Trajectory Design for a Very-Low-Thrust Lunar Mission

Rogan Shimmin

Supervisors:
Assoc. Prof. Benjamin Cazzolato
Dr. Matthew Tetlow

School of Mechanical Engineering
Faculty of Engineering, Computer and Mathematical Sciences
The University of Adelaide

A thesis submitted in fulfillment of the requirements for the degree of Doctorate of Philosophy on the 24th day of May in the year 2012
Contents

1 Introduction
1.1 Historical background 1
1.2 *Lunar Mission BW-1* 2
1.3 GESOP ... 5
1.4 Summary .. 6

2 Scope of research
2.1 Introduction 7
2.2 Optimisation of a low-thrust trajectory 7
 2.2.1 Modelling 8
 2.2.2 Investigation of optimisation techniques 8
 2.2.3 Exploring different initial guesses 9
 2.2.4 Application of non-linear constraints 9
2.3 Investigation of perturbations 10
2.4 Investigation of non-linear constraints 11
2.5 Limits of the scope 12
2.6 Summary of research scope 13

3 Review of relevant literature
3.1 Introduction 15
3.2 Past missions 15
 3.2.1 Deep Space One 17
 3.2.2 Hayabusa 19
 3.2.3 SMART-1 19
 3.2.4 Dawn 21
3.2.5 Planned missions ... 22
3.3 The process of optimisation 23
 3.3.1 Problem formulation 23
 3.3.2 Trajectory propagation 24
 3.3.3 Optimisation methods 26
 3.3.4 Survey of commercial optimisation algorithms 32
3.4 Application of optimisation methods to low thrust problems 34
3.5 Summary of gaps in existing knowledge 44

4 Orbital dynamics and the space environment 47
 4.1 Orbits .. 47
 4.2 Sphere of influence 49
 4.3 Epoch ... 49
 4.4 Reference frames 51
 4.5 Orbital elements 55
 4.6 Orbital equations of motion 57
 4.7 Perturbations .. 59
 4.7.1 Third-body perturbations 59
 4.7.2 Oblateness of primary body 61
 4.7.3 Solar effects 64
 4.7.4 Applied thrust 66
 4.7.5 Total perturbing forces 66
 4.8 Rocket performance 67
 4.8.1 Specific Impulse 67
 4.8.2 Delta-v ... 68
 4.8.3 Tsiolkovsky’s rocket equation 71
 4.9 The space environment 71
 4.9.1 The van Allen belts 71
 4.9.2 Space debris 74
 4.10 Summary of orbital dynamics 74

5 Optimisation .. 75
 5.1 Introduction .. 75
5.2 State vector .. 75
5.3 Independent parameter 76
 5.3.1 Substitution of parameters 77
5.4 Objective function 79
5.5 Boundary value problem 80
 5.5.1 Boundary constraints 80
 5.5.2 Path constraints 83
5.6 Numerical considerations 84
 5.6.1 Integration error 84
 5.6.2 Scaling ... 85
5.7 Summary of the optimisation problem 86

6 Vehicle modelling and parameterisation 87
 6.1 Propulsion .. 87
 6.1.1 Resolution of propulsion systems within modelling ... 90
 6.2 Eclipse .. 91
 6.3 Power .. 95
 6.3.1 Power generation 95
 6.3.2 Power consumption 98
 6.4 Parameterisation 100
 6.4.1 Thrust profile parameterisation 100
 6.4.2 Discretisation 101
 6.5 Orbital behaviour 102
 6.5.1 Gravitational assists 102
 6.5.2 Oberth effect and optimal thrust profiles 103
 6.5.3 Lunar capture 106
 6.6 Summary of vehicle modelling 108

7 Method .. 109
 7.1 Introduction ... 109
 7.2 Developmental procedure 109
 7.2.1 Matlab modelling 109
 7.2.2 GESOP modelling 109
Nomenclature

Notation

Bold text represents a vector. A hat (for example \(\hat{r} \)) represents a unit vector. A quantity that is normally a vector that is not in bold (for example \(r \)) represents the magnitude of that vector. Parameters are relative to the central body of that phase, except where identified with an astronomical symbol.

- \(\odot \) Astronomical symbol for the Sun
- \(\oplus \) Astronomical symbol for the Earth
- \(\odot \) Astronomical symbol for the Moon
- \(\odot \) Astronomical symbol for Venus
- \(\odot \) Astronomical symbol for Mars
- \(\odot \) Astronomical symbol for Jupiter

Chapter 3

- \(t_0 \) Start of the phase (symbolic)
- \(t_f \) End of the phase (symbolic)
- \(p \) Set of optimisable parameters
- \(x \) Set of state parameters
- \(u \) Set of control variables
- \(F \) Cost function
- \(\sigma \) Cost function weighting factor (-)
- \(\mathcal{L} \) Lagrangian (see Section 3.3.3) (symbolic)
- \(\lambda_i \) Equality Lagrangian/KKT multipliers (-)
\(\mu_i \) Inequality Lagrangian/KKT multipliers (-)
\(\alpha \) Optimisation step size (-)

Chapter 4

\(\epsilon \) Specific orbital energy \((m^2s^{-2})\)
\(\epsilon_k \) Specific orbital kinetic energy \((m^2s^{-2})\)
\(\epsilon_p \) Specific orbital potential energy \((m^2s^{-2})\)
\(v \) Velocity of spacecraft \((ms^{-1})\)
\(\mu \) Gravitational constant of central body \((m^3s^{-2})\)
\(r \) Distance of spacecraft from central body \((m)\)
\(I \) Impulse \((ms^{-1})\)
\(p \) Momentum \((kgms^{-1})\)
\(I_{sp} \) Specific impulse \((s, \text{see Section 4.8.1})\)
\(g_0 \) Standard Earth gravity \((9.80665 \text{ ms}^{-2}, \text{Bureau International des Poids et Mesures 1901})\)
\(g(r) \) Classic gravity relative to the primary body at \(r\) metres from its centre \((ms^{-2})\)
\(m_{exhaust} \) Mass of exhaust \((kg)\)
\(v_{exhaust} \) Exhaust velocity \((ms^{-1})\)
\(\Delta v \) Delta-v \((ms^{-1}, \text{see Section 4.8.2})\)
\(m \) Mass of spacecraft \((kg)\)
\(T \) Applied thrust \((N)\)
\(D \) Aerodynamic drag \((N)\)
\(\gamma \) Velocity vector angle \((^\circ, \text{see Figure 4.9})\)
\(\alpha \) Body axis angle \((^\circ, \text{see Figure 4.9})\)
\(\varepsilon \) Thrust angle \((^\circ, \text{see Figure 4.9})\)
\(r_{SOI} \) Radius of sphere of influence \((m)\)
\(a_s \) Semimajor axis of the secondary body’s orbit about the primary body \((m)\)
\(m_s \) Mass of the secondary body \((kg)\)
\(m_p \) Mass of the primary body \((kg)\)

\(r \) Position of spacecraft relative to primary body \((m)\)
Velocity of spacecraft relative to primary body (ms⁻¹)

- \(v \)
- \(a \) Keplerian element semimajor axis (m)
- \(e \) Keplerian element eccentricity (-)
- \(i \) Keplerian element inclination (°)
- \(\omega \) Keplerian element argument of periapsis (°)
- \(\Omega \) Keplerian element longitude of the ascending node (°)
- \(\nu \) Keplerian element true anomaly (°)

- \(p \) Modified equinoctial element semilatus rectum (m)
- \(f \) Modified equinoctial element f (-)
- \(g \) Modified equinoctial element g (-)
- \(h \) Modified equinoctial element h (-)
- \(k \) Modified equinoctial element k (-)
- \(L \) Modified equinoctial element true longitude (°)

- \(\hat{i}_r \) Unit vector in radial direction
- \(\hat{i}_\theta \) Unit vector tangential to primary body
- \(\hat{i}_h \) Unit vector in direction of orbital momentum

- \(\Delta_r \) Total force acting on spacecraft in the \(\hat{i}_r \) direction (N)
- \(\Delta_\theta \) Total force acting on spacecraft in the \(\hat{i}_\theta \) direction (N)
- \(\Delta_h \) Total force acting on spacecraft in the \(\hat{i}_h \) direction (N)

- \(\Delta_q \) Total force on spacecraft due to third bodies (N)
- \(d_j \) Position of third body \(j \) relative to spacecraft (m)
- \(s_j \) Position of third body \(j \) relative to primary body (m)

- \(\Delta_g \) Total force on spacecraft due to primary body oblateness (N)
- \(J_2 \) Second zonal harmonic coefficient of Earth
- \(J_3 \) Third zonal harmonic coefficient of Earth
- \(J_4 \) Fourth zonal harmonic coefficient of Earth
W Orbital energy (J)
Φ Energy due to angular momentum of orbit (J)
V Gravitational potential energy of orbit (J)
$P_{nm}(\sin \phi)$ Normalised associated Legendre polynomials
$C_{n,m}$ Normalised gravitational coefficient
$S_{n,m}$ Normalised gravitational coefficient
r_{peri} Periapsis of the orbit (m)

Δ_\odot Total force on spacecraft due to solar radiation (N)
β Optical reflection constant (-)
A_{eff} Effective cross-sectional area of spacecraft (m2)
r_\odot Distance of satellite from centre of Sun (m)

Δ_T Total force on spacecraft due to thrust (N)
\hat{u} Unit control vector governing thrust direction

Chapter 5

E Energy level in the batteries (J)
P Net power generation or consumption (W)
Ln Normalised longitude (-)

Chapter 6

η Power efficiency
α_u Half-angle of umbral cone (°)
α_p Half-angle of penumbral cone (°)
R_\odot Radius of the Sun (m)
R_\oplus Radius of the Earth (m)
r_\oplus Position of the Earth from the Sun (m)
r_\odot Position of the Moon from the Sun (m)
Q Solar energy flux (Wm$^{-2}$)
η_a Area efficiency of solar cells (-)
η_c Power efficiency of solar cells (-)
η_{DC} Power efficiency of voltage regulator (-)
\[\Psi_\odot \] Angle of Sun on solar panels (°)

\[\Re \] Power degradation of solar cells (-)

\[\Im \] Equivalent fluence of solar cells (-)

Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOCs</td>
<td>Attitude & Orbit Control System</td>
</tr>
<tr>
<td>ASTOS</td>
<td>Aerospace Trajectory Optimisation Software</td>
</tr>
<tr>
<td>BFGS</td>
<td>Broyden-Fletcher-Goldfarb-Shanno</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>CAMTOS</td>
<td>Collocation and Multiple Shooting Trajectory Optimisation</td>
</tr>
<tr>
<td></td>
<td>Software</td>
</tr>
<tr>
<td>CGA</td>
<td>Constrained Genetic Algorithm</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial Off-The-Shelf</td>
</tr>
<tr>
<td>CNES</td>
<td>Centre National d’Études Spatiales</td>
</tr>
<tr>
<td>DLR</td>
<td>Deutsches Zentrum für Luft- und Raumfahrt</td>
</tr>
<tr>
<td>DSN</td>
<td>Deep Space Network</td>
</tr>
<tr>
<td>EADS</td>
<td>European Aeronautic Defence and Space Company</td>
</tr>
<tr>
<td>ECI</td>
<td>Earth Centred Inertial</td>
</tr>
<tr>
<td>ECR</td>
<td>Electron Cyclotron Resonance</td>
</tr>
<tr>
<td>EML</td>
<td>Earth-Moon Lagrange point</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>ESOC</td>
<td>European Space Operations Centre</td>
</tr>
<tr>
<td>ESTEC</td>
<td>European Space Research and Technology Centre</td>
</tr>
<tr>
<td>ET</td>
<td>Ephemeris Time</td>
</tr>
<tr>
<td>GCR</td>
<td>Galactic Cosmic Ray</td>
</tr>
<tr>
<td>GESOP</td>
<td>Graphical Environment for Simulation and Optimisation</td>
</tr>
<tr>
<td>GEO</td>
<td>Geostationary (Earth) Orbit</td>
</tr>
<tr>
<td>GSLV</td>
<td>Geosynchronous Satellite Launch Vehicle</td>
</tr>
<tr>
<td>GTO</td>
<td>Geosynchronous Transfer Orbit</td>
</tr>
<tr>
<td>HEO</td>
<td>High Earth Orbit</td>
</tr>
<tr>
<td>HLO</td>
<td>High Lunar Orbit</td>
</tr>
</tbody>
</table>
IAU International Astronomical Union
ICRF International Celestial Reference Frame
IEEE Institute of Electrical & Electronic Engineers
IERS International Earth Rotation Service
IFR Institut für Flugmekanik und Flugregelung
IRS Institut für Raumfahrtsysteme
ISRO Indian Space Research Organisation
ITRF International Terrestrial Reference Frame
JAXA Japanese Aerospace Exploration Agency
JD Julian Date
JGM3 Joint Gravity Model 3
JPL Jet Propulsion Laboratory
KKT Karush-Kuhn-Tucker
LEO Low Earth Orbit
LLO Low Lunar Orbit
LP165 Lunar Prospector Gravity Model, degree and order 165
NASA National Aeronautics & Space Administration
NIMA National Imagery & Mapping Agency
NLP Non-Linear Programming
ODE Ordinary Differential Equation
PPT Pulsed Plasma Thruster
PROMIS Parameterised tRajectorY Optimisation by direct MultIple Shooting
PTFE Polytetrafluoroethylene (Teflon®)
SEL Sun-Earth Lagrange point
SEPTOP Solar Electric Propulsion Trajectory Optimization Program
SIMPLEX Stuttgart Impulsing MagnetoPlasmadynamic thruster for Lunar EXploration
SNOPT Sparse Nonlinear OPTimiser
SOCS Sparse Optimal Control Software
SOI Sphere of Influence
SPE Solar Particle Event
SQP Sequential Quadratic Programming
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSO</td>
<td>Sun Synchronous Orbit</td>
</tr>
<tr>
<td>STK</td>
<td>Satellite Tool Kit</td>
</tr>
<tr>
<td>TALOS</td>
<td>Thermal Arcjet for Lunar Orbiting Satellite</td>
</tr>
<tr>
<td>TLI</td>
<td>Trans-lunar Injection</td>
</tr>
<tr>
<td>TROPIC</td>
<td>Trajectory OPtimisation by dIrect Collocation</td>
</tr>
<tr>
<td>TT</td>
<td>Terrestrial Time</td>
</tr>
<tr>
<td>UTC</td>
<td>Universal Coordinate Time</td>
</tr>
</tbody>
</table>
Abstract

The University of Stuttgart is conducting a research program to build a succession of small satellites. The ultimate goal of this program is to build and launch a craft named Lunar Mission BW-1 (after the federal state that Stuttgart is situated in, Baden-Württemberg) into lunar orbit, for eventual impact with the Moon. As with the majority of space missions, launch cost is a severely limiting factor so it is necessary to carefully plan the trajectory before launch, to ensure lunar capture and minimise the amount of fuel needed by the spacecraft.

This thesis outlines work conducted to find a robust fuel-optimal trajectory for Lunar Mission BW-1 to reach the Moon. Several unique aspects of this craft require a novel approach to that optimisation. Firstly, the spacecraft uses a new low-cost propulsion system, severely limiting manoeuvrability and accessibility of transfer trajectories. Secondly, to reduce the mass and complexity of moving parts, the solar panels are fixed to the body; consequently, the craft must rotate itself to point its solar panels towards the Sun to recharge. No thrusting can occur during this time. This magnifies the effect of the third design decision, which is to restrict the dry mass of the craft by giving it very little on-board power storage. After approximately an hour of accelerating it is expected to need to coast for several hours to recharge its batteries, resulting in a relatively high frequency stop-go-stop thrust profile.

Due to these constraints, the trajectory optimisation is one of the most complex ever attempted. Since the craft will be built and launched, many simplifications made in purely theoretical studies could not be utilised, such as neglecting the weaker forces acting on the spacecraft in cis-lunar space.
The very low thrust results in very long transfer times, during which even small magnitude forces acting on the spacecraft can significantly perturb its trajectory. However, including these forces creates non-linearities in the equations of motion associated with spacecraft trajectories, limiting the optimisation methods that could be used, and increasing computational complexity.

Optimisation methods for low-thrust spacecraft trajectories have been the subject of much research, but most studies conclude that knowledge is still lacking in this area. Furthermore, many optimisation methods investigated in existing literature are incompatible with the intermittent thrust profile required by the lunar Mission BW-1 thrusters. For this reason it was necessary to thoroughly review available optimisation methods and determine which may be adapted to this scenario. The resulting optimisation method was applied to the Lunar Mission BW-1 scenario to determine an efficient thrusting profile that will get the craft to the Moon.

It was found that very few established optimisation algorithms can support the number of variables required for such a complex, long duration trajectory. The Sparse Optimal Control Software (SOCS) marketed by The Boeing Corporation was used via an interface developed at the University of Stuttgart called the Graphical Environment for Simulation and Optimisation (GESOP). Due to unknown constraints such as launch date, the phases defined by the mission architecture were modelled and optimised independently. This approach allows mission planning flexibility while still providing reliable estimates for optimal fuel use, mission duration and power limitations.

A trajectory is presented for each of the phases, ascending from the initial geosynchronous transfer orbit (GTO) to the eventual low lunar orbit (LLO). The resulting science phase is propagated forward in time to ensure orbital lifetime meets the mission requirements. Recommendations are subsequently made for the continuing development of the mission architecture.

The primary outcome of this study is a procedure for developing an operational trajectory for Lunar Mission BW-1 after launch details are
known. Given the current mission architecture and assumed launch details, the thermal arcjet requires 1205 hours (50.2 days) of operation while consuming 93 kg of ammonia propellant, and the pulsed plasma thrusters require 29177 hours (3.3 years) of operation while consuming 19 kg propellant. Power constraints were not found to be mission limiting for the current spacecraft configuration. Consequently, although the laboratory testing burden on the PPTs is already quite heavy, it is recommended that the mission architecture be adjusted to shorten arcjet phases and lengthen PPT phases. Furthermore, this project found that the optimisation package SOCS was the best commercially available option for low-thrust trajectory optimisation, but that it would benefit greatly by adaptation to a parallel shooting algorithm that may be distributed amongst multiple computer processors.
Statement of Originality

I, Rogan Shimmin, certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

__
Rogan Shimmin

__
Date
xviii
Acknowledgements

Firstly I would like to thank my principal supervisor Dr Ben Cazzolato for accepting me as his student after Dr Matt Tetlow’s departure, bravely taking on a new field of research at the same time. His guidance and support were invaluable to me in finishing this thesis. Thanks also to Dr Vince Wheatley for being my connection with space research during my early days in Adelaide, and of course, thanks to Matt for helping me get started, then lending me his insight and experience in all things optimisation, orbital mechanics, and Stuttgart-related over the course of my work before resuming as my supervisor just in time to review this thesis! Thanks also to the rest of the AIAA Adelaide Section for fostering my dreams of space throughout my university education.

On the other side of the world I’d like to add my gratitude to Prof. Dr Hans-Peter Röser for formalising my stay in Stuttgart and providing me with such an incredible international experience, and the opportunity to work on such an ambitious project with such great people. Heartfelt thanks to the recently appellated Dr-Ing. Oliver Zeile for being my main mentor and sounding board in Germany, but moreso for his unflagging enthusiasm and friendship over the past years. I also owe a debt of gratitude to Dr-Ing. René Laufer for starting the Kleinsatellitenprogramm and always being available for long, rambling discussions while I was working on it, but even more for encouraging me to attend the International Space University. A huge thankyou must then go out to the ISU community, for reigniting my motivation and further inspiring me to pursue a career in space.

Big thanks must go to the ASTOS boys, in particular Francesco Cremaschi and Christian Möllman, for their technical support and assistance
with the optimisation software throughout my studies. I really appreciate
the time you put in, above and beyond our original agreement.

I wish to thank the Deutscher Academischer Austauch Dienst (DAAD)
for financial support during my stay in Germany, and thanks also to the
people of The School of Mechanical Engineering at The University of Ade-
laide, and the Institut für Raumfahrtysteme at Universität Stuttgart for
facilitating my work on such a fantastic project in two top quality re-
search environments. Deserving of special mention are Billy Constantine,
for keeping my computer in brilliantly working order in Adelaide, Edgar
Schreiber, for trying to do the same in Stuttgart, and Kay Leverett, for
her patient guidance through The University of Adelaide’s library resources
regardless of where in the world I was.

I really could not have finished this project without the support of my
friends in Stuttgart and Adelaide, and elsewhere around the world. You
guys really gave me the motivation to finish this thing! Here I really have
to single out Tristan Williams, for lending many hours of programming
expertise remotely from Helsinki. Last but perhaps most importantly,
sincere thanks to my family, who have always supported me throughout
my studies. Special thanks go to Mum for making me take this task on
in the first place, and Dad for looking after Orlando during my lengthy
absences.