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Abstract 

The active-truss-based morphing wing (ATBMW) is a new type of smart structure, 

which is more efficient than airfoils with conventional control surfaces. However, the 

sophisticated ATBMW framework and large numbers of actuators make it difficult to 

obtain the overall structural dynamics for controller design and inconvenient to tune 

actuators on board. Our research therefore aims to develop an actuator-level control 

scheme to simplify the process of controller implementation on ATBMWs so that the 

above problems regarding controller design and on-board tuning can be bypassed. 

The proposed control scheme is based on the concept of unknown-input estimation 

and compensation in a servomechanism. A new unknown-input estimator (UIE) is 

developed and integrated with a Linear-Quadratic-Gaussian (LQG) controller to 

provide enhanced compensation of uncertainties. By doing so, the resultant controller 

can be designed and tuned simply using the dynamics of the actuator, without the 

necessity to know the dynamics of the entire wing structure. Existing techniques for 

estimating unknown inputs to a system require at least one or more of the following: 

detailed knowledge on unknown inputs, derivatives of measured outputs, inversion 

of plant dynamics, constrained state observer design, parameter optimisation (global 

optimum not guaranteed), or complicated designs. The new UIE developed in this 

thesis is exempted from the aforementioned limitations and features a simple 

structure and straightforward design. 

To validate the proposed UIE-integrated LQG controller, an ATBMW prototype with 

5 linear actuators is built. For comparison, a PID controller is introduced in both 

simulations and experiments. Both types of controllers are designed using two sets of 

models obtained via system identification: one set represents actuator dynamics only, 

while the other set includes wing structural dynamics. 

In simulation study, system sensitivity and stability robustness are firstly investigated 

against parameters associated with the UIE component, with guidelines for designing 

the proposed UIE-integrated LQG controller validated. The mechanism of unknown-

input compensation is then demonstrated by dividing unknown inputs into exogenous 

disturbances and internal uncertainties and examining the two situations separately. 
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Compared with a standard LQG controller, the UIE-integrated LQG controller shows 

enhanced capability in rejecting unknown inputs. Lastly, the UIE-integrated LQG 

controller is implemented on all the 5 actuators in the presence of only internal 

uncertainties, and compared with the PID controller. Superior performance of the 

UIE-integrated LQG controller over the PID algorithm is observed in simulations. 

In experimental study, wind tunnel tests were conducted to further validate the 

efficacy of the UIE-integrated LQG controller under both aerodynamic loads and 

modelling errors. The performance of the UIE-integrated LQG controller designed 

according to actuator dynamics is closely comparable to that of its congener based on 

wing structural dynamics, and both outperform the PID controller. 

In conclusion, the new UIE is capable of effective estimation of unknown inputs. The 

UIE-integrated LQG controller has an enhanced capacity to compensate a wide class 

of unknown inputs including exogenous disturbances and internal uncertainties, and 

meanwhile the ease of design is maintained. The most significant merit of applying 

the proposed controller on an ATBMW is that the implementation of actuator 

controllers is considerably simplified despite the complexity of the ATBMW 

framework. The controller can be based on actuator dynamics only, and can be tuned 

on individual actuators before the actuators are assembled on the wing. Therefore, 

the process of controller implementation is free from structural coupling constraints, 

and there is no need to obtain wing structural dynamics for controller design and to 

further tune actuators on board. 

Beyond the merits mentioned above, the proposed controller has broader significance 

in the following two aspects. Firstly, it provides a unified solution to simplifying 

actuator controller implementation on ATBMWs despite the variations and 

complexity of ATBMW structures, and is thus significant to successful realisations 

of a wide range of promising ATBMW concepts; Secondly, the enhanced capacity of 

disturbance rejection is crucial to aerodynamic improvements achieved by ATBMWs 

as it ensures reliable performance of wing morphing in the presence of unmeasured 

and unpredictable exogenous loads. 
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