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and autocorrelation in hydrological model calibration
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[1] Residual errors of hydrological models are usually both heteroscedastic and
autocorrelated. However, only a few studies have attempted to explicitly include these two
statistical properties into the residual error model and jointly infer them with the
hydrological model parameters. This technical note shows that applying autoregressive
error models to raw heteroscedastic residuals, as done in some recent studies, can lead to
unstable error models with poor predictive performance. This instability can be avoided by
applying the autoregressive process to standardized residuals. The theoretical analysis is
supported by empirical findings in three hydrologically distinct catchments. The case
studies also highlight strong interactions between the parameters of autoregressive residual
error models and the water balance parameters of the hydrological model.

Citation: Evin, G., D. Kavetski, M. Thyer, and G. Kuczera (2013), Pitfalls and improvements in the joint inference of
heteroscedasticity and autocorrelation in hydrological model calibration, Water Resour. Res., 49, 4518–4524, doi:10.1002/wrcr.20284.

1. Introduction

[2] The residual errors of hydrological models, which
represent the combined effects of data and model
errors, are usually both heteroscedastic and autocorre-
lated [e.g., Sorooshian and Dracup, 1980; Kuczera,
1983; Bates and Campbell, 2001]. Heteroscedasticity is
related to larger errors being generally associated with
larger rainfalls and streamflows [e.g., Villarini and Kra-
jewski, 2008; Thyer et al., 2009]. It can be represented
by directly conditioning the variance of residual errors
on explanatory variables such as runoff [e.g., Soroosh-
ian and Dracup, 1980; Thyer et al., 2009; Pianosi and
Raso, 2012], or by applying Box-Cox and other trans-
formations [e.g., Kuczera, 1983; Bates and Campbell,
2001; Smith et al., 2010]. The direct conditioning
approach is of particular interest because it allows exploit-
ing additional information through explanatory variables.
Autocorrelation is related to the ‘‘memory’’ of hydrological
models, with storage errors propagating across multiple
consecutive time steps [e.g., Kavetski et al., 2003]. It can
be represented using autoregressive (AR) models [Kuczera,
1983], typically under lag-1 [AR(1)] assumptions [Schaefli
et al., 2007; Schoups and Vrugt, 2010].

[3] This study pursues improved probabilistic descrip-
tions of predictive and parametric uncertainties in
hydrological modeling using residual error models [e.g.,

Kuczera, 1983; Bates and Campbell, 2001; Gallagher
and Doherty, 2007; Willems, 2009; Smith et al., 2010,
and many others]. It focuses on the joint inference of
heteroscedasticity, autocorrelation and hydrological pa-
rameters. Recent work in this direction includes
Schoups and Vrugt [2010], where a heteroscedastic
skewed exponential distribution was combined with an
AR(1) model, and all statistical and hydrological pa-
rameters estimated jointly. In this note, we show that a
seemingly straightforward combination of heteroscedas-
ticity and autocorrelation can result in error models
with poor statistical and computational properties. We
then present an alternative conceptualization of the het-
eroscedastic AR(1) model with a notably more robust
performance.

[4] The presentation is structured as follows. Section 2
derives the statistical properties of two alternative hetero-
scedastic AR(1) error models. Section 3 empirically com-
pares the predictive reliability, precision, and parameter
inference (including parameter interactions) for the two
error models on three hydrologically distinct catchments.
The note concludes with a summary of key findings and
practical recommendations in section 4.

2. Heteroscedastic Autocorrelated Residual
Error Models

[5] Most statistical calibration schemes are based on
residual errors et, defined as

et ¼ ~Qt � Qt hH ; ~X 1:t; S0

� �
ð1Þ

where ~Qt and Qt are, respectively, the observed and simu-
lated flows at time step t. As indicated, Qt is a function of
the forcing data ~X (e.g., rainfall and evapotranspiration),
the hydrological model parameters hH and the initial condi-
tions S0.
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[6] The Bayesian posterior distribution corresponding to
such residual error models is

p hH ; hej ~Q; ~X
� �

/ p ~QjhH ; he; ~X
� �

p hH ; heð Þ ð2Þ

where he denotes the parameters of the residual error model
(such as standard deviation, etc.). The likelihood function
in equation (2) is given by the joint pdf of the residuals

p ~QjhH ; he; ~X
� �

¼ p e hH ; ~X ; ~Q
� �

jhe
� �

ð3Þ

where e hH ; ~X ; ~Q
� �

represents the vector of residual errors,
computed over the calibration period t ¼ 1; . . . ;Nt. A
warm-up period t ¼ �Nw; . . . ; 0 is used prior to the cali-
bration period.

2.1. Approach 1: AR(1) Model Applied to Raw
Residuals

2.1.1. Formulation and Basic Properties
[7] Let the raw residual errors et be described by

et ¼ �eet�1 þ zt; zt eN 0; �2
z tð Þ

� �
ð4Þ

where the innovations zt are independent zero-mean Gaus-
sian deviates with a time-varying standard deviation �z tð Þ,
and �e 2 �1; 1ð Þ is the lag-1 autoregressive parameter.

[8] To account for heteroscedasticity, we use a linear
model for the standard deviation �z tð Þ, conditioned on the
simulated streamflow Qt, with parameters az and bz,

�z tð Þ ¼ az þ bzQt ð5Þ

[9] This approach in equations (4) and (5) is analogous
to the scheme used by Schoups and Vrugt [2010], except
here, in order to focus more directly on autocorrelation and
heteroscedasticity, we use Gaussian assumptions and do
not introduce bias, skew, and kurtosis parameters.

[10] From equation (4), the residual errors et can be
expressed in terms of the innovations zt

et ¼ zt þ �e zt�1 þ �eet�2ð Þ

¼ zt þ �ezt�1 þ �2
e zt�2 þ . . . þ �tþNwþ1

e e�Nw�1 �
XtþNw

i¼0

�i
ezt�i

ð6Þ

where, as Nw!1, the term �tþNwþ1
e e�Nw�1becomes negli-

gible provided j�ej < 1.
[11] Equation (6) shows that the marginal distribution

of an AR(1) process with heteroscedastic Gaussian
innovations is also Gaussian: � is a constant and equa-
tion (6) is hence a sum of independent scaled Gaussian
deviates.

[12] Equation (6) also shows that the process has zero
mean (E et½ � ¼ 0) because E[zt]¼ 0. Its variance can be
obtained by considering that the innovations zt are defined
as mutually independent,

varðetÞ ¼ E et � E et½ �ð Þ2
h i

¼ E
XtþNw

i¼0

�i
ezt�i

 !2
24 35 ¼XtþNw

i¼0

�2i
e �

2
z t�ið Þ

ð7Þ

[13] In general, varðetÞ does not have a closed form
expression. When �z tð Þ ¼ �z (i.e., constant variance in

time), it simplifies to varðetÞ ¼ �2
z= 1� �2

e

� �
, which corre-

sponds to the marginal variance of a homoscedastic AR(1)
process. Note that when the autoregressive coefficient �e

approaches 1, the AR(1) process becomes nonstationary
[Box and Jenkins, 1976]. In particular, when �e ¼ 1, the
term �tþNwþ1

e e�Nw�1 in equation (6) does not decay as Nw

! 1, and hence varðetÞ ¼
X1

i¼0
�2

z t�ið Þ becomes infinite.

As will be shown in section 3, this has major implications
on residual error model behavior.
2.1.2. Likelihood Function

[14] Approach 1 introduces error model parameters
h 1ð Þ

e ¼ �e; az; bzð Þ and results in the likelihood

p eð Þ ¼ p e1; :::; enð Þ ¼ p e1ð Þ
YNt

t¼2

p etjet�1ð Þ ð8Þ

p etjet�1ð Þ ¼ N etj�eet�1; �
2
z tð Þ

� �
¼ N et � �eet�1j0; �2

z tð Þ

� �
ð9Þ

where N xj�; �2ð Þ denotes the pdf of a scalar Gaussian ran-
dom deviate x with mean � and standard deviation �.

[15] These equations correspond exactly to the scheme
of Schoups and Vrugt [2010] when the latter is applied
with no bias, skew, or kurtosis. For the first time step, we
use the marginal distribution p(e1), which as shown above
is Gaussian with zero mean and variance given by equation
(7).
2.1.3. Lag-1 Autocorrelation of the Residuals

[16] The lag-1 autocorrelation of the raw residuals can
be derived as

� et; et�1ð Þ ¼ E etet�1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var etð Þvar et�1ð Þ

p ¼
E ztet�1ð Þ þ E �ee

2
t�1

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var etð Þvar et�1ð Þ

p
¼ �evar et�1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var etð Þvar et�1ð Þ
p ¼ �e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var et�1ð Þ
var etð Þ

s
ð10Þ

[17] Equation (10) shows that in Approach 1 the lag-1
autocorrelation of the residuals depends on both the
autoregressive parameter �e and on the form of
heteroscedasticity.

2.2. Approach 2: AR(1) Model Applied to
Standardized Residuals

[18] This section considers an alternative heteroscedastic
AR(1) model, where the AR(1) assumptions are applied to
standardized residuals, rather than to the raw residuals.
2.2.1. Formulation and Basic Properties

[19] Let us define a standardized residual error �t as
follows:

�t ¼
et

�e tð Þ
ð11Þ

where �e tð Þ is the standard deviation of the raw residual at
time t.
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[20] Analogously to Approach 1, we can assume linear
heteroscedasticity,

�e tð Þ ¼ ae þ beQt ð12Þ

[21] We now apply the AR(1) process on the standar-
dized residual errors, defining innovations yt as

�t ¼ �� �t�1 þ yt; yt eN 0; �2
y

� �
ð13Þ

[22] Equation (13) corresponds to a standard homosce-
dastic AR(1) process and, since var �t½ � ¼ 1 due to the
standardization in equation (11), it follows
that �2

y ¼ 1� �2
�.

2.2.2. Likelihood Function
[23] The error model parameters in Approach 2 are

h 2ð Þ
e ¼ ��; ae; be

� �
. The likelihood function, given by the

joint pdf of the residuals, p(e), must account for the trans-
formation in equation (11)

p eð Þ ¼ det
			 @g
@e

			p gð Þ ð14Þ

where det j@g=@ej is the absolute value of the determinant
of the Jacobian matrix of the transformation in equation

(11) and can be derived to be
YNt

t¼1
@�t=@et ¼YNt

t¼1
1=�e tð Þ.

[24] The likelihood function is then

p eð Þ ¼ p e1; :::; enð Þ ¼ p �1ð Þ
�e 1ð Þ

YNt

t¼2

p �tj�t�1ð Þ
�e tð Þ

ð15Þ

[25] Since we assumed Gaussian innovations yt in equa-
tion (13), we have

p �tj�t�1ð Þ ¼ N �tj� ¼ ���t�1; �
2 ¼ 1� �2

�

� �
¼ N �t � ���t�1j� ¼ 0; �2 ¼ 1� �2

�

� �
ð16Þ

[26] In addition, from section 2.2.1, the marginal distri-
bution at t ¼ 1 is p �1ð Þ ¼ N 0; 12

� �
.

2.2.3. Lag-1 Autocorrelation
[27] The lag-1 autocorrelation of residual errors in

Approach 2 is

� et; et�1ð Þ ¼ E etet�1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var etð ÞVar et�1ð Þ

p ¼
�e tð Þ�e t�1ð Þ��
�e tð Þ�e t�1ð Þ

¼ �� ð17Þ

where we used the result

E etet�1ð Þ ¼ �e tð Þ�e t�1ð ÞE �t�t�1ð Þ ¼ �e tð Þ�e t�1ð Þ�� ð18Þ

[28] Equation (17) shows that in Approach 2 the lag-1
autocorrelation � et; et�1ð Þ is constant in time and corre-
sponds exactly to the autoregressive parameter ��. This can
be contrasted with equation (10) for Approach 1, where the
lag-1 autocorrelation has a more complex structure.

2.3. Similarities and Differences Between Approaches
1 and 2

[29] Although Approaches 1 and 2 represent heteroscedas-
ticity and autocorrelation using similar equations, the order in
which these properties are treated is different (Table 1). In
Approach 1, an AR(1) model is applied to the raw residuals,
followed by the application of a heteroscedastic model to its
innovations (by time-varying the conditional variance of the
AR(1) process). In contrast, Approach 2 applies a heterosce-
dastic model to standardize the raw residuals, followed by
the application of a homoscedastic AR(1) model to the stand-
ardized residuals (i.e., after the heteroscedasticity has been
removed, or at least substantially reduced).

[30] These structural differences lead to important differ-
ences in the mathematical behavior of the two approaches.
Both approaches include autoregressive equations that
accumulate the errors from previous innovations. However,
in Approach 1 the innovations are heteroscedastic and can
result in particularly large accumulated errors. For exam-
ple, equation (7) shows that large innovations associated
with peak streamflows propagate into the predictive uncer-
tainty of subsequent recession time steps. This propagation
is particularly strong when �e � 1. Conversely, in
Approach 2 the innovations of the AR(1) process are homo-
scedastic, and the heteroscedasticity in equation (12) is
applied after (rather than before) the innovations are accu-
mulated. The practical implications of these differences on
the behavior of the error models will be investigated in an
empirical case study (section 3).

[31] Approach 2 can be viewed as a particular case of the
common ‘‘variance-stabilizing’’ strategy of transforming
residual errors and then specifying a (possibly correlated)
homoscedastic probability distribution of the transformed
residuals. For example, see equations (A(4)) and (A(5)) in
Bates and Campbell [2001], where a homoscedastic AR(1)
process is applied to Box-Cox-transformed residuals. In
Approach 2, the homoscedastic AR(1) process is applied to
standardized residuals. Unlike the Box-Cox transformation,
the explicit standardization in equations (11) and (12)
directly exploits the conditioning on simulated streamflow
as an explanatory variable.

[32] In contrast, Approach 1 corresponds to applying a
joint ‘‘decorrelation’’ transformation zt¼ et �� et�1 fol-
lowed by specifying a heteroscedastic distribution of the
transformed residuals z. It can hence be viewed as a special
case of an ‘‘autocorrelation-reduction’’ strategy where the
aim of the transformation is to reduce autocorrelation rather
than heteroscedasticity.

3. Empirical Case Study

3.1. Hydrological Data, Models, and Methodology

[33] Approaches 1 and 2 are compared in three catch-
ments: Lacmalac and Tinderry (South-East of Australia),

Table 1. Summary of Equations for Approaches 1 and 2

Approach 1 Approach 2

et ¼ �eet�1 þ zt ; zt eNð0; �2
z tð ÞÞ et ¼ �e tð Þ�t

�z tð Þ ¼ az þ bzQt �e tð Þ ¼ ae þ beQt

�t ¼ ���t�1 þ yt; yt eNð0; �2
yÞ
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and the French Broad River (Asheville, Texas). The clima-
tology of these catchments and the daily data periods used
in the analysis are listed in Table 2. These catchments pro-
vide a range of different climatologies and hydrological
regimes: Tinderry is dry (ephemeral), Lacmalac is wet and
French Broad River is particularly wet. Simulated stream-
flow is obtained using GR4J, a lumped rainfall-runoff
model with 4 fitted parameters [Perrin et al., 2003]. Uni-
form priors are used on all inferred quantities, with parame-
ter ranges specified in Table 3. The posterior distributions
are optimized using a quasi-Newton method [Kavetski and

Clark, 2010] and sampled using a multistage Metropolis
algorithm [Thyer et al., 2009].

[34] Several performance metrics are used. Statistical
reliability is evaluated using the predictive QQ plot [Thyer
et al., 2009], precision is quantified using the average (in
time) coefficient of variation of the predictive distribution.
The adequacy of the AR(1) approximation is assessed using
the autocorrelation function (ACF) of the standardized
innovations, i.e., zt=�z tð Þ for Approach 1 (see equation (4))

and yt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

�

q
for Approach 2 (see equation (13)). The

ACF should be as close as possible to 0. We appraise the
extent to which the standardized innovations are homosce-
dastic by plotting them against the quantile of the simulated
flow, and the extent to which they are Gaussian by compar-
ing their empirical marginal density to a Gaussian distribu-
tion. Finally, we inspect the posterior parameter
distributions and the interactions between hydrological and
error model parameters.

3.2. Visual Assessment of Predictive Performance

[35] As shown in Figure 1, Approach 1 produces very
vague predictions, with exceedingly wide and poorly
behaved predictive bounds, especially just after the reces-
sions. This behavior is particularly pronounced in the

Table 2. Catchments Properties and Calibration and Validation Periods

Catchment Name
and Number

Area
(km2)

Mean Annual
Rainfall (mm)

Mean Annual
Runoff (mm)

Runoff
Coefficient

Percentage
of Days with

Runoff <1 mm Calibration Period Validation Period

Lacmalac 410057 673 1182 397 0.33 65.0 28 Oct 1976–2 Oct 1978 3 Oct 1978–6 Sep 1983
Tinderry 410734 490 808 106 0.13 95.3 22 Jun 1980–8 Sep 1988 9 Sep 1988–19 Apr 1995
French Broad 3451500 2448 1413 800 0.57 16.3 8 Sep 1973–25 Nov 1981 26 Nov 1981–30 Apr 1998

Table 3. Parameter Specifications

Parameter Description Minimum Maximum

hH �1 (mm) Maximum capacity of the
production store

100 20,000

�2 (mm) Groundwater exchange
coefficient

�500 500

�3 (mm) Maximum capacity of the
routing store

1 500

�4 (days) Time base of unit hydrograph 0.5 10
he a (mm) Heteroscedasticity intercept 0.0001 100

b Heteroscedasticity slope 0.0001 10
� Autoregressive coefficient �0.999 0.999

Figure 1. Predictive distributions of streamflow during representative portions of the validation period.
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Lacmalac and French Broad River catchments, which
are both humid. It appears related to the error accumu-
lation behavior discussed in section 2.3. Another unde-
sirable property of Approach 1 is its exceedingly high
proportion of large negative predicted flows. Even if
the predictive distribution was truncated at zero to
avoid negative flows, the resulting distribution would
remain poor. Conversely, Approach 2 does not suffer
from these problems and has much better-behaved pre-
diction limits with a few small negative flows that can
be safely truncated.

[36] For the Tinderry catchment, the predictive bounds
obtained with Approaches 1 and 2 are very similar, and
contain an exceedingly large fraction of negative flows.
Given the ephemeral nature of this catchment, avoiding
this degeneracy is likely to require a specialized treatment
of low and zero flows, including the development of trun-
cated likelihood functions [Smith et al., 2010].

3.3. Statistical Metrics of Predictive Performance

[37] Figure 2 compares Approaches 1 and 2 using a
range of diagnostics. Consistently with the hydrographs in
Figure 1, Approach 2 clearly outperforms Approach 1 in
the Lacmalac and French Broad catchments, especially in
terms of predictive precision (row 2 of Figure 2). Approach
2 also produces near-perfect reliability in the French Broad
River, whereas Approach 1 systematically under-estimates
streamflow (row 1 of Figure 2).

[38] The error heteroscedasticity appears adequately cap-
tured by equations (5) and (12) in the (wet) Lacmalac and
French Broad catchments, with the standardized innova-
tions being nearly homoscedastic as required (row 3 of Fig-
ure 2). This is not the case in the (ephemeral) Tinderry
basin, where there is a clear remaining trend in the relation-
ship between the standardized innovations and streamflow.
The curvature in this trend suggests a nonlinear heterosce-
dastic model warrants investigation.

[39] Density plots of the standardized innovations (row 4
of Figure 2) reveal that they are generally symmetric but
kurtotic, which is consistent with earlier studies [Schoups
and Vrugt, 2010]. The kurtosis is particularly strong in the
Tinderry catchment, where it is combined with a slight
asymmetry. The Gaussian assumptions are hence question-
able in this case. The standardized innovations obtained
with Approach 1 exhibit a slight positive bias for the
French Broad catchment, which is not the case when
Approach 2 is used.

[40] The autocorrelation structure of the residuals
appears well approximated by the AR(1) assumption, with
the ACF of the standardized innovations being close to 0
for both Approaches 1 and 2, in all three catchments (row
5 of Figure 2). This clearly contrasts with the large autocor-
relations when the AR(1) error model component is omit-
ted, and highlights the need for autocorrelated error
models.

[41] In general, Approaches 1 and 2 produce very simi-
lar, and generally poor, results in the Tinderry catchment
(Approach 1 yields a small gain in reliability while
Approach 2 produces slightly higher precision). This can
be attributed to the ephemerality of the Tinderry catchment
and reinforces the need to improve the hydrological model
(e.g., to capture the wetting-up thresholds) and employ a

specialized treatment of zero and near-zero flows in the
likelihood function [Smith et al., 2010].

3.4. Parameter Inference

[42] Figure 3 shows that the posterior parameter dis-
tributions are generally well behaved with both
Approaches 1 and 2; most parameters appear well
identified. However, the inferences are different and
some problematic features are evident. In Approach 1,
the GR4J water balance parameter �2 is highly negative
(indicating export of groundwater from the catchment)
and is negatively correlated with the heteroscedasticity
slope bz. In Approach 2, �2 is close to 0, though it
remains correlated with be. Approach 2 also has a
strong positive correlation between �� and be, which
appears absent in Approach 1. Similar results (not
shown here) were found in the other two catchments.

4. Conclusions and Recommendations

[43] This technical note illustrates the challenges of fit-
ting hydrological model parameters jointly with the auto-
correlation and heteroscedasticity parameters of residual
error models. An empirical case study was undertaken,
based on three catchments with diverse hydrological dy-
namics and the widely used GR4J hydrological model.
Two distinct residual error models based on Gaussian
AR(1) processes were compared using a range of diagnos-
tics. The main conclusions are as follows:

[44] (1) When jointly inferring heteroscedasticity and
autocorrelation parameters, applying Gaussian AR(1) mod-
els directly to the raw residual errors can produce a poorly
behaved error model with grossly exaggerated predictive
uncertainty. This instability can be avoided by applying the
Gaussian AR(1) process to standardized residuals. This em-
pirical finding appears consistent with analytical insights
into the error accumulation properties of the two statistical
error models.

[45] (2) Hydrological parameters directly controlling the
water balance can interact strongly when fitted jointly with
heteroscedasticity and autocorrelation parameters. Since
the current study employed a single hydrological model,
further testing is needed to ascertain its relation to conclu-
sion 1 above.

[46] (3) Applying the Gaussian AR(1) process to standar-
dized residuals results in strong interactions between autor-
egressive and heteroscedastic parameters. Further research
is required to understand the origin of these interactions
and whether they can be eliminated or at least reduced
(e.g., using alternative autocorrelation structures, parameter
transformations or reparameterizations).

[47] (4) Ephemeral catchments remain particularly hard
to model, and in addition to a robust representation of het-
eroscedasticity and autocorrelation, require a more robust
handling of skew, near-zero flows, seasonality and other
aspects (confirming previous studies on this topic). More-
over, in all three basins, there is evidence of excess kurtosis
in the standardized innovations.

[48] Finding 1 can help hydrologists improve the calibra-
tion of hydrological models by avoiding fundamental statis-
tical problems, while Findings 2–4 highlight areas for
further research, in particular including the analysis of
these issues within more complex error models.

EVIN ET AL.: TECHNICAL NOTE

4522



Figure 2. Comparison of predictive performances of Approach 1 (white circles) and Approach 2 (black
circles) over the validation period using a range of diagnostics. Statistical reliability (Row 1): predictive
QQ-plots (for ease of visualization, the symbols are used to distinguish between the curves rather than to
denote individual data points). Precision (Row 2): average (in time) coefficient of variation of the pre-
dictive distribution. Heteroscedasticity (Row 3): standardized innovations as a function of quantiles of
simulated flow. Distributional check (Row 4): probability density plots of standardized innovations (the
black line illustrates the error model assumptions––a Gaussian pdf with zero mean and unit standard
deviation). Autocorrelation (Row 5): autocorrelation function (ACF) plots (with 95% confidence inter-
vals indicated with dotted lines). The residual autocorrelations obtained when the AR(1) error model
component is omitted (i.e., Approach 1 with �e ¼ 0) are shown with a black line.
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Figure 3. Posterior parameter distributions for the Lacmalac catchment.
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