h;z.u = zh;.u for ¢ = 1,...,6,
so z.u has the same weight as u. However, the highest weight vector u is, up to
scale, the only weight vector in V(E) with that weight (every other weight vector
is obtained by lowering u, so must have a lower weight). Therefore it follows that
z.u = ¢(2)u, where ¢ : 3(H(g)) = C is some function. Indeed

d(z122)u = z123.u
= z21.9(22)u
= ¢(Zl)¢(z2)u’
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so ¢ is really a homomorphism of algebras, and since 3(4((g)) is abelian, ¢ is called a
character. Thus for each highest weight module V(E) of i(g) we get a homomorph-
ism ¢ : 3(#(g)) = C which we call the central character of V(E) (sometimes we will

simply call it the central character of E).
Again let z € 3(4(g)). Since z commutes with all other elements in {(g), when

it acts on w € E* we get

zw = ) Y ... Yzu
= V... Yl
= ¢(z)w,

and similarly, when it acts on any element of the Verma module V(E) we get

Z'( Z Qw(yl,- EE 7y16) ® ’LU) = ¢(z)( Z qu»(yla- .. aylﬁ) & w)'

weE* weE*
Hence z really acts by scalar multiplication by ¢(z) on the entire Verma module.
Now suppose we have an invariant operator £ — F' between two homogeneous
bundles. This is equivalent to a Verma module homomorphism D : V(F) — V(E).
If v is some arbitrary element of V(F), then by what we have seen above,
z.v = ¢p(2)v,
where z € 3(#(g)) and ¢ is the central character of V(F). Now we have
¢e(z)D(v) = =2.D(v)
= D(z2.v)
= D(¢r(z)v)
= ¢r(z)D(v),

where we have used the facts that D(v) € V(E) and D is a {(g)-module homo-
morphism. Since D is a non-zero homomorphism, it follows that we must have

¢E(z) = ¢r(2)

for all z € 3(U(g)), i.e. V(E) and V(F) must have the same central character if there
exists a non-zero operator £ — F.
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Let E and F have minus lowest weights

a b ¢ d e
— ——9 and
I f I s
respectively. Then we have the following theorem due to Harish-Chandra (see, for
example, [14]).

Theorem 3.6.1 The highest weight modules V(E) and V(F) have the same central
character if and only if their highest weights

H_I_Hf and G—O—I—'—'s

are in the same affine Weyl group orbit. In this case, we will use the notation
Xg.hijkl to denote their central character, where

is the (unique) g—dominant weight in the affine Weyl group orbit of the highest
weights.

Actually, we really have

is g—dominant, which means that one or more of g, ...,l may be equal to —1 if the
highest weights are singular (i.e. if the weights plus § lie on a wall of a Weyl chamber).
However, even if they are singular, there will still be a unigue g—dominant weight
in their orbit, as after applying Weyl group reflections we can move the weights onto
a wall of the dominant Weyl chamber. In particular, it could not end up on two
distinct walls in the dominant Weyl chamber, as these adjacent walls are not related
by a reflection.

3.7 Semi-Holonomic Verma Modules

The holonomic jets J*E are duals of the generalized Verma modules V(E). We
would also like to construct semi-holonomic Verma modules V(E), such that the



3.7 Semi-Holonomic Verma Modules 27

semi-holonomic jets J®E are duals of V(E). Recall that the universal enveloping
algebra {(g) of g is the quotient of the tensor algebra T(g) by the ideal

(tQy—-yQz—[z,y]|lz,y € g).

In particular, since [y;, y;] = 0 in the Lie algebra g, the y; commute in the universal
enveloping algebra {(g) (we have factored out by (y; ® y; — y; ® y:)). Define 4U(g)
to be the quotient of T(g) by the ideal

(tQy—-—y®z—[z,y]lr €p,y €g)

We have no longer factored out by (y: ®y; —y; ®y:) (since y; € g\p), and hence the

y; do not commute in 4(g). )
We define the semi-holonomic Verma module V(E) to be the quotient of the

{l(g)—module £i(g) @ E* by the left {{(g)—submodule generated by
{r®e—-1®p"(pe}-

The structure of these semi-holonomic Verma modules is the same as the holonomic
Verma modules except that now the order of the y; in the ‘polynomials’ g, is im-
portant. Homomorphisms are found in the same way as before, but at all stages we

must be wary that the y; are not allowed to commute.
For example, let us try to find a semi-holonomic lift of the second order operator

We saw in Subsection 3.5 that the maximal weight vector

-3 0 0 0 O

u = A(Y1yas + Y22yt + Y23Y26 + Y2ayas) Q w € V( x—o—I—o—o )
0

gives us a homomorphism of Verma modules

V(-aoooo) V(-50001)
H—I_’_' — X_‘_I_ ),
0 0
which is non-zero for A # 0. Now we wish to find a semi-holonomic Verma module

homomorphism
5 0 0 0 1

V('iﬁﬂﬂ(’ O)N(-WTHO )



28 3 INVARIANT DIFFERENTIAL OPERATORS

which is a lift of the above (holonomic) Verma module homomorphism. In other
words, we want to find a maximal weight vector

-3 0 0 0 O

UZQ(yhy?Z,---aySG)@w € V( X——O—I—‘—‘)
0

with the appropriate weight, where ¢ is not really a polynomial anymore since the
y;’s are no longer allowed to commute. Furthermore, for this to be a lift, we must
be able to recover u from v by allowing the y;’s to commute.

Now as before, weight considerations force v to look like

(A1y1y28+A2y28y1+B1y22y27+Bzy27y22+01y23y26+02y2ey23+D1y24y25+D2y25y24)®w,
where Ay, Ay, By, By, Cq, Ca, Dy, and D, are constants. Applying raising operators
we find
Xov = (Awryer + A2yorys — Biyiyer — Bayary1) ® w,
Xsv = (Biyazyze + Bayaey2z — Ciy22yas — Cayaey2z) ® w,
X = (Cryasyzs + Cayasyzs — D1Yasyzs — Dayasyes) @ w,
Xsv = 0,
Xev = (Cly23y24 + Cay24y23 — D1y24y23 — D2y23y24) X w.
Thus we need to choose A; = Ay = By = B, = C; = C; = Dy = D, for all these
terms to vanish. Finally
v = Ai(hiys + yashy + Yayar + y22Yia + Yiayaz + yorYa + Yoyoe + y23Yis +
+Y13y23 + y26Y7 + Yioyzs + y24Y11 + Yi1y2a + y25Y10) @ w
= Aj(h1yzs + yash1 + Yoyar + Yiayaz + Yryzs + Yiayas + Yioyzs + Yiiyea) @ w
A(—3y2s — 3yas + Y28 + Y28 + Y28 + Y28 + Y2s + Yo2s) Q w
= 0,

after commuting the Y;’s past the y;’s. Thus the maximal weight vector

u = A1(y1y2s + Y2sy1 + Y2aYar + Y2r¥az + Y23Y26 + Y26Y23 + Y2aY2s + Yasy24) @ w
. - -3 0 0 0 0 . . . -
in V( X—O—I—G—O ) gives us a semi-holonomic Verma module homomorphism
0

_ -3 0 0 0 O

V( x—a—I:H)e—V('u—i—og—:).
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Choosing A; = A/2 gives us a lift of the holonomic Verma module homomorphism,

and hence the operator

has a curved analogue.
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4 Holonomic Case and Translation

4.1 Classification of Homomorphisms of Verma Modules

In the previous section we saw that the classification of all G—invariant differential
operators on GG/ P is equivalent to the classification of all {(g)—module homomorph-
isms V(F) — V(E). We now wish to investigate these homomorphisms in the case of
G = Es. The classification is due to Boe and Collingwood [4], and involves certain
patterns which appear in Appendix D. First we will describe how these patterns are
obtained.

We begin with the Hasse diagram of the parabolic p C g, which appears in
Appendix D.1. The Hasse diagram gives an inclusion of the quotient of Weyl groups
W,y/W, into the Weyl group W, by representing cosets by minimal length elements.
We allow the reflections in the Hasse diagram to act affinely on the weight

where A + 6 is g—dominant (i.e. a,...,f are all greater than or equal to —1).
Then we take the corresponding Verma modules with highest weights given by the
p—dominant weights in the diagram. If a weight in this diagram is not p—dominant,
then no Verma module will occur in that place. For example, to get the fourth Verma
module from the top, we would perform simple affine reflections on the nodes ‘3’,
‘2, and ‘1’, in that order (which we would write as ‘s1s253’), to get the weight

-a-b-c-4
c+f41 .
b

c+d+1
Then provided a, b, c+d + 1, ¢, and ¢ + f + 1 are all non-negative, we would take
the corresponding Verma module

-a-b-c-4
i+l @2
b )‘
c+d+1
€
Now the arrows represent Verma module homomorphisms. In fact, the patterns
that appear in the appendix involve the corresponding vector bundles rather than
the Verma modules. Hence the arrows are really invariant operators between vector

bundles, and the corresponding Verma module homomorphisms would of course go
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in the opposite direction. The short arrows which act between adjacent levels are
known as the standard operators, and the longer arrows are known as the non-
standard operators. Just taking the standard operators gives us a resolution of the
locally constant sheaf

known as the Bernstein-Gel’fand-Gel’fand resolution (BGG resolution). The case
when @ = ... = f = 0 is just the de Rham sequence on G/ P, which is a resclution
of the locally constant sheaf C. In this case the standard operators are all first
order, whereas the non-standard operators are always of higher order. Since these
patterns are resolutions, and hence exact from level to level, it can be deduced that
a lot of the compositions of standard operators result in zero. However, there are
some compositions which are not zero, though we haven’t explicitly labelled them
on these patterns.

We mentioned above that we only include a Verma module in the pattern when
we get a p—dominant highest weight. When X + § is inside the dominant Weyl
chamber, i.e. when a + 1,..., f + 1 are all strictly greater than zero, then all the
weights that occur will be p—dominant. Thus we get a complete pattern, which
we call non-singular or regular. If A + § is on the boundary of the dominant Weyl
chamber, i.e. if at least one of a+1,..., f+1 is zero, then some weights will not be
p—dominant. When A+-§ lies on precisely one wall (precisely one of a+1,..., f+1lis
zero), we get some p—dominant weights. This means we get an incomplete pattern,
which we call singular. When A+ 4 lies on precisely two walls (twoofa+1,...,f+1
are zero), we still get some p—dominant weights. However, all that appears in the
pattern in this instance is several identity operator between identical bundles. If
A + 4 lies on more than two walls, then none of the weights will be p—~dominant.

The classification of Verma module homomorphisms for G = FEg is as follows. Of
course, here we present the equivalent formulation in terms of invariant operators
on the homogeneous space G/P.

Theorem 4.1.1 Taking the regular patterns in Appendiz D.3 and the singular pat-
terns in Appendiz D.{ gives us all the invariant operators which ezist on the ho-
mogeneous space G[/P. Given a homogeneous vector bundle E, obtained from a
p—module E with p—dominant minus lowest weight \, we will find it in at most one
of the above patterns, and can then read off precisely which invariant operators there
are on E, or with E as their target.



4.2 The Translation Principle: A Preliminary Example 33

4.2 The Translation Principle: A Preliminary Example

The translation principle is a method of constructing an invariant operator by be-
ginning with one that we already know of, say D : £ — F , and then translating
it to obtain a new invariant operator between new vector bundles, D’ : & — F'.
It is based on the Jantzmen-Zuckerman translation functor (see, for example, [10]).
Our aim will be to construct as many operators as possible by translating just a few
initial operators. We begin with a brief example of the translation principle; a more
rigorous description follows in the subsequent subsections.
Suppose we have the first operator

0 0 0 0 0 2 1 0 0 o

I 0 I 0
of the de Rham sequence and we wish to obtain the first operator in the BGG
resolution with a = 1, b = ... = f = 0. We tensor with the g—module W, which

has composition series

1 0 0 0 0 1 00 0 o0 11 0 0 o0 -1 0 0 0 1
= + + ,
0 0 0 0
The resulting Verma modules decompose into direct sums of other Verma modules
according to central character, i.e.

0 0 0 0 O 1 0 0 0 o
AL RS R
=‘/(00000®10000)
IO IO
@V(OOO‘JO@-IIOOO)
LT
@V(00000®-10001)
A DX P
1 0 0 0 O .11 0 0 o0 -1 0 0 0 1

e Aatiidas natlitben nal
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and

V(-z 1 0 0 0 1 0 0 o0 0)
&
Io Io

:HTH,HTH
A_HTHHTM

We observe that

1 0 0 0 O 32 0 0 0
and
I 0 0
have the same central character x1,0,0000, 2and hence we deduce an operator (this
operator will be non-zero, although not obviously so)

1 0 0 0 0O 3 2 0 0 0
I 0 I 0 '
We can also tensor with the dual of W, i.e. W*, which has composition series

0o 0 O

0 1 0 0 0 0 1 1 0 0 0 O 1 0 0 0 O
= - + _
0 0 1 0
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This allows us to recover the original operator. In fact, this shows that the translated
operator must have been non-zero, as claimed above.

This is the basic idea of how the translation principle applies; we will look at the
underlying principles in the next subsections. For instance, it is not always obvious
that the homomorphism resulting from a translation will be non-zero (i.e. we may
not always be able to recover the original operator by translating with the dual),
and in some cases it will be zero. However, we will prove a result which tells us that
the resulting homomorphism must be non-zero in a large number of cases.

The main point is that by using the translation principle we can generate a large
number of invariant operators beginning with just a few, rather than try to construct
them all directly. To be more specific, we will take as our initial data the following
operators (all of which will be first order):

e the standard operators in the case a = ... = f =0, i.e. the de Rham sequence,
e the standard operators in each of the basic singular cases, namely a = —1,
b=...= f =0, etc.

We will see that most of the invariant operators can be obtained just by translating
these initial operators.

4.3 The Translation Principle: The General Description

Recall that given a representation E of P (and hence of p), we get a homogeneous
vector bundle on G/P which we denote by E. Let E be the representation

We will use this same notation to denote both E and E (precisely what we mean
will be clear from context). We have also seen how to construct the (holonomic)
Verma module V(E), which we will also denote by
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let F' be the corresponding vector bundle and let V/(F) be the corresponding Verma

module, also denoted by
m n p q r

Suppose we have an invariant differential operator from E to F', or equivalently,
a (g)-module homomorphism V(F) — V(E). We wish to construct new Verma
module homomorphisms (and hence new invariant operators from this one). Let W
be the representation of G' (and hence of g) with minus lowest weight

We can tensor W onto the representations E and F, and then couple our Verma
module homomorphism with the identity on W*, to get

VIEQW) = V(F) @ W — V(E) @ W = V(E® W).

Now F®W and E ® W will rarely be irreducible. However, we can decompose both
of these p-modules into direct sums of go-modules (recall that p = go + g1), and

hence

FQW=@F

and

where F; and E; are also p-modules, but the above tensor products only decompose

into direct sums as go-modules.
Now suppose that F; has different central character to all other F; (2 # 1). Since
the central character is an invariant under the action of g, it follows that we can

write the Verma module V(F ® W) as

V(F) e VD),
i#1

or in other words, there exists a {(g)-invariant projection
V(FQW) = V(F)
and a U(g)-invariant inclusion

V(F@W) « V(F).
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Similarly, if E; has different central character to all other E; (¢ # 1) then we also
get a U(g)-module splitting of V(E® W), with V(E,) splitting off. Combining these

splittings with our coupled Verma module homomorphism, we get
V(F,)) > V(IFOW) - V(EQ W) = V(E,),

i.e. a new Verma module homomorphism and hence a new invariant operator from

E1 to Fl.

4.4 Criteria for the Non-vanishing of the Translated Oper-
ator

We have seen how to obtain a new invariant operator from an old one. However, it is
possible that this new operator will vanish. We will describe here a general criteria
which will ensure that the new operator is non-zero. This criteria will apply in a
vast number of cases and will enable us to construct most of the invariant operators
that we want, starting with just our initial data.

Lemma 4.4.1 Let E and F be two homogeneous vector bundles on G/P. Let W be
the trivial bundle with fibre W, coming from the representation W of G' with minus
lowest weight

and let W* be its dual bundle (i.e. the bundle obtained from the dual representation
W ). Let Difi(E, F) be the vector space of invariant linear differential operators
from E to F. Then there is a canonical isomorphism

Diff(E, F @ W) = Diff(E @ W*, F).

Proof: We will use the notation FA for F® W, and E4 for E ® W*. Let e — K%e
be an operator in Diff(E, F4) and let fg — L2 fg be an operator in Diff(Eg, F).
We will also write eg — K?4ep (in Diff(Ep, F})) for the above operator coupled
with the identity on W*, and similarly for other examples like this one.

Now define
& : Diff(E, F*) — Diff(Eg, F)

by (BK*)8fp = § PK*fp, and
¥ : Diff( Ep, F') — Diff(E, F#)
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by (WLB)4e = LB(44'e). We want to show that ® and W are inverses, and hence
that we have a canonical isomorphism between Diff(£, F4) and Diff(Eg, F).
Start with e — K “4e in Diff(E, F*). Applying ® we get

fo— (BK*) P fa =6 K*fs
in Diff(Eg, F'). Now applying ¥ we get back to
e (B(DKA)B)e = (DK*)P(85e) = §PKA5 e = KCe,
and hence W o ® = Id. Similarly, starting with fg — LZfg in Diff(Ep, F) and
applying ¥ we get
e (WLB) e = LB(54'€)
in Diff(E, F'4). Then when we apply ® to this we get back
fo v (RULPYNC fo = § C(WLPY fo = 8,7 LB (65" fo) = LC fe,
showing that ® o ¥ = Id, which completes the proof. a

Remark: The above lemma will actually hold when W is any irreducible represent-

ation of G.
We can also rewrite this result in terms of Verma modules. Let Hom(V(IF), V (E))
be the space of {(g)-module homomorphisms from V(F) to V(E). Then the above

lemma says that
Hom(V(F) @ W*, V(E)) = Hom(V(F), V(E) @ W).

We will now describe a condition that will ensure that the translated operator is
indeed non-zero.

Theorem 4.4.2 Suppose that in the direct sum decomposition (as go-modules)

E, has central character different to all other E; (i # 1), and similarly for I
in the decomposition of F ® W. This allows us to obtain a new Verma module
homomorphism V(Fy) — V(E,) from the ezisting one V(F) — V(E).

Suppose furthermore that E splits off from the tensor product E; @ W* with dis-
tinct central character, and so does F from the tensor product Fy @ W*. This would
mean that we could also translate back to a homomorphism V(F) — V(E) from
V(') = V(E,). More importantly, if these conditions are all satisfied, then the ho-
momorphisms we obtain from these translations will all be non-zero; i.e. translation
in this instance will give us a new non-zero operator.
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Proof: Denote by M the space of U(g)-modules. Let p : M — M be projection
to {l(g)-modules with central character equal to the central character of E (note
that this is also the central character of I, since there is a non-zero Verma module
homomorphism from V(F) to V(E)). Similarly, let p; : M — M be projection to
#(g)-modules with central character equal to the central character of E; (and Fy).

Define two maps ¢ : M — M and ¢ : M — M by
¢: M- p(M@W)

and
Y : M p(Me W),

Note that we have

and

Pp(V(F1)) = V(F).
We also get an induced map on homomorphisms between i{(g)-modules. For ex-
ample, if D : M — N is a homomorphism then ¢(D) : ¢(M) — ¢(N) is given by
#(D) = p1(D ® Idw), and similarly for ¥(D).
Now by Lemma 4.4.1, we have
Hom(V(E,),¢(V(E))) = Hom(V(E,),V(E) @ W)
Hom(V(E,) @ W*, V(E))
= Hom(y(V(E,)), V(E)),

and similarly
Hom(¢(V(E)), V (E;)) = Hom(V(E), (V (E1))).

The same equations hold when E is replaced by F.
As a consequence of the above, we obtain

Hom((V (E)), #(V (E))) = Hom(v(V(E)), V (E)).
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In particular, the identity on the left hand side must correspond to some non-zero
homomorphism

a:po(V(E)) — V(E)

on the right. Similarly, we can also find a non-zero homomorphism
B : V(E) = ¢¢(V(E)).

The compositions
aof:V(E) - V(E)
and

Boa:pp(V(E)) = vo(V(E))

must both be identities (up to scale), as the only non-zero homomorphisms of a
Verma module to itself are multiples of the identity (the highest weight vector can
only be mapped to a multiple of itself, and this generates the Verma module).
Therefore, up to a constant multiple, @ and 3 are inverses.

Furthermore, o induces isomorphisms

Hom(V(E), V (F)) = Hom(¢¢(V(E)), V (F))

and
Hom(y#(V(E)), V (F)) = Hom(y¢(V(E)), é(V (F))),
which together imply an isomorphism

Hom(V(E), V (F)) = Hom(¢(V(E)), p&(V (F))).

It follows that the action of ¢ on Hom(V(E),V(F)) is a bijection, with inverse
given by 1 (up to a scalar multiple); i.e. translation (the action of ¢) gives us an
isomorphism

Hom(V/(E), V (F)) = Hom(4(V(E)), 8(V (F))) = Hom(V(E,), V(F1)),

whose inverse is just translation by W* (the action of ). In particular, when we
translate an operator the new operator will indeed be non-zero. a

4.5 Applications of Theorem 4.4.2

We now wish to apply Theorem 4.4.2 in a number of different settings.
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4.5.1 Regular Standard Operators

Our starting point will be the de Rham resolution, i.e. the standard operators in the
BGG resolution when ¢ = ... = f = 0. All the operators that occur in this pattern
are first order, and the maximal weight vectors that give the corresponding Verma
module homomorphisms could be easily found. We want to translate this initial
set of operators to obtain the standard operators in all of the regular classifying
patterns. This can be done merely by translating with the g-module W with minus

lowest weight

and with its dual W*. We will apply Theorem 4.4.2 to ensure that all these trans-

lations result in non-zero operators.

We will work inductively, so suppose that we have all the standard operators in
the regular classifying pattern for some a, b, c, d, e and f (all non-negative integers).
Our aim is to be able to increase each of these numbers by 1, then by induction we
will have all the standard operators for every regular pattern. Let w and v’ be two

elements of the Weyl group W such that there is an operator

a b ¢ d e a b c d e
w(x—o—ITo—o)—-)w(X—'—IT'—'),

where

has the obvious meaning, i.e. the bundle obtained from the representation of p with
minus lowest weight given by w acting affinely on the weight

Translation is carried out by first tensoring with W or W*, then projecting out
the part we are interested in. Firstly we will show that these translations will always
fit into the criteria of the theorem, and secondly that we really can obtain all the

operators we are after in this way.
According to our notation for labelling central characters,
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has the same central character as the p—module

which has a g—dominant minus lowest weight. Indeed, they both have central
character xgp,cde . 1he weight

being regular, lies inside the Weyl chamber corresponding to w € W. To find the
central character of any weight in this Weyl chamber, we merely need to apply w™!
to the weight so as to obtain the unique g—dominant weight with the same central

character.
Now consider minus the lowest weights of the representations in the decomposi-

tion of the tensor product

The highest weight of W is just the fundamental weight Ag, which has Euclidean
length \/m, as we saw in Section 2. Indeed, all the weights of W are obtained
by allowing the Weyl group to act on this highest weight (as can be seen from the
diagram in Appendix C.1), so they must all have Euclidean length \/m This is
also true for the weights of W*, which are obtained by allowing the Weyl group to
act on the fundamental weight A; (see Appendix C.2). Next consider the distance
of the regular weight

from the walls of the Weyl chamber. The walls are the planes perpendicular to the
simple roots aj,...,as, and thus the distance to each of these walls will be

b d .
do = e S
f |a,~|

1

= —2(051i + ...+ fdei),
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since the fundamental weights are defined so that A;.c; = &;;. So a regular weight will
be distance at least 1/1/2 from each wall (note that a,..., f are only non-negative,
so they could be zero; what we really mean here is that the weight translated by
§ will be distance at least 1/1/2 from each wall). Hence the distance between two
regular weights in distinct Weyl chambers must be at least twice this, namely /2,
which is greater than the lengths of the weights of W that we are translating with

(i.e. greater than y/4/3). In particular, when we add minus the weights of W to the

minus lowest weight
a b ¢ d e
w.( ’—'—I—'—')
[

we cannot move into a new Weyl chamber. At worst we could move onto the
boundary of the Weyl chamber we started in.

It follows from the above argument that to find the central characters of minus
the lowest weights of the representations in the tensor product decomposition, we
need to apply w™! to each weight, to bring it back to the fundamental Weyl chamber
(or onto the boundary of the fundamental Weyl chamber). Suppose then that two
distinct minus lowest weights of representations in this decomposition, 5, and (3,
say, have the same central character. Then we must have w™'.(8;) = w™'.(8,),
which would imply 8, = (2, a contradiction. It follows that all the p—modules in
the decomposition of

must have distinct central characters. Of course, the same is true for

a b ¢ d e
w’.(X—O—I—O—')(X)W,
f

and when W is replaced by W*. Indeed whenever we translate one of these regular
operators with W or W*, everything will split off with unique central character, and
hence Theorem 4.4.2 will always be applicable.

This is one of the reasons why we only want to translate using W and W=,
which have as minus lowest weights the fundamental weights A; and As;. The other
fundamental weights all have lengths greater than or equal to /2. So if we were to
translate with representations which have as minus lowest weights the fundamental
weights Mg, Az, Ay, or Ag, then minus the lowest weights of some of the representations
in the tensor product decomposition could move into a new Weyl chamber. It is
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then possible that two or more terms will occur with the same central character,

making it impossible to apply Theorem 4.4.2.
Next we will show that we can increase each of a, b, ¢, d, € and f by 1 by
performing these translations. Firstly, consider just a. In the orbit of the lowest

weight

of W under the action of W, we must get the weight

w(-.l_O 000 0)-

Therefore this weight will occur in W. Then in the tensor product

there will be a component of minus lowest weight

-1 0 0 a-l—lbcde)

a b ¢ d e 0 0
w,(o—o—I—o—c)_w(o——o—I—H):w_(
f 0 f
Similarly,
,(a b ¢ d e) W
w'. x—o—I—o—c Q
f

will contain a component of minus lowest weight

la+lb c d e
f

Therefore we will obtain the operator with a increased by 1. By using W* instead

of W, we can increase e by 1.
Next we want to increase b by 1. To do this, we first perform a translation so as

to increase a by 1; then observe that the weight
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occurs in the orbit of the lowest weight

under the action of W. Hence the weight

1 1 0 0 0
w( '—FI—'—‘)
0
must also occur in this W-orbit, and so when we translate again we will obtain a
component of minus lowest weight

atl b ¢ d e 1 -1 0 0 O abtl c d e
w,(H—ITk—o)—w(o—o—I:o—c)zw,(o—o—ITo-c),

The same is true with w replaced by w’, and hence we can increase b by 1. Similarly,
by translating with W* twice we can increase d by 1.
Finally, by observing that

0 1 -1 0 0 0 1 0 0 O
and
0 -1

both occur in the orbit of

under the action of W, it follows that we can also increase ¢ and f (respectively)
by 1, by performing three translations with W. In fact, we could obtain the same
result by performing three translations with W* instead, and it is also possible to
increase f by translating once with W and once with W*.

In conclusion, by induction we can obtain all standard operators in the regular
patterns simply by starting with the de Rham resolution and applying the translation
principle.

We should point out here that we haven’t actually used any special property of
the standard operators here, so the above arguments will also apply to the regular
non-standard operators, provided we have the necessary initial operators (i.e. those
that occur when a = ... = f = 0). However, these initial non-standard operators
have orders four, six and eight; in particular, it is no trivial matter to try to find them
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directly by looking for maximal weight vectors in the appropriate Verma modules.
Instead we will adopt a different approach. Later we will see that some of these initial
regular non-standard operators can be obtained by translating singular non-standard
operators, which in turn can be obtained by translating singular standard operators.
In other words, the standard operators that we specified as our initial data will be
all that is required to construct nearly all of the other operators. However, there will
be some remaining operators that cannot be reached by translating simpler (lower
order) operators, and we will see the consequences of this fact when we look at the
semi-holonomic case and curved analogues.

4.5.2 Singular Standard Operators

We have just seen how to obtain all the regular standard operators by beginning
with the first order standard operators occurring in the de Rham sequence and using
translation. We would now like to obtain a similar result for the singular standard
operators. We will concentrate on the singular pattern obtained by putting a = —1,
but the other cases can be done analogously. Recall that in this pattern we get a
sequence of standard operators and one non-standard operator (see Appendix D.4).
We shan’t be concerned with the non-standard operator just yet. We will try to get
all of the standard operators by translating the initial case of b= ... = f =0, and

using induction as before.
The main difference in the singular case is that minus the lowest weights are now

on walls of Weyl chambers, rather than inside the Weyl chambers as in the regular
case (of course, we really mean the weights translated by § here). Therefore if we
(affinely) reflect in the wall that the weight is on (call this reflection Wy ), then the
weight will be fixed. Consequently the weight can be written in two different ways

-1 b ¢ d e -1 b ¢ d e
w.( O—O—I—P—' ) and waw.( O—O—T—O—O i
f f
This means that an operator
-1 b ¢

d e 4 b c d e
w(x—o—ITc—o)—)w(x—'—Ir—'—')

between two bundles will also occur twice, because each bundle can be written in
two different ways. This repetition can clearly be seen in the singular patterns in
Appendix D.4. The reason that the bundles occur exactly twice is that the weight
is on one wall only, so there is a unique reflection w, which fixes it.
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As before, we can increase e by tensoring with the dual representation W*. In
the tensor product

We need to know that this is the unique term in the decomposition with this central
character. We know that

-1 b ¢ d e -1 b ¢ de
w.( :—.—I—o—c) and w.( al—o—I—o—tl)
f f

both lie on the same wall of a Weyl chamber. Minus the other lowest weights in the
decomposition of the tensor product will either lie on this same wall, or lie inside or
on a different wall of one of the adjacent Weyl chambers (this follows by considering
the Euclidean lengths of the weights we are translating with, similarly to the regular
case). In particular, since the Weyl group is generated by reflections in walls (not
rotations), none of these minus lowest weights could possibly be in the same Weyl

group orbit as
-1 b ¢ d e+l

Therefore, this bundle splits off with unique central character. Of course, the same
is true when we translate back using W, and of course it is also true when we replace
w by w’. So by Theorem 4.4.2, this translation results in a non-zero operator in both
directions, and hence we can increase e by 1.

In fact, the above argument shows that the criteria of Theorem 4.4.2 are satisfied
whenever we translate minus our lowest weight from one point on the wall to another.
Next we need to show that we can actually increase each of b, ¢, d, and f by 1 just
by translating with W and W*.

As in the regular case, we can increase d by 1 by translating with W* twice, and
c and f by translating with W* three times. The difficulty lies with b. In the regular
case we first increased a by 1 before increasing b, but in the singular case we cannot
do this, as a is fixed at —1 (if we did try to increase a we would get back the regular
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case, which we don’t want; furthermore, the conditions of Theorem 4.4.2 would not
be satisfied). However, we observe that

occurs amongst the weights of W*, and hence after translating with W* three times
to increase f by 1, we can translate with W* once more to increase b by 1. Hence by
induction we can obtain all the standard operators in the singular pattern a = —1.

Similarly, applying the same arguments to the five other singular patterns (each
of b= —1,c=—-1,d = —1,e = —1, and f = —1) enables us to obtain all the
standard operators in the singular patterns by translation, starting only with our
initial data.

4.5.3 Singular Non-Standard Operators

So far we have looked only at standard operators. The non-standard operators in
the singular patterns can also be obtained by translating the initial cases, and we
will not repeat the argument here (i.e. it is the same as the argument for the singular
standard operators). However, the initial cases are all of order greater than one, and
so maximal weight vectors are considerably more difficult to find directly. Instead,
we will see that all of the non-standard initial cases can be obtained by translating
the standard initial data.
To begin with, let us show that when we translate the first order operator

4 0 0 0 0 5 0 0 1 0
._)
1 0
using W, then we get a non-zero second order operator
3 0 0 0 0 5 0 0 0 1
- )
0 0
and we also get a non-zero operator if we translate back. In fact, this translation

fits into the criteria of Theorem 4.4.2, as we shall see.
Firstly, we can decompose the tensor product
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4 0 0 0 O 3 0 0 0 0 5 1 0 0 0 -4 0 0 1 0
x——c—I-—o—C QW = ( x—o—I—o——c )+ ( H—I—H [ )(-0——1—0—4
1 1 1 0
3 0 0 0 0 5 0 0 0 1 51 0 0 0
fas) x-o—I—o—o)+( x—o—I—o—o fast ).
0 1 0
3 0 0 0 0
Observe that only X—O—I—H has central character xo,0,-1,00,0- Similarly, in
0

5 0 0 1 0O 4 0 0 1 0 6 1 0 1 0 5 0 0 0 1
X% QW = ( )+ ( &
0 0 0 1
5 1 0 0 0 6 0 0 1 1 6 0 1 0 0 5 0 0 0 1
2> x~0—I—0—0 )+ ( a5 s} ),
0 0 0 0
5 0 0 0 1 ) )
only X—O—I—H has central character Xo,0,-1,000- In the other direction, when
0

we decompose

3 0 0 0 O 3 0 0 0 1 4 0 0 0 O 4 0 0 0 O
®W:(>¢—0—I—o—o)+(x—o—I—o—o)+( )s
Io 0 1 Io
4 0 0 0 O )
we find that only X—O—I—H has central character xo0,0,0,-1,0,0, and in
1

-5 0 0 0 1®W" (-5 0o 0 O 2@-5 o 0 1 069-4 o 0 0 0)
IO IO IO IO
6 0 0 0 1

+(-6 (] 010 1@-6 1 000 0)+(- : ),

0o 0 1 0
only X—O—I—'—' has central character xo0,0,-1,00 Therefore by Theorem 4.4.2,

0
we get a non-zero operator when we translate in either direction, but most import-

antly, we can obtain the second order operator from the first order one.
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Next, we will show that by translating the second order operator
3 0 0 0 0 5 0 0 0 1
x—o—I—H —
0 1 0
by W, we get the fourth order operator

-2 0 0 0 0 -6 0 0 0 2
— ;
0 0

We decompose the tensor product

2 0 0 0 0
and observe that only X—‘—I—*—‘ has central character xo,-1,00,0,0 Similarly, in
0

the decomposition

-5 0 0 0 1 -4 0 0

0 1 6 1 0 0 1 5 0 0 0 O
x—'—I—'—'o <X>W=(>‘—'—I—'—‘0 )+(><—'—I*'—*0 @ X—'—I—'—‘l )
6 0 0 0 2 6 0 0 1L O 5 0 @0 0 O
+(H—I:o—c@ x—o—I;a—o@ x—o—I:o—¢),
0

-6 0 0 2
only X—O—I—'—O has central character xo,-1,0000 In the other direction, we
0

decompose

3 0 0 0 O
and only &—'—I—O—O has central character xp0,-1,00,0. Finally, in the decompos-
0

ition



g
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\ 1)

-6 0 0 0 2

° W (-6 0 0 0 3 6 0 0 1 1 5 0 0 0 ;)
*-'—I—O—‘ = x—'—I_'_‘@ "‘-’—I—'_'GB X—‘—I_'_'
0 0 0 0
7 0 0 0 2 7 1 0 0 1 70 0 0 2
+(>(—0—I—0—'@ x——o—I——H)-{-(x—o—I—o—c),
1 0 0
5 0 0 0

1
only X—O—I—O—O has central character xg,0,~1,000 Therefore by Theorem 4.4.2,
0

translation gives a non-zero operator in both directions. In particular, we can obtain
the fourth order operator by translating the second order one.
Similarly, we can translate the fourth order operator to obtain a sixth order

-1 0 0 0 O -7 0 0 0 3
— .
0 0

However, when we try to translate again we find that

operator

-1 0 0 0 O 0O 0 0 0 o -2 1 0 0 0 -2 0 0 0 1

*—'—I—H W = ( >‘—'1—'—')+( H—I—'—')Jr( H—I—*—'
0 0 0 0 )
) : 0 0 0 0 O d 2 1 0 0 O hich both h |
contains two terms, an , which bot ave centra
I 0 I 0

character xo,00,000 Hence translation breaks down at this stage and we do not
obtain the eighth order operator

0 0 0 0 O 8 0 0 0 4
g .
0 I 0
Indeed, this is a regular operator, and so we cannot reasonably expect to obtain it
this easily.
If we look at the adjoint! operators, we find that we can also translate from the

first order operator
101 0 0 0
0

-9 0 0 1 0
_>
0
IThere is a natural notion of adjointness between operators which we will not describe in detail.

This essentially reflects the symmetry of the classifying patterns, with operators in the bottom
half of the pattern being adjoints of the corresponding operators in the top half.
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to the second order operator

from this second order operator to the fourth order operator

8 0 0 0 2 .10 0 0 0 0O
x—o—I—o—o - ,
0 0
and from this fourth order operator to the sixth order operator
8§ 0 0 0 3 11 0 0 0 0
— .
0 0
However, we cannot obtain the eighth order operator
8 0 0 0 4 12 0 0 0 0
_}
0 0

by translating the sixth order one.
In a similar way we can get the second order operator

6 0 0 0 0O 81 0 0 0
K—Q—I—H — )(-—Q—I—o—o
1 0
either by translating the first order operator
T 0 1 0 0 8 1 0 0 1
._)
0 0
by W, or by translating the first order operator
7 0 0 0 1 8 0 1L 0 0
x—o—I—H —
I 0

by W~.
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We would then like to translate from this second order operator to the fourth

order one
102 0 0 O
0

6 0 0 0 0
_)
I 2 I
If we try to translate with W or W*, we find that it is not possible to get the fourth

order operator in one step. However, we know that we can translate the second
order operator to obtain a whole family of operators

-a-b-d-e-f-6 -a-2b-2d-e-f-8
d+e+1 a e a+b+1

b — d

f f

d b

In particular, puttinga =b=d = f =0 and e = 1, we get

7 0 0 0 0 9 1 0 0 0
— i
2 !
By translating this operator with W*, we can obtain the fourth order operator we

were after.
This leaves just two singular non-standard initial operators, namely

5 0 0 1 0 7 0 1 0 0
—>
0 0
and
8 0 1 0 0 9 0 0 1 0
=5 H-I—H i
0 0
both of second order. These can be obtained by translating the first order operators
6 0 0 1L O 7 0 1 0 1
_)
1 0
9 0 1 0 1 -101 0 1 0
H—I—4—¢ — x—o—I—o—c
0 0

by W and W* respectively.

and
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4.6 One Way Translation

So far we have described a criteria which ensures that translation gives us a new
non-zero operator when we translate in either direction, and we have used this result
to obtain a large number of operators beginning with just our first order initial data.
Our translation procedure relied on the fact that the appropriate Verma modules
split off from the tensor products with unique central character. Theorem 4.4.2 also
required that this be true in the reverse direction, in which case we could deduce
that the new operator would be non-zero.

However, we can still perform translations in the case that the appropriate Verma
modules don’t split off from the tensor products with unique central character.
Immediately it is clear that Theorem 4.4.2 will not apply, but this does not mean
that the translated operator must necessarily be zero. Indeed, we will see that there
are cases where the new operator will be non-zero, but we will get the zero operator if
we try to translate back to the original operator. We shall refer to these translations
as one way translations. The examples of these one way translations that we shall
be concerned with is the translations from the singular non-standard operators to
the regular non-standard operators. We shall begin with a general description of
how this kind of translation works, and why it gives a non-zero operator.

First consider what happens when we try to translate in the other direction; i.e.

suppose we have with a regular operator
V(E) « V(F)
that we would like to translate to get the singular operator
V(E,) « V(F).

When we consider the tensor products

VIE@ W) =V(E) W
and

V(IF@ W) = V(F) @ W,

it is clear that V(E;) and V(F;) (respectively) each split off with unique central
characters. This is because we are going from a regular highest weight (inside a
Weyl chamber) to a singular highest weight (on a wall of that Weyl chamber); as
all the highest weights for terms in the tensor product necessarily lic cither in that
Weyl chamber or on one of its walls, then they could not possibly be related to our
singular weight by a Weyl reflection.
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So the appropriate maps (inclusion and projection of Verma modules) exist for
us to be able to perform the translation, and hence we get

V(E) « VE®W)
o8 7
V(F,) —» V(FRW).

However, we are going to show that this new operator is really zero, by looking at
the diagonal operator that appears here and showing that it is zero.
The first step is to apply Lemma 4.4.1, which says that it is equivalent to consider

the following diagonal operator

V(E @W) « V(E)
N1
V().

We need to know how V(E, ® W*) decomposes. Obviously V(E) will occur, but
not with unique central character. As we are translating a singular highest weight
(on a wall of a Weyl chamber) to a regular highest weight (inside an adjacent Weyl
chamber), we will also get a second regular highest weight with the same central
character (i.e. the weight on the opposite side of the wall, related to the first regular
weight by a reflection in that wall). If we call the second regular highest weight
module V(E'), then what we have is a composition series which looks like

VE QW) =(.)+(VE)®..)+(V(E) ...,

or

V(E @W)=(VE)D...)+ (VE) &...)+(...),

where we have not shown modules with other central characters. This means that
we have invariant operators, inclusion

V(E) - V(E, @ W),

and projection

V(E, @ W) — V(E).

Note that the order of the composition series is important, as the two regular Verma
modules do not split off completely; i.e. there does not exist an invariant projection

V(E; @ W*) — V(E),
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nor does there exist an invariant inclusion
V(E) —» V(E, @ W).

The order is determined by where the p—modules E and E' occur in the decom-
position of the tensor product E; ® W*, bearing in mind that W* has composition

series

0 0 0 0 1 00001 -1 0000 -100 0 0
= + + :
0 0 1 0
We have written the composition series for V(E; ® W*) with V(E') occuring to the
left of V(E) as it is what we require for our arguments (of course, when we apply
this result to specific examples, it must be checked that the composition series really

does follow this order).
Now consider the composition

V(E) « V(E@W) « V(E)
N1
V(F).
The composition of the top two operators must be zero, as there does not exist a
differential splitting (V(E) does not split off from the tensor product). It follows

that the diagonal operator can depend only on V(E'), i.e. it factors through V(E')

V(E @ W) « V(E)
N
V(F).

Finally we will assume that there does not exist an operator
V(E') « V(F)

and so the diagonal operator must necessarily be zero. When we apply this result
to specific examples, this assumption can easily be checked from the classification
of homomorphisms of Verma modules, Theorem 4.1.1. It then follows that trying
to translating the regular operator to the singular operator results in zero.

Next consider translating in the opposite direction, from the singular operator
to the regular operator. We have already assumed that we have a composition series
which looks like either

VEQW)=(.)+(VE)®..)+(VE) &...),
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or

VE QW)= VE)®..)+(VE)&...)+ (...),
where we have not shown modules with other central characters. We also need to
assume that the composition series for V(F; ® W*) looks like either
V(F, @ W) =(...) + (V(F) ®..)0+V(EF)e...),
or
VE,oW)=VFH a..)+V(E)D...)+ ()
not showing terms with other central characters; i.e. we assume that V(IF) occurs to
the left of V(F). Thus the necessary inclusions and projections of Verma modules
will exist for us to be able to translate the singular operator to obtain
V(E) « V(E @ W)
N T
V(F) — V(F @ W*).

Again, we apply Lemma 4.4.1 and consider instead

VIEQW) « V(E)
N0
V(F,).

We know that V (E, ) splits off from V(EQW) with unique central character. Suppose
that the diagonal operator is zero. Then so too is the composition with

V(E,) «+ V(E®@W),
i.e. the following composition gives zero

V(E) « VEQW) « V(E)
N1
V(F,).

However, the composition of the top two operators is just the identity on V(E;), as
this is a differential splitting. It follows that the original singular operator

V(E) « V(F)

that we are translating is zero, which is absurd. This contradiction implies that the
diagonal operator cannot be zero.
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Then by Lemma 4.4.1, it follows that the following diagonal operator is also
non-zero

V(E) + V(E; @ W¥)
N T
V(F; @ W*).

Finally, we have assumed that we have either
VIF,@W)=(.)+(VF&..)+(V(F)s...),
VIR W) =VEF&..)+(VIF)®...)+(...),

not showing terms with other central characters. Our last assumption will be that
there does not exist an operator

V(E) « V(F)

(again, in our examples this assumption will be easily checked from the classification
of homomorphisms of Verma modules, Theorem 4.1.1), and, therefore, when we
compose the diagonal operator with the inclusion

V(F, @ W*) « V(F)
we necessarily get a non-zero composition
V(E) « V(F).

Thus we have shown that, assuming all the composition series occur in the appro-
priate orders, and assuming that we know of the non-existence of certain operators,
we can translate the singular operator

V(E,) « V(F)
to obtain the regular one
V(E) + V(F),

but if we try to translate back we get the zero operator. Let us now apply this to a
specific situation, to see how it works in practice.

We would like to consider what will happen when we translate between the
regular non-standard operator
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and the singular non-standard operator

7 0 1 0 0 -123 0 0 1
2 0
We will write down the vector bundles directly here, instead of the Verma modules.

This will mean that all the arrows will be in the opposite directions. Consider first
going from the regular operator to the singular one. The diagram looks like

“TH\“T**HTH

-11 3 0

R e

First we need to check that the horizontal operators really do exist. Decomposing
7 0 01 0 0 0 0 0 1
x—o—I—o—c ® p—o—I—o—o‘
2 0
70

1 0 0
we see that X_.—I_H really does split off as the unique term with central
2

character xo0,1,0,00,-1, and in

-12 2

pite b

0 1
only %—O—I—H has central character Xo1.000-1- S0 the horizontal operators
0

do exist, and we can perform the translation shown above.
By Lemma 4.4.1, we consider the diagonal operator appearing in the diagram

7 0 1 0 0 1 0 0 0 O
% b2
2 0
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Decomposing the tensor product here, and only showing terms of central character
X0,0,0,0,0,0, We get the composition series

-7 0 1 0 O -6 0 0 0 O -7 0 0 1 0

x—o—Ijo—o QW={(...)+( X—-Q——I:Q—. ®...)+( x—o—I:o—o ®...).

So we get an inclusion

7 0 0 1 0 70 1 0 0 1 0 0 0 O
— ® )
2 2 0

but when we compose it with the diagonal operator above we get zero, as

7 0 01 0 70 1 00 100 00 700 1 0
H—I—'—‘ — X—'—I—H & '—O—I—H —
2 2 0 2
must be zero (there does not exist a differential splitting). Hence the diagonal oper-
6 0 0 0

0
ator can depend only on K—'—I—f—‘ (i.e. it factors through the projection onto
3

this term). However, from the classification of homomorphisms of Verma modules,
i.e. Theorem 4.1.1 (in particular, looking at the regular classifying pattern with
a=...= f =0), we see that there is no non-zero operator

6 0 0.0 0 ‘12 0 1 0
_) 1
)(—'—I:H x—o—I:o—o
and hence the diagonal operator is zero also. It follows that translation applied to

the regular operator will give us the zero operator.
Next we consider going from singular to regular.

70 0 1 0 70 1 0 0 1 0 0 0 0O
I ®
2 I 2 I 0
12 0 1 0 123 0 0 1 1 0 0 0 O
0 0 0
We want to show that the diagonal composition is non-zero. Firstly, let us check
that what we have written so far really does make sense. We have already seen
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o ) 7 0 1 00 1 0 0 0 0
the composition series for ><—'—I—0—' ® H—I—'—' , and we know that there
2 0

exists an invariant inclusion

7 0 0 1 0 7 0 1 0 0 1 0 0 0 0
- ® ‘
2 2 0
Similarly, we get the composition series
‘12 3 0 0 1 12 0 1 0 112 3 0 0 0

>H_I:._.®W=(...)+( H—I?_.@'”H( H-I:'—'GB---%

not showing terms with central characters different to x0,0,0,0,00. Hence there also

exists an invariant projection

12 3 0 0 1 1 00 00O 12 0 1 0
x——o—I—f—C ® — 3
0 0 0
so the operators we need in order to perform this translation really do exist.
By Lemma 4.4.1, we can consider the following composition.

-7 0 0 1 0O 0 0 0 o0 1 70 1 0 O
® —
2 0 2

-12 3 0 0 1

0

-7 0

1 0 0
We have seen that X—O—I—H splits off from the tensor product with unique
2

central character, and hence there exists a differential splitting

-7 0 1 0 0 -7 0 0 1 O o 0 0 0 1
— b2 .
2 2 0

Thus if the diagonal operator above is zero, the composition

-7 0 1 0 O -7 0 0 1 O 0O 0 0 0 1 -12 3 0 0 1
— ® —
2 2 0 0
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would also be zero, which is impossible since this is the singular operator that we
began with. Hence the diagonal operator is non-zero, and then so is the following

diagonal operator.

-7 0 0 1 O

-7 0 1 0 0 1 o 0o 0 O

2 2 0
-12 3 0 0 1 1 6 0 0 O

0 0

-12 3 0 0 -11 2 0 -12 3

i ibow—t o+ (igoe (e ga—e.

not showing terms with central characters different to x0,0,0,0,0,0- By the classification
of homomorphisms of Verma modules, i.e. Theorem 4.1.1 (in this instance, by looking
at the regular classifying pattern with a = ... = f = 0), we know that there is no

non-zero operator

Finally, we have already seen that

-12 3 0
and therefore it follows that the regular operator

-11 2 0

e AR e

obtained by translating the singular one is non-zero. This is precisely the result we

wanted.
The usefulness of this one way translation is evident. By translating from the

singular non-standard operators we can obtain many of the regular non-standard
operators. In particular, we have just obtained the fourth order regular operator

-11 2

et

Using one way translation, we can also get the fourth order regular operator

-3 01 0 O -7 0 1 0 2
— i
0 0
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by translating the fourth order singular operator

31 0 0 O -7 1 0 0 2
-
0 0

by W, and the sixth order regular operator

?
-2 1 0 0 O -8 1 0 0 3
—
0 0

by translating the sixth order singular operator

-1 0 0 0 O 7 0 0 0 3
%
I 0 0
by W. We can also obtain the adjoints of these operators, namely the fourth and
sixth order regular operators

-10 0 1 0 2 .12 0 1 0 0O
—
0 0

and
12 0 0 0 0O
2

9 0 0 0 3
_)
1 1
by translating the fourth and sixth order singular operators
9 0 0 0 2 -110 0 0 O
__)
1 1
and
1 0 0 0 0
o ?

8 0 0 0 3
x—o—I—Q—Q — x—o—I—o—c
0
respectively, by W*. Then, as we mentioned at the end of Subsection 4.5.1, these
regular non-standard operators form the initial operators which can be translated to
obtain all of their corresponding families of operators. This just leaves several other

families of non-standard regular operators which cannot be obtained by translating
from simpler operators. We summarize these in the next subsection.



64 4 HOLONOMIC CASE AND TRANSLATION

4.7 Operators Not Obtainable by Translation

Beginning with our initial data, we have used translation to obtain all of the standard
operators, in both the regular and the singular patterns, and all of the non-standard
operators in the singular patterns. We have also obtained some of the non-standard
operators in the regular patterns, but there are several that we have not been able
to reach by translation. We will call these operators and their families ezceptional,
and summarise them below.

We have been unable to obtain the following operators by translation:

1. the eighth order operator

and its associated family

-a-2b-2¢c-d-f-8
b
c
f
a+b+c+d+e+4

b}

o o oW
1

2. the adjoints of 1

-a-2b-3c-2d-e-2f-12

b f

c -
f

| i
i -a-2b-2¢-d-f-8
d

c
b
a+b4c+d+e+4 a

3. the family of operators

4. the adjoints of 3

-a-2b-3c-2d-e-f-11
c
d
b+c+f+2

a

a

b+c+d+2 -
f
C

7

d 1
d
-a-b-c-f-5 -a-b-2¢c-2d-e-f-9
c a e a
b =0 b4-c+d+2
c+d+f42 f ’
e c
-a-b-2c-2d-e-f-9
e 3 e 1
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5. the family of operators

-a-b-c-d-e-6 -a-2b-3¢-2d-e-2f-12
ct+dtetf+3 ¢ 2 e @ atbtcti+3

b — d

(o] C

d b

We will refer to the above families as the first exceptional family of operators, the
second exceptional family of operators, etc. On the other hand, when a,..., f are
all zero, we will refer to the above operators as the first exceptional operator, the

second exceptional operator, etc.
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5 Semi-Holonomic Case

5.1 Lifting of the Initial Data

We want to investigate which operators admit lifts to the semi-holonomic case,
allowing us to construct curved analogues. Firstly we will show that all low order
operators must lift, where by low order we mean first or second order operators.
Since the first holonomic jet and the first semi-holonomic jet are the same thing,
all of the first order operators automatically lift to the semi-holonomic case. This
includes all of our initial data, namely the standard operators in the de Rham
resolution and the standard operators in each of the basic singular patterns (i.e.
eachofa = —1,b=...= f =0, etc.). So we immediately acquire curved analogues

of all these operators.
In fact, we can automatically get lifts of all the second order operators too. This

follows from the following lemma.

Lemma 5.1.1 There is a homomorphism of p—modules V3(E) — V,(E) that splits
the projection Vo(E) — V4(E).

Proof: We define the homomorphism by the identity map on V4 (E) = Vi(E) C V,(E)
and by .
XYer E(XY +YX +[X,Y])e,

where X,Y € g and e € E*. This is well-defined, as
XYe = YXe+[X,Y]e
- %(yx + XY +[Y, X])e + [X,Y]e

Il
= §(XY +YX -[X,Y])e+[X,Y]e
1
= i(XY +YX +[X,Y])e.
It is also p—equivariant, for if we allow Z € p to act on the left we get

Z(XYe) = [2,X]Ye+ X[Z,Y]e+ XY(Ze)
- %([z, XY +Y[Z, X] +[IZ, X], Y])e + %(X[Z, Y] +(2,Y]X +

X, [Z,Y])e + %(XY LY X +[X,Y])(Ze)
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= %([Z, X)Ye+ X[Z,Y]e+ XY (Ze)) + %([Z, Y]Xe +

+Y[Z,X]e + YX(26) + (2, X], Ve + [X, [Z, Y] + [X, Y](Ze)

= %Z(XYe) + %Z(YXe) + %Z([X, Yle)

- Z(%(XY LYX 4 [X,Y))e),

where we have used the Jacobi identity [Z, [X, Y]] = [[Z, X], Y]+[X, [Z, Y]]. Finally,
it is clear that this mapping splits the projection. O

If we have a second order operator E — F, then we have a (holonomic) Verma
module homomorphism V(F) — V(E) which is determined by F* — V;4(E). Com-
posing this with the above splitting gives a lift F* — V;(E) to the semi-holonomic
case, so all second order operators automatically admit lifts as claimed.

Recall that we were able to obtain a great number of the remaining operators by
translating the initial data. We will show that translation also works in the semi-
holonomic case. Then since the initial data lifts to the semi-holonomic case, we can
apply the translation principle as before to get lifts to the semi-holonomic case of
all but the five families of exceptional operators.

We were unable to reach these families of exceptional operators by translating
from the initial data. In fact, we will show that the first exceptional operator
does not admit a lift to the semi-holonomic case at all, and hence neither does
its corresponding family of operators. This means that we do not obtain curved
analogues for this family of operators by this method. Whether or not they admit
curved analogues at all is a much more difficult problem, and we will not discuss it
here. For the other four families it is not even clear that the operators do not lift
to the semi-holonomic case, and indeed it is possible that they may admit lifts. We
discuss this further in the following section.

5.2 The Translation Principle in the Semi-Holonomic Case

We need to show that the translation principle is still applicable in the semi-
holonomic case. The critical aspect of the translation principle that we need to
look at is the differential splittings associated with terms in the decompositions of
tensor products. This is the main ingredient of the translation principle, and we will
show that because W and W* have composition series of length two, then the split-
tings (invariant projections and inclusions) that occur when we tensor with these
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representations will be of order at most two. We know from the above discussion
that second order operators automatically lift to the semi-holonomic case, and hence

the invariant splittings must lift.
Consider a general irreducible g—module V. Decomposing V into eigenspaces of
the one-dimensional centre of go, as in Section 2, we get a composition series

V:VQ+VQ+1+...+VQ+H

of length n. Let E be a p—module, and suppose that V(E;) splits off from V(EQV).
In fact, first suppose we just have an invariant inclusion

V(E,) » V(E® V),

and suppose that this is a k*h order operator. Then the symbol of this operator is

k
E®V'— (g1 ®E.

Since this is a homomorphism of go—module, the action of H must be preserved.
Now on the left, H will act by multiplication by —¢(E) — a — 3, for j € {0, ... ,n}.
On the right, H will act by multiplication by —k — ¢(E; ), and hence

—A(E)—a—j7=—-k—L(E)
for some j € {0,...,n}. In particular,
n—k > j—k
= {(E;) — {E) — a. (1)

On the other hand, since E; occurs in the decomposition (into a direct sum of

go-modules)
]E®V = E®VG+E®VO+1+'--+E®VG+TL

BE.

we know that the action of H on E; must be equal to the action of H on one of the
terms E ® Vaim, L€

(E,)) =4E) + o +m,
for some m € {0,...,n}. In particular,

0 < m

— {(E;) - 4E) — c. (2)
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Combining Equations 1 and 2 we get n > k. In other words, the order of the
invariant inclusion

V(E) = V(EQ V)

is not greater than the length of the composition series of V. Using similar argu-
ments, we can also show that the order of an invariant projection

VE® V) - V(E)

must also be less than or equal to the length of the composition series of V.
Now suppose that we have an invariant inclusion

V(E) — V(E@W).

Since W has a composition series of length two, this invariant operator must have
order at most two. Therefore, by the discussion in the previous subsection, we
automatically get a lift to the semi-holonomic case, 1.e.

V(E;) = V(EQW).
Similarly, an invariant projection
VIE®W) - V(E)
will also lift to the semi-holonomic case,
VIEQW) = V(E,),
and the same is true if we replace W by W* in each situation above. We can now
prove the following theorem.
Theorem 5.2.1 Suppose that the Verma module homomorphism
D :V(F) - V(E)
lifts to the semi-holonomic case,
D :V(F) - V(E).
Suppose further that we can translate the operator (in the holonomic case) by W (or
by W*) to get a new operator
V(F) = V(E,).

Then translation in the semi-holonomic case will give us a lift of the new operator,

i.e. there exists a lift
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Proof- The fact that we can translate the operator in the holonomic case means
that there exists a non-zero composition

V(F,) - VIFOW) =V(F)@W - V(E)@W = V(E®W) - V(E),

where the first operator is an invariant inclusion, the second operator is D ® 1, and
the third operator is an invariant projection. Since W has composition series of
length two, we know that the invariant inclusion and projection must lift to the
semi-holonomic case. Also, D®1 is a lift to the semi-holonomic case of the operator
D ® 1. Thus we get a commutative diagram

V(F,) » VIFQW) =V(F)eW — V(E)@W =V(E®W) - V(E)
1 3 l + i \J
V(F) —» VIFQW) =V(F)eW — VE) W =V(EQW) — V(E)

Composition along the top row gives us a semi-holonomic lift of the translated
operator. Of course, the same argument works when W is replaced by W*. O

We have seen that all the initial data trivially lifts to the semi-holonomic case, as
all these operators are first order. Hence what this theorem shows is that for every
operator that could be obtained from the initial data by translation, there will exist
a lift to the semi-holonomic case, which can be obtained by performing the same
sequence of translations beginning with the semi-holonomic initial data. Therefore,
at this stage we get lifts of all the invariant operators except for the five exceptional
families mentioned at the end of the previous section. Next we will investigate the
first of these families, and we will show that a lift to the semi-holonomic case does

not exist for this exceptional family.

5.3 Non-existence of Lifts of the First Exceptional Family

We are going to show that the first exceptional operator

0 0 0 0 O 8 0 0 0 4
-—) 2
0 0
from the family
a -a-2b-2c-d-f-8
t @b 4 eb
[ __) [+
d [
e a+b+c+d+et+4
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does not admit a lift to the semi-holonomic case. If any operator in this family
admitted a lift to the semi-holonomic case, then by translating, we could obtain
semi-holonomic lifts of all the operators in this family. Thus by showing that the
operator above does not lift, it follows that none of the operators in this family
admits a lift to the semi-holonomic case.

Notice that this operator looks remarkably like the long operator in the eight-
dimensional conformal case (where G = SO(10,C)). Indeed, if we ignore the fifth
nodes of the terms in the classifying pattern then what we get is precisely the
classifying pattern for the parabolic

el

sitting inside SO(10, C), which is eight-dimensional conformal geometry (see, for ex-
ample, [11]). This is hardly surprising, as SO(10, C) itself sits inside Eg. In terms of
the corresponding Lie algebras, s0(10,C) can be realized inside es as the root spaces
whose roots do not include as; i.e. if X € ¢g belongs to the root space X, a,+...4aga65
then the subalgebra {X € eglas = 0} with Cartan subalgebra (h1, hs, hs, ha, he) is
isomorphic to 50(10,C). Furthermore, the parabolic

intersects this 56(10, C) subalgebra in the parabolic

x—o—I+¢ N o—o—I—o = x—o—I—c
Now if we restrict our attention to the part of the classifying pattern (with

a = ... = f = 0) which looks like the classifying pattern for SO(10,C), up to

8 0 0 0 4
the vector bundle , then we see that there are no reflections in the

0
fifth node. This is especially obvious if we look directly at the Hasse diagram in
Appendix D.1. So as far as this operator is concerned, all of the action is essentially
taking place in the s0(10,C) subalgebra. To make this clearer, let us rewrite minus
the lowest weights of the relevant bundles in terms of the simple roots {o, ..., a6}
instead of the fundamental weights {A,...,As}. We get

0O 0 0 0O

0
H—I—O—. = (0,0,0,(),0,(])
0
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and
8 0 0 0

4
o—o—I—o—o = (—8,-8,-8,—4,0, —4).
0

Recall that to find a Verma module homomorphism

V(O Q 000 0)(_‘/(-8 0 000 4)’

we need to find a maximal (i.e. killed by all raising operators) element

v = Q(ylay22a--'ay36) & w

0 0 0 0 O
in V( X—*—I—V—O) with the appropriate weight, where w is a highest weight
0

0O 0 0 0 0

vector for ( x——'——I—'—' )* and q is a polynomial in the y;’s (actually, not really
0

a polynomial in the semi-holonomic case since the y;’s don’t commute). Now from
what we have seen above, choosing the appropriate weight will mean precisely that
the polynomial ¢ will involve only lowering operators y; which belong to root spaces
X _gi0—..—asas With a5 =0, l.e. g only involves lowering operators belonging to the
subalgebra isomorphic to 50(10,C). Furthermore, to test that v is maximal we only
need to act on it with each of the raising operators z, X2, ..., X¢ corresponding to
the simple roots aj,...,as. Since all the lowering operators y; in ¢ belong to root
spaces with as = 0, we immediately know that X5 will commute with them all, and
hence commute with ¢q. Therefore we automatically have

Xsv = Xsq(y1,y22,.-- ,Y3e) @ w
= q(y1, Y22, -- ., Y36) ® Xsw
= 0,

since w is a maximal weight vector. So we need to choose ¢ in such a way that
v = Xov = X3v = X4v = Xev = 0. It is now clear that all of the action really is
taking place inside the s0(10,C) subalgebra.

So suppose such a maximal element v exists, which gives a homomorphism of
semi-holonomic Verma modules. Then we could take precisely the same ‘polynomial’
q and use it to construct a maximal weight vector in the eight-dimensional conformal
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case. Thus there would exist a lift to the semi-holonomic case of the so-called long

0 0 0 0 8 0 0 0
0 0
However, in [11] it is shown that the long operator does not admit a lift to the semi-

holonomic case in any even-dimensional conformal geometry. This contradiction
implies that there cannot exist a lift to the semi-holonomic case of the operator

0 0 0 0 O 8 0 0 0 4
— '
0 0

From our discussion earlier, it follows that none of the operators

operator

a -a-2b-2c-d-f-8

c — c

d f

e a+b+c+d+e+4

in the first exceptional family lift to the semi-holonomic case.
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6 Conclusions and Outlook

The classification of invariant operators on the homogeneous space G/P is well
understood. This is precisely Theorem 4.1.1, due to Boe and Collingwood ([4]).
Our main aim in this thesis was to investigate which of these invariant operators
have curved analogues which remain invariant on a general curved (AHS) manifold,
and, ultimately, we would like to arrive at a complete classification. Since invariant
operators on the flat space G/ P correspond to homomorphisms of Verma modules,
it is natural to try to extend these ideas to apply to the curved case. This is precisely
what we have done by introducing semi-holonomic Verma modules.

Unfortunately we were unable to obtain a complete classification of which Verma
module homomorphisms lift to the semi-holonomic case, thereby giving a curved ana-
logue of the corresponding operator. However, we have shown by using the transla-
tion principle that most homomorphisms do lift, and there are just five exceptional
families for which this approach fails. Furthermore, we were able to show that the
first family does not lift, by using an analogous result from conformal geometry. We
will now say a little about the remaining four families.

The second family of exceptional operators are the adjoints of the first family.
Because of this, it would be absurd to suspect that they might lift to the semi-
holonomic case when the first family do not. However, to make this into a rigorous
argument, we really need to reformulate the notion of adjointness in terms of Verma
module and semi-holonomic Verma module homomorphisms. We have made some
partial progress with this approach; namely, given a maximal weight vector which
induces a Verma module homomorphism, we know how to construct the maximal
weight vector which induces the adjoint Verma module homomorphism. The next
step is to duplicate this result for semi-holonomic Verma module homomorphisms.
This would allow us to use the fact that the first family does not lift to conclude
that the second family does not lift, a result which we strongly suspect is true.

We cannot be as certain about the fifth family. At first it appeared that this
family was related to the family of long operators in six-dimensional conformal geo-
metry. Then since this family of long operators does not lift to the semi-holonomic
case, it seemed that neither should the fifth family. Indeed, this was to be our ap-
proach for all of the exceptional families, with the first and fifth families looking like
the family of long operators in eight-dimensional geometry, and the third and fourth
families like the family of long operators in four-dimensional conformal geometry.
It worked for the first family, where we were able to show that all of the action
was taking place inside of an 50(10,C) subalgebra. However, for the fifth family it
is more complicated; the action is not simply taking place inside an s0(8,C) sub-
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algebra. Similarly, for the third and fourth families the action is not taking place
inside 50(6,C) subalgebras, and for the second family this approach fails for other
reasons.

Of course, the fifth family also appears to be related to the second longest fam-
ily of operators in eight-dimensional conformal geometry. Indeed, there is strong
evidence to suggest that this is really the case. This evidence involves taking fourth
direct images of sheaves on flag manifolds related to G/P. Again, to arrive at rig-
orous results we would need to reinterpret direct images in terms of Verma module
and semi-holonomic Verma module homomorphisms, and it is not at all clear what
they look like in this context. This approach could, in principle, show that the
fifth family does lift to the semi-holonomic case, as the second longest family in
eight-dimensional conformal geometry lifts.

It is also possible that the third and fourth families are related to the third longest
operators in eight-dimensional conformal geometry. This may enable to show that
these two family lift to the semi-holonomic case, as the third longest operators admit
lifts in conformal geometry. However, this is more speculative than the fifth family,
for which we actually have some evidence in terms of direct images. Finally, we
should point out that formalising adjointness in terms of semi-holonomic Verma
module homomorphisms would also allow us to conclude that the fourth family of
exceptional operators lift to the semi-holonomic case if and only if the third family
do, as these families are adjoint.

The problem of classifying which Verma module homomorphisms lift to semi-
holonomic Verma module homomorphisms is only a small step towards the com-
plete classification of curved analogues. Furthermore, we could decide this problem
directly by looking for maximal weight vectors for the four remaining exceptional
operators. Although this would involve some large calculations, there would only
be a finite number of possibilities (so this is a possible ‘last resort’ approach). Once
we have done this, we will know that curved analogues exist for all those operators
that admit lifts to the semi-holonomic case. However, for those that do not admit
lifts we can say very little. T'he existence or non-existence of curved analogues for
these operators is a very delicate matter.

In conformal geometry, it is known that curved analogues can still exist when
a lift to the semi-holonomic case does not; for example, the long operator has a
curved analogue (see [13]) but does not lift (see [L1]). Indeed, there is only one
operator (in four-dimensional conformal geometry) for which we know that a curved
analoguc certainly does not exist (this was shown by Graham in [12]). We would
hope to be able to deduce some results about curved analogues for the exceptional
geometry discussed in this thesis by using results from conformal geometry. However,
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even in conformal geometry the classification of curved analogues is not completely
understood.
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A Lowering Operators for £g with Commutation
Rules

y € X_o «@ Adjoint action of z
I X2 X3 X4 X5 XG
v 100000 | A,
Y; 010000 ha
¥ 001000 hs
Y; 000100 Ay
Ys 000010 hs
Y 000001 he
Yz = [Y2,Ys] | 011000 5 =Y,
Yz = [Y¥5,Yy] 001100 Y, -Y;
Yo = [Y3,Y6] | 001001 Yo —Y;
Yo = [Y2, Ys] | 011100 Y ~Y;
Y = [Ya, Ys| | 011001 Yo —Y7
Y12 = (Y4, Yo] | 001101 Yo Ys
Yis = [V, Yig] | 011101 Yi2 Y Y10
Yis = [V3, Yis] | 012101 Yis
Yis = [Y4,Ys] | 000110 Y5 -Y
Yi6 = Y5, Yis] | 001110 Yis —Ys
Yi7 = [Ya, Y] | 011110 Yie —Yio
Yis = [Y5, Yio] | 001111 Yiz —Yie
Yie = [Yz, Yig] | 011111 Yis Yis —Yir
Yz = Y3, Yie] | 012111 Yio Y14
Yo = [Ya, Yao] | 012211 Yao
yaz = |y1,Ya] | 110000 | Yy, —y
Y23 = [y1, Y7] | 111000 \ & —Y22
Y2a = [y1, Y10} | 111100 | Yio —Y23
Y5 = [yh)/ll] 111001 Yu —Y23
Y26 = [y1, Yia] | 111101 | Yis Y25 Ya4
Yo7 = [y1, Y1a] | 112101 | Y4 Y26
y2s = (Y2, y27] | 122101 Yar
yao = 1, Yi7] | 111110 | Yi7 ~Ya24
Yo = (Y1, Y1o] | 111111 | Yig Y26 —Y29
ya1 = [y1, Yao] | 112111 | Y3 Y30 Yar
yaz = [Ya, ys1) | 122111 Ys1 Yas
yas = [y1, Yar] | 112211 | Yy Ya1
yss = (Y2, y3a] | 122211 Y33 Y32
yss = [Y3,y34] | 123211 Y34
yas = [Ye, yss) | 123212 Yas
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B Composition Series for the Fundamental Rep-

resentations

Length 2

10000—1000041000-10001

0 0 0 0 1_0 1] 0 0 1 -1 0 0 0 O -1 0 O 0 O

Q—Q—I—u—o—c_ )(-—Q—I:H-{- x—o—I—'o—a+ H—IT‘

0 0 0 0 [¢] 0 0 0 O 0+(l 0 0 1 0 0 0 0 O 0 -2 1 0 0 0

Length 3

1] 1 0 0 o +( 0O 0 O 0 1
-2 1 0 0 1 -1 0 0 O 0 -2 0 0 1 0

+( IO Il IO

0 0 O 1 0 0 0 o 1 1] -1 0 0 O 1 -1 1 g 0 0)

-2 01 0 O -1 0 0 0 1 -2 0 0 0 O

e el

Length 4

0o 0 1 0 O -1 1 0 o 1 0 O O 0 O

B At S el diay

2 0 { 01 21 0 0 0 0 0 0 0 0 -1 0 O0 1 O

AR R PR PR P

-3 1 0 1 o -2 0 0 0 1 -2 1 0 0 O 3 0 1 0 O

Al Rl S Fallas RS R






C Weyl Group Orbits of Highest Weights
C.1 Weights of W 0 0 0 0 1

0o 1 -1 0 0

—
o
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o
o
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C.2 Weights of W*



85

D Classifying Patterns
D.1 The Hasse Diagram

1]
2
3]
6, 4N
H—I_._‘ H_I_H
N 6/ N\
H—-I—H )(—O—I—O—Q
3/ N 6,/
X—O—I—*—O X—.—I—O—C
2/ 5\ 3/
)(—O—I—Q—. )(—O—I—.—.

AN, 1/ N
N\ 1/ 6\,
x—o—I—H x—o—I—o—c
2/ 6\ 1/
6\ 2/
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D.2 The Regular Patterns | J:
d
l‘ -a-2
] a+b+1
a
l -eafb-3
l' a
b4c+1
d
Ir -a-b-c-4
c+f+.l_ ;
c+d+1

a = N\

-a-b-c-f-5
c a
b
ct+d+f+2
d cwbcd 6/
a1 a
b
c+f+1
d+e+l

-a-b-2c-d-f-7
d a
O b+4c+1
f
-aFZb-2c-d-f-8‘/ ctdtet2 \ .
L d a+b+1 deti
c
f {
-a-2b-2c-d-£8 b+°+d+"+3\ -a-2b-2c-dee-by Srstfl
b d+etl atbtl €
c c
f f
RS “a-2b-2cdee AL a-2b-26-2d-e§10
e atbl
c c+d+1
f f
n+b+c+d+3\ s 2b-26: 206540 btct1
e b
— c+d+1
f
a+b+c+2
e {
ri -a,-2b-3c-2d-e;}'/1 1
e

-2

dtetl

b+c+1
d
c+i+1
a+b+1

N\

& o
d
b4c+f+2

2 N -a-2-3c-2d-e.90012
o e+l
d
bfetl
B
‘ -n-2b-3c-2d-c-2[-12
& f
4-—ic+d-l-l
b
o
‘ -a-2b-3c-2d-e-2{-12
dgctt @ f
C
b
a

l -a-2b-3c-2d-¢-2f-12
d f

c
b
a

dpfp2 N
cd+ b
C

dte+l

-a-b-c-d-5

cpdpeti+a

-a-b-2¢c-2d-e-f-9

a
b+c+d+2
f

c

N

-a-2b-3c-2d-e- U4-12
b4c+f+42 }{

d

c

a+b+1

\ -a-beg-d-e-f-7 /
ctdfetd2 B
b N
c+f+1
d

-a-2b-3c-2d-e-f-11
g a+b+c+2
d —d
c+f+1
-&2b—3c-2d-e}'/ll b

c

D CLASSIFYING PATTERNS

-a~b-c-d-e-6

a0 oTp

-a-2b-3c-2d-e-2f-12
a+b+c+i+3

d
(o3
b
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D.3 The De Rham Sequence
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D.4 The Singular Patterns
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b detl ;b i
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¢ f
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f f
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d
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d
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I CEE SO W o
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0 VU U0
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Low
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&

on.u-w"fnn.a-ni,
T
w

0 W g U N
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\

g
]

\ wbd BS
d a
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[
abdfs S dfeh]
N d+e

b
f
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a =

( - 2b-2d-o-1-8
N . abEL ¥
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D CLASSIFYING PATTERNS
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