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Abstract 

The active-truss-based morphing wing (ATBMW) is a new type of smart structure, 

which is more efficient than airfoils with conventional control surfaces. However, the 

sophisticated ATBMW framework and large numbers of actuators make it difficult to 

obtain the overall structural dynamics for controller design and inconvenient to tune 

actuators on board. Our research therefore aims to develop an actuator-level control 

scheme to simplify the process of controller implementation on ATBMWs so that the 

above problems regarding controller design and on-board tuning can be bypassed. 

The proposed control scheme is based on the concept of unknown-input estimation 

and compensation in a servomechanism. A new unknown-input estimator (UIE) is 

developed and integrated with a Linear-Quadratic-Gaussian (LQG) controller to 

provide enhanced compensation of uncertainties. By doing so, the resultant controller 

can be designed and tuned simply using the dynamics of the actuator, without the 

necessity to know the dynamics of the entire wing structure. Existing techniques for 

estimating unknown inputs to a system require at least one or more of the following: 

detailed knowledge on unknown inputs, derivatives of measured outputs, inversion 

of plant dynamics, constrained state observer design, parameter optimisation (global 

optimum not guaranteed), or complicated designs. The new UIE developed in this 

thesis is exempted from the aforementioned limitations and features a simple 

structure and straightforward design. 

To validate the proposed UIE-integrated LQG controller, an ATBMW prototype with 

5 linear actuators is built. For comparison, a PID controller is introduced in both 

simulations and experiments. Both types of controllers are designed using two sets of 

models obtained via system identification: one set represents actuator dynamics only, 

while the other set includes wing structural dynamics. 

In simulation study, system sensitivity and stability robustness are firstly investigated 

against parameters associated with the UIE component, with guidelines for designing 

the proposed UIE-integrated LQG controller validated. The mechanism of unknown-

input compensation is then demonstrated by dividing unknown inputs into exogenous 

disturbances and internal uncertainties and examining the two situations separately. 
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Compared with a standard LQG controller, the UIE-integrated LQG controller shows 

enhanced capability in rejecting unknown inputs. Lastly, the UIE-integrated LQG 

controller is implemented on all the 5 actuators in the presence of only internal 

uncertainties, and compared with the PID controller. Superior performance of the 

UIE-integrated LQG controller over the PID algorithm is observed in simulations. 

In experimental study, wind tunnel tests were conducted to further validate the 

efficacy of the UIE-integrated LQG controller under both aerodynamic loads and 

modelling errors. The performance of the UIE-integrated LQG controller designed 

according to actuator dynamics is closely comparable to that of its congener based on 

wing structural dynamics, and both outperform the PID controller. 

In conclusion, the new UIE is capable of effective estimation of unknown inputs. The 

UIE-integrated LQG controller has an enhanced capacity to compensate a wide class 

of unknown inputs including exogenous disturbances and internal uncertainties, and 

meanwhile the ease of design is maintained. The most significant merit of applying 

the proposed controller on an ATBMW is that the implementation of actuator 

controllers is considerably simplified despite the complexity of the ATBMW 

framework. The controller can be based on actuator dynamics only, and can be tuned 

on individual actuators before the actuators are assembled on the wing. Therefore, 

the process of controller implementation is free from structural coupling constraints, 

and there is no need to obtain wing structural dynamics for controller design and to 

further tune actuators on board. 

Beyond the merits mentioned above, the proposed controller has broader significance 

in the following two aspects. Firstly, it provides a unified solution to simplifying 

actuator controller implementation on ATBMWs despite the variations and 

complexity of ATBMW structures, and is thus significant to successful realisations 

of a wide range of promising ATBMW concepts; Secondly, the enhanced capacity of 

disturbance rejection is crucial to aerodynamic improvements achieved by ATBMWs 

as it ensures reliable performance of wing morphing in the presence of unmeasured 

and unpredictable exogenous loads. 
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Chapter 1  

INTRODUCTION 

In this chapter, key concepts involved in our research are introduced and discussed in 

form of literature review. First, the active-truss-based morphing wing (ATBMW) is 

introduced in Section 1.1, with one of the major problems that concerns ATBMW 

applications in practice pointed out – the difficulties in actuator controller 

implementation on ATBMWs of a complicated structure. A possible solution is 

proposed accordingly at the end of the section. More details regarding the solution, 

which is the unknown-input estimation and its integration into a control system, are 

given in Section 1.2, and expectations on potential improvements to be made over 

currently available schemes for the unknown-input estimation are posed. Major 

issues to be considered in this research are summarised in Section 1.3, and the aim 

and objectives of the work documented herein are outlined in Section 1.4. 

 

1.1 Active-Truss-Based Morphing Wing 

During flight, the profile variation of aircraft wings not only controls the aircraft 

attitude (Barnard and Philpott, 2003, Anderson, 2008) but also contributes to 

aerodynamic improvements under different conditions, such as life/drag ratio 

optimisation (Gilbert, 1981, Bolonkin and Gilyard, 1999, Spillman, 1992), flow 

separation alleviation (Kota et al., 2003), gust load alleviation (Gilbert, 1981, Kota et 

al., 2003, Hetrick et al., 2007), and parasitic drag reduction (Gilbert, 1981). For 

example, a reduction in fuel consumption is a most direct benefit from aerodynamics 

improvements (Kota et al., 2003, Butt, 2005, Moorhouse et al., 2006). However, 
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limited aerodynamic improvements can be made on conventional airfoils because 

lumped and heavy mechanical mechanisms are required to drive control surfaces (e.g. 

flaps, slats, and ailerons) which in the meantime are separate or segmented 

components that result in unsmooth airfoil profile as a whole (Cole, 1981). In 

addition, the degrees of freedom in terms of shape change on conventional airfoils 

are restricted by the existing mechanism of control surfaces. 

As one of the various types in the morphing wing technology, the active-truss-based 

morphing wing (ATBMW) is believed to have better aerodynamic performance over 

those with conventional control surfaces commonly seen on modern aircraft (Austin 

et al., 1994). An ATBMW realises smooth and flexible profile variation (shape 

morphing) through truss structures with embedded actuators as active elements. 

A truss is a type of structure commonly applied in architecture and structural 

engineering. Straight members (e.g. struts) are basic elements in a truss and are 

mutually connected at each end (known as joint or node) to form one or more 

triangular units that construct the entire truss structure. In a planar truss all the 

elements and nodes lie within the same plane, while a space truss is formed when 

elements and nodes extend into three dimensions. A truss is statically determinate 

according to Maxwell’s theory (Maxwell, 1864). When the length of all struts is 

given, the shape of the truss is known. Accordingly, a truss is also kinematically 

determinate if one or more elements vary in length. By replacing fixed-length 

elements in a truss with substitutes that can contract and extend, an active truss is 

formed, which is flexible in shape and meanwhile retains the merits of a static truss 

in terms of structural integrity and strength. 

Therefore, altering the length of active truss struts can change the shape of an 

ATBMW while the overall structural integrity and strength are maintained (Austin et 

al., 1994, Ramrakhyani et al., 2005, Baker and Friswell, 2009). Various advanced 

actuators such as miniature linear actuators, Shape Memory Alloys (SMA), 

magnetostrictive materials, and piezoelectric actuators can be used to replace 

conventional hydraulic motors for a more compact and lighter structure (Sofla et al., 

2009), so an ATBMW can be more efficient. Figure 1.1 illustrates an aircraft wing 

rib constructed from active trusses, the camber of which increases from zero to 10% 
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of chord with the maximum camber at 40% of chord. It can be seen from the figure 

that the length of liner actuators are changed in order to accomplish the deformation. 

 

In an early research conducted by Austin et al. (1994), a wing rib assembled from 

planar active trusses is investigated, which is capable of small shape changes in the 

section between the leading and trailing edges (Figure 1.2 (a)) to improve aircraft 

performance during transonic cruise. Magnetostrictive materials that can vary in 

length in magnetic fields are proposed as active truss elements though mechanical 

ball-screw actuators (Figure 1.2 (b)) are actually used in experiments. Figure 1.2 (c) 

illustrates four possible modes of shape morphing that can be achieved. 

Unlike the concept of Austin et al. (1994), repeated cellular trusses instead of 

separate ribs are used to construct the overall wing in the work of Ramrakhyani et al. 

(2005) (see Figure 1.3 (a) and (b) on page 5), which is capable of a wider range of 

shape morphing including span-wise deformation, for example, wing tip bending as 

shown in Figure 1.3 (c). 

Focusing on camber control via trailing edge bending, Baker and Friswell (2009) put 

more efforts on optimising the location and corresponding extension of active 

elements for a particular wing profile to change to, where a wing rib with planar 

trusses is analysed. In Figure 1.4 (on page 6), length variation of each active element 

is illustrated in colour. As can be seen, a finer truss with more active struts offers a 

smoother profile. 

Fixed-Length Struts 
Linear Actuators 

Figure 1.1: A typical example of the ATBMW 
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In addition to the aforementioned ATBMW concepts, there are also other active truss 

structures that have the potential for aircraft wing applications (Hutchinson et al., 

2003, Lucato et al., 2004, Sofla et al., 2009). However, as shown in Figures 1.1 to 

1.4, ATBMWs generally need more actuators to achieve better shape morphing, and 

adjacent actuators may be mechanically coupled and mutually constrained. The 

interactions among actuators can cause considerable difficulties in acquiring an 

(a) Schematic of the experimental ATBMW rib 

(b) Arrangement of actuators and sensors on the experimental ATBMW rib 

(c) Modes of shape morphing 

Figure 1.2: An experimental ATBMW rib constructed by Austin et al. (1994) 

a1172507
Text Box
A
NOTE:  
These figures/tables/images have been removed 
         to comply with copyright regulations. 
     It is included in the print copy of the thesis 
     held by the University of Adelaide Library.
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accurate dynamic model of the entire structure and in performing on-board tuning of 

actuators. In addition, the large quantity of actuators required on ATBMWs with 

finer control surfaces and more degrees-of-freedom for shape morphing makes the 

aforementioned two tasks even more difficult. A satisfactory solution to this problem, 

although of vital importance to successful realisations of the promising ATBMW 

concepts, nevertheless has received little research attention. 

In order to solve the problem without the necessity to modify the mechanical 

structure, the focus of our research is placed on improving the actuator controller. If 

all necessary and crucial procedures involved in controller implementation can be 

(b) Isometric view of the structure 

(c) Isometric view with wing tip bended down 

Figure 1.3: A conceptual ATBMW formed by repeated cellular trusses 
(Ramrakhyani et al., 2005) 

(a) Section view of the structure 

a1172507
Text Box
A
NOTE:  
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     It is included in the print copy of the thesis 
     held by the University of Adelaide Library.
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accomplished on individual actuators outside the wing structure prior to the assembly 

of the wing, then the problem associated with interactions in a complex structure can 

be bypassed. That is, if the controller can be based on actuator dynamics only, tuned, 

and tested on individual actuators before the actuators are assembled on the wing, 

and remain robust when actuators are in place, then the entire controller 

implementation process (design, tuning, and testing) is free from structural coupling 

constraints. In this case, there is no need to use a precise overall wing model for 

controllers or to further tune actuators on board. To achieve this, it is proposed to 

integrate a scheme for unknown-input estimation into a conventional (nominal) 

controller (e.g. Linear-Quadratic-Gaussian controller) for actuator motion control. 

The unknown-input estimation scheme can estimate and subsequently compensate 

effects from most uncertainties, so that the nominal controller remains unaffected in 

the presence of these uncertainties. With enhanced tolerance to uncertainties, such a 

compound controller can be designed simply according to actuator dynamics, since 

un-modelled dynamics from the wing structure and unmeasured loads from the 

working environment can be handled accordingly by the unknown-input estimation 

scheme. 

 

 

Figure 1.4: Simulation of ATBMW trailing edge shape morphing 
(Baker and Friswell, 2009) 

(a) ATBMW rib trailing edge formed 
by 14 elements with 3 actuators 

(b) ATBMW rib trailing edge formed 
by 1752 elements with 88 actuators 

Original Profile Original Profile 

Target Profile 

Cambered Profile Cambered Profile 
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1.2 Unknown-Inputs Estimation 

In reality, a control system is always subjected to uncertainties including un-

modelled nonlinearities and quantities that in some cases are unmeasurable or 

inconvenient to measure such as parameter variation and unknown inputs. 

Disturbances from external excitations are typical unknown inputs. The continuously 

changing payload is regarded as an unknown input as well when it is not measured. 

Actuator controllers designed under ideal conditions or specific assumptions may fail 

to work or have poor performance if these uncertainties are not taken into account in 

the design process. To attenuate influences from uncertainties, various methods can 

be used. In addition to some commonly applied techniques such as H  robust 

control (McFarlane and Glover, 1988, Doyle et al., 1989, Dietz and Scherer, 2010) 

and adaptive intelligent control (Dadone et al., 2003, Mohammadzaheri and Chen, 

2010a, Mohammadzaheri and Chen, 2010b), the method of unknown-input 

estimation or prediction appears to be an attractive solution which enables better 

tolerance to uncertainties, as demonstrated by various industrial applications. It treats 

most uncertainties as equivalent unknown inputs, estimates these unknown inputs via 

an observer, and subsequently constructs counteractive control efforts to cancel the 

effects from uncertainties. It has been shown in industrial applications where various 

servomechanisms are involved, that the incorporation of unknown-input estimation 

and compensation into existing conventional controllers offers enhanced disturbance 

rejection and consequently better performance robustness in terms of set-point 

regulation or real-time tracking. These applications include and are not limited to 

power converter (Sun and Gao, 2005), paper machine (Valenzuela et al., 2007), 

machine tools (Cheng and Peng, 2007, Huang et al., 2010, She et al., 2011), 

precision positioning table (Tan et al., 2003), active magnetic bearings (Schuhmann 

et al., 2012), robots (Umeno et al., 1993, Komada et al., 2000, Mitsantisuk et al., 

2012), and computer disk drives (White et al., 2000, Lee et al., 2012). Especially in 

the work of Umeno et al. (1993), where unknown-input estimation is employed in the 

decentralised joint control system of a multi-axis robot manipulator, the controller 

design per se and subsequent overall control system design are significantly 

simplified, without the necessity to consider various kinds of dynamic forces at joints. 
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As introduced in the following subsections, various methods are available to design 

such an observer for unknown-input estimation. 

1.2.1 Estimation of Partially Unknown Inputs 

Though some external inputs to a system are unknown in magnitude, they may 

generally be identifiable as a combination of a series of harmonics, corresponding 

characteristics of which can be extracted from data acquired in either experiments or 

practical applications. In this case, these inputs are regarded as partially unknown.  

(1) Extended State Observer 

By augmenting a Luenberger state observer (Luenberger, 1964) to include both 

models of the plant and the partially unknown inputs, an extended state observer is 

formed, which is capable of estimating states of not only the plant but also unknown 

inputs. The basic concept of an extended observer in a linear regulator is illustrated 

in Figure 1.5. ˆ( )tx  in the figure is the vector of estimated plant states. The resultant 

control effort is ( ) ( ) ( )c dt t t u u u , where ( )c tu  is the normal control effort from 

the nominal controller for plant regulation while ( )d tu  is obtained from the estimate 

of ( )td . In this way, dominant unknown external inputs can be cancelled accordingly. 

 

In the work of Johnson (1971), the method of constructing an extended observer is 

based on the following plant model: 

Plant 







Extended 
State 

Observer 
xK

( )d su

( )c su

( )su

ˆ ( )sx

( )sd

Figure 1.5: Basic concept of an extended state observer 
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( ) ( ) ( ) ( )
( ) ( )

dt t t t

t t

    

x Ax Bu B d
y Cx


, (1.1) 

where A , B , dB , and C  are known system matrixes, ( )tx  is the plant state vector, 

( )ty  is the vector of measured plant outputs, vector ( )tu  contains control inputs, and 

vector ( )td  represents partially unknown inputs. 

The model of ( )td  is further described by a group of differential equations 

 
( ) ( ) ( ) ( )
( ) ( ) ( )
d d d

d d

t t t t

t t t

   

x A x
d C x

 
, (1.2) 

where ( )d tx  is the state vector of the unknown inputs; ( ) [ ( ), ( ), , ( )]Tnt t t t   1 2   

contains isolated impulses ( )n t  of random intensity and occurrence; ( )d tA  and 

( )d tC  are matrixes selected by the designer. 

A so-called “disturbance accommodating controller” is then constructed by 

integrating the model of ( )td  into the state observer. By appropriate linear 

transformations, the overall controller with the extended state observer based on the 

scheme in Figure 1.5 is presented in a specific structure described by matrixes dacA , 

dacB , yB , and dacC , as shown in Figure 1.6. Feasible implementations of the 

estimation scheme in servomechanisms are also developed in a similar way. 

Different from Johnson’s approach, Davison (1972) introduces the model of partially 

unknown inputs by assuming that the unknown inputs are directly imposed on every 

system state as in 

 
( ) ( ) ( ) ( )
( ) ( )
t t t t

t t

    

x Ax Bu d
y Cx


. (1.3) 

Accordingly, the vector ( ) xnt d 1  has each of its components described in a 

different form: 
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 ( ) ( ) '( ) ( ) ( ) ( ) ,       ( , , , )g g
g k k xk kd t b d t b d t b d t k n     1

2 1 0 1 2  , (1.4) 

where ( ) ( )g
kd t  is the gth-order derivative of ( )kd t , the initial value of which is 

unknown; xn  denotes the number of plant states; Coefficients ( , , , )gb b b1 2   of the 

polynomial are to be decided by the designer. 

The representation in Eq (1.4) is essentially the same as that in Eq (1.2) by 

manipulating Eq (1.4) into a first-order differential equation with variables in matrix 

form, as commented by Johnson (1972). 

Under some different assumptions, a controller that enables robust reference tracking 

and disturbance rejection is then developed on the basis of the model in Eq (1.4) with 

full-state feedback. In a later study, Davison (1975) generalises his approach to the 

construction of an extended state observer, by which both plant states and the 

external partially unknown inputs are estimated simultaneously. 

Figure 1.6: Optimal linear regulator with disturbance accommodating controller 
(Johnson, 1971) 
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Literally, the models in Eqs (1.2) and (1.4) are capable of reconstructing the external 

signals of interest as long as these signals have characteristics that conform to a 

linear combination of the fundamental solutions of a finite-dimensional time-varying 

(or time-invariant) linear differential equation. And it is claimed that a vast majority 

of external inputs involved in control problems in practice fall into the range covered 

by models of this type (Johnson, 1971, Johnson, 1972, Davison, 1972). However, 

there is a most important prerequisite that characteristics of these inputs such as the 

mean, covariance, power spectral density, and other statistical properties must be 

known, which can only be obtained from data in either practice or experiments. This 

is inconvenient, time-consuming, and costly in most situations, and the consistency 

of data acquired is not guaranteed in every occasion. As a result, determinate 

characteristics of the external inputs cannot always be found, especially when the 

external inputs are completely random. Moreover, the inclusion of a model of 

exogenous signals increases the dimension of the observer at the same time, 

especially when the signals are complicated and need a higher-order model, which is 

undesired for the sake of computation speed. 

An application example regarding the extended state observer can be found in the 

work of Ohishi et al. (1987), where a minimum-order discrete observer is developed 

and used for a position servo system. For simplicity and fast estimation speed, 

unknown external loads are treated as constants, the representation of which then 

becomes a subset of the models in Eqs (1.2) and (1.4) with an order of one. The 

resulting controller could effectively reject constant disturbances and maintain 

system tracking precision even when only a proportional (P) controller is applied as 

the nominal controller. However, degraded performance occurs when some system 

parameters vary with time, such as armature resistance and motor torque constant, 

both assumed to be constants in controller design. The variation of these parameters 

induces nonlinearities into the system, resulting in equivalent disturbing loads 

superimposed on existing constant external loads. As a consequence, the total load 

exerted on the system is not constant but time-varying, which is then beyond the 

scope of the constant disturbance model. Increasing the order of the model of 

unknown inputs would help to cope with a wider range of disturbance but in the 
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meantime slows down the estimation performance due to the requirement on longer 

sampling delay when digitally implemented, as acknowledged by Ohishi et al. (1987). 

(2) Internal Model Principle 

On the basis of similar techniques for modelling partially unknown inputs, the 

Internal Model Principle proposes to place the model of external inputs separately in 

the feedback path, apart from the state observer, individually predicting exogenous 

signals according to plant outputs (Francis and Wonham, 1975). Corresponding 

stability analysis and control system design are further generalised to multi-input 

multi-output (MIMO) systems by Hara et al. (1988), with a modified control scheme 

proposed. 

Despite some successful industrial applications utilizing the Internal Model Principle, 

limitations remain, similar to those of an extended state observer, that only repetitive 

external disturbances can be effectively modelled and rejected whereas other types of 

signals not described by the model cannot be coped with well. 

1.2.2 Estimation of Completely Unknown Inputs 

When external inputs are completely unknown, that is, not only random in 

magnitudes, but also have undetermined characteristics, then it is impossible to 

retrieve dominant patterns of these inputs via field or experiment data, and hence not 

feasible to estimate them via the model in form of a linear differential equation as 

mentioned in Section 1.2.1. To deal with completely unknown inputs, following 

methods apply. 

(1) Estimation Function with Unknown-Input-Decoupled Observer 

Instead of using a model based on a priori assumptions or empirical knowledge, the 

estimation of completely unknown inputs is possible by means of combining a so-

called unknown-input-decoupled observer (UIDO) (Wang et al., 1975, Yang and 

Wilde, 1988, Hou and Muller, 1994, Hou and Patton, 1998) with an additional 

function or function group (Park and Stein, 1988, Hou and Muller, 1992). The former 
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is used to observe plant states while the latter is for computing the approximate 

magnitude of unknown inputs. 

The UIDO, also known as unknown-input observer (UIO) in some literature (Kudva 

et al., 1980, Guan and Saif, 1991, Darouach et al., 1994), does not actually estimate 

unknown external inputs but remains an observer for plant states estimation. The 

major difference between a UIDO and a Luenberger state observer is that the latter 

requires all system inputs to be known while the former can work under conditions 

subjected to unknown external inputs. As literally indicated, the UIDO bases its 

principle on decoupling the unmeasurable inputs and corresponding system dynamics 

from the state observer so that only the known system variables such as measured 

system outputs and control inputs are used for states estimation. In other words, the 

effects from unknown inputs on system states estimation are isolated. 

The estimation of unknown inputs is accomplished by an additional estimation 

function, using plant information obtained from both the UIDO and measurements. 

In the work of Hou and Muller (1992), the estimate of unknown inputs ˆ( )td  for a 

linear time-invariant system is given by: 

 ˆ ˆ( ) ( ) ( ) ( ) ( )t t t t t   d y y x u1 2 3 4    , (1.5) 

where matrixes 1 , 2 , 3 , and 4  are derived from known system characteristics, 

and estimated plant states ˆ( )tx  are obtained from the UIDO. 

As can be seen in Eq (1.5), the derivative of  ( )ty , namely ( )ty , is needed, which 

makes the estimation sensitive to noises. The necessity to differentiate measured 

outputs is also one of the limitations in the approach of an earlier study by Park and 

Stein (1988). 

(2) Unknown-Input Estimation Function with Ordinary State Observer 

Without decoupling unknown inputs, an ordinary state observer can still work 

properly in the case that the unknown inputs are cancelled by corresponding control 
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inputs. Similarly, an estimation function is needed in addition to the ordinary state 

observer so as to predict unknown inputs. 

The method of Corless and Tu (1998) does not differentiate the measured outputs, 

with the outputs of the state observer and unknown-input estimation function given 

by: 

 
 

   

ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) , ( )
ˆ ˆ ˆ( ) , ( ) ( ) ( )

t t t t t t

t t t t t

        

x Ax Bd L Cx y x x

d d x Cx y

0 0

0




, (1.6) 

where L  is the state observer gain matrix to design; x̂0  is an arbitrary initial value 

of the state estimate ˆ( )tx ;  ˆ, ( )t td x0  is an initial estimation of ˆ( )td ; The scalar   

and matrix   need to be selected by the designer. 

The function ˆ( )td  uses a two-term expression, with one being an initial estimation, 

and the other being a real-time correction. It is claimed that any desired degree of 

accuracy on the estimation of both plant states and unknown inputs can be achieved 

by appropriate selection of  . However, the initial estimate  ˆ, ( )t td x0  is restricted 

in a particular form, and does not suit any other systems with dynamics that cannot 

be described in this special form. Furthermore, it is required that the number of 

unknown inputs to be estimated must not be larger than that of available 

measurements, and therefore a new problem presents when the estimation scheme is 

to be applied in an existing state-space based control system where unknown inputs 

enter the system at channels different from control inputs. No applicable solution is 

implied subject to the assumptions on rank conditions to be satisfied. 

Similar to the study of Corless and Tu (1998), the two-term expression to reconstruct 

unknown inputs without the necessity to differentiate measured outputs is also 

adopted in the approach of Liu and Peng (2000), while additional nonlinear dynamics 

 ( ), ( )t tu x  in the system are considered. The state observer is given by: 

    ˆˆ ˆ ˆ( ) ( ) ( ), ( ) ( ) ( ) ( )Lt t t t t t t    x Ax u x Bd K x x  , (1.7) 
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where LK  is the observer gain matrix. 

Accordingly, the estimate of unknown inputs is obtained via: 

 

 

 

 

ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )T

T
L

t t t t

t t t

         

d d K x x

d B x x

K A K K BK B

0 0

0

0 0 0 0

 



, (1.8) 

where ˆ ( )td0  is an initial estimate for ˆ( )td , K0  is the correction gain matrix for a 

more accurate estimation, and matrix   is an intermediate variable. 

The solution of the correction gain is guaranteed in single-input single-output (SISO) 

cases and could be found symbolically for low-order MIMO systems, but becomes 

difficult to obtain when the number of unknown inputs increases. In addition, it is the 

estimated plant states ˆ( )tx  and actual plant states ( )tx  that are simultaneously used 

in the correction term. This is impractical in reality as the measured outputs ( )ty  are 

not necessarily the same as ( )tx . If ( )ty  are different from ( )tx , then a mathematical 

transformation must be performed, otherwise the correction gain matrix K0  should 

be modified. However, neither the transformation of states nor the modification of 

K0  is addressed. 

To overcome the above limitations, Liu and Peng (2002) proposes another estimation 

function of the form below, with a modified nonlinear dynamics considered: 

  ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ), ( )t t t t t t t    d y y x x u y1 2 3 4 5
      , (1.9) 

where matrixes 1 , 2 , 3 , 4 , and 5  are to be designed in accordance with 

known system dynamics,  ( ), ( )t tu y  is a vector of known nonlinear functions of 

( )tu  and ( )ty , and vector ˆ( )tx  is obtained from the Luenberger state observer. 

However, it is necessary to differentiate the measured output ( )ty  so as to obtain an 

estimation of unknown inputs. Moreover, the constant design matrixes are to be 
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obtained by means of nonlinear optimisation, the optimal results of which are not 

guaranteed, and some empirical knowledge is required. The case becomes more 

complex when the number of unknown inputs increases in an MIMO system. 

With the same objectives that only the measured outputs (but not their derivatives) 

are used for plant states and unknown-input estimation, an estimation scheme based 

on two separate order-reduced observers is proposed by Xiong and Saif (2003). It is 

claimed that the proposed estimator requires less restrictive conditions, and suits 

some non-minimum phase systems as well. The major drawback is that the 

complexity of parameter selection in design significantly increases for the sake of 

less restrictive conditions on unknown inputs. 

In a two-term structure but featuring a low-pass filter based high-gain approach, the 

method of She et al. (2008) is more straightforward in design, with a simpler 

estimation algorithm. On the basis of constructing the equivalents of unknown inputs 

at control input channels, the scheme focuses on effectively counteracting 

undesirable effects from unknown inputs rather than a direct estimation on 

magnitudes of unknown inputs. Therefore in this case the number of unknown inputs 

does not necessarily need to be equal to or less than measured outputs and could be 

at any channels different from control inputs. The design is simple and the designers 

only need to specify the ordinary state observer gain and the filter coefficient for the 

first-order low-pass filter. The problem is that the function for unknown-input 

estimation is dependent on the gain of the ordinary state observer, imposing 

constraints on the state observer design, though a separation theorem is claimed to 

hold for the design of both. In other words, specifications for unknown-input 

estimation have some influence on the design of the state observer. 

(3) Disturbance Observer 

As a counterpart of designs in state space, the Disturbance Observer (DOB) 

synthesized in frequency domain is a generalisation of the extended state observer 

according to the analysis of Schrijver and van Dijk (2002), which however, does not 

require a model of unknown inputs. To properly estimate unknown inputs, the DOB 

relies on a low-pass filter and the inversion of plant dynamics. Its basic principle is 
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illustrated in Figure 1.7, where ( )P s  represents actual plant dynamics, ( )nP s1  is the 

inverse of the nominal model of the plant, and ( )fG s  is a low-pass filter of unity DC 

gain. 

 

The low-pass filter ( )fG s  plays an important role in the DOB in terms of 

determining the robustness of DOB and performance of unknown-input suppression. 

Unlike the low-pass filter mentioned in the study of She et al. (2008), the design of 

( )fG s  in a DOB appears to be a more sophisticated process, as ( )fG s  must be 

carefully designed so as to maintain system stability (Ohnishi, 1987).  A general rule 

is that zeros of ( )fG s  and ( )fG s1  should be able to cancel out those unstable 

poles of the plant, and the order of ( )fG s  must be larger than that of the plant. A 

Butterworth filter is used by Umeno and Hori (1991) for ( )fG s , whileH  norm 

optimisation is tried in a later study (Umeno et al., 1993) to determine coefficients of 

a parameterized ( )fG s  of a more general form. To overcome problems posed by 

significant time delay in a plant, the work of Kempf and Kobayashi (1999) adapts the 

DOB accordingly by means of discrete-time design techniques. The influence of 

DOB order on system robustness and stability is studied by Komada et al. (2000) 

through investigating the order of ( )fG s , nominal plant model, and disturbance 

model. Generally, no disturbance model is required in DOB, but Komada et al. (2000) 

uses disturbance models (step, ramp, and parabolic functions) as an aid to specify an 

appropriate order of ( )fG s  and corresponding coefficients of numerator and 

Figure 1.7: Basic concept of a continuous-time DOB for SISO systems 

( )P s  

( )fG s

 
( )nP s1  









( )y s( )cu s

( )d s

ˆ( )d s DOB 
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denominator polynomials. It is found that increasing the order of ( )fG s  yields more 

choices for the nominalisation of plant dynamics, meanwhile induces increased phase 

lag. Though it is claimed that a proper selection of polynomial coefficients of ( )fG s  

would improve system robustness, no guidelines are given. The robustness of a DOB 

is further investigated by Choi et al. (2003) with regards to the relative degree, 

numerator order and denominator order of ( )fG s , but only the guidelines for a 

second-order system is specifically suggested. 

As an alternative to solving for plant dynamics inversion, the methodology proposed 

by Du et al. (2010) for discrete-time DOB modifies the term of inversed dynamics 

into two new terms ( )z1  and ( )z2  that can be readily obtained from the numerator 

and denominator polynomials of the nominal plant model transfer function in the z-

plane (Figure 1.8). Similarly, the low-pass filter is specified by means of H  

optimisation. It appears to be a simpler design method than those requiring an 

inversion of plant dynamics, but empirical knowledge regarding characteristics of 

unknown inputs is necessary in order to specify appropriate weightings for the 

optimisation. 

 

It is worth notice that the aforementioned studies (Ohnishi, 1987, Umeno and Hori, 

1991, Umeno et al., 1993, Kempf and Kobayashi, 1999, Komada et al., 2000, Choi et 

al., 2003, Du et al., 2010) are limited to applications in SISO systems. Plant 

inversion brings some difficulties for the DOB to be employed in MIMO systems 

Figure 1.8: A discrete-time DOB for SISO systems (Du et al., 2010) 
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since an inverse cannot always be found. Though Du et al. (2010) avoid the necessity 

of solving for the inverse of plant dynamics, corresponding method is developed on 

an SISO basis. 

The generalisation of the DOB to MIMO cases in the study of Shahruz (2009) 

bypasses plant inversion and adopts parameterized controller design through an 

optimisation process (Figure 1.9). The relation between measured outputs ( )sy  and 

unknown inputs ( )sd  in a regulator problem is derived as: 

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
y yn n n ns s s s s s s s

     y I P I P P P d
1

  , (1.10) 

where 
ynI  is an identity matrix of dimension y yn n , with yn  denoting the number 

of measured outputs; ( )sP  and ( )n sP  are transfer matrix of the actual plant and 

nominal plant, respectively; ( )s  is a transfer matrix to design. 

 

Assuming ( ) ( )n s sP P  yields 

  ( ) ( ) ( ) ( ) ( ) ( )n n ns s s s s s y P P P d . (1.11) 

As can be seen from Eqs (1.10) and (1.11) as well as Figure 1.9, the problem of 

designing an MIMO low-pass filter ( )f sG  and finding plant inversion reduces to 

selecting only one term ( )s , which is actually another representation of the 

Figure 1.9: A continuous-time DOB for MIMO systems (Shahruz, 2009) 

( )sP  
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combination of the two important elements in an DOB: the low-pass filter ( )f sG  and 

inversed plant dynamics ( )n sP 1 . Instead of solving for ( )f sG  and ( )n sP 1 , the 

proposed method parameterizes ( )s  by assigning a fixed-order transfer function to 

every element of ( )s , and then select the gain, numerator polynomial coefficients 

and denominator polynomial coefficients of each transfer function. The design is 

conducted via an optimisation algorithm working on H  cost functions. It is 

suggested that transfer functions of higher order yields better results in unknown-

input estimation, and the optimisation procedure can start from low-order transfer 

functions and gradually increase the order until satisfactory result is achieved. It is a 

time-consuming and tedious process, and empirical knowledge is needed to specify 

initial values of optimisation parameters. Given the fact that whether a global 

optimum can be found largely depends on the selection of these initial values, a trail-

and-error process is normally required, and a global optimum is not guaranteed. 

(4) Discrete-time Observer 

As can be seen in aforementioned schemes, discrete-time design techniques are 

useful in solving some particular problems involved in unknown-input estimation 

(Ohishi et al., 1987, Kempf and Kobayashi, 1999, Du et al., 2010). There are also 

some discrete-time design techniques that do not fall into the categories depicted and 

has respective special features (She et al., 2005, Chang, 2006, Lee et al., 2012). 

In the study of She et al. (2005), a geometry-based method is employed to construct a 

curvature model for unknown-input estimation. The resulting low-order nonlinear 

expression for predicting unknown inputs has a relatively simple structure, with the 

sampling period and a nominal state-space model of the plant as dominant 

parameters, and there are not any further design efforts such as selection of some 

parameters that vary with plant dynamics. After the unknown-input estimation 

scheme is integrated into an existing controller, the stability of the overall system is 

not affected while disturbances to the system are attenuated. The limitations are: 

Firstly, the estimation accuracy is primarily determined by the sampling rate and 

cannot be adjusted at a fixed sampling rate; Secondly, it is the states of the plant (of 
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controllability canonical form) but not system outputs that need to be fed back to the 

disturbance observer, which is impractical in cases where these states are 

unmeasurable. A possible solution to the latter could be using a state observer, the 

implementation of which and corresponding influence on unknown-input estimation 

dynamics is nonetheless not documented. 

A so-called proportional integral observer (PIO) for discrete-time implementation is 

proposed by Chang (2006). As indicated literally, the PIO has a similar structure to 

an ordinary state observer but has an additional integral term for unknown-input 

estimation: 

 

 

 

ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( )

z z z z

z

z

k 1 k k k k k

k 1 k k k

k k

           

x A x B u L y y B d

d d L y y

y C x

1 1 2

2 , (1.12) 

where zA , zB 1 , zB 2 , and zC  are equivalent discrete-time system matrixes; zL 1  and 

zL 2  are observer gain matrixes to design; ( )ku , ˆ( )kx , ( )ky , ˆ( )ky , and ˆ( )kd  are 

vectors of control inputs, estimated states, measured plant outputs, estimated plant 

outputs, and estimated unknown inputs in discrete-time domain, respectively. 

The dynamics of system states and unknown-input estimation is given by: 

  
( ) ( )

( )
( ) ( )
x x

z s
d d

k k
t

k k


   
     
      

e e
L

e e
2

1 2
1

1
  , (1.13) 

where ˆ( ) ( ) ( )x k k k e x x , ˆ( ) ( ) ( )d k k k e d d , z z 
 
  

A B
0 I

2
1 ,  z C2 0 , 

TT T
z z z   L L L1 2 , and st  is the sampling period. 

For k  , we can have ˆ( ) ( )k kx x  and ˆ( ) ( )k kd d , with estimation error 

bounded within ( )st 2 . However, in order to achieve the estimation precision as 

claimed, the PIO relies on the smoothness of unknown inputs. Moreover, the integral 

action may cause undesired response during the transient phase of estimation, such as 
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increased estimation overshoot, subsequent resonance and longer settling time, which 

substantially degrade the estimation accuracy, due to reduced damping at a higher 

estimation gain. 

A different formulation for predicting unknown inputs is proposed in the study of 

Lee et al. (2012) using the following structure without an integral action: 

 †

( ) ( ) ( )

ˆˆ ( ) ( ) ( )
ˆ ˆ( ) ( )

z z c

z

d

k k k

k k k

k k

  

 



A B u

B x

d K

1

2

1 

 



, (1.14) 

where vector ( )k  contains projected plant states in a subspace with corresponding 

estimates denoted by ˆ( )k ; zA  and zB 1  are plant system matrix and control input 

matrix projected in a subspace, respectively; †
zB 2  is a generalised inverse of the 

distribution matrix of unknown inputs; dK  is a gain matrix to design. 

Unlike the approach of She et al. (2005), estimated states and actual measurements 

are used together for unknown-input estimation, which appears to be more practical 

and feasible in cases where not all states are available from measurement. As shown 

in Eq (1.14), no integral action is needed for the estimation of unknown inputs and 

hence better transient estimation response is obtained with less estimation delay 

compared with DOBs, improving the transient response of the overall system in the 

presence of unknown inputs. However, a prerequisite remains, that the magnitude of 

unknown inputs at adjacent two sampling time should not vary drastically, and it 

becomes trickier to solve for dK , for which iterative trail-and-error procedures based 

on H  optimisation is required. 

 

1.3 Problems to be Addressed 

To sum up, problems to be addressed within the scope of the research work 

documented herein are as follows. 
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(1) The interaction among mechanically coupled and mutually constrained active 

structural elements on ATBMWs poses considerable difficulties in acquiring 

an accurate dynamic model of the entire structure for controller design and 

inconveniences in performing on-board tuning of controllers. In addition, the 

large quantity of actuators used on the ATBMWs with finer control surfaces 

and more degrees-of-freedom for shape morphing makes the aforementioned 

two tasks even more difficult. A solution is thus needed so that reliable 

actuator controller designs can be obtained without the necessity to refer to 

the overall structural dynamics and without the need for on-board tuning. 

(2) A possible solution to the problem above is to integrate an additional 

component for unknown-input estimation into an existing servomechanism. 

Existing techniques in literature for estimating unknown inputs are subjected 

to one or more of the following requirements: 

 Detailed knowledge regarding unknown inputs 

 Derivatives of measured outputs 

 Inversion of plant dynamics 

 Coupled and thus constrained state observer design 

 Parameter optimisation (global optimum not guaranteed) 

 Numerous parameter matrixes with sophisticated design rules 

All the above inevitably leads to either complicated designs or simpler forms 

but with limited design freedom. For ATBMWs with an enormous amount of 

actuators, a simple scheme for unknown-input estimation is preferred, which 

is also expected to have sufficient design freedom in the meantime. 

In other words, the above two problems are both about a major concern with regard 

to the realisation of ATBMWs in practice: the implementation of actuator controller 

needs to be simplified to cope with the difficulties and inconveniences posed by the 

sophisticated structure of ATBMWs. 
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1.4 Aims and Objectives 

The aim of our research is to simplify the implementation of actuator controllers on 

ATBMWs by means of integrating an observer for unknown-input estimation into an 

existing servo controller. Objectives include: 

(1) Design and build an ATBMW prototype that can change its camber in real 

time with the capacity of large-displacement shape morphing. 

(2) Develop an actuator-level control scheme with an integrated unknown-input 

estimation component. 

An alternative approach for unknown-input estimation featuring a simple 

structure and straightforward design method is expected. To be specific, the 

new approach does not require detailed knowledge regarding unknown inputs, 

derivatives of measured outputs, and inversion of plant dynamics; does not 

restrict state observer design; and does not involve complicated parameter 

optimisation where a global optimum is not guaranteed. 

(3) Validate the proposed approach of unknown-input estimation and the 

simplified scheme for actuator controller implementation via numerical 

simulations and experiments. 

To avoid confusion with the concepts of UIO and UIDO which only estimate plant 

states, we use the term ‘unknown-input estimator’ (UIE) for the proposed approach 

of unknown-input estimation. 

The remaining chapters in the thesis are organised as follows. Details of the 

ATBMW prototype are given in Chapter 2. A UIE-integrated LQG control scheme is 

then proposed and analysed in Chapter 3. Simulation studies on the unknown-input 

estimation of the proposed UIE and on actuator trajectory tracking using the UIE-

integrated controller are presented in Chapter 4. Experiments in a wind tunnel are 

summarised and discussed in Chapter 5. Conclusions are drawn in Chapter 6. 

 

 



 

 

Chapter 2  

ACTIVE-TRUSS-BASED MORPHING WING 

For the purpose of providing an experimental platform, an ATBMW prototype is 

built, with details given in this chapter. In order to determine the most appropriate 

length of each actuator for a given wing shape, the relation between actuator length 

and overall wing profile needs to be found, which is dealt with in Section 2.1. The 

structure and specifications of the ATBMW prototype as well as corresponding 

modelling based on system identification are described in Section 2.2. 

 

2.1 Actuator Length Determination for Desired Wing Profile 

As introduced in Section 1.1, a truss is statically and kinematically determinate 

according to Maxwell’s theory (Maxwell, 1864). By replacing some or all of the 

elements in a truss with active members that can change their lengths, the overall 

shape of the structure can be changed. And more importantly, the shape morphing is 

determinate if the length of all elements is known. The relation between the length of 

actuators and corresponding truss topology (or in other words, the mapping from 

given variation in length of actuators to the only possible resultant nodal 

displacements) can be determined via finite element formulation (Austin et al., 1994, 

Baker and Friswell, 2009), based on a linear displacement model (Rao, 2004). 

Derivations herein are for planar trusses, with the following assumptions: 

 Struts are pin-jointed, centre lines of joining members intersecting at a 

common point, and therefore there is no bending on struts. 
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 All loads are applied at joints. This is to ensure that the struts are all two-

force members. 

 The weight of struts is negligible compared to applied loads. 

 All struts are linearly elastic and subjected to infinitely small displacements 

(linear deformation assumption). 

Neglecting the dynamic terms in the equation of motion of the overall truss yields the 

following static deformation relation in a global coordinate system: 

 e a U F F , (2.1) 

where   is the system stiffness matrix, U  is the vector of nodal displacements, eF  

is the vector of aerodynamic loads, and aF  is the vector of actuator forces. 

As can be seen in Eq (2.1), actuator forces are treated as external forces exerted on 

nodes other than internal forces from struts. By doing so, the statically determinate 

structure becomes a mechanism when an actuator is in action, which is equivalent to 

removing the active strut from the structure (Austin et al., 1994) meanwhile applying 

a pair of counter-direction forces of the same magnitude on corresponding nodes 

along the original strut centre line. In order to maintain the structure integrity for 

easy implementation of the finite element method, active members in the truss are 

regarded as uniform struts as fixed-length ones. It is worth mentioning that the term 

“fixed-length” herein does not imply a rigid body but only means constant length (no 

length variation) in a macro scale relative to the length change of active elements. 

That is, a fixed-length strut may be subjected to strain under external loads, but has 

no strain if the external loads are equivalents of actuator forces. Given the foregoing 

facts and assumptions, aF  are virtual actuator forces of greater magnitude than 

actually required, with a virtual component for realizing the expected strain of the 

active element treated as a uniform elastic strut. 

The strain   and stress   of strut e  in axial direction (see Figure 2.1) are: 

 ( )k i eq q
l




  q , (2.2) 
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 E  , (2.3) 

where l  and E  are the length and Young’s modulus of the strut, 
l l

 
  

  

1 1
  

denotes the shape function, and  ( ) Te
i kq qq  denotes the axial displacement of 

nodes i  and k . 

 

The stiffness matrix ( )e  of the strut in the local coordinate system is then given by 

 
( )

( )

e

e T

V

aE
E dV

l

    
     
       


1 1 1 1

1 1 1 1
   , (2.4) 

where  , a , and V  are generalised stiffness, average cross section area, and volume 

of the strut, respectively. 

For any strut in the truss, nodal displacements ( )eU  in the global coordinate system 

can be transformed into nodal displacements ( )eq  in the local coordinate system by: 

 ( ) ( )e eq U , (2.5) 

where 

 
cos sin

cos sin
ik ik

ik ik

 
 
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 , 

and 

Figure 2.1: A strut in plane with local and global Cartesian coordinate systems 
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iX

iYe

kX

kY

U

U

U

U

              

U . 

As a result, the strut stiffness matrix in the global coordinate system is 
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cos cos sin cos cos sin
cos sin sin cos sin sin

cos cos sin cos cos sin
cos sin sin cos sin sin

e T e
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 
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2 2
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   

. (2.6) 

Denote the total number of struts and nodal degrees of freedom in the truss 

(including the boundary and restrained degrees of freedom) by sn  and nn , 

respectively. And let ( )e  denote the result of expanding ( )e to the dimension of 

n nn n  in the global coordinate system. Assembling strut stiffness matrices in the 

global coordinate system yields the overall structure stiffness matrix 

 ( )
s

n n n n

n
e

n n n ne 


1

  . (2.7) 

The actuator embedded in a strut exerts axial thrust or tension of magnitude ( )e
af  to 

the nodes at both ends, corresponding to the force pair ( )e
aif  and ( )e

akf  of opposite 

directions (see Figure 2.2): 

 ( ) ( )e e
aakf f , (2.8) 

 ( ) ( ) ( )e e e
aai akf f f  . (2.9) 
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Discomposed actuating forces ( )e
aF  in the global coordinate system can be computed 

according to 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

cos cos

sin sin

cos cos

sin sin

i i e
a ik a ikaX

i i e
a ik a ikaY

k k e
a ik a ikaX

k k e
a ik a ikaY

F f f

F f f

F f f

F f f

 

 

 

 

        

, (2.10) 

or in matrix form 

 ( ) ( ) ( )e e e
a a afF T , (2.11) 

with 
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T . 

To transform the total actuator force vector af  (of dimension fan 1 ) into 

corresponding global coordinate representation aF  (of dimension Fan 2 1), we first 

expand vector ( )e
aT  to an augmented matrix of dimension Fa fan n , namely ( )e

aT , 

and then use the following relation: 

௔௑ܨ
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Figure 2.2: Actuator force and its discomposed components in global coordinates 
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Fa Fa fa fa

a a a
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F T f
1 1

, (2.12) 

where 
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
. 

Substitute Eq (2.12) into (2.1), then 

 e a a U F T f . (2.13) 

Denote the length variation of actuators by vector q . As virtual work is conserved, 

we have 

 T
aq T U . (2.14) 

From Eqs (2.13) and (2.14), 

 T T
a a a a e

  q T T f T F1 1  , (2.15) 

and hence 

    T T
a a a a e

  f T T q T F
11 1  . (2.16) 

Substituting Eq (2.16) into (2.1) yields 

  T
a e

  U q I T F1   , (2.17) 

where I  is an identity matrix and  T
a a a

  T T T
11 1   . 
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Given desired nodal displacements desU , a possible solution for the extension of 

actuators, desq , can be calculated from 

  † T
des des a e

    q U I T F1   , (2.18) 

where †  is the Moore–Penrose pseudoinverse of  . 

Three cases apply to   according to different configuration of the active truss: 

(a)   is square and nonsingular: the degrees-of-freedom (DOF) of the active 

truss (the number of nodal displacements) is equal to the quantity of active 

elements (actuators) 

(b)   has more rows than columns and is not of full rank: more active elements 

are available than the total DOF of the active truss 

(c)   is rank deficient: the total DOF of the active truss is larger than the number 

of active elements 

Case (a) yields a unique mapping from desU  to desq . That is, any specified shape 

profile can be achieved exactly given that desq  is within the available stroke of 

actuators. Case (b) is an overdetermined least squares problem with infinite solutions 

desq  for desU , and exact shape morphing is guaranteed theoretically. The Moore–

Penrose pseudoinverse of   gives a solution which minimises desq 2 , the Euclidean 

length of vector desq , resulting evenly minimised length variation of actuators. Case 

(c) also has infinite solutions of desq  but with residuals due to insufficient actuator 

quantity to match desired nodal displacements. A solution with the smallest residuals 

  is obtained by performing the Moore–Penrose pseudoinverse of   which 

produces the least shape matching error. 

Recalling the assumption for finite element formulation that the length variation of 

active element is limited to an infinitely small scale, Eq (2.18) would become invalid 

when large-scale shape change is required, such as camber varying from zero to 10% 

of chord. Significant error in desq  results due to the position/time-dependent variation 
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of the global stiffness matrix  . Nonlinear finite element analysis method for large 

displacement problems (Wriggers, 2008) could be one of the possible solutions 

whereas increased complexity results. In order to continue using Eq (2.18) for large 

displacement situations, we discard the solution of desq  since it is invalid when using 

Eq (2.18) for large displacements. Instead, we make use of corresponding residuals 

  to calculate the actual nodal displacements actU  by act des U U  . Given the 

original nodal coordinates h0 , we then know the new nodal coordinates 

t act h h U0 . Finally, the actual extension needed for each actuator can be 

computed from the new coordinates of nodes. 

Under large displacements, elastic deformation of fixed-length struts caused by 

external forces other than actuator forces can be neglected, and thus the eF  in Eq 

(2.1) can be set to zero, and Eq (2.18) reduces to 

  
†

T
des a a a des

     
q T T T U

11 1  . (2.19) 

It is worth mentioning that though the global structure stiffness matrix   appears in 

the foregoing derivations, it does not matter how closely it matches the actual 

situation, and can be selected casually or in a way that benefits subsequent 

computation for desq . Firstly, external forces eF  can be eliminated from computation 

in large displacement problems, where there is no need to consider the deformation 

in the presence of eF ; Secondly, the extension of actuators are treated as virtual 

elastic deformation of uniform struts, with actuator forces aF  being virtual as well, 

and therefore it is not necessary to have exact properties of the overall strut 

embedded with an actuator. 

The real-time optimisation of wing profile, which is tricky when there are multiple 

parameters defining the wing shape (Boria et al., 2009), is another subject involved 

in morphing wing technology research and development but not our focus at current 

stage, and thus not discussed herein. 
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2.2 ATBMW Prototype and Modelling 

For experiment purpose, an ATBMW prototype is designed and built (see Figure 2.3). 

To achieve large-scale shape morphing, each actuator is expected to have a stroke 

generally longer than that of magnetostrictive and piezoelectric materials. A quick 

response is required, so SMA materials are not preferred. A feasible choice is to use 

ball-screw type linear miniature actuators, which are compact in size, light in weight, 

long in stroke, rigid in both axial directions, and have large force output. The 

structural section view of the ATBMW prototype is shown in Figure 2.3 (a), where 

nodes are denoted by numbers while struts are labelled with letters. Any strut can be 

active, but in this prototype only struts B, L, M, N, and O are each embedded with a 

Spar Skin Support Actuator Skin Support 

(b) Framework assembly 

(c) Assembly with sliding aluminium skin 

Figure 2.3: ATBMW prototype 

(a) Schematic of the structural configuration 



Active-Truss-Based Morphing Wing 34 
 

 

Firgelli® PQ12 miniature linear actuator (see Table A.2 in Appendix A for detailed 

specifications). Nodes 1, 2, 5, and 6 are fixed so that the framework can be fixed to 

the spar (Figure 2.3 (b)). Wing skin is composed of layers of sliding aluminium 

sheets of 0.1mm thick (Figure 2.3 (c)). The whole wing section has a chord length of 

591mm at zero camber, a maximum thickness of 71mm at 30% of chord from the 

leading edge, and a span of 150mm. 

As mentioned in Section 1.3, it is expected that the structural dynamics of the entire 

prototype are not required for controller design in our approach, and a linear model 

considering only actuator dynamics is preferred. For investigation and comparison, 

models in both cases were acquired via system identification, with voltage (V) as the 

input and displacement/extension (mm) as the output. The iterative prediction-error 

minimisation method (Ljung, 1999) is used to estimate the black-box state-space 

model in the form of 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

st t t t t

t t t t

       

x Ax Bu Ke
y Cx Du e

 (2.20) 

where A , B , C , and D  are system matrixes of appropriate dimensions; ( )tx , ( )ty , 

and ( )tu  are vectors of system state, measured output, and control input, 

respectively; Vector ( )te  is the difference between the measured output and the 

predicted output of the model; K  is the estimation gain matrix, and st  is the 

sampling interval. 

Models in Category I represent the dynamics of individual actuators (see Table 2.1) 

while those in Category II describe the wing structural dynamics distributed at 

individual actuators (see Table 2.2).  The inertia loads, frictions in joints, and 

resistant forces from the sliding skin, as part of the dynamics of the entire wing, are 

all taken into account in Category II models. It is worth notice that in practice 

actuator dynamics are readily available whereas the dynamics of the entire wing 

structure are much more difficult to obtain. The prototype used in our research is 

primarily designed to validate the efficacy of the proposed control scheme, but not to 

investigate aerodynamics improvements, and therefore has a relatively simple 
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structure. For better aerodynamic performance, a more sophisticated framework is 

required, which can pose considerable difficulties in modelling through practically 

available methods. 

 

 

Models identified are based on the time-domain data collected under settings as 

follows: 

 Sampling Period: 10s 

 Sampling Interval: 50ms 

Table 2.2: Models of Category II – wing structural dynamics distributed at individual 
actuators 

 A B C D 

Actuator B 
0 1

5.4929 59.6060
 
  

 
0.1125
26.6999
 
 
 

  1 0  0 

Actuator L 
0 1

3.3391 56.1780
 
  

 
-0.0479
47.0825
 
 
 

  1 0  0 

Actuator M 
0 1

2.3486 40.2661
 
  

 
0.0074

31.5277
 
 
 

  1 0  0 

Actuator N 
0 1

0.3665 39.3369
 
  

 
0.0044
24.3969
 
 
 

  1 0  0 

Actuator O 
0 1

0.1480 19.3256
 
  

 
0.2002
8.5483
 
 
 

  1 0  0 

 

Table 2.1: Models of Category I – actuator dynamics 
 A B C D 

Actuator B 
0 1

0.0006 14.7487
 
  

 
0.0988

11.3646
 
 
 

  1 0  0 

Actuator L 
0 1

0.0251 24.8484
 
  

 
0.0356
25.2746
 
 
 

  1 0  0 

Actuator M 
0 1

0.0455 23.6463
 
  

 
0.0318

19.1095
 
 
 

  1 0  0 

Actuator N 
0 1

0.4543 27.9472
 
  

 
0.1379
23.3941
 
 
 

  1 0  0 

Actuator O 
0 1

0.3867 16.9865
 
  

 
0.2169

11.3852
 
 
 

  1 0  0 
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 Input Voltage: Rectangular pulse (7V peak amplitude; 10s period; 50% duty 

cycle; 0° phase shift) 

The identified system models are linear and time-invariant, which are expected for 

ease in controller design using well-established methods. Modelling errors inevitably 

exist due to nonlinearities and uncertainties that present in an actual system (see 

Table 2.3). For example, it has been observed that nonlinear behaviours become 

obvious when the linear actuator operates at a relatively low voltage (e.g. lower than 

3V). Furthermore, the actuator may exhibit different characteristics due to wear after 

a long-term use. Therefore, when only the actuator dynamics are used for controller 

design, the controller on an ATBMW is expected to cope with not only un-modelled 

wing structural dynamics and exogenous disturbances (e.g. unmeasured aerodynamic 

loads) but also modelling errors of actuator dynamics per se. 

 

 

 

 

Table 2.3: Fits of identified models to acquired data 
 Actuator B Actuator L Actuator M Actuator N Actuator O 

Category I 98.18% 98.68% 98.06% 97.28% 96.75% 
Category II 97.57% 98.79% 98.51% 98.46% 97.62% 

 



 

 

Chapter 3  

UIE-INTEGRATED LQG CONTROLLER 

In order to simplify the implementation of actuator controllers on ATBMWs, a 

standard Linear-Quadratic-Gaussian (LQG) controller integrated with a new 

unknown-input estimator (UIE), namely, UIE-integrated LQG controller, is proposed 

for actuator-level control. The control problem is first clarified and stated in Section 

3.1, with assumptions given. The construction of the proposed UIE-integrated LQG 

controller follows in Section 3.2. Finally, closed-loop analysis is presented in Section 

3.3, with the mechanism of unknown-input estimation and compensation discussed, 

closed-loop stability confirmed, and rules for parameter selection suggested. 

 

3.1 Problem Statements and Assumptions 

The actuator-level control is discussed herein. It is a tracking problem in which the 

extension (axial displacement of the moving rod) of each actuator should follow the 

reference length specified in real time. An individual controller is proposed for each 

actuator, and only the extension of actuators is measured and fed back, the control 

problem thus is reduced to an SISO case. 

The general plant model to be considered is given by 

 
( ) ( ) ( ) ( )
( ) ( )

dt t u t t

y t t

    

dx Ax B B
Cx

, (3.1) 
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where ( )u t   is the control input; ( )y t   is the measured output; ( ) xnt  x is 

the vector of system states; ( ) dnt d   describes uncertainties that the system is 

subject to, including uncertain, nonlinear, time-varying, and state-dependent terms, 

and is regarded as a vector of unknown inputs; x xn nA   is the system matrix; 
xnC 1 is the output matrix; xn B 1  is the control input matrix; x dn nB d  

is the distribution matrix of external unknown inputs; Quantities of states and 

unknown inputs are denoted by xn  and dn , respectively. 

The following assumptions are made: 

 Assumption 1:  ,A B  is controllable. 

 Assumption 2:  ,C A  is observable. 

 Assumption 3:  , ,A B C  is a minimum phase system. 

Note that dB  can be either known or unknown, with no rank conditions required, 

and there is no restriction on the number of external unknown inputs in the vector 

( )td . This means there can be more unknown inputs than the control inputs and the 

measured outputs (in our case, there are multiple unknown inputs but only one 

control input and one measured output). In addition, the unknown inputs may enter 

the system through channels different from the control input channel. When both dB  

and dn  are unknown, it is difficult or even impossible to exactly predict components 

of ( )td . Since the estimation of unknown exogenous inputs in most servo systems 

are for subsequent disturbance cancelation to maintain stable performance, it is 

possible to assume the existence of equivalent unknown inputs of the same number 

as control inputs which also enter the controlled plant through control input channels 

B . This treatment is a practical and common technique in DOB as can be seen in 

Section 1.2.2 and the conditions for the existence of equivalent unknown inputs are 

theoretically discussed in the study of She et al. (2008). 
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According to She et al. (2008), an equivalent input exists for the unknown inputs 

( )td in system (3.1) under Assumptions 1 to 3. Denote the equivalent unknown input 

by ( )ed t , then system (3.1) can be expressed as 

 
 ( ) ( ) ( ) ( )

( ) ( )
et t u t d t

y t t

    

A B

C

x x
x

. (3.2) 

Now we are able to use system (3.2) as an equivalent of (3.1), and the control 

problem at this point is how to estimate ( )ed t  to cancel ( )d t  so that robust and 

improved tracking performance can be achieved on a standard state variable 

feedback controller. 

 

3.2 Controller Structure 

3.2.1 Overview 

Our proposed controller is based on the LQG algorithm with a feed-forward 

proportional term as well as an integral term in the feedback path for reference 

tracking. The estimation of unknown inputs is integrated into the feedback loop in 

the form of the UIE for unknown-input compensation (see Figure 3.1). 

The inclusion of the UIE is the core component that distinguishes our proposed 

controller from standard LQG controllers. It enables effective estimation and 

cancelation of unknown inputs, while only needs the measured output from the 

sensor and estimated output from the state observer as its inputs. Therefore, no 

changes are imposed on the standard LQG controller structure, which further eases 

the overall design process. 
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3.2.2 Unknown-Input Estimator 

In order to cancel the effects from unknown inputs ( )td , or equivalently, ( )ed t , the 

control input ( )u t  is defined as 

 ˆ( ) ( ) ( )eu t u t d t c , (3.3) 

where ( )cu t  is the normal control effort from the LQG algorithm to realise specified 

actuator motion when there are no disturbing inputs ( )td , and ˆ ( )ed t  is an estimate of 

the equivalent unknown input. 

Now we construct ˆ ( )ed t  in the following form: 

  ˆ ˆ( ) ( )+ ( )ˆ( )de evd K yt t t tyd  , (3.4) 

where ˆ ( )evd t  is an initial estimate of the equivalent unknown input, dK  is an 

estimation gain, and ˆ( )y t  is an estimate of the plant output. 

The initial estimate ˆ ( )evd t  is obtained and updated in real time via a low-pass filter 

 , ,f f fA B C  with ˆ ( )ed t  as the input: 

 
ˆ( ) ( ) ( )

ˆ ( ) ( )
e

ev

t t d t

d t t

 





A x B

C x

x f f f f

f f

, (3.5) 

where f fn
f

nA  , f
f

n B 1 , and f
f

nC 1  are system matrixes of the low-

pass filter, while fn  denotes the quantity of filter states. 

To be specific, ( )( )
ff n f ffs G j  C I A B1 1  and meanwhile ( )fG j  1  

for  , c  0 , where fG  and c  are the transfer function and cutoff frequency of 

the low-pass filter, respectively. 
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To obtain the estimated plant output ˆ( )y t , a state observer that takes ( )ed t  into 

account is needed and constructed as 

 
ˆˆ ˆ ˆ( ) ( ) [ ( ) ( )] [ ( ) ( )]

ˆˆ( ) ( )
et t u t d t y t y t

y t t

      

x Ax B L
Cx


, (3.6) 

where xn L 1  is the estimation gain matrix of the state observer. 

Substituting ( )u t in (3.6) yields: 

 ˆ ˆ ˆ( ) ( ) ( ) [ ( ) ( )]
ˆˆ( ) ( )

ct t u t y t y t

y t t

     

x Ax B L
Cx


. (3.7) 

Apparently, Eq (3.7) is a standard form of the state observer in the LQG controller. 

Hence, the estimated output from the state observer of the LQG controller can be 

directly used as the input of the UIE. In summary, Eqs (3.4) and (3.5) form the 

proposed UIE. 

3.2.3 LQG Controller 

The inclusion of a UIE in an existing LQG controller results in the control effort 

given by Eq (3.3). Assume that unknown inputs are ideally cancelled by ˆ ( )ed t , then 

standard LQG design procedures can be followed (Burl, 1998, Franklin et al., 2010). 

As can be seen in Figure 3.1, an internal model of first order (integral action) rather 

than higher order is included for reference tracking. Generally, for situations where 

reference trajectories are known beforehand and have fixed patterns, an accurate 

representation of these trajectories using the internal model of an appropriate order 

can enable robust tracking. When optimal wing profiles are not predetermined offline 

but updated online according to the real-time variation of aerodynamic conditions, 

using a higher-order internal model is not recommended though, in consideration of 

the complexity to model patterns of wing profile variation. This is because 

aerodynamic conditions as well as corresponding optimal or suboptimal wing 

profiles are subject to substantially random variations. Even though flight data can be 
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acquired for further analysis, the consistency of every flight is not guaranteed. As a 

simple and straightforward solution, the combination of a feed-forward proportional 

term and a 1st-order internal model (integral term), which has better trajectory 

following capability than merely an integral action, is recommended in this case. 

For convenience in the close-loop analysis in the next section, the 1st-order internal 

model is not formulated following the normal convention (Francis and Wonham, 

1975), but derived on the integral action base. 

Denote the target length of an actuator by ( )r t  and let ( ) ( ) ( )wx t r t y t  , then 

 ( ) ( ) ( )wx t r t C t  x , (3.8) 

and the augmented system based on (3.2) with states in error space is 

 
( ) ( )

( )
( ) ( ) ( )c

w w

t t
u t

x t x t r t

         
           
                  

x A x B
C

0

0 0




0
, (3.9) 

or in a compact form 

 ( ) ( ) ( ) ( )ct t u t t  A B r    , (3.10) 

where 
( )

( )
( )w

t
t

x t

 
 
  

x
 , 

 
 
  

A
A

C
0

0
 , 

 
 
  

B
B

0
 , and ( )

( )
t

r t

 
 
  

r
0

 . 

Define a performance index as 

 ( ) ( ) ( )T
cJ t t R u t dt 


    Q 2

0
  , (3.11) 

where y

w

Q

Q


 
    

TC C
Q

0

0
 with yQ  and wQ  being weightings for  the tracking 

error and its integral, and R  is the weighting for the control input. 
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Given the feedback 

 ( ) ( ) ( )c ru t t K r t K , (3.12) 

the index in Eq (3.11) is minimised when TR
K B1   , with   as the solution to 

the algebraic Riccati equation 

 T TR 
   A A B B Q1 0           , 

with 

 T
r yK Z Q   WC2 1 , (3.13) 

where 

 
   

   

,

.

TT

TT

R W

R Z











     

     

W B A BK W

Z B A BK Z

1
1

1 2

1
1

1 2

  

   
 

Let  x wKK K , then from Eq (3.12), 

 ( ) ( ) ( ) ( )c x w w ru t t K x t K r t  K x . (3.14) 

Now replace ( )tx  by an estimate ˆ( )tx  obtained from a linear-quadratic optimal state 

observer 

  ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
ˆˆ( ) ( )

ct A t t y t y t

y t t

     

x x Bu L
Cx


, (3.15) 

then 

 ˆ( ) ( ) ( ) ( )c x w w ru t t K x t K r t  K x , (3.16) 
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where xK , wK , and rK  are gains for proportional state feedback, 1st-order internal 

model, and feed-forward proportional term, respectively. 

 

3.3 Closed-Loop Analysis 

3.3.1 Estimation and Suppression of Unknown Inputs  

Since we are able to use system (3.2) as an equivalent of (3.1), the mechanism of 

estimating and suppressing unknown inputs can be revealed by the relation between 

the equivalent unknown input ( )ed t  and the system output ( )y t  in system (3.2). 

From Figure 3.1 and according to system (3.2), 

  ( ) ( ) ( ) ( )n ey s P s u s d s  , (3.17) 

where ( )nP s  represents the nominal plant model. 

Define ( )wG s  as the transfer function of the integral action in the 1st-order internal 

model and rewrite Eq (3.16) in frequency domain as 

  ˆ( ) ( ) ( ) ( )( +) ) (c rw ws s s ru K G y r ss s K  xxK . (3.18) 

Substitute ( )cu s  in (3.7), and define ( )yx sG  as the transfer matrix from ( )y s  to ˆ( )sx . 

When ( )r s  0 , then: 

    ˆ( ) ( ) ( )
( ) ( )
x x w

x

n w

y

s s K G s y s

s y s

    



x I A BK LC B L

G

1

, (3.19) 

From Eqs (3.4) and (3.5), we have: 

 ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
fev f n f eff ed s d ss s dG s C I A B1 , (3.20) 
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    

 

ˆ ( ) ( ) ( ) ( )
( ) ( ) )

ˆ

(ˆ
e d

yd

fd G Ks s y s s

s y s s

y

G y

 

 

 11
, (3.21) 

where ( )ydG s  is the transfer function from  ˆ( ) ( )y ys s  to ˆ ( )ed s . 

According to Eqs (3.3), (3.17) to (3.19), and (3.21), the closed-loop system with 

( )ed s  as the input is 

  ( ) ( ) ( ) ( ) ( )en ny s P s H s P s d s  11 , (3.22) 

where  ( ) ( ) ( ) ( ) ( )x yx w w yd yxK G GH s s s s s  = K G CG1 .  

As a result, the sensitivity of the closed-loop system is 

 ( )
( ) ( )n

S s
H s P s




1
1

. (3.23) 

Equations (3.22) and (3.23) indicate that, for a given ( )nP s  and an existing properly 

designed LQG controller, having ( )H s  large enough over the range of frequencies 

which characterise the unknown inputs such that ( ) ( )nH s P s 1 can further reduce 

the system sensitivity. A much smaller system sensitivity can significantly improve 

the suppression of the effects from unknown inputs, and this can be achieved by an 

appropriate design of ( )ydG s . In other words, if a ( )ydG s  exists so that ( )H s  is 

sufficiently large, an estimate of adequate accuracy on the equivalent unknown input 

is then obtained, and the feedback of this estimate into the system counteracts the 

actual unknown inputs, alleviating disturbances. 

Since ( )fG j  1  and ( )fG j  1  for  , c  0 , then we have a large 

( )ydG j , and thus a large ( )H j  for frequencies within  , c0 . As a result, 

( )y t  0  when t   . This means, though ( )S j   cannot be minimised ideally 

for [ , )  0 , the introduction of a low-pass filter suffices when the frequency of 

unknown inputs to be suppressed is below c . 
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To avoid confusion, we especially defined ( )y s  as the error between the disturbed 

output and undisturbed output. That is,  ( )y t  0  in Eq (3.22) means ( )y s  0  

which, from the point of view of an open-loop system, is equivalently to 

ˆ( ) ( ) ( ) ( )n e ey s P s d s d s       0 , leading to ˆ ( ) ( )e ed s d s . 

The mechanism of estimating and rejecting unknown inputs can be further explained 

by isolating the UIE and the state observer from the controller, as shown in Figure 

3.2. 

 

Let ( )cu t  0 , then ˆ( ) ( )eu t d t . From Eq (3.7)， 

 ˆ( ) ( ) ( ) ( ) ( )
x yyny s y s G s y s  C I A LC L1s , (3.24) 

and according to Eqs (3.3), (3.17), (3.21), and (3.24), 









( )y s( )cu s

( )ed s

ˆ ( )ed s

UIE 

A

B C

L

dK

fA

fB fC

s1





s1


( )u s

State Observer 

Figure 3.2: Schematic of the proposed UIE isolated from the controller 

A

B Cs1





Plant 
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   ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

yd yy

d

en n

e

y s P s G s G s P s d s

H s d s

 



11 1 , (3.25) 

where ( )yyG s and ( )dH s  are the transfer function of corresponding input-output 

pairs, respectively. 

Equation (3.25) indicates that minimising ( )dH s   can effectively suppress the 

effects from unknown inputs, which can be achieved by manipulating ( )ydG s . In 

other words, if a proper ( )ydG s  exists so that ( )dH s   is sufficiently small, then 

( )y s  0  for t   . Clearly, ˆ( ) ( ) ( ) ( )n e ey s P s d s d s      in this isolated form in 

Figure 3.2, and it is manifest that ˆ ( ) ( )e ed s d s  at steady state.  

3.3.2 Controller Stability 

With an UIE integrated, the following theorem holds for the stability of the overall 

controller. 

Theorem: If system (3.1) with any initial condition ( )tx 0  under Assumptions 1 to 3 is 

stabilised by the control input in Eq (3.14) with full-state feedback (no state observer 

and no UIE) when ( )t d 0 , then system (3.1) remains stable with the control law in 

Eq (3.3) when subjected to any unknown inputs ( )  dnt d  of frequencies over the 

range of  , c  0  including un-modelled dynamics ( )M s , given that the 

following conditions are satisfied: 

(a) ( )fG j  1  and ( )fG j  1  for  , c  0 . 

(b) xn L 1  and +dK   are selected such that  dK A LC B C  is 

stable, and 

( )
( ) ( )n

M j
H j P j


 

 
1

1  ,  ,  0 . 

Proof: As discussed in Section 3.1, an equivalent unknown input exists for system 

(3.1), and therefore system (3.2) is used in the proof. 
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According to Eqs (3.2) to (3.5), 

  
 

ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ( ) ( ) ( ) ( ) ( ) ( ).

c e e

c ev d e

c f f d e

t t u t d t d t

t u t d t K y t y t d t

t u t t K t t d t

      
     

     

x Ax B B

Ax B B B B

Ax B BC x B C x x B



 (3.26) 

Subtract Eq (3.7) from (3.26), and let ˆ( ) ( ) ( )x t t t e x x , then 

  ( ) ( ) ( ) ( )x d x f f et K t t d t    e A LC B C e BC x B . (3.27) 

Substituting Eq (3.16) for ( )cu t  in Eq (3.26) with ˆ( ) ( ) ( )xt t t x x e  yields 

 
   ( ) ( ) ( )

           ( ) ( ) ( ).
x w w x d x

f f r e

t t K x t K

t K r t d t

    

  

x A BK x B BK B C e

BC x B B


 (3.28) 

From Eqs (3.4) and (3.5), 

 
  

 

ˆ ˆ( ) ( ) ( ) ( )

( ) ( )
f f f f ev d

f f f f f d x

t t d K y t y t

t K t

   

  

x A x B

A B C x B Ce


. (3.29) 

Write Eqs (3.8), (3.27), (3.28), and (3.29) in matrix form, then 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

  ( ) (

x w x d f

w w

x d f x

f f d f f f f

r

e

t K K t

x t x t

e t K e t

t K t

K

r t d t

        
     
     
                 
          

   
   
   
       
   
      

x A BK B BK B C BC x
C

A LC B C BC
x B C A B C x

B B

B

0 0 0

0 0

0 0

1 0

0

0 0






).

(3.30) 

With appropriate matrix partitioning, it is clear that the characteristic equation 

associated with Eq (3.30) is 
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   

 
 

 

 
 

 
  

det

det

    det

det det

    d

x w x d f

d f

f d f f f

x w

d f

f d f f f

x w
d

s K K

s

s K

K s

s K

s

s K

K s

s K
s K

s

    
 
 
 
    
    

  
 
  
   
 
    

  
     
  



I A BK B BK B C BC
C

I A LC B C BC
B C I A B C

I A BK B
C

I A LC B C BC
B C I A B C

I A BK B
I A LC B C

C

0 0

0 0

0 0

    

 
  

   

et

det det

    det .

f f f f d d f

x w
d

f f d d f

s K s K

s K
s K

s

s K s K





        
  
     
  
          

I A B C B C I A LC B C BC

I A BK B
I A LC B C

C

I A B C I A LC B C B C

1

11 0

(3.31) 

If system (3.1) with any initial condition ( )tx 0  is stabilised by the control input in Eq 

(3.14) with full-state feedback (no state observer and no UIE) when ( )t d 0 , it is a 

case of standard linear-quadratic control with integral action, the characteristic 

equation of which, according to Eq (3.9), is: 

 
 

det x ws K

s

  
  
  

I A BK B
C

0 . (3.32) 

It is evident that the roots of Eq (3.32), which lie in the left half-plane, are also part 

of the roots of Eq (3.31). If a proper xn L 1  and +dK   are selected such that 

 dK A LC B C  is stable, and the low-pass filter satisfies condition (a), then all 

roots of Eq (3.31) are in the left half-plane. Under Assumption 2 in Section 3.1, such 

an L  and dK  exist. 

Upon the absolute stability discussed, we need to consider the relative stability in the 

presence of un-modelled dynamics ( )M s . As illustrated in Figure 3.3, the relation 

between the nominal plant model ( )nP s  and actual process ( )P s  is given by 
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  ( ) ( ) ( )nP s P s M s 1 . (3.33) 

An equivalent block diagram depiction for the system in Figure 3.3 is given in Figure 

3.4. According to the small-gain theorem (Vidyasagar, 1978), the closed-loop system 

is stable if 

  
( ) ( )( ) ,  ,

( ) ( )
n

n

H j P j
M j

H j P j
 

 
 

   


1 0
1

, (3.34) 

or equivalently, 

  ( ) ,  ,
( ) ( )n

M j
H j P j

 
 

    
1

1 0 . (3.35) 

 

 

Remark 1: As indicated by the closed-loop dynamics in Eq (3.31), the separation 

principle still holds for the full-state feedback design and state observer design 

despite the inclusion of the UIE. 

( )M s

( ) ( )
( ) ( )

n

n

H s P s
H s P s


1

u1 u2

Figure 3.4: Equivalent block diagram depiction of the closed-loop system with un-
modelled dynamics ( )M s  




( )M s

( )H s

( )nP s


( )y s( )r s

u1 u2

Figure 3.3: Un-modelled dynamics ( )M s  in the closed-loop system 
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Remark 2: From Eqs (3.5) and (3.27), the dynamics of state estimation are given by 

  ( ) ( ) ( )x d xt K t t   e A LC B C e B , (3.36) 

where ˆ( ) ( ) ( )e evt d t d t   . 

As shown in (3.36), state estimation of adequate accuracy is ensured by the 

integration of UIE, with the estimation error subjected only to the residual equivalent 

unknown input ( )t  0  as t   . The advantage of integrating a UIE into an 

existing LQG controller is that, it enables better state estimation performance in the 

presence of unknown inputs that are non-Gaussian, meanwhile retains the merits of 

an optimal state observer in terms of sensor noise filtering. 

Remark 3: Unlike the scheme in the study of She et al. (2008), some relative 

independence in state observer design is retained in our proposed controller though 

dynamics of the state observer is associated with the UIE component. Since an 

additional parameter dK  gives a second degree of freedom in UIE design, the 

performance of the UIE component is then not totally dependent on the state 

observer gain, thus imposing less constraint on the state observer design. 

3.3.3 Controller Parameters Selection 

As shown in Section 3.3.2, the design of the full-state feedback control law is 

independent of the UIE component and can be conducted separately prior to the UIE 

design according to desired performance specifications. Given that design procedures 

for the optimal full-state feedback control are well established in literature, 

corresponding details are not repeated herein. In this subsection, guidelines for 

selecting parameters associated with the UIE are given. These parameters include the 

state observer gain L , the UIE gain dK , and the low-pass filter ( , , )f f fA B C  or 

( )fG s . 
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(1) State observer gain L  and UIE gain dK  

According to condition (b) in the Theorem in Section 3.3.2, both L  and dK  

contribute to the stability of  dK A LC B C , so the first priority is to design L  

such that the state observer functions normally to provide estimated states for the 

linear-quadratic state feedback control. Under Assumption 2 in Section 3.1, such an 

L  exists. 

Upon the absolute stability of  dK A LC B C , the inequality in (3.35) needs to 

be satisfied in order to ensure stability robustness. Therefore, a smaller ( )H s  is 

desired, with a larger gain L  expected in accordance to Eq (3.19). Since the un-

modelled dynamics ( )M s  are not exactly known or even completely unknown, a 

safe design can be based simply on assuming ( )M s 1 . To be specific, 

  ,  ,
( ) ( )nH j P j


 

    
1

1 1 0 . (3.37) 

However, un-modelled dynamics in practical applications are normally much less 

severe, that is, ( )M j  1  for only a limited frequency range while ( )M j 1  

elsewhere. Therefore, an index   for the stability robustness of the closed-loop 

system is defined as: 

  min ,  ,
( ) ( )nH j P j

 
 

     
1

1 1 0 , (3.38) 

Different to the criterion in (3.35), it is normal to have a negative value for   due to 

the pessimistic assumption on ( )M s . Thus, a negative value of   does not 

necessarily indicates an unstable system subjected to parameter variations in the 

plant. The closed-loop system is said to have better stability robustness when   is 

larger. As long as an L  is designed to have   large enough to produce an adequate 

level of stability robustness that covers most possible uncertainties, the closed-loop 

system remains stable in spite of the un-modelled dynamics. Since an appropriate 
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minimum value that   is allowed to reach depends largely on real world applications 

and varies among cases, a specific standard is not given herein. An example of the 

controller design using the index   is presented in the next chapter in Section 4.1.2. 

As the state observer gain plays an important role in ensuring the stability of the 

overall close-loop system and needs to be tuned by referring to the stability 

robustness index, the power spectrum of zero-mean Gaussian noise processes 

assumed in design may not accurately describe the noise statistics. As a result, it is 

more convenient and straightforward to design the state observer gain on the basis of 

the duality between the linear quadratic regulator (LQR) and the optimal linear filter. 

Assume that unknown inputs are ideally cancelled, then according to the well-

established linear-quadratic optimal design method we have the corresponding dual 

system 

 (( ( )))x x
T T T Tt t A C Le e . (3.39) 

This is to select TL  that minimises the performance index 

  ( ) ( ) ( ) ( )
TT T

x
T

l x l x l xt t t R tJ dt       Q L L
0



e e e e , (3.40) 

where lQ  is a symmetric positive-definite weighting matrix of dimensions x xn n  

and lR  is a weighting scalar. 

From Eqs (3.21) and (3.25), a higher dK  contributes to larger ( )ydG s  and 

consequently larger ( )H s , and hence is favoured from the perspective of 

performance robustness. However, in the interests of closed-loop system stability 

robustness, dK  is not regarded as the main approach to reduce system sensitivity, 

but only used to fine tune the sensitivity achieved primarily by the low-pass filter. 

For an SISO case as the ATBMW application documented herein, dK is simply a 

scalar and any value up to the bandwidth limited by the zeros of the plant stables 

 dK A LC B C  with a properly designed L . Instead of selecting dK casually, 
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a systematic method based on linear-quadratic optimisation is formulated in the 

following, on an MIMO basis without losing generality. 

According to Eq (3.36) with ( )t  neglected as ( )t  0  with time, we have:  

 
( )

(
( ) ( ) ( )

)) (
x x dv

xy

t t t

tt



 

A LC B

e C

e e e
e

, (3.41) 

where  

( ) ( ) ( )
( ) ( ) ( )
( )

ˆ
ˆ

( ).xd

y

dv

t t t

t t t

t t

      

x x
y y

K C

，

，

e
e

e e

x

 

Under Assumption 2 in Section 3.1, the pair  ,  dKA LC B C  is observable. 

Given the duality property, this is to select ( )v
T

dK BK  that minimises the 

performance index 

  ( ) ( ) ( ) ( )d x d x d
T

d d
T
v vJ dtt t t t  Q R

0



e e e e ,
 

(3.42) 

with symmetric positive-definite weighting matrixes dQ  and dR  of respective sizes 

x xn n  and y yn n . 

As a result, 

 † T
d vK = B K , (3.43) 

where †B  is the Moore-Penrose pseudo inverse of matrix B . 

With the inherited merits from the state-space approach, the method particularly suits 

MIMO cases as the gain becomes a vector, which however, is not the focus within 

the scope of the project documented herein, and hence more details regarding MIMO 
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applications are not to be addressed. The dK  for an SISO case can be solved directly 

from the aforementioned approach without any difficulty. 

If d  is supposed to be the dominant frequency component of the equivalent 

unknown input, the solved dK  should yield a large enough sensitivity  S s  at d  

so that  dy j  subjected to ( )e dd j  according to Eq (3.22) is small enough to 

meet the design specifications. Under the circumstance that d  is uncertain, an upper 

bound of commonly encountered frequencies could be used for a safe design. 

In the light of the simultaneous influence from the state observer gain and UIE gain 

on the overall closed-loop system stability, an iterative procedure is needed for the 

controller design to meet the requirements on both unknown-input rejection and 

stability robustness. The iteration could bring considerable work load when the same 

procedure is to be repeated for a large number of controllers. However, the overall 

process becomes much easier and more efficient when individual UIE-integrated 

LQG controllers for the actuators on ATBMWs are designed according to actuator 

dynamics only. The reason is manifest. In ideal conditions there are few variations 

between characteristics of same-model actuators, while the induced dynamics from 

adjacent structures could differ to a large extent when the actuators are on the wing. 

Thus, once one controller is satisfactorily designed according to actuator dynamics, 

the work for remaining actuators can be based on the first controller, with slight 

parameter adjustments or even no change. 

(2) Low-pass filter ( , , )f f fA B C  or ( )fG s  

As discussed in Section 3.3.1, the low-pass filter is the primary component to yield 

the significantly reduced closed-loop system sensitivity. With a properly designed 

low-pass filter that meets condition (a) of the Theorem in Section 3.3.2, the overall 

closed-loop stability is ensured by an appropriate set of the state observer gain L  

and the UIE gain dK , according to condition (b) of the Theorem. Therefore, on the 

design of the low-pass filter, the focus can be put mainly on reducing the system 

sensitivity. 
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Firstly, a first-order filter is preferred, as 

 ( )f

c

G s
s

s




 


1 1
1 1

1
, (3.44) 

where c  is the cutoff frequency and   is the time constant. 

This is because a longer delay occurs to the signal under higher-order filters due to 

phase shift, which slows down the UIE response and degrades the estimation 

performance, though a higher order gives better approximation to an ideal filter. 

Secondly, the cutoff frequency c  is decided according to the frequency of interest 

associated with possible unknown inputs that the plant may encounter. It is 

straightforward to conclude from the characteristics of a low-pass filter that 

increasing c  can reduce the power attenuation of signals at lower frequencies and 

consequently enables higher accuracy in unknown-input estimation. There are not 

additional specific restrictions regarding the selection of c  as long as it could cover 

the natural frequency of the majority of unwanted unknown inputs meanwhile 

meeting normal requirements in practical filter design from a cost-effective point of 

view. 

An exact knowledge regarding unknown inputs are normally unknown, it is thus a 

significant merit of the proposed UIE that selecting only one parameter, c , can 

effectively treat a wide range of unknown inputs in a unified way instead of 

determining the natural frequency of every possible unknown input individually. 

Finally, the corresponding state-space representation ( , , )f f fA B C can be obtained 

via a proper transform from ( )fG s , and it does not matter which representation is 

used for an SISO case. With regard to MIMO cases, using the state-space 

representation is much more convenient, which however, is out of the current scope 

of this project, and is recommended for future work. 

 



 

 

Chapter 4  

SIMULATIONS 

In Section 3.3.3, guidelines for designing the proposed UIE-integrated LQG 

controller are recommended. Simulations in Section 4.1 of this chapter provide 

illustration and validation of the guidelines. 

As mentioned in Section 1.2, the term ‘unknown inputs’ used herein is referred to as 

a broader expression that includes both exogenous disturbances (e.g. unmeasured 

loads) and internal uncertainties (e.g. un-modelled system dynamics). For better 

understanding of the mechanism of unknown-input estimation and compensation, in 

Section 4.2 we present the simulations in two parts. Firstly exogenous unknown 

inputs are simulated as an equivalent quantity at the control input and hence we can 

see how close the estimate matches the equivalent unknown input. Next, exogenous 

disturbances are removed from the system while modelling errors are added, so that 

the compensation effort can then be reflected by the difference between the control 

signals before and after the introduction of modelling errors. 

Finally in Section 4.3, an investigation into using only actuator dynamics for the 

actuator controller design for the ATBMW prototype is presented. 

 

4.1 Influence of UIE-related Parameters 

To verify the rules stated in Section 3.3.3 for designing the proposed UIE-integrated 

LQG controller, the parameters related to the UIE are investigated individually in 

simulations. Though the state observer is not included in the UIE structure, it has 
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substantial influence on UIE performance and affects the overall system sensitivity 

and stability robustness, and hence its gain is regarded as UIE-related and examined 

as well. 

Simulation scenarios in this section are based upon actuator B, and corresponding 

model in Category I (actuator dynamics) is used for controller design. Parameters of 

the full-state feedback control law are consistent throughout all these scenarios, 

while UIE parameters and the state observer gain vary individually in respective 

cases. 

4.1.1 Low-pass Filter 

(1) Low-pass Filter Order 

A first-order low-pass filter as in Eq (3.44) with the passband gain equal to 1 is 

recommended in Section 3.3.3. To validate the choice, we generalise the low-pass 

filter in the following form: 

 0

( )
( )

( 1)

p
i

mi
i

f m

a s
G s

s









, (4.1) 

where m  and p  denote the order of the denominator and numerator, respectively. 

As mentioned, condition (b) in the Theorem in Section 3.3.2 is not satisfied when 

p 1 . Thus we only investigate cases where m 1  and p  0 . In the simulations 

that follow, four low-pass filters ( , , ,m1 2 3 4 ) are used, and the influence of 

different m  is commented accordingly in every simulation scenario. 

(2) Cutoff Frequency 

Under the prerequisite that the natural frequency of unknown inputs is below the 

cutoff frequency c  of the low-pass filter, the sensitivity and stability robustness of 

the overall closed-loop system is affected when c  varies. 



Simulation 60 
 

 

Following the guidelines in Section 3.3.3, the UIE-integrated LQG controller is 

designed using the weights in Table 4.1, with corresponding gains and remaining 

parameters listed in Table 4.2. Similar to a standard LQG design procedure, the 

weighting coefficients and matrixes are initially selected according to Bryson’s rule 

(Bryson and Ho, 1969), and then some iteration is performed to yield appropriate 

gains for a trade-off between system sensitivity and stability robustness. Details of 

selecting the state observer gain L  and the UIE gain dK  are demonstrated and 

explained later in Sections 4.1.2 and 4.1.3. 

 

 

The magnitude of system sensitivity ( )S j  at d 10  (rad/s) versus the low-pass 

filter cutoff frequency c 2 310 10  (rad/s) is plotted in Figure 4.1. When the 

frequencies that characterise the unknown inputs are well below c , raising c  

yields reduced sensitivity. This is a straightforward result reflected by the 

characteristics of a real low-pass filter, since higher c  results in less power 

reduction to the same signals of frequency below c . A 1st-order filter 

( ;  m p 1 0 ) demonstrates the smallest sensitivity among the four, because less 

phase shift is imposed to signals and higher accuracy in estimation is resulted. 

Table 4.2: Parameters of the UIE-integrated LQG controller for actuator B with the 
low-pass filter cutoff frequency c  as the variable of interest 

Standard LQG Controller  UIE 
rK  wK  xK  L   dK  m  

.18 7115  .0 0316  
.
.

T 
 
  

18 7116

0 8689
 

.
.

 
 
  

223 6386

7 1040
  .52 1186  

,m

m

 

 

1 4


 

 

Table 4.1: Weights used in the UIE-integrated LQG controller design for actuator B 
according to the corresponding model in Category I 

Standard LQG Controller   UIE 
yQ  wQ  R  lQ  lR    dQ  dR  

.  23 5 10   31 10  1  
  
  

4

4

5 10 0

0 5 10
 1    

  
  

8

8

2 10 0

0 2 10
 1  
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The system stability robustness index   against c  1 310 10  (rad/s) is shown 

in Figure 4.2. Though higher c  contributes to lower sensitivity at a certain 

frequency below c , it inevitably decreases the stability robustness of the close-loop 

system. In the meantime, a filter of lower order enables smaller system sensitivity by 

sacrificing the stability robustness. 

 

 
Figure 4.2: Stability robustness index   versus low-pass filter cutoff frequency c  

Figure 4.1: Magnitude of system sensitivity ( )S j  at d  5  (rad/s) versus low-pass 
filter cutoff frequency c  
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Although a low-pass filter of lower order with higher cutoff frequency is undesired in 

the interests of the closed-loop system stability robustness, it is nevertheless 

recommended in consideration of its critical role in reducing the system sensitivity 

for improved performance robustness to unknown inputs. The fact that the low-pass 

filter is not the only factor having an influence on the system stability robustness 

makes the preference feasible and applicable. Once the low-pass filter has been 

designed, the stability robustness of the closed-loop system can then be ensured by 

selecting an appropriate state observer gain, as proved in Section 3.3.2. 

Given that the dynamic change of wind and wing-shape-induced air pressure lie in a 

low-frequency range, 100 rad/s can be a reasonable choice as the cutoff frequency of 

the low-pass filter for the UIE-integrated LQG controller used on an ATBMW. 

Accordingly, this frequency value is used in remaining simulations and throughout 

wind tunnel experiments in Chapter 5. 

4.1.2 State Observer Gain 

Using parameters in Table 4.3 (inherited from Table 4.2) and with the state observer 

gain L  being the variable for investigation, the influence of the state observer gain to 

system sensitivity and stability robustness is illustrated in Figures 4.3 and 4.4, 

respectively. 

 

It can be seen in Figure 4.3 that smaller system sensitivity is achieved at a lower state 

observer gain. As the gain L  increases, the disturbance compensation effect from the 

UIE continuously weakens until virtually having little influence on the overall 

system sensitivity when the standard LQG component becomes to dominate 

( L 6
2 10  in Figure 4.3, where L 2  denotes the Euclidean norm of the vector L ). 

In agreement with Figure 4.1, a 1st-oreder low-pass filter contributes to better 

Table 4.3: Parameters of the UIE-integrated LQG controller for actuator B with the 
state observer gain L  as the variable of interest 

Standard LQG Controller  UIE 
rK  wK  xK   dK  m   (rad/s)c  

.18 7115  .0 0316  
.
.

T 
 
  

18 7116

0 8689
  .52 1186  

,m

m

 

 

1 4


 100 
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disturbance compensation effect, as indicated by the much smaller sensitivity 

compared with filters of a higher order. 

 

 

 

 

Figure 4.4: Stability robustness index   versus L 2  of the state observer gain 

L 2

Figure 4.3: Magnitude of system sensitivity ( )S j  at d  5  (rad/s) versus L 2  
of the state observer gain 

L 2
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On the contrary, Figure 4.4 shows improved stability robustness as a result of 

increasing L . Similar to Figure 4.2, the stability robustness is sacrificed for smaller 

sensitivity when a low-pass filter of lower order is used. However, the difference in 

stability robustness becomes less sensitive to the low-pass filter order at higher L , 

and hence it is a reasonable strategy to design L  from the smallest acceptable value 

according to application requirements. 

In the following examples of choosing an appropriate state observer gain L , the 

model in Category II associated with actuator B is introduced to represent actual 

plant dynamics ( )P s , with corresponding model in Category I being the nominal 

process ( )nP s . The perturbation ( )pM s  is then calculated according to ( )P s  and 

( )nP s . For better compensation of unknown inputs, a 1st-order low-pass filter is used. 

As a conservative design in consideration of a reliable level of stability robustness, a 

moderate value of the state observer gain,  . . TL1 223 6386 7 1040 , is chosen 

(Note that this gain matrix is also used in Tables 4.2, 4.4, and 4.5). Other parameters 

of the UIE-integrated LQG controller remain the same as in Table 4.3. The 

magnitude of   ( ) ( )nH j P j   11  and ( )pM s  in this case are plotted in Figure 

4.5, which demonstrates that the closed-loop system remain stable across 

 ,  0  in the presence of un-modelled dynamics ( )pM s  since the robust 

stability criterion in Eq (3.35) is satisfied. The stability robustness index   is 

.4 1505  (dB), but the notch of  ( ) ( )nH j P j   11  is actually 3.017 (dB) above 

( )pM s  at the same frequency. It means a negative   does not necessarily indicate 

an unstable system and a value close to 0 is sufficient to provide a reliable level of 

stability robustness to parameter variations. 

For a smaller gain of the state observer,  . . TL2 22 3811 0 4567 , with other 

parameters unchanged, corresponding plots in Figure 4.6 show that the robust 

stability inequality is not satisfied. The notch of  ( ) ( )nH j P j   11  is .21 4169  
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(dB) below ( )pM s  at .  40 3702  (rad/s), and the stability robustness index in 

this situation is . 23 9759  (dB), which is much smaller and indicates instability. 

 

 

Figure 4.6: Closed-loop stability with  . . TL2 22 3811 0 4567  in the presence of 
un-modelled dynamics ( )pM s  

( ) ( )nH j P j 


1
1

( )pM j

Figure 4.5: Closed-loop stability with  . . TL1 223 6386 7 1040  in the presence of 
un-modelled dynamics ( )pM s  

( ) ( )nH j P j 


1
1

( )pM j
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4.1.3 UIE Gain dK  

The effects of using different estimation gains and low-pass filters of different 

denominator order are investigated by means of the relative tracking error, with 

simulations based on actuator B. Firstly, a standard LQG controller is designed using 

the model of actuator B in Category I, with corresponding parameters summarised in 

Table 4.4. The standard LQG controller is tested as a reference without exogenous 

unknown inputs and assuming no modelling error or un-modelled dynamics (using 

the same model from Category I for both the controller and the plant). Next, a UIE is 

designed (see parameters in Table 4.4) and integrated into the existing standard LQG 

controller, with external disturbances and modelling errors added. The UIE-

integrated LQG controller is tested against the varying gain dK . 

Exogenous unknown inputs are introduced as an equivalent disturbing voltage 

applied at the control input channel, simulated by compound sinusoids of time-

varying frequency and amplitude mixed with random jumps (discontinuities) in 

voltage (Figure 4.7): 

 ( ) sin( ) sin( ) ( )e dd t c t c t w t   1 1 2 2 , (4.2) 

where ( )dw t 1 is the function of bounded random numbers that change at every 

0.1 second, and other sinusoidal parameters are: 

   
;  . ;

cos ;  . cos .
c t t

c t t


  

     

1 1

2 2

0 1 1

5 0 1 5
 

Uncertainties other than exogenous unknown inputs are represented as modelling 

errors or un-modelled dynamics by using a different model, that is, the model of 

actuator B in Category II, for plant dynamics. 
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The sample rate of simulation is set to 0.001 second. Results are analysed in terms of 

the deviation described by 

 
 

 

( ) ( )

( ) ( )

n
i i
LQG

i

n
i i
UIELQG LQG

i

y r
n

y y
n









                     





1
22

1
1

1
22

2
1

1

1

 , (4.3) 

where 

( )ir : The thi  point of the reference trajectory; 
( )i
LQGy : The thi  point of the tracking trajectory when using the standard LQG 

controller under no disturbances and modelling errors; 
( )i
UIELQGy : The thi  point of the tracking trajectory using the UIE-integrated LQG 

controller in the presence of disturbances and modelling errors; 

1 : Deviation of LQGy  from r ; 

2 : Deviation of UIELQGy  from LQGy ; 

n : Number of samples. 

Figure 4.7: Equivalent exogenous disturbance in voltage at the control input channel 
simulated according to Eq (4.2) 
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Comparisons are made according to 

 %


 2

1
100 . (4.4) 

The relative tracking error, as expressed in Eq (4.4), provides a measure of the 

disturbing effect of the unknown inputs, or in other words, a measure of how much 

the system is disturbed by unknown inputs, relative to the reference performance 

under no disturbing factors. 

For a given reference tracking trajectory in Figure 4.8 and controller parameters in 

Table 4.4, simulation results are obtained, treated with Eqs (4.3) and (4.4), and 

plotted in Figure 4.9. 

 

From Figure 4.9, the following remarks can be drawn: 

 The rejection of unknown inputs degrades when the order of the low-pass 

filter increases, although the phenomena are not significant for dK  of higher 

values ( dK  310  in Figure 4.9). 

 The curves are almost horizontal for dK
 110  and dK  310 , 

distinguishing a region in the middle within which the performance of 

unknown-input compensation is sensitive to dK . It is therefore reasonable to 

select a dK  within this region in accordance with application requirements 

(Note that the same value of dK , which falls within the region mentioned 

above, is selected for Tables 4.2, 4.3, and 4.5). 

 The horizontal parts of the curves point to the same value around 280%, 

which is the relative tracking error of the standard LQG controller (without 

Table 4.4: Parameters of the UIE-integrated LQG controller for Actuator B with the 
UIE gain dK  as the variable of interest 

Standard LQG Controller  UIE 
rK  wK  xK  L   m  c  (rad/s) 

.18 7115  .0 0316  .
.

T 
 
  

18 7116

0 8689
 

.
.

 
 
  

223 6386

7 1040
  

,m

m

 

 

1 4


100 
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UIE) in the presence of unknown inputs. As can be seen, a standard LQG 

controller alone cannot cope well with a broader class of un-modelled 

unknown inputs, whereas the problem is solved when the UIE is integrated 

into the controller, with tracking errors significantly reduced. 

 

 
Figure 4.9: Relative tracking error   against dK  

Figure 4.8: Reference tracking trajectory for actuator B 
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4.2 Unknown-Inputs Estimation and Compensation 

The previous section demonstrates the relation between relative tracking errors and 

UIE parameters (UIE gain and the order of the low-pass filter). Accordingly in this 

section a proper set of LQG and UIE parameters are determined for simulations to 

illustrate the mechanism of estimating and compensating (rejecting) unknown inputs. 

As mentioned in Section 1.2, the term ‘unknown inputs’ used herein is referred to as 

a broader expression that includes both exogenous disturbances and internal 

uncertainties. In Sections 4.2.1 we look into the estimation and compensation of 

exogenous unknown inputs alone, while in Section 4.2.2 only internal uncertainties 

are assumed to exist. 

4.2.1 Exogenous Disturbances Estimation and Compensation 

With respect to the system as in Eqs (3.1) and (3.2), when exogenous disturbances 

enter the system at different channels dB , the estimate ˆ ( )ed t  produced by our 

proposed UIE is an equivalent counteractive input required at the control input 

channel B , which however does not necessarily reflect the actual magnitude of 

disturbances. For the purpose of demonstrating the unknown-input estimation 

mechanism, simulated exogenous disturbances are introduced as an equivalent 

quantity at the same input channel as the control effort. 

Again, the model of actuator B in Category I is used in the following simulations of 

this subsection for both controller design and plant dynamics, that is, no internal 

uncertainties in the form of modelling errors are assumed. Since exogenous unknown 

loads exerted on an actuator are forces and affect the actuator as a disturbing voltage 

does, the corresponding resultant thrust or pull can be represented by an equivalent 

disturbing voltage. 

Assume a linear relation 

 ( ) ( )F M Vd t K d t , (4.5) 
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where ( )Fd t  and ( )Vd t  are equivalent exogenous disturbances in force (N) and 

voltage (V), respectively, and =2.92MK  (N/V) is the motor force constant. 

Then the disturbance signal in Eq (4.2) has corresponding force representation as in 

Figure 4.10, which is for illustration only, to visualise the magnitude of the 

disturbance force. The quantity to be matched by the estimate in the simulation that 

follows is the disturbing voltage expressed in Eq (4.2) and shown in Figure 4.7. 

 

Parameters of the controller are listed in Table 4.5. 

 

For the standard LQG controller (without UIE), the real-time tracking is considerably 

disturbed by exogenous disturbances as shown in Figure 4.11, and the tracking 

trajectory after the equivalent disturbance is applied deviates from that of the 

disturbance-free case in a pattern of the disturbance signal (see Figure 4.14). 

Table 4.5: Parameters of the UIE-integrated LQG controller for Actuator B 
LQG  UIE 

rK  wK  xK  L   dK  ( )fG s  

.18 7115  .0 0316  
.
.

T 
 
  

18 7116

0 8689
 

.
.

 
 
  

223 6386

7 1040
  .52 1186  . s 

1
0 01 1

 

 

Figure 4.10: Simulated equivalent exogenous disturbance force 
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After the UIE is integrated into the controller, the simulated equivalent exogenous 

disturbance is successfully estimated with sufficient accuracy, as in Figure 4.12. The 

UIE component performs well despite the time-varying parameters and unpredictable 

discontinuities of the disturbance, and the estimate closely follows the disturbance 

signal with only minor deviations at random jumps. As a result, the tracking 

performance is significantly improved, with the difference between tracking 

trajectories barely identified in Figure 4.13. Now denote the difference between the 

tracking trajectory under unknown-input-free situation and the one subjected to the 

influence from unknown inputs by ‘relative tracking deviation’. Plotting the relative 

tracking deviation of both the standard LQG controller and the UIE-integrated LQG 

controller produces Figure 4.14. It is apparent in Figure 4.14 that the UIE-integrated 

LQG controller outperforms the standard LQG controller. 

Since the disturbance is substantially compensated by the UIE, leaving only traces of 

residuals, the LQG component in the UIE-integrated LQG controller is basically not 

affected by the disturbance. This can be indicated by the control effort ( )cu t  before 

and after the exogenous disturbance is introduced. It is clear in Figure 4.15 that two 

curves of ( )cu t  generally coincide with each other. The Spikes of ( )cu t  in the 

Figure 4.11: Tracking trajectories of the standard LQG controller before and after the 
exogenous disturbance is introduced 
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presence of the exogenous disturbance are caused by the discontinuities ( )dw t  in Eq 

(4.2) because a transient phase is required for ˆ ( ) ( )e ed t d t . The fast response of the 

UIE is manifest as shown by the sharp spikes. 

 

 

 

Figure 4.13: Tracking trajectories of the UIE-integrated LQG controller before and 
after the exogenous disturbance is introduced 

Figure 4.12: Estimation of the equivalent exogenous disturbance 
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4.2.2 Compensation of Modelling Errors 

In regard to internal uncertainties, mostly modelling errors due to neglected 

dynamics or parameters variations with time, the use of an equivalent quantity at the 

control input offers a reliable and easy solution to compensation. The corresponding 

Figure 4.15: The control effort ( )cu t  produced by the LQG component of the UIE-
integrated LQG controller before and after the exogenous disturbance is introduced 

Figure 4.14: The relative tracking deviation of the standard LQG controller and the 
UIE-integrated LQG controller in the presence of the exogenous disturbance 
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compensation effort can be identified by the change of the control signal before and 

after modelling errors are added, in the absence of exogenous disturbances. In the 

following simulations, the same reference trajectory as in Figure 4.8 is used, the 

simulated equivalent exogenous disturbance is removed, and the model of actuator B 

in Category II is used for plant dynamics while the controller design is based on the 

corresponding model in Category I. 

The tracking results of the standard LQG controller in situations with and without 

modelling errors are shown in Figure 4.16, with the relative tracking deviation 

plotted in Figure 4.18. It can be seen in both figures that internal uncertainties in the 

form of modelling errors cause some apparent trajectory deviations from 18.5s. With 

regard to the UIE-integrated LQG controller, the counteractive compensation effort 

is generated accordingly, leaving the LQG component unaffected. By feeding back 

proper compensation efforts predicted by the UIE, the relative tracking deviation is 

effectively reduced as in Figures 4.17 and 4.18, with barely identifiable trajectory 

difference. 

In Figure 4.19 are the control efforts ( )cu t  produced by the LQG component of the 

UIE-integrated LQG controller before and after modelling errors are introduced into 

the closed-loop system. Accordingly, the voltage curves of the other control effort 

ˆ ( )ed t  in Eq (3.3), which comes from the UIE component, are plotted in Figure 4.20. 

Under the circumstance with no exogenous and no modelling errors, ˆ ( )ed t  simply 

remains zero as in Figure 4.20, which means the corresponding ( )cu t  in Figure 4.19 

is actually identical to the control effort ( )u t  of a standard LQG controller in the 

same situation. After modelling errors are present, there is little change to ( )cu t  

while ˆ ( )ed t  shows considerable variation, revealing that the modelling errors are 

effectively handled by ˆ ( )ed t . The large magnitude of ˆ ( )ed t  after 18.5s means more 

efforts are required to compensate the modelling errors, and thus explains the relative 

tracking deviation of the standard LQG controller without UIE (see Figures 4.16 and 

4.18). 
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Figure 4.17: Tracking trajectories of the UIE-integrated LQG controller with and 
without modelling errors 

Figure 4.16: Tracking trajectories of the standard LQG controller with and without 
modelling errors 
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Figure 4.19: The control effort ( )cu t  from the LQG component of the UIE-integrated 
LQG controller with and without modelling errors 

Figure 4.18: The relative tracking deviation of the standard LQG controller and the 
UIE-integrated LQG controller with modelling errors 
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4.3 Compensation of Un-modelled Wing Structural Dynamics 

The previous section illustrates the mechanism of unknown-input estimation and 

compensation using the proposed UIE-integrated LQG control scheme and in the 

meantime validates its efficacy and advantages over a standard LQG counterpart. In 

this section, the proposed controller is employed on all five actuators of the ATBMW 

prototype for further validation with the focus on compensating un-modelled wing 

structural dynamics. 

Wing structural dynamics consist of induced forces and torques from mechanically 

coupled linkages, frictions in joints and between sliding wing skin layers, and 

resistance due to elastic deformation of the wing skin, etc. It is of vital importance to 

take these factors into account to ensure consistent controller performance as 

designed, whereas the underlying problem remains at the difficulty to exactly model 

or measure these quantities. Since the uncertainties influence the overall system in 

different ways, using an equivalent quantity to counteract the resultant effect is 

simple and effective to handle most of the uncertainties in a unified way. 

Figure 4.20: The control effort ˆ ( )ed t  from the UIE component of the UIE-integrated 
LQG controller with and without modelling errors 
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Details of the UIE-integrated LQG controller design are as follows: 

 Actuator dynamics (Models in Category I) are used directly as the nominal 

plant dynamics for controller design. 

 To assign a proper UIE gain dK  for each controller, the disturbed response of 

corresponding actuator around setpoint zero is evaluated according to Eq 

(3.22). The unknown inputs possibly encountered by individual controllers on 

an ATBMW in motion are supposed to have the dominant frequency at 

.d  0 4 (rad/s). Since the linear actuator used on the ATBMW prototype is 

driven by a DC motor which works within the range of 12 V (see Table A.1 

in Appendix A), a maximum magnitude of 10V is assumed for the equivalent 

unknown input ( )e dd j . The actuator response ( )dy j  subjected to 

( )e dd j  is expected to be less than 0.1mm, given the 0.1mm positioning 

precision of the linear actuator (see Table A.1 in Appendix A). 

 To select the state observer gain L , the stability robustness index  5  is 

desired as explained in Section 4.1.2. After some iteration the weighting 

coefficients and matrixes in Table 4.6 yield satisfactory parameters in Table 

4.7 for each actuator controller, with corresponding disturbed responses 

( )dy j  and stability robustness index   given in Tables 4.8 and 4.9, 

respectively. 

For comparison, the proportional-integral-derivative (PID) controller is designed and 

tested in addition to the proposed UIE-integrated LQG controller given the fact that a 

majority of commercial aircraft wing control surfaces rely on PID controllers. The 

PID controller used here has a parallel structure with a 1st-order low-pass filter for 

the derivative term (Figure 4.21). The setpoint weightings, b1  and b2  for respective 

proportional and derivative terms, are set to 1 for better real-time trajectory tracking 

performance (Åström and Hägglund, 2006). Other parameters (as in Table 4.10) are 

optimally designed and tuned using MATLAB R2010b® PID tuner. The design is 

based on actuator dynamics (Models in Category I) and has a target phase margin 

over 60° to allow for modelling errors or variations in system dynamics. 
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Table 4.7: Parameters of the UIE-integrated LQG controller designed according to 
actuator dynamics 

 Actuator B Actuator L Actuator M Actuator N Actuator O 
rK  .18 7115  .14 1452  .14 4950  .14 1452  .18 7112  
wK  .0 0316  .0 0316  .0 0316  .0 0316  .0 0316  

xK  .
.

T 
 
  

18 7116

0 8689
 

.
.

T 
 
  

14 1462

0 4549
 

.
.

T 
 
  

14 4973

0 5016
 

.
.

T 
 
  

14 1610

0 4084
 

.
.

T 
 
  

18 7327

0 7414
 

dK  .52 1186  .37 8907  .37 4643  .64 0588  .72 7574  

L  
.

.
 
 
  

223 6386

71040
 

.
.

 
 
  

223 6250

4 0704
 

.
.

 
 
  

223 6261

4 3152
 

.
.

 
 
  

223 6245

3 9588
 

.
.

 
 
  

223 6357

6 4713
 

( )fG s   1 0.01 1s   

Table 4.6: Weights used for the UIE-integrated LQG controller design based on 
actuator dynamics 

 yQ  wQ  lQ  dQ  

Actuator B .  23 5 10   31 10  
  
  

4

4

5 10 0

0 5 10
 

  
  

8

8

2 10 0

0 2 10
 

Actuator L  22 10   31 10  
  
  

4

4

5 10 0

0 5 10
 

  
  

9

9

2 10 0

0 2 10
 

Actuator M .  22 1 10   31 10  
  
  

4

4

5 10 0

0 5 10
 

  
  

9

9

1 10 0

0 1 10
 

Actuator N  22 10   31 10  
  
  

4

4

5 10 0

0 5 10
 

  
  

9

9

4 10 0

0 4 10
 

Actuator O .  23 5 10   31 10  
  
  

4

4

5 10 0

0 5 10
 

  
  

8

8

3 10 0

0 3 10
 

(R , lR , and dR  used in the design of each actuator controller are all set to 1.) 




s1





Figure 4.21: Schematic of the PID controller used for comparison 

PK

IK

DK
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




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
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Figure 4.22 illustrates a high-lift scenario, in which the real-time trajectory for each 

actuator to follow so as to complete the morphing process is calculated according to 

Eq (2.19) in Section 2.1 and is each plotted in Figure 4.23. 

Tests are divided into two groups: 

 Group 1: Using Category I models as plant dynamics 

This simulates the situation free from wing structural dynamics. That is, 

actuators are not assembled onto the wing rib body framework. 

 Group 2: Using Category II models as plant dynamics 

This simulates the situation that actuators are assembled onto the wing rib 

body framework with skin on (Figure 2.3 (c)). In other words, the actuators 

are subjected to wing structural dynamics. 

 

Table 4.10: Parameters of the PID controller based on actuator dynamics 
 Actuator B Actuator L Actuator M Actuator N Actuator O 

PK  10.5681 9.7584 10.6623 9.3291 11.8064 

IK  0.8014 0.8118 0.8107 0.7075 1.0048 

DK  0.2580 -0.0108 0.0835 -0.1027 0.1627 

N  18.4316 9.5057 8.6948 90.8428 16.7530 
KP – Proportional gain; KI – Integral gain; KD – Derivative gain; N – Filter coefficient 

Table 4.9: Stability robustness index   (dB) of the individual SISO closed-loop 
system for each actuator 

 Actuator B Actuator L Actuator M Actuator N Actuator O 
  .4 1505  .3 2773  .2 9813  .2 7267  .3 2234  

Table 4.8: Disturbed response ( )dy j  of actuator extension (mm) from the setpoint 
when subjected to the equivalent disturbing input ( )e dd j  

 Actuator B Actuator L Actuator M Actuator N Actuator O 
( )dy jw  .0 0579  .0 0760  .0 0896  .0 0445  .0 0366  
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Figure 4.23: Reference length trajectory of actuators for accomplishing the ATBMW
morphing process in a high-lift scenario 

Figure 4.22: ATBMW morphing process in a high-lift scenario 
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Similar to Section 4.1.3, the sampling rate in simulation is set to 0.001 second, and 

results are analysed in terms of the deviation described by 
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where 

( )ir : The thi  point of the reference trajectory; 
( )i
Iy : The thi  point of Group 1 tracking trajectory; 
( )i
IIy : The thi  point of Group 2 tracking trajectory; 

I : Deviation of Group 1 tracking trajectory from the reference trajectory; 

II : Deviation of Group 2 tracking trajectory from Group 1 tracking trajectory; 

n : Number of samples. 

Comparisons are made according to the relative tracking error 

 %II

I




  100 . (4.7) 

As can be seen from the results summarised in Table 4.11, un-modelled wing 

structural dynamics have substantial influence on the actuator response, resulting in 

relative tracking errors of various extents when using the PID controller. However, 

the UIE-integrated LQG controller has better performance with little difference 

between Group 2 and Group 1 tracking trajectories in spite of the mismatch between 

models used by the controller and those used as plant dynamics. 

Figures in Table 4.11 also vary among different actuators in a similar pattern with 

regard to both the PID controller and the UIE-integrated LQG controller. Actuators L 

and M appear to suffer minor impacts from induced wing structural dynamics, while 

the other actuators are each in a position subjected to more uncertainties, especially 
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actuator B. This phenomenon implies the complexity and uncertainty of wing 

structural dynamics, which are thus difficult to accurately model, especially when the 

ATBMW structure becomes more complicated. 

 

Therefore, the results suggest: 

 The un-modelled wing structural dynamics can be effectively estimated and 

properly treated using the UIE-integrated LQG controller designed according 

to actuator dynamics, which performs consistently as designed despite the 

variation of plant dynamics. 

 With the UIE-integrated LQG controller, the difficulties in acquiring 

sophisticated models of wing structural dynamics for actuator controller 

design can be avoided. As a result, the implementation of the actuator 

controller for ATBMWs can be simplified. 

 

 

 

 

 

Table 4.11: Relative tracking errors under the PID controller and the UIE-integrated 
LQG controller designed according to actuator dynamics 

 Actuator B Actuator L Actuator M Actuator N Actuator O 
1  64.43% 39.99% 11.60% 53.41% 36.48% 
2  4.87% 3.66% 0.82% 5.78% 4.25% 

Subscript “1”: PID controller based on actuator dynamics 
Subscript “2”: UIE-integrated LQG controller based on actuator dynamics 
 



 

 

Chapter 5  

WIND TUNNEL EXPERIMENTS 

It is shown in Section 4.3 that the un-modelled wing structural dynamics are well 

compensated by the UIE-integrated LQG controller based on actuator dynamics, the 

real-time trajectory tracking performance of which is better than the PID controller. 

In addition to the induced dynamics from the wing structure, aerodynamic loads 

during flight are another major factor influencing the actuator response. In order to 

investigate the performance of the UIE-integrated LQG controller in flight 

environments, wind tunnel tests were conducted. The arrangement of laboratory 

apparatus is introduced in Section 5.1, followed by descriptions in Section 5.2 on the 

tests conducted. The results of wind tunnel experiments are presented and discussed 

in Section 5.3. 

 

5.1 Experiment Setup 

In experiments, controllers were designed in Matlab®, realised via Simulink®, and 

implemented through dSPACE®. As mentioned in Section 3.1, each actuator is 

controlled by an individual controller. The corresponding SISO control system is 

implemented with the hardware setup illustrated in Figure 5.1 (see detailed technical 

information in Table A.1 of Appendix A). The overall experiment setup with a wind 

tunnel is shown in Figure 5.2. The prototype was vertically mounted in the wind 

tunnel duct (Figure 5.3 (a)) with the other end of its spar fixed to the JR3® Multi-

Axis Force-Torque Sensor (Figure 5.3 (b)). Forces and torques data collected by the 
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sensor receiver was then converted into lift and drag forces. The wind speed was 

measured by a Pitot tube connected to a flow meter. 

 

 

Though equipped with instruments to measure lift and drag forces generated by the 

ATBMW prototype, the setup was not used to investigate differences in the 

Figure 5.2: Setup for wind tunnel tests  

1 

2 

3 

4 5 6 
7 

8 

9 

1, dSPACE® DS1104 R&D Controller Board; 2, Controller PC; 3, Motor Drive Board; 4, Wind 
Tunnel Duct; 5, ATBMW Prototype; 6, Flow Meter; 7, Pitot Tube; 8, JR3® Multi-Axis Force-
Torque Sensor; 9, JR3® Serial Force-Torque Sensor Receiver 

Potentiometer 

Motor 
Drive 
Board 

D/A 
Converter 

A/D 
Converter 

dSPACE® 
DS1104  

Motor 

Actuator 
(Firgelli® PQ12) 

Control 
Signal 

(Voltage) 

Position 
Signal 

(Voltage)

Figure 5.1: Schematic of the hardware setup for controller implementation 

Controller 
PC 



Wind Tunnel Experiments 87 
 

 

aerodynamic performance resulted from the use of different control schemes, and did 

not provide force feedback to the controller. Therefore, aerodynamic loads remain 

unknown to the controller. Instead, measured force data is used to visualise the time-

varying dynamic pressure change which the ATBMW prototype was subjected to, 

and to help identify how actuator responses are affected by the wind. 

 

The reason for this arrangement is as follows. The flexible skin for ATBMWs is still 

one of the unsolved research questions among various types of the morphing wing 

technology, and to the best of our knowledge, there is not a completely feasible 

solution for the ATBMW. The sliding aluminium skin used on our prototype enables 

it to undergo wind tunnel tests but is not able to maintain consistent aerodynamic 

characteristics (Thill et al., 2008). As a result, the measured lift and drag forces 

generated from the ATBMW prototype may not genuinely distinguish one controller 

from another when the wind speed is not high enough. However, simply raising the 

wind speed to higher levels is impractical within the scope of the project documented 

herein, as the skin used cannot sustain the quadratically increased dynamic pressures 

at high wind speeds. According to Austin et al. (1994), significant improvements in 

aerodynamic performance may result from tiny shape changes of the wing, or in 

other words, minor length variations of ATBMW actuators, during a transonic flight. 

Figure 5.3: ATBMW installation in the wind tunnel 

(b) ATBMW prototype mounted on the 
JR3® Multi-Axis Force-Torque Sensor  

(a) ATBMW prototype in 
the wind tunnel duct 
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Therefore, robust real-time trajectory tracking in the presence of unpredicted and 

unmeasured aerodynamic loads is of vital importance, and the tracking trajectory of 

actuators, as an alternative to aerodynamic measurements, can be examined directly 

to evaluate controller performance. In this way, controllers can be compared in terms 

of performance robustness at relatively low wind speeds. 

 

5.2 Tests Arrangement 

In experiments, there exist unknown inputs of various types, with their corresponding 

equivalent representation at the control input not available for measurement. As a 

result, looking into the estimated equivalent of unknown inputs gives few indications 

of the effect of unknown-input compensation. The same as simulations, and also as 

explained in the foregoing section, relative tracking errors provide a straightforward 

alternative for performance evaluation, and thus are used as a major measure in 

experiments as well. 

Two scenarios were assumed: 

 Case 1: The same high-lift scenario as in Figure 4.22 

 Case 2: Worst-case scenario 

According to Table 4.11 and Figure 2.3 (a), actuator B is believed to be most 

sensitive to internal uncertainties of the structure and external loads on the 

wing given its location in the entire framework. To further investigate the 

disturbance rejection capacity of the proposed control scheme, actuators N 

and O were commanded to flap the trailing edge at a rate of . 0 4  (rad/s) to 

generate fluctuating lift forces, while actuator B extended to 6mm and then 

retracted back to its original length following the trajectory of 

6sin( 15 2)t   within 30 seconds. This scenario simulates the situation 

that an aircraft is operating in severe weather conditions and needs to respond 

fast enough to unpredictable gust wind in order to maintain stable flight (the 

corresponding reference trajectories for actuators to follow could be more 

complicated than the formulation herein). 
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For each scenario, tests were divided into two groups: 

 Group 1: no wind 

 Group 2: room temperature, 8° angle of attack, and 20m/s wind speed 

Each group consists of three sets of tests: 

 Test A: Using the UIE-integrated LQG controller designed according to 

actuator dynamics 

Parameters in Table 4.7 were used directly in tests without further tuning. 

 Test B: Using the UIE-integrated LQG controller designed according to wing 

structural dynamics 

When wing structural dynamics are taken into account in controller design, 

fewer control efforts are needed to compensate internal uncertainties, and 

more stability margins are available to allow for unmeasured aerodynamics 

loads. The results from this controller therefore give a reliable reference to 

evaluate the performance of the UIE-integrated LQG controller designed 

purely according to actuator dynamics in Test A. 

The same requirements on the disturbed response ( )dy j and stability 

robustness index   as the designs based on actuator dynamics are followed. 

With the weighting coefficients and matrixes in Table 5.1, corresponding 

gains are obtained and listed in Table 5.2. Note that the disturbed responses in 

Table 5.3 are comparable to those in Table 4.8, while Table 5.4 indicates 

better stability robustness of every individual SISO closed-loop system than 

Table 4.9 does. 

 Test C: Using the PID controller based on wing structural dynamics 

The PID controller based on actuator dynamics was not used in wind tunnel 

experiments, because it has been shown not able to cope well with modelling 

errors compared with the UIE-integrated LQG controller. Instead, an 

optimised and well-tuned design (see Table 5.5) considering wing structural 

dynamics underwent tests to provide a solid reference for comparison. 
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Table 5.4: Stability robustness index   (dB) of the individual SISO closed-loop 
system for each actuator 

 Actuator B Actuator L Actuator M Actuator N Actuator O 
  1. 6970  .2 0248  .2 2069  .2 3581  .2 4643  

Table 5.3: Disturbed response ( )dy j  of actuator extension (mm) from the setpoint 
when subjected to the equivalent disturbing input ( )e dd j  

 Actuator B Actuator L Actuator M Actuator N Actuator O 
( )dy j  0.0571 0.0726 0.0884 0.0421 0.0348 

Table 5.2: Parameters of the UIE-integrated LQG controller designed according to 
wing structural dynamics 

 Actuator B Actuator L Actuator M Actuator N Actuator O 
rK  20.0039  16.7363  15.8148  20.0032  19.2388  

wK  0.0316  0.0316  0.0316  0.0316  0.0316  

xK  
20.1627
0.3058

T
 
 
 

 
16.8125
0.2721

T
 
 
 

 
15.8884
0.3466

T
 
 
 

 
20.0181
0.4462

T
 
 
 

 
19.2489
0.7318

T
 
 
 

 

dK  51.6267  37.4112  33.4911 70.7653  89.8030  

L  
223.6328
5.8186

 
 
 

 
223.6258
4.2595

 
 
 

 
223.6262

4.3431
 
 
 

 
223.6190

2.7283
 
 
 

 
223.6312
5.4577

 
 
 

 

( )fG s   1 0.01 1s  
 

Table 5.1: Weights used in the UIE-integrated LQG controller design based on wing 
structural dynamics 

 yQ  wQ  lQ  dQ  

Actuator B  24 10   31 10  
  
  

4

4

5 10 0

0 5 10
 .

.

  
  

10

10

1 2 10 0

0 1 2 10
 

Actuator L .  22 8 10   31 10  
  
  

4

4

5 10 0

0 5 10
 

  
  

10

10

5 10 0

0 5 10
 

Actuator M .  22 5 10   31 10  
  
  

4

4

5 10 0

0 5 10
 

  
  

9

9

7 10 0

0 7 10
 

Actuator N  24 10   31 10  
  
  

4

4

5 10 0

0 5 10
 .

.

  
  

10

10

1 8 10 0

0 1 8 10
 

Actuator O .  23 7 10   31 10  
  
  

4

4

5 10 0

0 5 10
 .

.

  
  

8

8

2 5 10 0

0 2 5 10
 

(R , lR , and dR  used in the design of each actuator controller are all set to 1.) 
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Every single test were repeated for 4 times to ensure data consistency, and results are 

averaged accordingly for subsequent treatments that use Eqs (4.6) and (4.7). Most 

importantly, all actuators were ensured to work within the nominal capacity in all 

tests. 

 

5.3 Results and Discussions 

5.3.1 Case 1: High-lift Scenario 

(1) Main Results 

Table 5.6 summarises the results from the high-lift scenario tests. The UIE-integrated 

LQG controllers used in Tests A and B both outperform the PID controller of Test C, 

with the relative tracking error several times smaller than that of PID. Though PID 

controllers were optimally designed using Category II models and further finetuned 

on board, there are nevertheless considerable performance downgrades caused by 

aerodynamic loads. In addition, the tracking performance of the UIE-integrated LQG 

controller designed using actuator dynamics ( A ) is closely comparable to that of its 

congener based on wing structural dynamics ( B ). Two main implications can be 

drawn from the results. Firstly, unmeasured aerodynamic loads can be effectively 

compensated under the UIE-integrated LQG controller; Secondly, using only the 

actuator dynamics for the UIE-integrated LQG controller design suffices, with the 

influences from wing structural dynamics effectively suppressed. It is worth 

emphasis that although the PID controller used in experiments for each actuator has 

already taken induced structural dynamics into account, there are nonetheless 

Table 5.5: Parameters of the PID controller based on wing structural dynamics 
 Actuator B Actuator L Actuator M Actuator N Actuator O 
PK  18.6129 13.2856 12.9677 15.6642 14.9403 

IK  1.5578 1.1327 1.0769 1.2336 1.1524 

DK  -0.2937 -0.1657 -0.1369 -0.2079 -0.0016 
N  9.5523 9.7332 9.4826 8.9909 8.8148 

KP – Proportional gain; KI – Integral gain; KD – Derivative gain; N – Filter coefficient 
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considerable relative tracking errors. Furthermore, it is difficult to acquire models as 

in Category II via system identification or direct mathematical modelling due to 

highly interacted mechanical components, when the ATBMW has a sophisticated 

framework as in the work of Baker and Friswell (2009). Therefore, the advantages of 

using the UIE-integrated LQG controller for ATBMWs are manifest. 

 

From Table 5.6 we can see that the resultant equivalent inputs from aerodynamic 

loads and modelling errors have less influence on actuators L, M, and N, but have 

more impact on actuators B and O. The figures in the table thus once again provide 

concrete evidence of the complicated structural dynamics on ATBMWs, besides the 

facts in Table 4.11. 

With the measurements in the wind tunnel, the lift coefficient LC  of the ATBMW 

prototype can be obtained according to 

 L
L

a w

F
C

v a


2

2 , (4.8) 

where LF  is the lift force,   is the density of air, av  is the velocity of air, and wa  is 

the planform area of the ATBMW prototype. 

Figure 5.4 shows a lift coefficient curve of the ATBMW prototype during the shape 

morphing process illustrated in Figure 4.22 (Case 1 scenario), reflecting a common 

pattern of the lift force resulted from the actuator trajectories in Figure 4.23. 

Table 5.6: Relative tracking errors in Tests A, B, and C of Case 1 
 Actuator B Actuator L Actuator M Actuator N Actuator O 
A  7.9% 2.7% 5.8% 5.9% 11.3% 

B  7.3% 2.9% 5.5% 4.3% 11.3% 

C  79.1% 16.1% 18.5% 31.8% 65.1% 
Subscript “A”: UIE-integrated LQG controller based on actuator dynamics 
Subscript “B”: UIE-integrated LQG controller based on wing structural dynamics 
Subscript “C”: PID controller based on wing structural dynamics 
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By referring to the framework of the ATBMW prototype (see Figure 2.3 (a)) from 

the perspective of mechanics and according to Figure 5.4, some connections between 

the lift force and actuator action are identified as follows: 

 Actuators L and M at the leading edge contribute little to the variation in lift 

force because of the particular position of the spar and the fixed angle of 

attack in wind tunnel tests. The nose-down movement of the leading edge 

increases the overall camber and plays a major role in redirecting and 

smoothing the flow, but induces little rise of the lift force at the fixed angle of 

attack (8°) in tests. As a result, the air pressure exerted on the two actuators is 

much lower compared with actuator B, and has less disturbing effect on 

actuator trajectory tracking. 

 The rear half of the prototype is supported by actuator B and hinge 6 (Node 

6), and hence actuator B has to sustain a considerable portion of the lift force, 

especially at a large camber. For instance, the second peak of the lift 

coefficient curve is not as high as the first one in Figure 5.4, but the resultant 

axial push on actuator B is stronger according to mechanics analysis. 

 The two times of length increase of actuator B does not exactly match the 

rises of lift force in terms of the time, and in particular the second peak of the 

lift coefficient happens earlier than the extending of actuator B. This is 

because another significant portion of the lift force is contributed by the 

motion of the trailing edge, powered by actuators N and O. As can be seen in 

Figures 4.23 and 5.4, the curve of lift coefficient appears in a similar pattern 

Figure 5.4: Lift coefficient of the ATBMW prototype in Case 1 tests 
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to the trajectory of actuators B and N. The highest lift force results when the 

trajectories of actuators B and N intersect at around 19.2s. As actuator B 

gradually extends during the period between 20.8s and 21.9s, the coordinated 

action of actuators N and O further bends down the trailing edge at a faster 

rate. Accordingly, the overall camber continues to increase, once again 

raising the lift coefficient to a second peak before actuator B reaches 6mm. 

 Regardless of the considerable contribution from the trailing edge on lift 

force generation, the aerodynamic pressure supported by actuators N and O is 

relatively low compared with actuator B because the former two actuators are 

located near the end of the wing rib. 

In the following, the lift coefficient curve is used as an aid to qualitatively analyse 

the trajectory tracking results of actuators B and O (Figures 5.5 to 5.12), the two 

actuators subjected to greater impact from aerodynamic loads and modelling errors 

as mentioned before. 

In Figure 5.5 are two tracking trajectories of actuator B under PID control designed 

according to wing structural dynamics, with one recorded in a no-wind environment 

(Group 1 test) and the other obtained in wind (Group 2 test). The relative tracking 

deviation (see the definition on page 72) is plotted accordingly in Figure 5.8. There is 

no significant deviation between the two trajectories when actuator B gradually 

extends at small cambers (Phase B) or retracts following the axial push from the lift 

force (19s to 20.8s in Phase C), whereas evident response delays of actuator B occur 

under high lift forces at large cambers (16.5s to 19s in Phase C, and throughout 

Phase D). Similarly, lags of actuator O are observed after 17.7s (the lift force 

becomes higher) when the actuator needs to overcome the aerodynamic load to 

retract (Figures 5.9 and 5.12). 

Under the UIE-integrated LQG controller designed on actuator dynamics, actuator B 

had consistent performance in spite of the presence of unmeasured and time-varying 

aerodynamic loads, with the corresponding tracking trajectory (Group 2 test) closely 

coinciding with the one obtained in a no-wind condition (Group 1 test), as shown in 

Figure 5.6. Using wing structural dynamics for the UIE-integrated LQG controller 

design, as a reference, yielded similar results (see Figure 5.7). The same conclusion 
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can be drawn on the performance of actuator O, as shown in Figures 5.10 and 5.11. 

The results imply that the performance of the UIE-integrated LQG controller based 

on actuator dynamics is satisfactory, and more importantly, at the same level of that 

of its congener using wing structural dynamics (see Figures 5.8 and 5.12). 

 

 

 

Figure 5.6: Tracking trajectories of actuator B in Case 1 using the UIE-integrated 
LQG controller based on actuator dynamics (Test A) 

Figure 5.5: Tracking trajectories of actuator B in Case 1 using the PID controller 
based on wing structural dynamics (Test C) 
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Figure 5.8: Relative tracking deviations in Tests A, B, and C 

Figure 5.7: Tracking trajectories of actuator B in Case 1 using the UIE-integrated 
LQG controller based on wing structural dynamics (Test B) 
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Figure 5.10: Tracking trajectories of actuator O in Case 1 using the UIE-integrated 
LQG controller based on actuator dynamics (Test A) 

Figure 5.9: Tracking trajectories of actuator O in Case 1 using the PID controller 
based on wing structural dynamics (Test C) 
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Figure 5.12: Relative tracking deviations in Tests A, B, and C 

Figure 5.11: Tracking trajectories of actuator O in Case 1 using the UIE-integrated 
LQG controller based on wing structural dynamics (Test B) 
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(2) Actuator Precision Influence on Tracking Errors 

The actuators used on the ATBMW prototype each has an embedded potentiometer 

for linear position feedback,  the positioning precision of which is limited to 0.1mm 

as claimed by the manufacturer (see Table A.2 in Appendix A). In order to evaluate 

the effects of actuator precision on experiment results, any two of the four runs, 

! ( )! 4 4 2 12  pairs in total in every single test, are compared by following the 

same treatment using Eqs (4.6) and (4.7), with results averaged and listed in Table 

5.7. 

As can be seen in Table 5.7, the relative tracking errors of each actuator due to the 

limited actuator positioning precision are consistent in spite of different controllers 

used. In addition, reference trajectories also have an impact on the relative tracking 

error, which becomes larger when the range of a trajectory is getting smaller. For 

instance, actuator O has the largest relative tracking error among the five actuators 

while actuator L has the smallest. This is because the total length variation (range of 

trajectory) of actuator O is only 2mm, merely 20 times of the rated positioning 

precision of the actuator. As a direct consequence, the trajectory discretization of 

actuator O is much coarser than that of actuator L, and some unsmooth stair-like 

sections can be observed along the trajectories of actuator O under both the PID and 

UIE-integrated LQG controllers (Figures 5.9 to 5.11) when the speed of length 

variation is low. Nevertheless, the UIE-integrated LQG controller demonstrates 

better capability in mitigating the impact from the limited actuator precision, with 

smoother tracking trajectories than those under the PID controller. 

 

Table 5.7: Relative tracking errors due to limited actuator positioning precision 
 Actuator B Actuator L Actuator M Actuator N Actuator O 
'
A  3.4% 2.3% 5.0% 3.3% 11.0% 
'
B  3.3% 2.4% 4.7% 3.1% 10.9% 
'
C  3.8% 2.6% 5.2% 3.6% 11.2% 

Subscript “A”: UIE-integrated LQG controller based on actuator dynamics 
Subscript “B”: UIE-integrated LQG controller based on wing structural dynamics 
Subscript “C”: PID controller based on wing structural dynamics 
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By examining and comparing the corresponding values in Tables 5.6 and 5.7 in pairs 

(for example, A  and '
A  of actuator B forms a pair, and so forth), we can see that 

actuator B is relatively more sensitive to exogenous unknown inputs than the other 

actuators, with its relative tracking errors A  and B  approximately twice of the 

one caused purely by the limited actuator precision while little differences are found 

in the other pairs. The finding agrees with our statement regarding the critical 

position of actuator B when describing Case 2 scenario in Section 5.2. And it is 

acceptable that actuator O has relative tracking errors ( A  and B ) around 11% 

when using UIE-integrated LQG controllers, given the achievable minimum relative 

tracking error around 11% in Table 5.7. 

5.3.2 Case 2: Worst-case Scenario 

In tests, the commanded shape morphing of the ATBMW prototype has its lift 

coefficient in the pattern shown in Figure 5.13. The action of actuator B contributes 

to the major change in lift while fluctuating waves are caused by the flapping of the 

trailing edge. 

 

The tracking results under different controllers are plotted in Figures 5.14, 5.15, and 

5.16, respectively, with the relative tracking deviations (see the definition on page 72) 

shown in Figure 5.17. We can see that the tracking performance of the PID controller 

is affected by the disturbances generated by the trailing edge when the lift coefficient 

is rising (t  35s). The three times of significant trajectory deviations accompany 

Figure 5.13: Lift coefficient of the ATBMW prototype in Case 2 tests 
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the three consecutive peaks of the lift coefficient curve. However, such phenomena 

can be barely identified in the results of the UIE-integrated LQG controller designed 

according to actuator dynamics (see Figure 5.15) which are again closely comparable 

to those of its congener design based on wing structural dynamics (Figure 5.16). 

 

 

 

Figure 5.15: Tracking trajectories of actuator B in Case 2 using the UIE-integrated 
LQG controller based on actuator dynamics (Test A) 

Figure 5.14: Tracking trajectories of actuator B in Case 2 using the PID controller 
based on wing structural dynamics (Test C) 
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Figure 5.17: Relative tracking deviations in Tests A, B, and C 

Figure 5.16: Tracking trajectories of actuator B in case 2 using the UIE-integrated 
LQG controller based on wing structural dynamics (Test B) 



 

 

Chapter 6  

CONCLUSIONS 

6.1 Outcomes of the Research 

A robust actuator controller for ATBMWs is proposed, developed, and studied. The 

proposed UIE-integrated LQG controller, as validated in both simulations and wind 

tunnel experiments, is an effective solution to simplifying the implementation of 

actuator controllers on ATBMWs. 

 Firstly, the UIE-integrated LQG controller is robust to a wide class of 

unknown inputs, including exogenous disturbances, and most importantly, 

internal uncertainties. As a result, there is no need to obtain wing structural 

dynamics for controller design, and the model of the actuator can be used 

instead. This is convenient because actuator dynamics are readily available 

from either the actuator manufacturer or via system identification methods. 

The actuator can then be tuned directly before it is installed on the ATBMW, 

and no further tuning is required for the controller after the actuator becomes 

part of the ATBMW framework, despite the fact that the dynamics of the 

overall structure is not covered in the actuator model used in controller design. 

It is thus of great significance to cases where on-board tuning of controllers is 

difficult due to highly interacted actuators on a sophisticated ATBMW 

framework. 

 Secondly, the UIE-integrated LQG controller is simple in structure and 

straightforward in design. Well established rules for the standard LQG 

controller remain unchanged regardless of the incorporation of the UIE, and 

the separation principle still holds for the full-state feedback law and observer 
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design. As a new approach for estimating and compensating unknown inputs, 

the proposed UIE component integrated with the standard LQG controller 

works in a way that does not require detailed knowledge on unknown inputs, 

derivatives of measured outputs, inversion of plant dynamics, and parameter 

optimisation for stabilising purpose. It is worth emphasis that the UIE 

component itself has a simple framework, parameters of which have direct 

physical indications and can be finetuned intuitively according to the actual 

performance of the actuator. 

Beyond the above merits, our proposed controller has broader significance in the 

following two aspects: (1) It provides a unified solution to simplifying actuator 

controller implementation on ATBMWs despite the variations and complexity of 

ATBMW structures, and is therefore significant to successful realisations of a wide 

range of promising ATBMW concepts; (2) The enhanced capacity of disturbance 

rejection is crucial to aerodynamic improvements achieved by ATBMWs as it 

ensures reliable performance of wing morphing in the presence of unmeasured and 

unpredictable exogenous loads. 

 

6.2 Future Work 

Within the scope of the research project documented herein, the development and 

implementation of the UIE-integrated LQG controller is focused on an SISO basis. 

However, as mentioned in Section 3.3.3, the formulae for the UIE component are not 

limited to SISO cases but also have potentials in MIMO situations, and the LQG 

algorithm is particularly suitable for MIMO circumstances as well. Given the above 

facts, the generalisation of the UIE-integrated LQG controller to MIMO applications 

is recommended for future work. 

 

 



 

 

Appendix A 

Table A.1: Hardware and software configuration of the PC-based control 

Hardware 

Computer 
CPU: Intel® Core™2 Quad Processor Q9400 @ 
2.66GHz 
RAM: 3.46GB 

D/A & A/D 
Converter dSPACE DS1104 R&D Controller Board 

Motor Drive 
Board 

Control Input Signal: -10V to +10V 
Control Output: -10V to +10V @300mA 

Software 

Matlab 7.5.0.342 (R2007b) 

dSPACE dSPACE ControlDesk Developer Version 3.2.1 

RTI Real-Time Interface to Simulink (RTI1104)  6.0 

MDBS MotionDesk Blockset 1.3.9 

MLIB/MTRACE MATLAB-dSPACE Interface Libraries 4.6.4 

DSSIMULINK ControlDesk to Simulink Interface 3.2.1 
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          Table A.2: Specifications of Firgelli® miniature linear actuator PQ12 

Peak Power Point 27N @ 4mm/s 

Peak Efficiency Point 14N @ 7mm/s 

Max Speed (no load) 9mm/s 

Max Force (lifted) 35N 

Max Side Load 15N 

Back Drive Force 60N 

Stroke 20mm 

Input Voltage 12 VDC 

Stall Current 220mA @ 12V 

Mass 15g 

Operating Temperature -10°C to +50°C 

Positional Accuracy ±0.1mm 

Lifetime 20,000 strokes, 20% Duty Cycle 

Ingress Protection IP-54 

Feedback Potentiometer 1/8W Non Buffered 10kΩ Potentiometer‐  

          (Data obtained from Firgelli Technologies Inc., Canada) 
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