

Investigating Lymphatic Vascular Remodelling During Postnatal Mouse Mammary Gland

Morphogenesis

KELLY LOUISE BETTERMAN

BLabMed (Hons)

Thesis submitted for the degree of

Doctor of Philosophy

School of Medicine Faculty of Health Sciences The University of Adelaide

Lymphatic Development Laboratory Division of Haematology Centre for Cancer Biology SA Pathology

July 2011

1-50

CONTENTS

Contents	ii
Abstract	ix
Declaration	xi
Acknowledgements	xii
List of Figures	xiv
List of Tables	xvii
Abbreviations	xviii

CHAPTER 1

Introduction

1.1 THE LYMPHATIC SYSTEM	2
1.1.1 Structure and function of the lymphatic system	2
1.1.2 Embryonic origin and development of the lymphatic system	6
1.1.3 Molecular markers used to identify lymphatic vessels and their role in lymphatic	vascular
development and function	11
1.1.3.1 Prox1	11
1.1.3.1.1 Transcriptional regulation of Prox1 by Sox18 and COUP-TFII	12
1.1.3.1.2. Post-transcriptional regulation of Prox1 by miR-181a	12
1.1.3.2 LYVE1	13
1.1.3.3 Podoplanin	14
1.1.3.4 VEGFR-3	14
1.1.3.5 Nrp2	15
1.1.3.6 CCL21	16
1.1.4 Lymphangiogenic growth factors and other molecules critical to lymphatic	vascular
growth, development and function	16
1.1.4.1 Lymphangiogenic growth factors	17
1.1.4.1.1 VEGF-C and VEGF-D	1/
1.1.4.1.2 Angiopoletins and Tie receptors	18
1.1.4.1.3 FGF-2	20
1.1.4.1.4 HGF	20
1.1.4.1.5 Insulin-like growth factors	21
1.1.4.1.6 PDGF-BB	21
1.1.4.2 Other molecules critical to lymphatic vascular growth, development and function	21
1.1.4.2.1 Adrenomedullin	21
1.1.4.2.2 CCD01 1.1.4.2.2 EnbrinD2	22
1.1.4.2.3 EPIIIIIDZ 1.1.4.2.4 Eiof	22
1.1.4.2.4 Flai 1.1.4.2.5 EOVC2	22
1.1.4.2.5 FUNC2 1.1.4.2.6 Integrin a0	20
1.1.4.2.0 Integrin-us $1.1.4.2.0$ Notrin-A	23 21
1.1.7.2.1 Noullist 1.1.4.2.8 Sky and SI P-76	24 91
1.1.7.2.0 OKy and OLI -1.0	24

1.2 THE MOUSE MAMMARY GLAND	25
1.2.1 Introduction to the mammary gland	25
1.2.2 Cellular composition of the mouse mammary gland	25
1.2.3 Mouse mammary gland morphogenesis	27
1.2.3.1 Embryonic mammary gland development	27
1.2.3.2 Postnatal mammary gland development	28
1.2.3.2.1 Pubertal mammary gland development	28
1.2.3.2.2 The adult nulliparous mammary gland	30
1.2.3.2.3 Mammary gland development during pregnancy and lactation	30
1.2.3.2.4 Involution	31
1.2.3.3 Key hormones involved in mouse mammary gland morphogenesis	31
1.2.3.3.1 Estrogen	31
1.2.3.3.2 Progesterone	32
1.2.3.3.3 Prolactin	32
1.2.4 A comparison of the mouse and human mammary glands	33
1.2.5 Blood vascular remodelling during postnatal mouse mammary gland morphogenesis	35
1.2.5.1 Puberty	36
1.2.5.2 Pregnancy	36
1.2.5.3 Lactation	36
1.2.5.4 Involution	38
1.2.5.5 Regulators of mammary blood vascular remodelling in the mouse	38
1.2.6 The mammary lymphatic vascular network	40
1.2.6.1 In the human breast	40
1.2.6.2 In the mouse mammary gland	42
1.3 BREAST CANCER AND LYMPHATIC VESSELS	42
1.3.1 lumour metastasis	43
1.3.1.1 Breast cancer-related metastasis	44
1.3.1.1.1 Inhibiting lymphangiogenesis	45
1.3.2 Lymphoedema	46
1.3.2.1 Breast cancer-related lymphoedema	4/
1.3.2.1.1 Therapeutic lymphanglogenesis	48
1.4 PROJECT RATIONALE AND AIMS	49
CHAPTER 2	51-71
Materials and Methods	
2.1 MATERIALS	52
2.1.1 Standard solutions	52
2.1.2 Bacterial media	52
2.1.3 Antibodies	53
2.2 METHODS	53
2.2.1 RNA analysis	53
2.2.1.1 RNA isolation	53
2.2.1.2 Determination of RNA concentration	56
2.2.1.3 First-strand cDNA synthesis	56

2.2.1.3 First-strand cDNA synthesis 2.2.1.4 Real-time RT-PCR

2.2.2 Plasmid DNA cloning and purification 2.2.2.1 PCR amplification

2.2.2.2 DNA agarose gel electrophoresis

56

58

58

58

CONTENTS

2.2.2.3 DNA extraction from agarose gels	59
2.2.2.4 Restriction enzyme digestion of DNA	59
2.2.2.5 Ligation reactions	59
2.2.2.6 Preparation of chemically-competent cells	60
2.2.2.7 Transformation of chemically-competent cells	60
2.2.2.8 Small-scale plasmid DNA production and purification	61
2.2.2.8.1 Small-scale plasmid DNA production	61
2.2.2.8.2 Small-scale plasmid DNA purification	61
2.2.2.9 Plasmid DNA sequencing	62
2.2.2.9.1 DNA sequencing reaction	62
2.2.2.9.2 DNA sequencing product purification	62
2.2.2.10 Large-scale plasmid DNA production and purification	62
2.2.2.10.1 Large-scale plasmid DNA production	62
2.2.2.10.2 Long-term storage of plasmid DNA	62
2.2.2.10.3 Large-scale plasmid DNA purification	63
2.2.2.11 Determination of DNA concentration	63
2.2.3 Mouse studies	63
2.2.3.1 Transgenic mice	64
2.2.4 Mammary gland collection, processing and sectioning	64
2.2.4.1 Mammary gland dissection	64
2.2.4.2 Mammary gland fixation	66
2.2.4.2.1 Paraformaldehyde fixation	66
2.2.4.2.2 Formaldehyde fixation	66
2.2.4.2.3 Carnoy's solution fixation	66
2.2.4.3 Mammary gland processing and sectioning	67
2.2.4.3.1 Fixed-frozen mammary gland tissue	67
2.2.4.3.2 Paraffin-embedded mammary gland tissue	67
2.2.5 Cell isolation and culture	68
2.2.5.1 Mammary gland cell isolation	68
2.2.5.2 Analysis of cell number and viability	69
2.2.5.3 Visualising cell morphology via light microscopy	69
2.2.6 Statistical analysis	69

CHAPTER 3

72-97

Lymphatic vessels are dynamically remodelled during postnatal mouse mammary gland morphogenesis

3.1 INTRODUCTION	73
3.1.1 Lymphatic vessel patterning in other reproductive organs	73
3.1.1.1 The ovarian lymphatic vasculature	73
3.1.1.2 The uterine lymphatic vasculature	74
3.2 METHODS	75
3.2.1 Mammary gland carmine alum staining	75
3.2.2 Immunofluorescent immunostaining of mouse mammary gland sections	76
3.2.3 Lymphatic vessel quantification	76
3.2.4 Whole mount immunofluorescent immunostaining of mouse mammary glands	77
3.3 RESULTS	78
3.3.1 The ductal epithelial network is extensively remodelled during postnatal mouse m	ammary
gland morphogenesis	78

3.3.2 Mammary lymphatic vessel density is elevated during pregnancy	78
3.3.3 Lymphatic vessels are spatially associated with mammary ducts and large	blood vessels
in the mouse mammary gland	80
3.3.4 Lymphatic vessel density in the mouse mammary gland correlates with	density of the
epithelial tree	87
3.3.5 Prox1 expression is not restricted to lymphatic vessels, but is also expres	sed in venous
valves in the mouse mammary gland	90
3.4 DISCUSSION	92
3.5 CONCLUSION	97

CHAPTER 4

98-152

Investigating signals that regulate lymphatic vascular remodelling in the postnatal mouse mammary gland

4.1 INTRODUCTION 4.1.1 Biosynthesis and proteolytic processing of VEGF-C and VEGF-D	99 99
4.2 METHODS	103
4.2.1 Immunofluorescent immunostaining of paraffin-embedded mammary gland sections	103
4.2.2 In situ hybridisation	104
4.2.2.1 Production of DIG-labelled RNA probes	104
4.2.2.1.1 Generation of plasmid templates	104
4.2.2.1.2 Plasmid template linearisation	105
4.2.2.1.3 Linearised plasmid template precipitation	105
4.2.2.1.4 In vitro transcription of DIG-labelled RNA probes	105
4.2.2.1.5 DIG-labelled RNA probe precipitation	106
4.2.2.2 In situ hybridisation	106
4.2.2.2.1 Day 1 - Pre-hybridisation and hybridisation	106
4.2.2.2.2 Day 2 - Post-hybridisation washes	107
4.2.2.2.3 Day 3 - Immunological detection	107
4.2.2.2.4 Day 4 - Termination of colour development	107
4.2.3 RNA isolation from entire mouse mammary glands	107
4.2.4 Protein collection and analysis	108
4.2.4.1 Protein collection	108
4.2.4.2 Determination of protein concentration	108
4.2.4.3 Western blot analysis	108
4.2.4.3.1 SDS-PAGE	108
4.2.4.3.2 Electrophoretic transfer	109
4.2.4.3.3 Immunoblotting	109
4.2.4.3.4 Detection	109
4.2.5 Ex vivo lymphatic endothelial cell proliferation assay	110
4.2.5.1 Primary lymphatic endothelial cell isolation from embryonic mouse dermis	110
4.2.5.1.1 Dissection and enzymatic digestion of embryonic dermis	110
4.2.5.1.2 Depletion of contaminating macrophages	110
4.2.5.1.3 Isolation of lymphatic endothelial cells via positive selection with LYVE1	111
4.2.5.2 Mammary gland cell suspension culture and collection of conditioned media	111
4.2.5.2.1 Initial preparation and collection of first batch of conditioned media	111
4.2.5.2.2 Cell passaging and collection of second batch of conditioned media	112
4.2.5.2.3 Collection of third batch of conditioned media	112
4.2.5.2.4 Cell imaging	112

CONTENTS

4.2.5.3 Cell proliferation assays	112
4.2.5.3.1 Conditioned media experiments	113
4.2.5.3.2 Small molecule inhibitor studies	113
4.2.6 Cell monolayer immunohistochemistry	114
4.2.7 Analysis of <i>Vegfd</i> -deficient mouse mammary glands	114
4.3 RESULTS	115
4.3.1 Lymphatic endothelial cells in the mouse mammary gland lack detectable express	sion of
estrogen receptor alpha and progesterone receptor	115
4.3.2 Vegfa and Pdgfa are expressed in the epithelial cell compartment of the mouse ma	mmary
gland	117
4.3.3 The expression of pro-lymphangiogenic growth factors is dynamically regulated	at the
level of mRNA and protein during postnatal mouse mammary gland morphogenesis	119
4.3.3.1 Investigation of pro-lymphangiogenic growth factor expression by real-time RT-PCR	119
4.3.3.2 Investigation of pro-lymphangiogenic growth factors at the protein level	121
4.3.4 Myoepithelial cells are a rich source of pro-lymphangiogenic stimuli in the	mouse
mammary gland	125
4.3.5 Lymphatic endothelial cell proliferation ex vivo is promoted by conditioned	media
harvested from mammary gland cell suspension cultures	127
4.3.6 Mammary gland conditioned media promotes lymphatic endothelial cell proliferation	tion ex
vivo via VEGFR-3 and FGFR-1	131
4.3.6.1 Selection of small molecule inhibitors	131
4.3.6.2 MAZ51 and SU5416 inhibit VEGF-C- and VEGF-D-induced lymphatic endothe	lial cell
proliferation ex vivo	132
4.3.6.3 MAZ51 and SU5402 inhibit mammary gland conditioned media-induced lymphatic end	othelial
cell proliferation ex vivo	134
4.3.7 <i>Vegfd</i> is dispensable for lymphangiogenesis during postnatal mouse mammary	gland
morphogenesis	134
4.3.8 <i>Vegfd</i> -deficiency in the pregnant mouse mammary gland has no effect on ep	ithelial
architecture	137
4.4 DISCUSSION	137
4.5 CONCLUSION	151

153-196

CHAPTER 5 Microarray analysis of isolated mammary gland cell populations

5.1 INTRODUCTION	154
5.2 METHODS	154
5.2.1 Mammary gland FACS	154
5.2.1.1 Cell labelling	154
5.2.1.2 Flow cytometry	155
5.2.2 RNA isolation	155
5.2.2.1 DNase inactivation	157
5.2.3 Determination of isolated cell population purity	157
5.2.4 Assessment of RNA quantity and quality	157
5.2.5 Generation of samples for microarray analysis	158
5.2.5.1 RNA amplification	158
5.2.5.2 Purification of amplified cDNA	159
5.2.5.3 Generation and purification of ST-cDNA	159
5.2.5.4 Fragmentation and biotin-labelling of ST-cDNA	159

5.2.6 Microarray data analysis	160
5.3 RESULTS	160
5.3.1 FACS gating strategy optimisation	160
5.3.2 Assessment of the purity of isolated mammary gland cell populations	161
5.3.3 Microarray analyses	168
5.3.4 Validation of microarray data sets	174
5.3.4.1 Luminal epithelial cell array	174
5.3.4.2 Myoepithelial cell array	174
5.3.4.3 Haematopoietic cell array	176
5.3.4.4 Endothelial cell array	177
5.3.4.5 Pregnant epithelial cell array	178
5.3.5 Candidate genes identified from microarray analyses likely involved in	vascular
remodelling in the postnatal mouse mammary gland	179
5.3.6 <i>Bfk</i> is increased during pregnancy in the mouse mammary gland	182
5.4 DISCUSSION	182
5.4.1 Novel genes likely involved in vascular remodelling in the postnatal mouse n	nammary
gland	186
5.4.1.1 Cxc/15	187
5.4.1.2 Adam10	188
5.4.1.3 Anxa1	190
5.4.1.4 Tnc	191
5.4.1.5 <i>Mmp2</i>	192
5.4.1.6 Bdnf	193
5.4.2 Bfk is an interesting gene likely involved in postnatal mouse mamma	ry gland
morphogenesis	194
5.5 CONCLUSION	195

CHAPTER 6

197-222

Investigating the role of Patched 1 in mammary gland lymphatic vessels

6.1 INTRODUCTION	198
6.1.1 An overview of the Hedgehog signalling pathway	198
6.1.2 Patched 1	201
6.1.2.1 Generation of <i>Ptch1^{lacZ/+}</i> mice	201
6.1.2.2 Patched 1 mouse models	202
6.2 METHODS	203
6.2.1 Genotyping of <i>Ptch1^{lacZ/+}</i> mice	203
6.2.1.1 Genomic DNA extraction from mouse tails	203
6.2.1.2 Genotyping PCR primers	204
6.2.1.3 Genotyping PCR	204
6.2.2 Mammary gland whole mount X-gal staining	204
6.2.3 Mammary gland section DAB immunostaining	205
6.2.4 Embryonic and adult mouse tissue collection, processing and immunostaining	206
6.2.4.1 Embryonic and adult tissue collection and fixation	206
6.2.4.2 Embryonic and adult tissue whole mount X-gal staining	206
6.2.4.3 Embryonic and adult tissue cryopreservation and sectioning	207
6.2.4.4 Embryonic and adult tissue DAB immunostaining	207
6.2.4.4.1 Embryonic and adult tissue section DAB immunostaining	207
6.2.4.4.2 Adult tissue whole mount DAB immunostaining	207

6.2.4.5 Whole mount embryonic dermal skin immunofluorescent immunostaining	207
6.3 RESULTS	208
6.3.1 <i>Ptch1</i> is not expressed in mammary gland lymphatic vessels	208
6.3.2 <i>Ptch1</i> is not expressed in the lymphatic vasculature of other adult tissues	210
6.3.3 <i>Ptch1</i> is not expressed in lymphatic vessels during embryonic development	213
6.3.4 Ptch1 haploinsufficiency does not affect lymphatic vessel patterning in	embryonic
skin	217
6.4 DISCUSSION	217
6.5 CONCLUSION	221
CHAPTER 7	223-233
Discussion	
7.1 DISCUSSSION	224
7.2 FUTURE DIRECTIONS	230
7.3 CONCLUSION	233
REFERENCES	234-266

ABSTRACT

The lymphatic vasculature, an essential component of the cardiovascular system, serves several functions critical to embryonic development and adult homeostasis. Lymphatic vessels return interstitial protein-rich fluid to the bloodstream, transport immune cells during immune surveillance and infection and absorb lipids from the digestive tract (Alitalo et al., 2005; Tammela and Alitalo, 2010). The aberrant growth and development of lymphatic vessels (lymphangiogenesis) is a common feature of human disorders including lymphoedema, inflammatory diseases and tumour metastasis (Alitalo et al., 2005; Tammela and Alitalo, 2010). Lymphatic vessels are of key importance to breast cancer patients. Lymphatic vessels are exploited as a key route of metastasis for tumour cells and the ability of a tumour to promote lymphangiogenesis has been linked with metastasis and poor patient prognosis (Gu et al., 2008; Nakamura et al., 2005; Nakamura et al., 2003; Ran et al., 2010; Skobe et al., 2001). Moreover, lymphatic vascular damage incurred during the surgical resection of lymph nodes commonly results in secondary lymphoedema, a debilitating complication for up to 40% of breast cancer patients (Armer et al., 2009). Despite the involvement of lymphatic vessels in breast cancer, the genes and molecular mechanisms that regulate lymphangiogenesis in the breast remain relatively uncharacterised.

The mammary epithelium and blood vasculature undergo dynamic remodelling events in response to hormonal signals and functional demands during postnatal mouse mammary gland morphogenesis (Djonov et al., 2001; Matsumoto et al., 1992; Richert et al., 2000; Watson and Khaled, 2008). The aims of this project were:

- 1. To investigate the spatial organisation of lymphatic vessels in the mouse mammary gland.
- 2. To investigate whether lymphatic vessels, like blood vessels and the mammary epithelial tree, are temporally remodelled during mouse mammary gland morphogenesis.
- To define signals that regulate lymphangiogenesis during postnatal mouse mammary gland morphogenesis.

This study provides the first evidence demonstrating that the lymphatic vasculature is dynamically remodelled along with the mammary epithelial tree and blood vasculature during postnatal mouse mammary gland morphogenesis. In addition, this study reveals an intimate association of lymphatic vessels with epithelial ducts, a finding that has important implications for tumour metastasis, as well as the spatial organisation of lymphatic vessels in other branched epithelial tissues, including the lung, kidney, pancreas and prostate. Furthermore, we established that vascular endothelial growth factor

(Vegf) C (*Vegfc*) and *Vegfd* mRNA levels are significantly increased early during pregnancy and that proteolytically-processed, active VEGF-D is expressed selectively in pregnant, but not virgin mouse mammary glands, corresponding with the stage of peak lymphatic vessel density. In accordance with these data, we demonstrated that a tyrosine kinase inhibitor specific for VEGF receptor 3 (Kirkin et al., 2001; Kirkin et al., 2004), the principal receptor for mouse VEGF-C and VEGF-D, can block the proliferation of primary dermal lymphatic endothelial cells that is stimulated by mammary epithelial and stromal cell conditioned media *ex vivo*. These data suggest that VEGF-C and VEGF-D, two of the best characterised lymphangiogenic stimuli to date, are likely to play key roles in the stimulation of lymphangiogenesis in the pregnant mouse mammary gland. Elucidation of the molecular mechanisms controlling lymphangiogenesis in the mammary gland has the potential to reveal important targets for the future generation of pro- and anti-lymphangiogenic therapeutics, with the ultimate goal to repair surgically damaged lymphatic vessels and prevent breast cancer metastasis, respectively.

DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Kelly Louise Betterman and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Kelly Louise Betterman

ACKNOWLEDGEMENTS

First and foremost, I would like to sincerely thank my supervisor, mentor and friend, Dr Natasha Harvey, for her endless guidance, encouragement, support, patience and most of all, positivity over the past four years. There have been many times when I felt beaten, but you made sure that I never lost sight of the big picture! It has been a great honour and privilege to undertake my PhD in your laboratory. Tash, you are an inspiration to any woman embarking on a career in research. I can only hope that one day I will be half as good a scientist as you!

Thank you to past and present members of the Lymphatic Development Laboratory for filling my days with gossip, laughter, food and coffee (the latter two obviously not consumed in the PC2 lab of course) and for developing my taste for wine! I am especially grateful to my two 'lab mums', Jan and Gen, for keeping me grounded, their friendship and their ever-willingness to provide assistance when needed. Jan, you are a walking scientific encyclopaedia! How can I ever repay you both?! Emma, although you are now on the other side of the world, rest assured that your pipettes are in very safe hands!

Thank you also to my co-supervisor, Dr Lisa Butler, for her valuable technical advice and constructive feedback in lab meetings, to the staff and students of the Division of Haematology and Centre for Cancer Biology for help when required and for providing a fun environment to work in, and to the National Breast Cancer Foundation for funding me with a prestigious Doctoral Research Scholarship, without which this study would not have been possible.

Last, but by all means not least, I could not have completed this PhD without the endless support of my friends and family, to whom I am most grateful!

To my APP girlies, Darshika and Harshani, thank you for listening to my constant whinging and whining, but most of all thank you for your friendship over the past few years. I hope we can remain friends for life. This *Chief* will miss you dearly! To Diana, Chantelle, Rebecca, Tori, Felix and of course the 'Big GM' Robert, for all the laughter and lab-related shenanigans making those long nights at the lab all-themore bearable!

To Laura and Chun Chun, Saltcake and Lil' soldier, my fellow PhD buddies who have battled alongside me from the beginning. Thank you for the laughter, your understanding, countless coffee breaks and for

the constant reminders that I am not alone...we can all have Permanent Head Damage together! Now, it's time for the *Commander* to make sure her battalion isn't left behind in combat. Girls, you can do it!!! I am eagerly awaiting sharing a drink...or two...or three...or more...with you both at the end of this 'war'. Pick up those weapons and fight...or should I say write?!

To Nas, my running buddy, how could I have made it through 'thesisanity' without all those gym sessions, 'Mt Everest' challenges, pancakes and late night motivational messages...'toughen up princess'...actually I probably would have made it through a whole lot less sore!

Most importantly, to my family, Mum, Dad and Nanna, thank you from the bottom of my heart for believing in me!

LIST OF FIGURES

CHAPTER 1

Figure 1.1	The lymphatic system	3
Figure 1.2	Characteristic features of the lymphatic vasculature	4
Figure 1.3	Development of the mammalian lymphatic vasculature	7
Figure 1.4	Populations of cells that reside in the mouse mammary gland	26
Figure 1.5	Stages of postnatal mouse mammary gland development	29
Figure 1.6	A comparison between human and mouse mammary tissue	34
Figure 1.7	Blood vascular remodelling during postnatal mouse mammary gland morphogenesis	37
Figure 1.8	Historical drawings of the human breast lymphatic network	41

CHAPTER 2

Figure 2.1	Mouse mammary gland dissection	65
Figure 2.2	Diagrammatic representation of a haemocytometer	70

CHAPTER 3

Figure 3.1	Carmine alum-stained postnatal mouse mammary glands	79
Figure 3.2	Mammary lymphatic vessel density is elevated during pregnancy	81
Figure 3.3	Lymphatic vessels are spatially associated with mammary ducts and large blood v	vessels
	in the mouse mammary gland	82
Figure 3.4	Mammary lymphatic vessels do not form 'capillary baskets' surrounding the alveoli	83
Figure 3.5	Lymphatic vessels are intimately associated with the epithelial tree in virgin, I	but not
	pubertal mouse mammary glands	85
Figure 3.6	Lymphatic vessels are intimately associated with mammary ducts, but not the alw	veoli, in
	pregnant mouse mammary glands	86
Figure 3.7	The ductal tree is dynamically remodelled during postnatal mouse mammary	gland
	morphogenesis	88
Figure 3.8	Mammary lymphatic vessel density correlates with density of the epithelial tree	89
Figure 3.9	Prox1 is expressed in venous valves in the mouse mammary gland	91

CHAPTER 4

Figure 4.1	Schematic representation of mouse VEGF-D biosynthesis, protect	olytic processing and
	alternatively-spliced transcripts	100

Figure 4.2	Lymphatic endothelial cells do not express estrogen receptor alpha or progesterone
	receptor in the mouse mammary gland 116
Figure 4.3	Vegfa and Pdgfa are expressed in mammary epithelial cells118
Figure 4.4	The expression of pro-lymphangiogenic growth factors is dynamically regulated at the
	mRNA level during mouse mammary gland morphogenesis 120
Figure 4.5	Reln mRNA levels are increased at an early stage of pregnancy relative to virgin and late
	pregnant stages 122
Figure 4.6	Angpt2, but not Angpt1 protein, is increased in pregnant mouse mammary glands 123
Figure 4.7	Mature VEGF-D is present selectively in pregnant, but not virgin mouse mammary
	glands 124
Figure 4.8	The expression of pro-lymphangiogenic growth factors is elevated in myoepithelia
	cells 126
Figure 4.9	Mammary gland conditioned media promotes lymphatic endothelial cell proliferation ex
	<i>vivo</i> 128
Figure 4.10	The cellular composition of mammary gland cell suspension cultures is different between
	passages 0 and 1 129
Figure 4.11	MAZ51 and SU5416 inhibit VEGF-C- and VEGF-D-induced lymphatic endothelial cel
	proliferation <i>ex vivo</i> 133
Figure 4.12	Mammary gland conditioned media promotes lymphatic endothelial cell proliferation ex
	vivo via VEGFR-3 and FGFR-1 135
Figure 4.13	Lymphatic vessel patterning is unaffected in virgin Vegfd-/- mouse mammary glands 136
Figure 4.14	Lymphatic vessel patterning is normal in pregnant Vegfd mouse mammary glands 138
Figure 4.15	The ductal architecture is normal in pregnant <i>Vegfd</i> ^{-/-} mouse mammary glands 139

CHAPTER 5

Figure 5.1	FACS gating strategy used for the isolation of 8 week virgin mammary gland	cell
	populations	162
Figure 5.2	FACS gating strategy used for the isolation of 16.5 day pregnant mammary gland	cell
	populations	164
Figure 5.3	Assessment of isolated mammary gland cell population purity	167
Figure 5.4	Principal component analysis plots	169
Figure 5.5	Cxcl15 mRNA levels are elevated at an early stage of pregnancy relative to virgin	and
	late pregnant stages	180
Figure 5.6	Bfk mRNA levels are increased in pregnant mouse mammary glands	183

CHAPTER 6		
Figure 6.1	A simplified model of Hedgehog signalling in mammalian cells	200
Figure 6.2	Ptch1 is expressed in a subset of cells associated with peripheral nerve fibres in	
	mouse mammary gland	209
Figure 6.3	Ptch1 is not expressed in lymphatic vessels of adult mouse tissues	211
Figure 6.4	Expression of Ptch1 during murine embryogenesis	214
Figure 6.5	Detailed expression analysis of Ptch1 during murine embryogenesis	215
Figure 6.6	Dermal lymphatic vessels are patterned normally in Ptch1lacZ/+ mice	218
Figure 6.7	LYVE1-positive macrophages in the mouse mammary gland	220

LIST OF TABLES

CHAPTER 2

Table 2.1	A list of primary antibodies and their conditions of use	54
Table 2.2	A list of directly-conjugated primary and secondary antibodies and their conditio	n of
	use	55
Table 2.3	Primer pairs used for real-time RT-PCR analyses in Mus musculus	57

CHAPTER 5

Table 5.1	FACS gating strategy used to isolate enriched populations of cells from the mouse
	mammary gland 156
Table 5.2	A comparison of cell yields following FACS of virgin and pregnant mouse mammary
	glands 166
Table 5.3	Top 40 differentially expressed genes between endothelial cells in virgin and pregnant
	mouse mammary glands 170
Table 5.4	Top 40 differentially expressed genes between haematopoietic cells in virgin and
	pregnant mouse mammary glands 171
Table 5.5	Top 40 differentially expressed genes between luminal epithelial cells in virgin and
	pregnant mouse mammary glands 172
Table 5.6	Top 40 differentially expressed genes between myoepithelial cells in virgin and pregnant
	mouse mammary glands 173
Table 5.7	Top 40 differentially expressed genes between myoepithelial and luminal epithelial cells
	in pregnant mouse mammary glands 175

ABBREVIATIONS

αSMA	alpha smooth muscle actin
β-gal	beta-galactosidase
μg	microgram
μΙ	microlitre
μm	micrometre
μМ	micromolar
ADAM10	a disintegrin and metalloproteinase 10
AGE	agarose gel electrophoresis
Angpt	angiopoietin
ANOVA	analysis of variance
AnxA1	annexin A1
AP	alkaline phosphatase
ApoER2	apolipoprotein E receptor 2
APS	ammonium persulphate
BABB	benzyl alcohol:benzyl benzoate
BC	Before Christ
BCA	bicinchoninic acid
BCIP	5-bromo-4-chloro-3-indolyl phosphate
Bcl2	B-cell lymphoma 2
BDNF	brain-derived neurotrophic factor
BEC	blood endothelial cells
Bfk	B-cell lymphoma 2 family kin
BH	Bcl2 homology
bp	base pair
BSA	bovine serum albumin
BVI	blood vascular invasion
ccbe1	collagen and calcium binding EGF domains 1
CCL21	chemokine (C-C motif) ligand 21
CD	cluster of differentiation
cDNA	complementary deoxyribonucleic acid
CLEC-2	C-type lectin-like receptor 2

cm	centimetre
СМ	conditioned media
cm ²	square centimetre
CO ₂	carbon dioxide gas
COUP-TFII	chicken ovalbumin upstream promoter transcription factor 2
CXCL15	chemokine (CXC motif) ligand 15
DAB	3,3'-diaminobenzidine
Dab1	disabled homolog 1
DAPI	4',6-diamidino-2-phenylindole
DEPC	diethlypyrocarbonate
DIG	digoxigenin
DMEM	Dulbecco's Modified Eagle's Medium
DMEM-10%FBS	Dulbecco's Modified Eagle's Medium supplemented with 10% (v/v)
	foetal bovine serum
DMEM-20%FBS	Dulbecco's Modified Eagle's Medium supplemented with 20% (v/v)
	foetal bovine serum
DMEM-5%FBS	Dulbecco's Modified Eagle's Medium supplemented with 5% (v/v) foetal
	bovine serum
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
DNase	deoxyribonuclease
dNTP	deoxyribonucleotide triphosphate
DTT	1,4-dithiothreitol
E	embryonic day
EBM®-2	Endothelial Cell Basal Medium®-2
EC	endothelial cells
ECF	enhanced chemifluorescence
EDTA	ethylenediaminetetraacetic acid
EGTA	ethylene glycol tetraacetic acid
ELISA	enzyme-linked immunosorbent assay
ELR+	ELR motif; glutamic acid-leucine-arginine
EphB4	Eph receptor B4
ERα	estrogen receptor alpha
ERβ	estrogen receptor beta

FACS	fluorescence-activated cell sorting
FBS	foetal bovine serum
FGF	fibroblast growth factor
FGF-1	fibroblast growth factor 1
FGF-2	fibroblast growth factor 2
FGFR-1	fibroblast growth factor receptor 1
Fiaf	fasting-induced adipose factor
FITC	fluorescein isothiocyanate
Flt4	FMS-like tyrosine kinase 4
FOXC2	forkhead box C2
G	gauge
g	gram
GFP	green fluorescent protein
Gli	glioma-associated
Gli1	glioma-associated 1
HBSS	Hank's balanced salt solution
HCI	hydrochloric acid
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid
HGF	hepatocyte growth factor
HGFR	hepatocyte growth factor receptor
Hh	Hedgehog
HHF	Hank's balanced salt solution containing 10mM 4-(2-hydroxyethyl)-1-
	piperazineethanesulphonic acid and 5% (v/v) foetal bovine serum
IDC	invasive ductal carcinoma
IDL	invasive lobular carcinoma
IGF-1	insulin-like growth factor 1
IGF-2	insulin-like growth factor 2
IPTG	isopropyl-β-D-thiogalactosidase
JLS	jugular lymph sac
K14	cytokeratin 14
K18	cytokeratin 18
KCI	potassium chloride
kDa	kilodalton
КОН	potassium hydroxide

L	litre
LB	Luria Bertani
LEC	lymphatic endothelial cells
LVI	lymphatic vascular invasion
LYVE1	lymphatic vessel endothelial hyaluronan receptor 1
М	Molar
mA	milliamp
MACS	magnetic-activated cell sorting
MAZ51	$\label{eq:constraint} 3-(4-dimethylamino-naphthalen-1-ylmethylene)-1, 3-dihydro-indol-2-one and a statistical st$
mg	milligram
MgCl ₂	magnesium chloride
ml	millilitre
mm	millimetre
mM	millimolar
MMP	matrix metalloproteinase
MMTV	mouse mammary tumour virus
MQ-H ₂ O	Milli-Q water
mRNA	messenger ribonucleic acid
MTS	3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
	sulfophenyl)-2H-tetrazolium, inner salt
Ν	Normality
NaCl	sodium chloride
NaOAc	sodium acetate
NaOH	sodium hydroxide
NBT	nitro blue tetrazolium chloride
NFATc1	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent
	1
ng	nanogram
nm	nanometre
Nrp2	neuropilin 2
0.C.T	optimal cutting temperature
℃	degree Celsius
pBS	pBluescript II SK (+)
PBS	phosphate-buffered saline

PBS-0.1%TW20	phosphate-buffered saline with 0.1% (v/v) Tween®20
PBS-0.1%TX100	phosphate-buffered saline with 0.1% (v/v) Triton®X-100
PBS-0.3%TW20	phosphate-buffered saline with 0.3% (v/v) Tween \circledast 20
PBS-0.3%TX100	phosphate-buffered saline with 0.3% (v/v) Triton®X-100
PBS-0.3%TX100-1%BSA	phosphate-buffered saline with 0.3% (v/v) Triton®X-100 and 1% (w/v)
	bovine serum albumin
PBS-2%FBS	phosphate buffered saline with 2% (v/v) foetal bovine serum
PC	proprotein convertase
PCA	principal component analysis
PCR	polymerase chain reaction
PDGF	platelet-derived growth factor
PDGFRα	platelet-derived growth factor receptor alpha
PDGFRβ	platelet-derived growth factor receptor beta
PE	phycoerythrin
PFA	paraformaldehyde
pg	picogram
pmol	picomole
PR	progesterone receptor
Prox1	Prospero-related homeobox 1
Ptch1	Patched 1
PVDF	polyvinylidene fluoride
РуМТ	polyomavirus middle T antigen
RIN	RNA Integrity Number
RIPA	radioimmunoprecipitation assay
RNA	ribonucleic acid
RNase	ribonuclease
RT	room temperature
RT-PCR	reverse transcription-polymerase chain reaction
SDS	sodium dodecyl sulphate
SDS-PAGE	sodium dodecyl sulphate-polyacrylamide gel electrophoresis
Shh	sonic hedgehog
SLC	secondary lymphoid organ chemokine
SLP-76	SH2 domain containing leukocyte protein of 76kDa
Smo	smoothened

Sox18	SRY-box containing gene 18
SSC	saline-sodium citrate
ST-cDNA	sense transcript-complementary deoxyribonucleic acid
SU5402	3-[(3-(2-carboxyethyl)-4-methylpyrrol-2-yl)methylene]-2-indolinone
SU5416	3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-indolin-2-one
sVEGFR-2	soluble vascular endothelial growth factor receptor 2
Syk	spleen tyrosine kinase
T25	25cm ² tissue culture flask
TBE	Tris-borate-ethylenediaminetetraacetic acid
TBS	Tris-buffered saline
TBS-0.1%TW20	Tris-buffered saline with 0.1% (v/v) Tween®20
TDLU	terminal ductal lobular unit
TE	Tris-ethylenediaminetetraacetic acid
TEB	terminal end bud
TEMED	N,N,N',N'-tetramethylethylenediamine
TFB	transformation buffer
TIMP	tissue inhibitor of metalloproteinase
Tnc	tenascin C
TrkB	tropomyosin-related kinase B
tRNA	transfer ribonucleic acid
TSP1	thrombospondin 1
TSP2	thrombospondin 2
U	unit
UV	ultraviolet
V	volt
v/v	volume per volume
VE-cadherin	vascular endothelial-cadherin
VEGF	vascular endothelial growth factor
VEGF-A	vascular endothelial growth factor A
VEGF-C	vascular endothelial growth factor C
VEGF-D	vascular endothelial growth factor D
VEGFR-1	vascular endothelial growth factor receptor 1
VEGFR-2	vascular endothelial growth factor receptor 2
VEGFR-3	vascular endothelial growth factor receptor 3

VHD	VEGF homology domain
VLDLR	very low density lipoprotein receptor
w/v	weight per volume
WECHE	weird chemokine
WT	wild-type
xg	relative centrifugal force
X-gal	5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside