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Population Monotonic and Strategy-proof Mechanisms
Respecting Welfare Lower Bounds∗

Duygu Yengin†

April 13, 2013

Abstract

The significance of population monotonicity and welfare bounds is well-recognized in the
fair division literature. We consider the welfare bounds that are central to the fair allocation
literature, namely, the identical-preferences lower-bound, individual rationality, the stand-alone
lower-bound, and k−fairness. We characterize population monotonic and incentive compatible
mechanisms which allocate an object effi ciently and respect a welfare lower bound chosen in the
fair allocation problem of allocating a collectively owned indivisible good or bad when monetary
transfers are possible and preferences are private information.
JEL Classifications: C79, D61, D63.
Key words: welfare bounds, the identical-preferences lower-bound, individual rationality, the
stand-alone lower-bound, k-fairness, population monotonicity, collective ownership, allocation of
an indivisible good and money, NIMBY problems, imposition of a task, the Groves mechanisms,
strategy-proofness.

1 Introduction

One of the main distributive concerns of society is providing a safety net to its members. It is
important for the functioning of a society that agents know their worst-case-scenario welfare levels.
The minimal welfare guaranteed to the members of a society is generally an indicator of the level of
solidarity and development of the society. Fairness also calls for the presence of welfare bounds that
protect agents from factors for which they are not responsible, such as other agents’preferences or
changes in population. We investigate welfare bounds in problems where population varies.

When a population varies, the resources may need to be reallocated. In doing so, two concerns
could arise. First, since no agent is individually responsible for the population change, solidarity
would call for the welfare levels of all agents in the initial population to change in the same direction
(population monotonicity ; Thomson, 1983). Second, the center that allocates the resources may
wish to ensure that the welfare bound it implemented in the initial economy is still respected in
the new economy. Our aim is to investigate whether these two goals are attainable simultaneously.

Population monotonicity is perhaps the most central axiom in the analysis of variable popula-
tion models. This axiom has been analyzed in several problems such as bargaining theory, coali-
tional games, house allocation problems, as well as fair allocation problems in exchange economies;
economies with single-peaked preferences, with public goods, with indivisible goods etc. (see Thom-
son, 1995a, for a survey). Population monotonicity is considered as a strong property frequently

∗An earlier version of this paper was circulated under the title "Welfare bounds in a growing population". I thank
Prof. William Thomson for his comments.
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incompatible with effi ciency and fairness criteria (see, for instance, Kim, 2003; Thomson, 1995b;
Alkan, 1994; Tadenuma and Thomson, 1993). Even if, population monotonic mechanisms that
meet fairness criteria such as no-envy and egalitarian-equivalence1 exist in some models, such
mechanisms may still generate “socially unacceptable”low levels of welfare to some agents in some
economies. Hence, an allocation that respects an equitable welfare lower bound may be preferable
to a, say, envy-free allocation.

The so called “fair allocation problem”arises when agents have equal rights or responsibilities
over the allocated resources, that is, the resources are collectively owned. The literature on fair
allocation proposed welfare bounds which not only act as a safety net, but also embody equity
notions. A common way to incorporate notions of fairness in the design of a welfare bound is by
carrying out the following thought experiment: First, the society agrees on a basic set of fairness
notions that should be applied in a hypothetical “reference economy”. These fairness notions
determine an allocation and associated welfare levels in this reference economy. Then, these welfare
levels are taken as a benchmark for the actual economy.

Perhaps, the oldest equitable welfare lower bound is the one that guarantees the welfare at
the equal split of resources.2 In economies where indivisible goods and money are allocated, since
equal division is not well defined, an alternative fairness axiom is the following: Pick an agent
and consider a reference economy where all agents have preferences identical to hers. Find the
common welfare level enjoyed at a Pareto-effi cient and envy-free allocation. Since each agent is
only responsible for her own preference but not for the heterogeneity in the preferences in the
actual economy, no agent should be worse off than she was in her reference economy (identical-
preferences lower-bound, Moulin, 1990). Other welfare lower bounds that are mostly studied in
the fair allocation literature include individual rationality (respecting the status-quo), the stand-
alone lower-bound (respecting the autonomy of agents), and k−fairness (a welfare bound based
on Rawlsian maxmin criterion, introduced by Porter, Shoham, and Tennenholtz, 2004). Except for
k−fairness, these welfare bounds guarantee each agent a welfare level that depends only on her own
preference. Hence, under the veil of ignorance about other agents’preferences, each agent knows
beforehand the minimal welfare level she would attain once others’preferences are revealed and
the allocation is realized.

The above-mentioned welfare bounds can be applied both in the fixed and the variable pop-
ulation cases. When the population varies, another appealing way to design a welfare bound is
by utilizing notions of solidarity, which in general, give rise to welfare bounds: consider economic
factors for which no agent is individually responsible but which affect the welfare levels of all agents
(e.g. population, resources etc.). If there is a change in such a factor, then by solidarity, the welfare
levels in the initial economy should be bounds on welfare in the new economy after the change. In
our model, an increase in population is good news; hence, population monotonicity requires the
welfares in the initial economy to be lower bounds on the welfares of the initial agents in the larger
population.

Compatibility of population monotonicity with welfare bounds is not always guaranteed. For
instance, when agents share a single, divisible, non-disposable task over which they have single-
peaked preferences, population monotonicity is incompatible with the equal-split welfare lower
bound (Thomson, 1995b). We investigate its compatibility with each of the aforementioned welfare
lower bounds in a model where a central authority needs to assign an object, i.e., an indivisible

1No-envy (Foley, 1967) requires that no agent prefers another agent’s bundle to her own. Egalitarian-equivalence
(Pazner and Schmeidler, 1978) requires that each agent is indifferent between her bundle and a common reference
bundle. In Yengin (2011), we show the existence of population monotonic selections from Groves mechanisms that
satisfy no-envy and egalitarian-equivalence. See also Yengin (2012a).

2See for example Steinhaus, 1948; Dubins and Spanier, 1961; and Moulin, 1991.
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good or bad (task), among a finite set of agents when monetary transfers are allowed and agents
have quasilinear preferences. Some examples are auctions, imposition of a task as in government
requisitions and eminent domain proceedings, and the siting problem of a discrete public good or
bad3 such as choosing the location of a desirable facility or event (Olympics event, park, inter-
national airport, etc.) or a noxious facility (waste disposal site, nuclear facility, prison etc.), also
called as the “not-in-my-backyard, NIMBY”problem.4 Without loss of generality, we consider the
assignment of a task which is the case in most NIMBY problems such as determining which locality
hosts a nuclear facility.

Unlike most of the previous studies on the compatibility of population monotonicity with welfare
bounds, we analyze the case where agents’ preferences are their private information; hence, an
incentive compatibility requirement is needed in order to ensure that the allocation is effi cient and
respects welfare bounds with respect to the true preferences. We restrict our attention to the class of
mechanisms that are strategy-proof (truthful reporting of preference is a weakly dominant strategy
for all agents) and assign the task effi ciently (assignment-effi cient), i.e., the Groves mechanisms.

After we introduce the model in Section 2, we present our results in Section 3. As is well known,
assignment-effi cient and strategy-proof mechanisms do not balance the budget (total monetary
transfer does not add up to zero in each economy). Hence, an important goal for the center is to
pick a mechanism that generates the minimal possible deficit in each economy. For each of the
aforementioned welfare lower bounds, our main result, Theorem 1, presents the characterizations
of mechanisms that minimize the budget deficit in each economy among all assignment-effi cient,
strategy-proof, and population monotonic ones respecting the welfare bound. Proofs of the results
in Section 3 are in the Appendix.

When the center is choosing a specific welfare bound to implement, several factors need to
be considered: the choice of the welfare bound significantly affects not only the welfare levels
attained by the agents, but also the budget deficit generated, and the simplicity of the transfer
functions. Theorem 1 demonstrates how the complexity of the transfers of the population monotonic
Groves mechanisms change as the center changes the imposed welfare lower bound. In Section 4,
we informally discuss additional results on the budget deficits generated by Groves mechanisms
respecting different welfare lower bounds. The formal presentation and proofs of these additional
results are in the working paper version of our paper (Yengin, 2012c).

2 Model

There is an infinite set of “potential”agents indexed by the positive natural numbers N ≡ {1, 2, ...}.
In any given problem, only a finite number of them are present. Let N be the set of subsets of
potential agents with at least two agents. Let n ≥ 2 and N with |N | = n be a typical element of
N .

A single task α is to be assigned by a “center”to one of the agents in a given population N ∈ N .
Each agent i has a cost function ci : {∅, {α}} → R+ with ci(∅) = 0.5 Let C be the set of all such
functions and CN be the n−fold Cartesian product of C.

3Assume that there is no question of whether the public good is to be provided and the only question is which
locality will provide the public good and what the compensations are. In the NIMBY problem, we assume that
all localities use the facility/event and derive the same benefit but only the hosting locality incurs a private cost.
Monetary transfers facilitate the distribution of this cost among all localities. See Yengin (2013).

4Other examples include the following allocation problems: community housing, discrete resources in centrally
planned economies, a commonly owned indivisible good in a cooperative enterprise such as cooperative supported
agriculture, an inheritance among heirs, assignment of a job in a firm etc.

5As usual, R+ denotes the set of non-negative real numbers.
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For each N ∈ N , a cost profile for N is a list c ≡ (c1, ..., cn). Let
⋃

N∈N
CN be the domain of cost

profiles where for each i ∈ N, ci ∈ C.
A cost profile defines an economy. Let c, c′, ĉ be typical economies with associated agent sets

N,N ′, N̂ . For each N ∈ N and each i ∈ N, let c−i be the cost profile of the agents in N\{i}. For
each pair {N,N ′} ⊂ N such that N ′ ⊆ N and each c ∈ CN , let cN ′ be the restriction of c to N ′ :
cN ′ ≡ (ci)i∈N ′ .

For each N ∈ N , each k ∈ {1, 2, ..., n}, each c ∈ CN , and each i ∈ N, let c[k] be the k-th cost
in the ascending order of the costs in {c1({α}), . . . , cn({α})}6 and (c−i)[k] be the k-th cost in the
ascending order of the costs in {c1({α}), . . . , ci−1({α}), ci+1({α}), ..., cn({α})}.

There is a perfectly divisible good we call “money”. Let ti denote agent i′s consumption of the
good. We call ti agent i′s transfer : if ti > 0, it is a transfer from the center to i; if ti < 0, |ti| is a
transfer from i to the center.

The center assigns the task and determines each agent’s transfer. Agent i’s utility when she is
assigned Ai ∈ {∅, {α}} and consumes ti ∈ R is

u(Ai, ti; ci) = −ci(Ai) + ti.

For each N ∈ N , let A(N) = {(A′i)i∈N : for each i ∈ N, Ai ∈ {∅, {α}}, for each pair {i, j} ⊆ N,
Ai ∩Aj = ∅, and

⋃
i∈N

A′i = {α}} be the set of all possible assignments of α among the agents in N.

For each N ∈ N , an assignment for N is a list (Ai)i∈N ∈ A(N); and a transfer profile for N is
a list (ti)i∈N ∈ RN . An allocation for N ∈ N is a list (Ai, ti)i∈N where (Ai)i∈N is an assignment
and (ti)i∈N is a transfer profile for N.

A mechanism is a function ϕ ≡ (A, t) defined over the union
⋃

N∈N
CN that associates with each

economy an allocation: for each N ∈ N , each c ∈ CN , and each i ∈ N , ϕi(c) ≡ (Ai(c), ti(c)) ∈
{∅, {α}} × R.

For each N ∈ N and each c ∈ CN , let W (c) be the minimal total cost generated among all
possible assignments for N . Note that W (c) = c[1].

Since an agent’s transfer and total transfer can be of any size, every allocation is Pareto-
dominated by some other allocation with higher transfers. Thus, there is no Pareto-effi cient al-
location in our model. However, we can define a notion of effi ciency restricted to the assignment
of the task. Since utilities are quasi-linear, given any economy c, an allocation that minimizes
the total cost (i.e. that assigns the task to an agent with the minimal cost to perform the task)
is Pareto-effi cient for c among all allocations with the same, or smaller, total transfer. Our first
axiom requires mechanisms to choose only such allocations.

Assignment-Effi ciency: For each N ∈ N and each c ∈ CN ,
∑
i∈N

ci(Ai(c)) =W (c).

Since costs are private information, an assignment-effi cient mechanism assigns the task so that
the actual total cost is minimal only if the agents report their true costs. Truthful reporting is
also essential to determine the correct welfare bounds. Then, a desirable property for a mecha-
nism is that no agent should ever benefit by misrepresenting her cost function (Gibbard, 1973;
Satterthwaite, 1975).

Strategy-proofness7: For each N ∈ N , each i ∈ N , each c ∈ CN , and each c′i ∈ C, u(ϕi(c); ci) ≥
u(ϕi(c

′
i, c−i); ci).

6All ties are taken into account in this order. For instance, if there are two agents whose costs to perform the task
are the lowest in c, then c[1] = c[2].

7See Thomson (2005) for an extensive survey on strategy-proofness.
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It is well-known that a mechanism is assignment-effi cient and strategy-proof on
⋃

N∈N
CN if and

only if it is a Groves mechanism (follows from Holmström, 1979, since for each N ∈ N , CN is
convex). The Groves mechanisms were introduced by Vickrey (1961), Clarke (1971), and Groves
(1973). A Groves mechanism chooses, for each economy, an effi cient assignment of the task. We
work with single-valued Groves mechanisms and assume that each Groves mechanism is associated
with a tie-breaking rule that determines which of the effi cient assignments (if there are more than
one) is chosen. Let T be the set of all possible tie-breaking rules and τ be a typical element of this
set.

For each i ∈ N, let hi be a real-valued function defined over the union
⋃

N∈N :i/∈N
CN . That is, for

each N ∈ N with i ∈ N and each c ∈ CN , hi depends only on c−i ∈ CN\{i}. Let h = (hi)i∈N and H
be the set of all such h.

The Groves mechanism associated with h ∈ H and τ ∈ T , Gh,τ :
Let Gh,τ ≡ (Aτ , th,τ ) be such that for each N ∈ N and each c ∈ CN , Aτ (c) is an effi cient assignment
for c and for each i ∈ N,

th,τi (c) = −
∑

j∈N\{i}
cj(A

τ
j (c)) + hi(c−i).

The transfer of each agent determined by a Groves mechanism has two parts. First, each agent
pays the total cost incurred by all other agents at the assignment chosen by the mechanism. Second,
each agent receives a constant sum of money that does not depend on her own cost.

Note that for each h ∈ H, the mechanisms in {Gh,τ}τ∈T are Pareto-indifferent8 since for each
N ∈ N , each i ∈ N , and each c ∈ CN ,

u(Gh,τi (c); ci) = −W (c) + hi(c−i). (1)

3 Results

Suppose new agents join some initial population. The cost of an effi cient assignment in the larger
population is at most as large as the one in the smaller population9, which is good news for the
society. Since none of the agents in the initial population is responsible for the population growth,
all of them should be at least as well off in the larger population as in the smaller one (Thomson,
1983). Hence, for the initially existing agents, their welfare levels in the smaller population are
taken as lower bounds on their welfares in the larger population.

Population Monotonicity (PM) : For each pair {N,N ′} ⊂ N such that N ′ ⊂ N, each i ∈ N ′,
and each c ∈ CN ,

u(ϕi(c); ci) ≥ u(ϕi(cN ′ ); ci).

Population monotonicity together with equation (1) imply the following Lemma whose proof
we omit.

8Let N ∈ N and c ∈ CN . Allocations (Ai, ti)i∈N and (A′i, t
′
i)i∈N are Pareto-indifferent for c if and only if for each

i ∈ N, u(Ai, ti; ci) = u(A′i, t
′
i; ci). The mechanisms ϕ and ϕ

′ are Pareto-indifferent if for each N ∈ N , each i ∈ N,
and each c ∈ CN , u(ϕi(c); ci) = u(ϕ′i(c); ci).

9The new agents may have lower costs than the existing ones and a reallocation of the task could lower the cost
of an effi cient assignment. In the worst case scenario, the initial allocation of the task is kept and the total cost does
not change.
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Lemma 1 A Groves mechanism Gh,τ is population monotonic if and only if for each pair
{N,N ′} ⊂ N such that N ′ ⊂ N, each i ∈ N ′, and each c ∈ CN ,

hi(c−i) ≥ hi(cN ′ \{i}). (2)

If participation is voluntary, then a natural requirement for a mechanism is to ensure that no
agent experiences a welfare that is less than her status quo welfare when she didn’t participate.
Even if participation may not be voluntary, as in eminent domain proceedings, the center may still
wish to ensure that agents have non-negative utilities.

Individual Rationality (IR): For each N ∈ N , each i ∈ N, and each c ∈ CN ,

u(ϕi(c); ci) ≥ 0.

Although individual rationality is desirable in many cases, it may not be required in situations
where agents are collectively responsible for the associated cost of the assigned task. As an example,
in times of a war or national emergency, the government can requisition the service of a civilian
without fully compensating her cost. Since all agents are collectively responsible for the task, a fair
distribution of this cost among all agents would lead to utility levels below status quo. Nevertheless,
society would still be concerned with the equity of the distribution of welfare and guaranteeing a
safety net to agents. Hence, welfare lower bounds which are weaker than individual rationality
would be required.

One such welfare lower bound is the one that respects agents’autonomy. Imagine, there is only
one agent in the society. Since she is the only one who is responsible for the completion of the task,
she should bear all the cost. However, it would be unfair to tax this agent. Call her utility in this
reference economy as her stand-alone utility. (For instance, in the NIMBY problem, this utility is
the welfare when each locality autonomously builds its own facility.) In the actual economy, since
all agents are collectively responsible for the cost of the task, no agent should end up worse than
her stand-alone utility where she bore the cost alone.

The Stand-Alone Lower-Bound (SALB)10: For each N ∈ N , each i ∈ N, and each c ∈ CN ,

u(ϕi(c); ci) ≥ −ci({α}).

For each N ∈ N , each i ∈ N, and each ci ∈ C, let ci ∈ CN be agent i′s “reference”economy in
which all agents have the same cost function ci. That is, ci ≡ (cij)j∈N ∈ CN is such that for each
j ∈ N, cij ≡ ci. In ci, since all agents have the same preference11, fairness would require that they
all experience the same welfare (fairness notions such as no-envy, anonymity, or equal treatment
of equals would imply this result). Hence, under assignment-effi ciency and budget-balance, each

agent’s utility would be −W (ci)
n . Since, no agent is responsible for the preferences of the others, in

the actual economy where preferences are heterogenous, no one should be worse than she is in her
reference economy.

The Identical-Preferences Lower-Bound (IPLB): For each N ∈ N , each i ∈ N, and each
c ∈ CN ,

u(ϕi(c); ci) ≥ −
W (ci)

n
.

10Yengin (2012b) refers SALB as the “no-compensation lower-bound”.
11Since utilities are quasi-linear, two agents have identical preferences if their cost functions are identical.
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In exchange economies, variety in preferences is typically good news: exchange among agents
who have different preferences benefit both parties of the trade. When there is only a single task to
assign, then heterogeneity in preferences is never bad news (this is no longer the case in multiple-
tasks setting, see Yengin, 2012c). To see this, note that for each N ∈ N , each i ∈ N , and each
c ∈ CN , W (ci) = ci({α}). If there is j ∈ N\{i} such that cj({α}) < ci({α}), then W (c) < W (ci),
otherwise W (c) =W (ci).

Consider an economy with n agents. Rawls’difference principle, also known as the maximin
criterion requires that agents experience equal utilities unless it is possible to have a Pareto im-
provement on the equal utility distribution. If one requires that the center incurs no-deficit (total
transfer is at most zero), then the maximin criterion implies an allocation that is assignment-
effi cient, budget-balanced, and egalitarian and the utility of each agent is − 1nc[1] . Unfortunately,
there is no strategy-proof mechanism which requires the utility achieved at such an allocation to
be a welfare lower-bound (1−fairness) and generates no-deficit (see Corollary 1 of Porter et. al.,
2004). To obtain no deficit, we can reduce the lower bound on the utilities: for each k ∈ {1, 2, ..., n},
consider the hypothetical economy where the task is assigned to an agent with the k-th lowest cost
and utilities are equalized through transfers that balance the budget. The resulting utility of each
agent is − 1nc[k] . Let this reference utility be a lower bound on the actual utilities (k−fairness).

12

When the population varies, any given k will be greater than the number of people in some popula-
tions. Hence, for each k ≥ 1, we generalize k−fairness to a variable population setting, by requiring
that in each n−agent economy, the common reference utility is determined by assigning the task
to an agent with the l-th lowest cost to perform that task where l = min{k, n}.

Let k ≥ 1.

k-Fairness: For each N ∈ N , each i ∈ N, and each c ∈ CN ,

u(ϕi(c); ci) ≥ −
1

n
c[min{k,n}].

If the population was fixed, then the center would simply choose a welfare bound to apply in
any given economy. When the population varies, the same chosen welfare bound can be applied in
the new population; however, that would not guarantee that the welfares of all the initial agents
are affected in the same direction. Thus, to maintain fairness, population monotonicity should
be also satisfied. To see how much bite population monotonicity has in conjunction with welfare
bounds, we first present the characterizations of the Groves mechanisms that respect each of the
aforementioned welfare bounds without the requirement of population monotonicity.13

Lemma 2
(a) A Groves mechanism Gh,τ is individually rational if and only if for each N ∈ N , each i ∈ N ,
and each c ∈ CN ,

hi(c−i) ≥W (c−i). (3)

(b) A Groves mechanism Gh,τ respects the stand-alone lower-bound if and only if for each N ∈ N ,
each i ∈ N , and each c ∈ CN ,

hi(c−i) ≥ 0. (4)

12Note that no deficit is compatible with k−fairness for k ≥ 3; and for each k ≥ 1, if a mechanism is k−fair, then
it is (k + 1)−fair as well.
13Lemma 2 generalizes to the multiple-tasks setting depending on the domain of the cost functions. For details,

see Yengin (2012c).
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(c) A Groves mechanism Gh,τ respects the identical-preferences lower-bound if and only if for each
N ∈ N , each i ∈ N, and each c ∈ CN ,

hi(c−i) ≥
n− 1
n

W (c−i). (5)

(d) Let k ≥ 2. A Groves mechanism Gh,τ is k−fair if and only if for each N ∈ N , each i ∈ N , and
each c ∈ CN ,

hi(c−i) ≥ W (c−i)−
1

n
(c−i)[min{k,n}−1]. (6)

Let us denote the class of Groves mechanisms satisfying axiom “X”as GX . For each axiom X,
let Gh

X ,τ be a Groves mechanism that generates the minimal deficit in each economy among all
mechanisms in GX . Then, for each welfare bound X in Lemma 2, Gh

X ,τ is characterized by the
inequality presented in the relevant part of Lemma 2 holding as an equality. For instance, a Groves
mechanism generates the minimal deficit in each economy among all individually rational Groves
mechanisms if and only if (3) holds as an equality in each economy: the resulting mechanism Gh

IR,τ

is known as a Pivotal mechanism.
Under assignment-effi ciency and strategy-proofness, certain logical relations exist between the

above welfare bounds. For instance, by Theorem 2 and Corollary 3 in Atlamaz and Yengin (2008),
G1−fair ≡ G2−fair. Similarly, even though the identical-preferences lower-bound and k−fairness
stem from different intuitions and fairness ideas and in general, are not logically related, by Lemma 2
(c) and (d), G2−fair ≡ GIPLB.

Remark 1 Under assignment-effi ciency and strategy-proofness, the following are equivalent: the
identical-preferences lower-bound, 1−fairness, and 2−fairness.14

Remark 1 presents an interesting result: for Groves mechanisms, requiring that each agent
i’s utility is no less than the common utility at a Pareto-effi cient and egalitarian allocation in
i’s reference economy ci (i.e. IPLB) is equivalent to requiring that each agent’s utility is no less
than the common utility at a Pareto-effi cient and egalitarian allocation at the actual economy c
(1−fairness).

Population monotonicity can be incompatible with fairness notions and welfare bounds in other
models (see, for instance, Thomson, 1995b). Fortunately, this is not the case for our model as the
following result demonstrates:

Proposition 1 If for each N ∈ N , each i ∈ N , and each c ∈ CN ,

hi(c−i) = max
j∈N\{i}

{cj({α})},

then the Groves mechanism Gh,τ satisfies population monotonicity, individual rationality, the
identical-preferences lower-bound, the stand-alone lower-bound, and k−fairness for k ≥ 1. ♦

Let Gh,τ be a population monotonic Groves mechanism. If for each pair {i, j} ∈ N and each
(ci, cj) ∈ C{i,j}, hi(cj) ≥ 0, then by population monotonicity, for each N ∈ N with {i, j} ⊂ N
and each c ∈ CN , hi(c−i) ≥ hi(cj) ≥ 0. That is, if a population monotonic Groves mechanism Gh,τ

14For further logical relations between the welfare lower bounds in the multiple-tasks setting, see the working paper.
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respects SALB in two-agent economies, then it also respects SALB in any economy with more than
two agents:

A Groves mechanism Gh,τ satisfies population monotonicity and the stand-alone lower-bound
if and only if for each pair {N,N ′} ⊂ N such that N ′ ⊂ N, each pair {i, j} ⊆ N ′, and each
c ∈ CN ,

hi(c−i) ≥ hi(cN ′ \{i}) and hi(cj) ≥ 0. (7)

So far, all the welfare bounds introduced and the results presented are easily generalizable to
the setting where more than one task is to be distributed (see Yengin, 2012c). For instance, (7)
characterizes the population monotonic Groves mechanisms respecting SALB even in the multiple-
tasks setting. Unfortunately, if we strengthen the welfare bound to individual rationality, the
identical-preferences lower-bound, or k−fairness, then the h functions associated with a population
monotonic Groves mechanism do not have compact formulas unless we restrict our attention to the
single-task case. Our main result next presents our characterizations for this case. Note that
Theorem 1b also holds in the multiple-tasks case.

Theorem 1:

(a) A Groves mechanism Gh,τ generates the minimal deficit in each economy among all Groves
mechanisms that satisfy population monotonicity and individual rationality if and only if for each
N ∈ N , each i ∈ N , and each c ∈ CN ,

hi(c−i) = (c−i)[n−1]. (8)

(b) A Groves mechanism Gh,τ generates the minimal deficit in each economy among all Groves
mechanisms that satisfy population monotonicity and the stand-alone lower-bound if and only if
for each N ∈ N , each i ∈ N , and each c ∈ CN ,

hi(c−i) = 0. (9)

(c) A Groves mechanism Gh,τ generates the minimal deficit in each economy among all Groves
mechanisms that satisfy population monotonicity and the identical-preferences lower-bound (or
1−fairness) if and only if for each N ∈ N , each i ∈ N , and each c ∈ CN ,

hi(c−i) = max
p∈{1,2,...,n−1}

{
p

p+ 1
(c−i)[n−p]

}
. (10)

(d) Let k ≥ 2. A Groves mechanism Gh,τ generates the minimal deficit in each economy among
all Groves mechanisms that satisfy population monotonicity and k−fairness if and only if for each
N ∈ N , each i ∈ N , and each c ∈ CN ,

hi(c−i) = max
t∈{2,3,..,n}

max
s∈{1,..,n+1−t}

{
(c−i)[s] −

1

t
(c−i)[s−2+min(k,t)]

}
. (11)

Several real life problems are concerned with the choice of the location of a single discrete
public good or bad such as determining in which locality to build a nuclear facility. Allocation of a
single task in a team of employees, choice of a representative or committee chair in an organization,
provision of a multi-attribute public good15, and allocation of a single estate among heirs are some
of the other examples where Theorem 1 would provide useful suggestions.

15See Section 4 in Atlamaz and Yengin (2008).
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In Theorem 1, suppose we drop the requirement of generating minimal-deficit. Without loss of
generality, consider individual rationality. In the proof of Theorem 1a, we do not use the deficit
minimization condition yet for inequalities (18) and (19). When applied jointly, Lemma 1 and
Lemma 2a result in (18) and (19). That is, a Groves mechanism Gh,τ is population monotonic and
individually rational if and only if for each N ∈ N with |N | = 2, each i ∈ N , and each c ∈ CN ,
hi(c−i) is weakly greater than the right-hand-side of (18); and for each N ∈ N with |N | ≥ 3, each
i ∈ N , and each c ∈ CN , hi(c−i) is weakly greater than the right-hand-side of (19). As the proof
of Theorem 1a demonstrates, if for each population size and each economy with that population
size, we recursively apply the deficit minimization condition on (18) and (19), then (18) and (19)
must hold as equalities for each economy and we obtain (8). That is, for a population monotonic
and individually rational Groves mechanism Gh,τ , for each N ∈ N and each i ∈ N , equation (8)
specifies the minimal value that hi(c−i) can take in each economy c ∈ CN . Hence, by (18) and
(19), a Groves mechanism Gh,τ is population monotonic and individually rational if and only if
Lemma 1 holds and for each N ∈ N , each i ∈ N , and each c ∈ CN , hi(c−i) is weakly greater
than the right-hand-side of the equation (8).16 A parallel argument applies to the other parts of
Theorem 1 as well. Hence, if we drop the deficit minimization requirement, then agents would
enjoy weakly higher utilities in each economy.17

Comparison of Theorem 1 with Lemma 2 shows that, under the deficit minimization condition,
for each welfare lower bound X , additionally imposing population monotonicity modifies the form
of the transfer functions of Groves mechanisms Gh

X ,τ considerably and constricts the class GX .18
When the deficit is minimized, it is possible to provide an intuitive interpretation of the Groves
mechanisms respecting a welfare lower bound; for instance, Pivotal mechanisms grant each agent a
utility equal to her externality (for the intuitive interpretation for Gh

IPLB ,τ , see Section 4 in Yengin,
2013). On the other hand, such interpretations are hard to come up with for the transfers specified
in Theorem 1. Comparison of Theorem 1 with Lemma 2 yields the following observations as well:

For each N ∈ N , each i ∈ N, and each c ∈ CN , W (c−i) = (c−i)[1] ≤ (c−i)[n−1]. Hence, by (8)
and (3), the minimal welfare levels and the minimal deficit generated in each economy among all
mechanisms in GPM ∩ GIR are weakly higher than the minimal welfare levels and deficit generated
in GIR. (See Yengin, 2012c, for a detailed analysis).

The above observation still holds if we replace individual rationality with the identical-
preferences lower-bound or k−fairness. To see this, for each N ∈ N , each i ∈ N, and each
c ∈ CN , when k = 2, the right-hand-sides of inequalities (5) and (6) are equal to n−1

n (c−i)[1] which
is weakly smaller than the right-hand-side of (10); and the right-hand-side of (11) is weakly greater
than the right-hand-side of (6) and equal to it for t = n.

On the other hand, for the stand-alone lower-bound, even though GPM ∩ GSALB is a strict
subclass of GSALB, the minimal welfare levels and the minimal amount of deficit generated in each
economy among all mechanisms in GPM ∩ GSALB is the same as the ones generated among all
mechanisms in GSALB due to (9) and (4).
16Let b > a > 1 and consider Gh̃,τ such that for each N ∈ N , each i ∈ N , and each c ∈ CN , if |N | > 4,

then h̃i(c−i) = a(c−i)[n−1] and if |N | ≤ 4, then h̃i(c−i) = b(c−i)[n−1], Then, G
h̃,τ is individually rational but not

population monotonic (Lemma 1 is violated) even though for each N ∈ N , each i ∈ N , and each c ∈ CN , h̃i(c−i) is
weakly greater than the right-hand-side of (8).
17For instance, consider Gĥ,τ such that for each N ∈ N , each i ∈ N , and each c ∈ CN , ĥi(c−i) = a(c−i)[n−1] + b,

where a ≥ 1, b ≥ 0. Then, Gĥ,τ is population monotonic and individually rational. The increase in deficit and total
welfare when Gĥ,τ is used instead of a mechanism as in Theorem 1a is (a− 1)((n− 1)c[n] + c[n−1]) + nb ≥ 0.
18Note that adding population monotonicity would only affect the transfer functions when n > 2.
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4 Remarks

In Section 4 of Yengin (2012c), we present several additional results which are structured into four
subsections. Here, we briefly present and discuss these results and refer the interested readers to
Yengin (2012c), for details and proofs.

In our model, by Green and Laffont (1977), no assignment-effi cient and strategy-proof mech-
anism ensures that the budget is balanced (i.e., for each N ∈ N and each c ∈ CN ,

∑
i∈N

ti(c) = 0).

Fortunately, we can design ones that respect an upper bound on total transfer (budget deficit).
In Subsection 4.2 of Yengin (2012c), we present upper bounds on deficit which together with par-
ticular welfare lower bounds characterize subclasses of the assignment-effi cient and strategy-proof
mechanisms.

Even without requiring population monotonicity, all the welfare lower bounds we considered
are still compatible, since the Pivotal mechanisms respect each of them but violate population
monotonicity. This result also holds in a multiple-task setting considered in Yengin (2012c). In
general, even without requiring assignment-effi ciency, strategy-proofness, or population monotonic-
ity, individual rationality implies k−fairness. Similarly, in general, the identical-preferences lower-
bound is weaker than individual rationality and stronger than the stand-alone lower-bound. Fur-
ther logical relations are presented in Tables 3 and 4 of Yengin (2012c). Note that strengthening
or weakening a welfare lower bound does not necessarily increase the complexity of the transfer
functions as the form of the transfer functions in Theorem 1c are more complex than the ones in
Theorem 1 (a) and (b).

Our goal in this paper is not to analyze by how much the budget deficit performance of a
Groves mechanism would deteriorate if you strengthen the welfare lower bound. Before one can
carry out in depth budget performance analysis, this paper provides the necessary first step of
study, by presenting for each welfare bound, the population monotonic Groves mechanisms that
would generate the minimal budget deficit in each economy. That being said, in Subsection 4.4 of
Yengin (2012c), we present some results on the deficits generated under different welfare bounds.
First, we compare the minimal deficits generated by Groves mechanisms respecting different welfare
lower bounds. Our results confirm the usual trade-off between equity and effi ciency: as the lower
bound on welfare gets stronger (hence the welfares guaranteed become higher), the minimal possible
deficit incurred by the center gets larger. An analogous comparison of deficits is also true under
population monotonicity : in each economy, the deficit generated by mechanisms in Theorem 1a is
the highest, Theorem 1b is the lowest, and Theorem 1c is in between.

Then, we investigate the amount of the increase in the minimal deficit and total welfare, when a
welfare lower bound is strengthened. Such an analysis presents the trade-off the center would face
when considering which welfare bound to implement. For instance, under the deficit-minimization
condition, the gain in total welfare and the increase in budget deficit when IPLB is strengthened to
IR is between the minimal and the second minimal cost in the economy. Finally, in Subsection 4.4.2
of Yengin (2012c), we show that for a welfare bound X among IR, IPLB, and k−fairness, in each
economy, the difference between the minimal deficit generated among all mechanisms in GPM ∩GX
and the one generated among all mechanisms in GX can be arbitrarily high and is not bounded above
by any fixed amount T ∈ R. We also show that for population monotonic Groves mechanisms, if
we strengthen SALB to IPLB, or IPLB to IR, the increase in minimal deficit is at most the number
of people times the maximal cost in the economy (i.e., nc[n]).

An open question left for future research is to identify, for the multiple-tasks setting, alternative
domains of cost functions or alternative cost environments in which we can find tractable expressions
for population monotonic Groves mechanisms respecting welfare lower bounds and deficit upper
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bounds.

5 Appendix

Proof of Lemma 2:
(a) The proof is similar to the proof of Proposition 3 in Pápai (2003). Let h ∈ H be as in (3). Then,
by equation (1), for each N ∈ N , each i ∈ N, and each c ∈ CN , u(Gh,τi (c); ci) ≥W (c−i)−W (c) ≥ 0.
Hence, Gh,τ is individually rational.

Conversely, let Gh,τ be individually rational. Assume, by contradiction, that there are N ∈ N ,
i ∈ N, and c ∈ CN such that

hi(c−i) < W (c−i). (12)

Let ĉi({α}) = (c−i)[1] and ĉ = (ĉi, c−i). Since c−i = ĉ−i and W (c−i) = W (ĉ), by (12), hi(ĉ−i) <

W (ĉ). Hence, by (1), u(Gh,τi (ĉ); ĉi) < 0, which contradicts individual rationality.

(b) By Proposition 3a in Yengin (2012b).

(c) By Lemma 1 and Theorem 1 in Yengin (2013).

(d) The proof is implied by the proof of Theorem 1 in Atlamaz and Yengin (2008). Let k ≥ 2
and h be as in (6). Note that for each N ∈ N , each i ∈ N , and each c ∈ CN , W (c−i) ≥
W (c), and (c−i)[min{k,n}−1] ≤ c

[min{k,n}] . Hence, for each N ∈ N , each i ∈ N , and each c ∈ CN ,
W (c−i)− 1

n(c−i)[min{k,n}−1] ≥W (c)−
1
nc[min{k,n}]. By (1) and (6), G

h,τ is k−fair.

Conversely, for some k ≥ 2, let Gh,τ be k−fair. Assume, by contradiction, that there are N ∈ N ,
i ∈ N, and c ∈ CN such that

hi(c−i) < W (c−i)−
1

n
(c−i)[min{k,n}−1]. (13)

Let ĉi({α}) = (c−i)[1] and ĉ = (ĉi, c−i) ∈ CN . By k-fairness and equation (1),

hi(ĉ−i) ≥W (ĉ)−
1

n
ĉ[min{k,n}]. (14)

Since ĉ−i = c−i, by (13) and (14),

W (c−i)−W (ĉ) +
1

n

[
ĉ
[min{k,n}] − (c−i)[min{k,n}−1]

]
> 0. (15)

Since ĉi({α}) = (c−i)[1], then W (ĉ) = W (c−i) = (c−i)[1] and ĉ[min{k,n}] = (c−i)[min{k,n}−1]. These
equalities together contradict (15). �

Proof of Proposition 1: Let k ≥ 1, N ∈ N , i ∈ N, and c ∈ CN . Since max
j∈N\{i}

cj({α}) ≥ W (c),

by equation (1), u(Gh,τi (c); ci) ≥ 0 ≥ max{− 1nW (c
i), −ci({α}), − 1nc[min{k,n}]}. Thus,

Gh,τ respects IR, IPLB, SALB, and k-fairness. Since for each N ′ ⊂ N with i ∈ N ′,
max

j∈N\{i}
cj({α}) ≥ max

j∈N ′\{i}
cj({α}), then by (2), Gh,τ is population monotonic. ♦

For the next proofs, we need the following notation: Let c, ĉ, c̃, ... denote typical economies
associated with the agent sets N, N̂, Ñ , ..., respectively. For each N ∈ N , each i ∈ N, each c ∈ CN ,
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and each r ∈ {2, 3, ..., n}, let Cr be the set of economies that have r number of agents and Dr(N, i, c)
be the set of all economies obtained by removing the cost functions of any (n− r) number of agents
from c−i :

For each N ∈ N , each i ∈ N, each c ∈ CN , and each r ∈ {2, 3, ..., n},

Dr(N, i, c) ≡ {c′ ∈ Cr: there exists N ′ ⊆ N with i ∈ N ′ and |N ′| = r such that c′ = cN ′}.

Thus, Lemma 1 can be rephrased as follows: A Groves mechanism Gh,τ is population monotonic if
and only if for each N ∈ N , each i ∈ N, each c ∈ CN , each r ∈ {3, ..., n}, and each ĉ ∈ Dr(N, i, c),

hi(ĉ−i) ≥ max
c̃∈Dr−1(N̂,i,ĉ)

{hi(c̃−i)} . (16)

Note that population monotonicity does not impose any restriction on economies with two agents,
so we take r ≥ 3.

As an example, let N = {1, 2, 3, 4} and c ∈ CN . Let Gh,τ be population monotonic. Then, (16)
should be true for N, c, and i = 1. That is,
· for r = n = 4, h1(c2, c3, c4) ≥ max {h1(c2, c3), h1(c2, c4), h1(c3, c4)} , and
· for r = 3, for each pair {j, k} ⊂ {2, 3, 4}, h1(cj , ck) ≥ max {h1(cj), h1(ck)} .

Proof of Theorem 1:

(b) Let h ∈ H be as in (9). By inequality (2), Gh,τ is population monotonic. By Lemma 2b, Gh,τ

satisfies SALB.
Conversely, let Gh,τ satisfy population monotonicity and SALB. For Gh,τ to generate the minimal
deficit in each economy, (4) must hold as an equality in each economy, that is, h is as in (9). �

The proof for the rest of the parts is constructive.

Let Gh,τ be a Groves mechanism that generates the minimal deficit in each economy among all
Groves mechanisms that satisfy population monotonicity and welfare lower bound X, where X is
IR in part (a), IPLB in part (c), and k−fairness with k ≥ 2 in part (d).

Let N ∈ N and c ∈ CN . Note that for each i ∈ N, W (c−i) = (c−i)[1].

Note that for each i ∈ N , each r ∈ {3, ..., n}, each ĉ ∈ Dr(N, i, c), and each s ∈ {1, 2..., r − 2},

max
c̃∈Dr−1(N̂,i,ĉ)

(c̃−i)[s] = (ĉ−i)[s+1]. (17)

(Let c′ be a maximizer of the left-hand-side of (17). Then, c′ is obtained from ĉ by removing the
cost function of an agent with the lowest cost to perform the task in ĉ−i. That is, c′ = ĉ−j where
ĉj({α}) = (ĉ−i)[1].)

Since
∑
i∈N

th,τi (c) = −(n − 1)W (c) +
∑
i∈N

hi(c−i), to minimize the deficit we need to minimize∑
i∈N

hi(c−i). For each i ∈ N, population monotonicity and welfare bound X restrict the minimal

value that hi(c−i) can take, which we investigate in the rest of the proof.

(a) By (16) and (3), population monotonicity and IR together imply, for each i ∈ N and each
ĉ ∈ D2(N, i, c),

hi(ĉ−i) ≥ (ĉ−i)[1], (18)
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(note that population monotonicity does not impose any restriction on economies with two agents;
hence, the only restriction on economies in D2(N, i, c) is by IR),
and for each i ∈ N , each r ∈ {3, ..., n}, and each ĉ ∈ Dr(N, i, c),

hi(ĉ−i) ≥ max
(

max
c̃∈Dr−1(N̂,i,ĉ)

{hi(c̃−i)} , (ĉ−i)[1]

)
(19)

where N̂ is the population associated with ĉ.

To minimize the deficit, (18) and for r = 3, (19) should hold as an equality. Then, for each i ∈ N
and each ĉ ∈ D3(N, i, c),

hi(ĉ−i) = max

(
max

c̃∈D2(N̂,i,ĉ)

{
(c̃−i)[1]

}
, (ĉ−i)[1]

)
. (20)

By (20) and (17), for each i ∈ N and each ĉ ∈ D3(N, i, c),

hi(ĉ−i) = max
(
(ĉ−i)[2], (ĉ−i)[1]

)
= (ĉ−i)[2]. (21)

Similarly, to minimize the deficit, for r = 4, (19) should hold as an equality. Then, by (17) and
(21), for each i ∈ N and each ĉ ∈ D4(N, i, c),

hi(ĉ−i) = max

(
max

c̃∈D3(N̂,i,ĉ)

{
(c̃−i)[2]

}
, (ĉ−i)[1]

)
,

= max
(
(ĉ−i)[3], (ĉ−i)[1]

)
= (ĉ−i)[3].

By recursive substitution, at each step applying (17) and minimizing the deficit (i.e., (19) holding
as an equality for each r ∈ {3, ..., n}), we obtain, for each i ∈ N , each r ∈ {3, ..., n}, and each
ĉ ∈ Dr(N, i, c),

hi(ĉ−i) = max
(
(ĉ−i)[r−1], (ĉ−i)[1]

)
= (ĉ−i)[r−1].

Note that ĉ ∈ Dn(N, i, c) if and only if ĉ = c. Hence, for r = n, we obtain the h function in (8). �

(c) By (16) and (5), population monotonicity and IPLB together imply, for each i ∈ N and each
ĉ ∈ D2(N, i, c),

hi(ĉ−i) ≥
1

2
(ĉ−i)[1], (22)

and for each i ∈ N , each r ∈ {3, ..., n}, and each ĉ ∈ Dr(N, i, c),

hi(ĉ−i) ≥ max
(

max
c̃∈Dr−1(N̂,i,ĉ)

{hi(c̃−i)} ,
r − 1
r
(ĉ−i)[1]

)
. (23)

To minimize the deficit, (22) and for r = 3, (23) should hold as an equality. Then, for each i ∈ N
and each ĉ ∈ D3(N, i, c),

hi(ĉ−i) = max

(
max

c̃∈D2(N̂,i,ĉ)

{
1

2
(c̃−i)[1]

}
,
2

3
(ĉ−i)[1]

)
. (24)
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By (24) and (17), for each i ∈ N and each ĉ ∈ D3(N, i, c),

hi(ĉ−i) = max

(
1

2
(ĉ−i)[2],

2

3
(ĉ−i)[1]

)
. (25)

Similarly, to minimize the deficit, for r = 4, (23) should hold as an equality. Then, by (25) and a
similar argument to (17), for each i ∈ N and each ĉ ∈ D4(N, i, c),

hi(ĉ−i) = max

(
max

c̃∈D3(N̂,i,ĉ)

{
max

(
1

2
(c̃−i)[2],

2

3
(c̃−i)[1]

)}
,
3

4
(ĉ−i)[1]

)
,

= max

(
1

2
(ĉ−i)[3],

2

3
(ĉ−i)[2],

3

4
(ĉ−i)[1]

)
.

By recursive substitution, at each step applying (17) and minimizing the deficit (i.e., (23) holding
as an equality for each r ∈ {3, ..., n}), we obtain, for each i ∈ N , each r ∈ {3, ..., n}, and each
ĉ ∈ Dr(N, i, c),

hi(ĉ−i) = max

(
1

2
(ĉ−i)[r−1],

2

3
(ĉ−i)[r−2],

3

4
(ĉ−i)[r−3], ...,

r − 1
r
(ĉ−i)[1]

)
,

= max
p∈{1,2,...,r−1}

{
p

p+ 1
(ĉ−i)[r−p]

}
.

Note that ĉ ∈ Dn(N, i, c) if and only if ĉ = c. Hence, for r = n, we obtain the h function in (10).

Note that by Remark 1, we can replace the identical-preferences lower-bound with 1−fairness, and
the proof still holds true. �

(d) Let k ≥ 2. By (16) and (6), population monotonicity and k−fairness together imply, for each
i ∈ N and each ĉ ∈ D2(N, i, c),

hi(ĉ−i) ≥ (ĉ−i)[1] −
1

2
(ĉ−i)[min{k,2}−1], (26)

and for each i ∈ N , each r ∈ {3, ..., n}, and each ĉ ∈ Dr(N, i, c),

hi(ĉ−i) ≥ max
(

max
c̃∈Dr−1(N̂,i,ĉ)

{hi(c̃−i)} , (ĉ−i)[1] −
1

r
(ĉ−i)[min{k,r}−1]

)
. (27)

To minimize the deficit, (26) and for r = 3, (27) should hold as an equality. Then, for each i ∈ N
and each ĉ ∈ D3(N, i, c),

hi(ĉ−i) = max

(
max

c̃∈D2(N̂,i,ĉ)

{
(c̃−i)[1] −

1

2
(c̃−i)[min{k,2}−1]

}
, (ĉ−i)[1] −

1

3
(ĉ−i)[min{k,3}−1]

)
. (28)

Observation 1: For each i ∈ N, each r ∈ {2, ..., n}, and each ĉ ∈ Dr(N, i, c),

(ĉ−i)[1] −
1

r
(ĉ−i)[min{k,r}−1] ≡ max

t∈{r}
max

s∈{1,..,r+1−t}

{
(ĉ−i)[s] −

1

t
(ĉ−i)[s−2+min(k,t)]

}
.
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Let r ∈ {3, ..., n} and t ∈ {2, 3, ..., r − 1}.

Observation 2: For each i ∈ N , each ĉ ∈ Dr(N, i, c), and each m ∈ {1, 2, ..., r − t},

max
c̃∈Dr−1(N̂,i,ĉ)

{
max
s∈{m}

{(c̃−i)[s] −
1

t
(c̃−i)[s−2+min(k,t)]}

}
= max

s∈{m,m+1}

{
(ĉ−i)[s] −

1

t
(ĉ−i)[s−2+min(k,t)]

}
.

(29)
Proof: Let i ∈ N , ĉ ∈ Dr(N, i, c), and m ∈ {1, 2, ..., r − t}. Let c̃ ∈ Dr−1(N̂ , i, ĉ) be a maximizer
of the left-hand-side of (29), Ñ be the population associated with c̃, and N̂ be the population
associated with ĉ. Since |Ñ | = |N̂ | − 1 = r − 1 and i ∈ Ñ , then c̃ = ĉ−j for some j ∈ N̂\{i}.
That is, we obtain c̃−i by removing the cost function of one agent from ĉ−i. Hence, either (i)
(c̃−i)[m] = (ĉ−i)[m] or (ii) (c̃−i)[m] = (ĉ−i)[m+1]. In order to maximize the left-hand-side of (29),
given (c̃−i)[s], we need (c̃−i)[s−2+min(k,t)] as small as possible.
Note that since min(k, t) ≥ 2, then

(c̃−i)[s] ≤ (c̃−i)[s−2+min(k,t)]. (30)

First, suppose (i) holds. That is, the cost function of an agent whose cost for performing α is
more than (ĉ−i)[m] has been removed from ĉ−i to obtain c̃−i. Note that ĉ−i contains r − 1 cost
functions and c̃−i contains r − 2 cost functions. Due to (30), to have (c̃−i)[s−2+min(k,t)] as small as
possible for any m ∈ {1, 2, ..., r− t}, we need to obtain c̃−i from ĉ−i by removing the cost function
of an agent who has the largest cost in ĉ−i, i.e., c̃−i = ((ĉ−i)[1], (ĉ−i)[2], ..., (ĉ−i)[n̂−2]). Hence, if
(c̃−i)[m] = (ĉ−i)[m], then by (30), (c̃−i)[m−2+min(k,t)] = (ĉ−i)[m−2+min(k,t)]. That is, we obtain the
right-hand-side of (29) for s = m.

Next, suppose (ii) holds. That is, the cost function of an agent whose cost for performing α is
less than (ĉ−i)[m] has been removed from ĉ−i to obtain c̃−i. Then, when (c̃−i)[m] = (ĉ−i)[m+1], by
(30), (c̃−i)[m−2+min(k,t)] = (ĉ−i)[m−1+min(k,t)]. That is, we obtain the right-hand-side of (29) for
s = m+ 1. ♦

Observation 3: For each i ∈ N, each r ∈ {3, ..., n}, and each ĉ ∈ Dr(N, i, c),

max
c̃∈Dr−1(N̂,i,ĉ)

{
max

t∈{2,..,r−1}
max

s∈{1,..,r−t}
{(c̃−i)[s] − 1

t (c̃−i)[s−2+min(k,t)]}
}

= max
t∈{2,..,r−1}

max
c̃∈Dr−1(N̂,i,ĉ)

{
max

s∈{1,..,r−t}
{(c̃−i)[s] − 1

t (c̃−i)[s−2+min(k,t)]}
}
,

= max
t∈{2,..,r−1}

max
s∈{1,...,r+1−t}

{
(ĉ−i)[s] − 1

t (ĉ−i)[s−2+min(k,t)]
}
.

Proof: The second equality follows from Observation 2. ♦
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By (28) and Observations 1 and 3, for each i ∈ N and each ĉ ∈ D3(N, i, c),

hi(ĉ−i) = max

(
max

c̃∈D2(N̂,i,ĉ)
{ max
t∈{2}

max
s∈{1,..,3−t}

{(c̃−i)[s] −
1

t
(c̃−i)[s−2+min(k,t)]}}, (ĉ−i)[1] −

1

3
(ĉ−i)[min{k,3}−1]

)
,

= max

(
max
t∈{2}

max
s∈{1,..,4−t}

{(ĉ−i)[s] −
1

t
(ĉ−i)[s−2+min(k,t)]}, (ĉ−i)[1] −

1

3
(ĉ−i)[min{k,3}−1]

)
,

= max

(
max
t∈{2}

max
s∈{1,..,4−t}

{(ĉ−i)[s] −
1

t
(ĉ−i)[s−2+min(k,t)]},max

t∈{3}
max

s∈{1,..,4−t}
{(ĉ−i)[s] −

1

t
(ĉ−i)[s−2+min(k,t)]}

)
= max

t∈{2,3}
max

s∈{1,..,4−t}

{
(ĉ−i)[s] −

1

t
(ĉ−i)[s−2+min(k,t)]

}
. (31)

Note that the first three equalities follow from equality (28), Observations 1 and 3, respectively.

Similarly, to minimize the deficit, for r = 4, (27) should hold as an equality. Then, by (31), for
each i ∈ N and each ĉ ∈ D4(N, i, c),

hi(ĉ−i) = max

(
max

c̃∈D3(N̂,i,ĉ)

{
max
t∈{2,3}

max
s∈{1,..,4−t}

{(c̃−i)[s] −
1

t
(c̃−i)[s−2+min(k,t)]}

}
, (ĉ−i)[1] −

1

4
(ĉ−i)[min{k,4}−1]

)
.

(32)
By Observation 1,

(ĉ−i)[1] −
1

4
(ĉ−i)[min{k,4}−1] = max

t∈{4}
max

s∈{1,..,5−t}

{
(ĉ−i)[s] −

1

t
(ĉ−i)[s−2+min(k,t)]

}
. (33)

Substituting (33) into (32) and applying Observation 3, we get for each i ∈ N and each ĉ ∈
D4(N, i, c),

hi(ĉ−i) = max
t∈{2,3,4}

max
s∈{1,..,5−t}

{
(ĉ−i)[s] −

1

t
(ĉ−i)[s−2+min(k,t)]

}
.

By recursive substitution, at each step applying Observations 1 and 3, and minimizing the deficit
(i.e., (27) holding as an equality for each r ∈ {3, ..., n}), we obtain, for each i ∈ N , each r ∈ {3, ..., n},
and each ĉ ∈ Dr(N, i, c),

hi(ĉ−i) = max
t∈{2,3,..,r}

max
s∈{1,..,r+1−t}

{
(ĉ−i)[s] −

1

t
(ĉ−i)[s−2+min(k,t)]

}
.

Note that ĉ ∈ Dn(N, i, c) if and only if ĉ = c. Hence, for r = n, we obtain the h function in (11).
��
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