Investigation into the Expression and Localisation of c-kit and the Regulation of Kit Ligand Gene Expression in the Adult Human Ovary

Astrud Rebecca Rose Tuck
B.Sc (Biomedical Science), B.HSc. (Hons)

A thesis submitted to the University of Adelaide in total fulfillment of the requirements for the degree of Doctor of Philosophy

School of Paediatrics and Reproductive Health
Department of Obstetrics and Gynaecology
The University of Adelaide
Adelaide, South Australia

March, 2012
The most beautiful thing we can experience is the mysterious.

It is the source of all true art and science.

Albert Einstein

Question everything. Learn something. Answer nothing.

Euripides

I love fools' experiments. I am always making them.

Charles Darwin
This thesis is dedicated to my mum and dad.

Thank you for everything.
CHAPTER 3: CHARACTERISATION OF C-KIT AND KIT LIGAND
EXPRESSION AND LOCALISATION IN THE ADULT HUMAN OVARY67

3.1 INTRODUCTION .. 67
3.2 MATERIALS AND METHODS ... 73
 3.2.1 Human tissue collection ... 73
 3.2.2 Analysis of KITL and c-kit mRNA in Primary Granulosa Cells 74
 3.2.3 Western Blot .. 75
 3.2.4 Immunohistochemistry .. 76
3.3 RESULTS ... 78
 3.3.1 KITL mRNA levels in human preovulatory granulosa cells 78
 3.3.2 KITL protein isoforms in the human ovary throughout folliculogenesis 78
 3.3.3 c-kit protein and mRNA isoforms in the human ovary 79
 3.3.4 c-kit immunostaining in gastrointestinal stromal tumours 83
 3.3.5 c-kit immunostaining in other ovarian structures 86
3.4 DISCUSSION .. 95

CHAPTER 4: INVESTIGATION OF DIRECT ANDROGEN RECEPTOR-
MEDIATED REGULATION OF KIT LIGAND GENE EXPRESSION IN HUMAN
GRANULOSA CELLS .. 105

4.1 INTRODUCTION .. 105
4.2 MATERIALS AND METHODS ... 107
 4.2.1 Cell Culture .. 107
 4.2.2 DHT treatments .. 108
 4.2.3 RNA extraction and generation of cDNA 108
 4.2.4 Quantitative Real-Time PCR ... 108
 4.2.5 Western Blot ... 109
 4.2.6 Immunocytochemistry .. 109
CHAPTER 5: INVESTIGATION OF KIT LIGAND GENE REGULATION IN HUMAN GRANULOSA CELLS BY ENDOCRINE AND INTRAOVARIAN FACTORS

5.1 INTRODUCTION ... 130

5.1.1 Follicle Stimulating Hormone .. 131

5.1.2 Theca-Derived Keratinocyte Growth Factor .. 132

5.1.3 Oocyte-Secreted Factors .. 133

5.1.4 Chapter 5 Aims .. 136

5.2 MATERIALS AND METHODS .. 137

5.2.1 Cell Culture ... 137

5.2.2 Treatments ... 137

5.2.3 Western Blot.. 140

5.2.4 Statistical analysis ... 141

5.3 RESULTS .. 142

5.3.1 Effect of keratinocyte growth factor on KITL mRNA levels 142
ABSTRACT

Folliculogenesis is a complex process that is central to the ovary’s primary function, the production of healthy oocytes. One of the essential ligand/receptor pairs that mediates folliculogenesis is kit ligand (KITL), a granulosa-derived cytokine growth factor, and its receptor, c-kit. Since their discovery two decades ago, the KITL/c-kit system has been extensively studied in animal models, in particular the mouse, in which it has been demonstrated to be crucial for normal folliculogenesis and fertility. To date, little investigation into KITL and c-kit has been performed in the adult human ovary. Previously, this laboratory showed abnormally increased KITL protein levels in human polycystic ovaries (PCO) compared to non-PCO, suggesting that KITL may contribute to several PCO phenotypes according to the range of actions KITL has been shown to have in animal folliculogenesis. Thus, this thesis aimed to characterise KITL and c-kit expression and localisation in the adult human ovary, including polycystic ovaries, and examined regulation of KITL gene expression by endocrine and intraovarian factors.

To perform these studies, human ovarian tissues were obtained. These included granulosa cell subtypes cumulus and mural granulosa cells from women undergoing assisted reproductive technology treatment at infertility clinics, fresh ovarian cortex from the Royal Adelaide Hospital and archival paraffin-embedded human ovarian tissue from the Institute of Medical and Veterinary Sciences. The human granulosa tumour cell line, KGN, was also used as a model.
KITL and c-kit isoforms were demonstrated to be present in the human ovary throughout follicle development. KITL-2 was shown to be expressed primarily by granulosa cells representing preantral follicles, while KITL-1 was the predominant isoform expressed in preovulatory granulosa cells, suggesting that KITL-2 may play a greater role during early follicle development which then diminishes in preovulatory follicles with increased KITL-1 levels. Both c-kit mRNA isoforms were found to be present in human ovarian cortex. Examination of c-kit localisation throughout follicle development by immunohistochemistry revealed that all follicular cell types in preantral and antral follicles expressed c-kit protein. This may suggest that KITL has an unknown autocrine function in granulosa cells unique to the human ovary, as animals models have previously demonstrated c-kit staining to be confined to the theca layer and the oocyte. c-kit staining patterns were found to be different in PCO compared to non-PCO preantral and antral follicles, suggesting a potential involvement for c-kit in PCO pathology. Collectively these results suggest, as demonstrated in various animal models, that the KITL/c-kit system is present in the human ovary and may have some involvement in the mediation of human folliculogenesis.

Regulation of KITL gene expression was examined using KGN and cumulus cells. Based on previous studies, the candidate regulatory factors that were examined included androgen receptor (AR), endocrine factor follicle-stimulating hormone (FSH), theca-derived factor keratinocyte growth factor (KGF) and oocyte-secreted factors bone morphogenetic factor-15 (BMP-15) and growth differentiation factor-9 (GDF-9). Of these candidate factors, GDF-9 was found to directly decrease KITL gene expression in KGN
cells and cumulus cells via ALK 4/5/7 receptors. There was also some evidence for a slight reversal of the GDF-9 effect on KITL expression by the addition of the potent androgen 5α-dihydrotestosterone (DHT). The results of these studies indicated KITL gene expression is regulated by GDF-9 in human granulosa cells and are consistent with observations of negative regulation of KITL expression in mouse granulosa cells.

Evidence shown in this thesis suggests that the ratio of KITL isoforms in granulosa cells changes throughout human folliculogenesis. Follicular target cells for KITL signalling were found to include granulosa cells, theca cells and the oocyte, suggesting that the KITL/c-kit system may have potential roles throughout human folliculogenesis as demonstrated in animal models. Furthermore, this thesis has demonstrated that GDF-9 directly regulates KITL gene expression in human granulosa cells. From these results, this thesis proposes an in vivo model in which abnormally low levels of GDF-9, shown by a previous study to be characteristic of PCOS oocytes, results in increased KITL levels and this effect may be further exacerbated by the reversal of GDF-9 inhibition by excess androgen. This thesis has provided a greater understanding of the molecular mechanisms involved in human folliculogenesis which may be of use in future therapeutic strategies and diagnosis in assisted reproductive technology, and provide a basis for understanding human ovarian function and ovarian disease.
DECLARATION

I, Astrud R. R. Tuck, certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution, and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of the published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital resource repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Astrud R R Tuck

March 2012
ACKNOWLEDGMENTS

Firstly I must start by thanking my supervisors, Dr Theresa Hickey, Dr Rebecca Robker and Professor Wayne Tilley, whose encouragement, advice and support made this thesis possible. Thank you to Wayne for allowing me the opportunity to carry out my PhD studies in your laboratory, and for all the enjoyable Friday nights shared with a good glass of wine. Theresa and Becky, you have both been a wonderful source of knowledge and inspiration. Thank you for all your invaluable support and expertise.

These studies were carried out using financial support obtained from grants from the National Health and Medical Research Council. I also wish to acknowledge my postgraduate scholarship provided by the Faculty of Health Sciences, and the travel grants provided by the Faculty of Health Sciences and the Research Centre for Reproductive Health.

I must also acknowledge all my colleagues both at the Dame Roma Mitchell Cancer Research Laboratories, and in the Department of Obstetrics and Gynaecology. Thank you to Dr Tina Biano-Miotto for all your moral support and advice, you have been a wonderful source of encouragement and have helped through the most difficult of times when things were tough. Thank you to Dr Tanja Jankovic-Karasoulos for all your advice, understanding and support. You have always been there to listen and keep me focused on what is important in my studies and in life. Your introduction to beef jerky has also kept me happily snacking after long periods in the lab and during the writing-up process! Thank you to Professor Robert Norman for all your advice and encouragement, you have been an inspiration and a great source of support. Thank you...
to Dr Robert Gilchrist and Dr David Mottershead for all the help and advice on my work involving GDF-9 and BMP-15, and for sharing your laboratory and reagents. Thank you to Professor Tom Dodd and Dr Shalini Jindal at the IMVS for performing the morphological assessments on the archival human ovarian tissues. Thank you to Fred Amato in Obstetrics and Gynaecology for performing radioimmunoassays, and to Brenton Bennett and Lisa Akison for technical work performed on follicular fluids hormone levels and KITL gene expression in their patient-matched granulosa cells. Thank you to the research assistants who provided technical assistance, friendship and many laughs throughout the years, including Ean Phing Lee, Sook Ching Lee, Michelle Newman, Elisa Cops, Erin Swinstead, Lauren Giorgio, Marie Pickering, Joanna Gillis (who performed the Western blots in Chapter 4), Natalie Ryan, Adrienne Hanson, Scott Townley and Lesley Ritter.

A very special thank you to my fellow PhD students who I have shared many LOLs with in the fishbowl for the last few years, including Dr Karen Chiam, Dr Aleksandra Ochnik, Sarah Carter, Miram Butler and Dr Andrew Trotta. You have become great friends and have made the journey of a PhD so much more fun. Karen you were a wonderful desk buddy, and successfully tuned out all of the loud laughter and conversation. Sarah, you have been quite rad I will sum up the past few years not once, not twice but thrice! John Smith, 1882? My Mistake! Miriam, you have been my only ovary buddy in the student room! It’s been awesome having you there to share ovary jokes with and appreciate our yearly calendars with the addition of Edward. Last but not least, thank you especially to Andrew. We have shared this journey together from the beginning with all its highs and lows, you have become one of my best friends and
shown me so much support and love. All the laughter, fights, tears and nights on the D-floor together doing the Beyonce has meant so much. Thank you.

I can’t forget our fish that inhabited the student room for a few months! Craig Spot, the fish I chose (who also lived the longest) was awesome, Boris Bubbles, PC, Emo and I think there were 2 other white fish whose names I forget, and Planty.

To all my family and friends, thank you so much for all your love and support. Thanks to my fellow nerds, Eugenie, Tanja, Johan, Tina, Red, Christelle and Lucasz for hanging out and sharing awesome nights of fun and laughter. Also to my good friend and now neighbour Laura Watson for la dolce vita and Happy Sundays.

My greatest thanks go to my parents. I could never thank you enough for all your unwavering support and for providing all that I could ever need to pursue this career. Mum your lunches were the best! I love you.

My final thank you is to my incredible partner Andrew. You have given me so much love, advice and motivation when times got tough. I don’t know what my life would be without you. Your humour has made me laugh endlessly, you have patiently listened to me talk about my life in science without understanding it and you have sacrificed much to allow me to pursue this career. I am endlessly grateful for all that you are and for sharing your life with me. I love you.
PUBLICATIONS ARISING FROM THIS THESIS

Manuscripts in Preparation for Submission to Scientific Journals

Tuck AR, Robker, RL, Norman RJ, Tilley WD, Hickey TE. Expression and localisation of kit ligand and c-kit in the adult human ovary. To be submitted to Fertility and Sterility.

Abstracts Published in the Proceedings of Scientific Meetings

Tuck AR, Tilley WD, Hickey TE. Expression of kit ligand is increased in polycystic ovaries. Australian Society for Medical Research Annual Scientific Meeting of the SA Division, Adelaide, SA, 2008.

Tuck AR, Tilley WD, Hickey TE. The role of kit ligand in the pathology of polycystic ovary syndrome. University of Adelaide Faculty of Health Sciences Postgraduate Expo, Adelaide, SA, 2008.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,4-DCI</td>
<td>3,4-dichloroisocoumarin</td>
</tr>
<tr>
<td>A</td>
<td>antrum</td>
</tr>
<tr>
<td>ALK</td>
<td>anaplastic lymphoma kinase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>AR</td>
<td>androgen receptor</td>
</tr>
<tr>
<td>ARE</td>
<td>androgen response element</td>
</tr>
<tr>
<td>ART</td>
<td>assisted reproductive technology</td>
</tr>
<tr>
<td>bFGF</td>
<td>basal fibroblast growth factor</td>
</tr>
<tr>
<td>BL</td>
<td>basal lamina</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BMP</td>
<td>bone morphogenetic factor</td>
</tr>
<tr>
<td>BMPR</td>
<td>bone morphogenetic factor receptor</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CA</td>
<td>California</td>
</tr>
<tr>
<td>CAAlb</td>
<td>corpus albicans</td>
</tr>
<tr>
<td>CC</td>
<td>cumulus cells</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CL</td>
<td>corpus luteum</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>COC</td>
<td>cumulus-oocyte-complex</td>
</tr>
<tr>
<td>COOH</td>
<td>carboxyl group</td>
</tr>
<tr>
<td>DAB</td>
<td>3,3’-Diaminobenzidine</td>
</tr>
<tr>
<td>DBD</td>
<td>DNA binding domain</td>
</tr>
<tr>
<td>DCC</td>
<td>dextran coated charcoal</td>
</tr>
<tr>
<td>DCC-FBS</td>
<td>dextran coated charcoal-fetal bovine serum</td>
</tr>
<tr>
<td>DFP</td>
<td>diisopropylfluorophosphate</td>
</tr>
<tr>
<td>DHT</td>
<td>5α-dihydrotestosterone</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNase 1</td>
<td>deoxyribonuclease 1</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamine tetra-acetic acid</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>FAI</td>
<td>free androgen index</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>FSH</td>
<td>follicle stimulating hormone</td>
</tr>
<tr>
<td>FSHR</td>
<td>follicle stimulating hormone receptor</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GC</td>
<td>granulosa cells</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>GDF</td>
<td>growth differentiation factor</td>
</tr>
<tr>
<td>GnRH</td>
<td>gonadotrophin releasing hormone</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>hCG</td>
<td>human chorionic gonadotrophin</td>
</tr>
<tr>
<td>HSP</td>
<td>heat shock protein</td>
</tr>
<tr>
<td>IGF-1</td>
<td>insulin-like growth factor-1</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>IU</td>
<td>international units</td>
</tr>
<tr>
<td>IVF</td>
<td>in vitro fertilisation</td>
</tr>
<tr>
<td>IVM</td>
<td>in vitro maturation</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base</td>
</tr>
<tr>
<td>kD</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>KGF</td>
<td>keratinocyte growth factor</td>
</tr>
<tr>
<td>KITL</td>
<td>kit ligand</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>LBD</td>
<td>ligand binding domain</td>
</tr>
<tr>
<td>LH</td>
<td>luteinising hormone</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>mA</td>
<td>milliampere</td>
</tr>
<tr>
<td>MAP</td>
<td>mitogen activated protein</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen activated protein kinase</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>MGC</td>
<td>mural granulosa cells</td>
</tr>
</tbody>
</table>
min \hspace{0.5cm} \text{minute}

mL \hspace{0.5cm} \text{millilitre}

mM \hspace{0.5cm} \text{millimolar}

mRNA \hspace{0.5cm} \text{messenger RNA}

NaCL \hspace{0.5cm} \text{sodium chloride}

ng \hspace{0.5cm} \text{nanogram}

NH_2 \hspace{0.5cm} \text{amino group}

nmol \hspace{0.5cm} \text{nanomolar}

NTD \hspace{0.5cm} \text{amino-terminal domain}

O \hspace{0.5cm} \text{oocyte}

OHF \hspace{0.5cm} \text{hydroxyflutamide}

PBS \hspace{0.5cm} \text{phosphate-buffered saline}

PCO \hspace{0.5cm} \text{polycystic ovaries}

PCOS \hspace{0.5cm} \text{polycystic ovarian syndrome}

PCR \hspace{0.5cm} \text{polymerase chain reaction}

PMA \hspace{0.5cm} \text{phorbol 12-myristate 13-acetate}

POF \hspace{0.5cm} \text{premature ovarian failure}

PTX3 \hspace{0.5cm} \text{pentraxin 3}

qPCR \hspace{0.5cm} \text{quantitative polymerase chain reaction}

RIPA \hspace{0.5cm} \text{radioimmunoprecipitation assay buffer}

RNA \hspace{0.5cm} \text{ribonucleic acid}

RNase \hspace{0.5cm} \text{ribonuclease}

rpm \hspace{0.5cm} \text{revolutions per minute}
RT reverse transcriptase
S stroma
SA South Australia
SCF stem cell factor
SD standard deviation
sec second
SEM standard error of the mean
SHBG steroid hormone binding globulin
SMAD mothers against decapentaplegic protein
StAR steroidogenic acute regulatory protein
T theca layer
TβR transforming growth factor β receptor
TBS tris buffered saline
TBST tris buffered saline-tween 20
TGF transforming growth factor
UK United Kingdom
USA United States of America
V volt

Other:

°C degrees Celsius
µg microgram
µl microlitre
µm micron
µM micromolar