Breeding Systems and Interspecific Hybridisation in the Genus *Eucalyptus* L'Hér.

By
Mark Fredric Ellis

Department of Horticulture, Viticulture and Oenology
Waite Agricultural Research Institute
The University of Adelaide
South Australia

Thesis submitted for the degree of Doctor of Philosophy

December 1991
TABLE OF CONTENTS

SUMMARY ... i
DECLARATION .. iii
ACKNOWLEDGEMENTS ... iv
LIST OF TABLES .. v
LIST OF FIGURES ... viii

1. INTRODUCTION ... 1
 1.1 THE GENUS EUCALYPTUS ... 1
 1.2 PROJECT AIMS .. 3

2. LITERATURE REVIEW ... 4
 2.1 TAXONOMY .. 4
 2.2 BREEDING SYSTEMS ... 6
 2.2.1 The flower .. 6
 2.2.2 Floral initiation .. 8
 2.2.3 Pollination ... 9
 2.2.4 Self compatibility ... 9
 2.3 REPRODUCTIVE ECOLOGY .. 11
 2.4 NATURAL HYBRIDISATION ... 12
 2.4.1 Occurrence of intermediates .. 12
 2.4.2 Hybrid fitness ... 14
 2.4.3 Patterns of hybridisation ... 15
 2.5 CHROMOSOME STUDIES ... 16
 2.6 IMPROVEMENT ... 17
 2.7 PROPAGATION ... 19
 2.8 METHODS OF HYBRIDISATION .. 21
 2.9 MANIPULATIVE HYBRIDISATION ... 22
 2.10 REPRODUCTIVE ISOLATION .. 24
2.11 ALTERNATIVE METHODS OF HYBRIDISATION

2.12 IDENTIFICATION OF HYBRIDS

2.13 CHARACTERISTICS OF HYBRIDS AND FIELD TRIALS

3. PLANT MATERIAL

4. BREEDING SYSTEMS OF THREE SPECIES FROM THE
 SECTION BISECTARIA

4.1 INTRODUCTION

4.2 MATERIALS AND METHODS
 4.2.1 Plant material
 4.2.2 Floral morphology and post anthesis development
 4.2.3 Controlled pollinations
 4.2.4 Time of stigmatic receptivity
 4.2.5 Self compatibility
 4.2.6 Comparative pistil cytology
 4.2.7 Statistical analysis

4.3 RESULTS
 4.3.1 Floral morphology and post anthesis development
 4.3.2 Time of stigmatic receptivity
 4.3.3 Self compatibility
 4.3.4 Comparative pistil cytology

4.4 DISCUSSION

5. THE BREEDING SYSTEM OF E. LEUCOXYLON

5.1 INTRODUCTION

5.2 MATERIALS AND METHODS
 5.2.1 Plant material
 5.2.2 Floral sequence
 5.2.3 Male fertility and pollen presentation
 5.2.4 Female fertility
5.2.5 Isozyme analysis ... 64
5.3 RESULTS ... 65
5.3.1 Floral sequence ... 65
5.3.2 Male Fertility and Pollen Presentation 68
5.3.3 Anther and pollen grain development 68
5.3.4 Female fertility ... 71
5.3.5 Outcrossing rates .. 75
5.4 DISCUSSION ... 80

6. POLLEN-PISTIL INTERACTION IN INTERSPECIFIC CROSSES 85
6.1 INTRODUCTION .. 85
6.2 MATERIALS AND METHODS 86
 6.2.1 Plant material ... 86
 6.2.2 Pollinations ... 86
 6.2.3 Sample preparation and analysis 88
 6.2.4 Pollen storage and viability 88
 6.2.5 Floral measurements 88
 6.2.6 Statistical analysis 89
6.3 RESULTS ... 89
 6.3.1 Intraspecific pollination 89
 6.3.2 Interspecific pollination 91
 6.3.3 Pollen tube abnormalities 95
 6.3.4 Pollen storage and viability 95
 6.3.5 Floral measurements 95
6.4 DISCUSSION ... 98

7. SEED SET AND EARLY SEEDLING CHARACTERISTICS IN HYBRID CROSSES IN EUCALYPTUS 101
7.1 INTRODUCTION .. 101
7.2 MATERIALS AND METHODS 102
SUMMARY

This study investigated the reproductive biology of four Eucalyptus species of the subgenus Symphyomyrtus; E. spathulata, E. cladocalyx and E. leptophylla of the section Bisectaria, and E. leucoxylon of the section Adnataria.

Aspects of the breeding system, floral morphology and pistil cytology were studied in three trees each of E. spathulata, E. cladocalyx and E. leptophylla. E. spathulata and E. leptophylla were found to be highly self incompatible, setting very low levels of seed from controlled self pollination. E. cladocalyx trees ranged from self compatible to self incompatible. Reductions were seen in both the number of capsules and the numbers of seed per capsule, from self pollination. The mechanism of self incompatibility was investigated in the pistil by following the success of cross and self pollinations with fluorescence microscopy. In E. cladocalyx and E. leptophylla no reduction in ovule penetration was seen from self pollination while in E. spathulata a significant reduction was seen in two trees but not the third, indicating post-zygotic mechanisms of self incompatibility operating in all three species, with some pre-zygotic control in E. spathulata. Floral architecture differed between the three species in the structure of the inflorescence units, flower morphology, and anther, pollen and ovule numbers per flower. Pistil cytology was similar for all three species but there were differences in the length of the stylar canal, the degree of sclerotinisation of the style, stigma morphology and volume of transmitting tissue.

The breeding system of E. leucoxylon was investigated with emphasis on the unusual features of gynodioecy and secondary pollen presentation. Fifty seven percent of trees in the study population were found to be male sterile, with pollen grains aborted during development between tetrad formation and anthesis. Hermaphrodite trees presented 93 percent of pollen grains on the upper style and stigma, with only seven percent of pollen grains remaining on the anthers. In the absence of pollinators hermaphrodite trees set low levels of autogamous seed compared with open pollinated pistils. Counts of pollen tubes in open pollinated pistils of each morph revealed that female trees were pollen limited in the study population. Multilocus estimates of outcrossing rates were determined for female
Isozyme electrophoresis. Female trees showed values of (ť) approaching 1.0, indicating complete outcrossing, while hermaphrodite trees showed significant levels of selfed seed in open pollinated seed crops, but still maintained an outcrossing rate higher than that reported for most eucalypts.

The pollen-pistil interaction was investigated in three intraspecific, 57 interspecific and six intergeneric crosses using the three species *Eucalyptus spathulata*, *E. cladocalyx* and *E. leptophylla* as female parents. Interspecific prefertilisation isolation was found to occur in the pistil and manifested as a number of pollen tube abnormalities in the style and ovary associated with a lowered probability of ovule penetration. The major selection points in the pistil were the upper style and the ovary. The severity of abnormalities and the probability of pollen tube arrest in the pistil was proportional to the taxonomic distance between parent species. Ovule penetrations were seen mainly in crosses within the section *Bisectaria* or between the sections *Bisectaria* and *Adnateria*. Pollen storage, style length and mean maximum temperature during the flowering period of the male parent had no significant effect on pollen tube growth in the crosses used.

Intra and interspecific combinations which showed ovule penetration were repeated the following flowering season and monitored for seed set. Most combinations produced capsules although only combinations within the section *Bisectaria* and between the sections *Bisectaria* and *Adnateria* set viable seed. There was considerable variation between years in cross compatibility with some female trees which showed no ovule penetration in the first year setting viable seed in the same combinations the following year. Many close combinations set levels of seed approaching intraspecific cross pollinations, while interspecific crosses outperformed intraspecific self pollinations in both capsule set and the number of seeds per capsule. Some crosses between the sections *Bisectaria* and *Adnateria* showed hybrid breakdown at the early seedling stage. Hybrid parentage was confirmed through intermediate seedling morphology.

The findings of this study have implications for the ecology and conservation of *Eucalyptus* species, for breeding strategies in tree improvement programmes and for the taxonomic relationships of the species.