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Abstract: Differential evolution (DE) is a relatively new optimization technique that has 
been employed to optimize the design of water distribution systems (WDSs). There are 
three important operators involved in the use of DE: mutation, crossover and selection. 
These operators are similar to the commonly used genetic algorithms (GAs). However, 
DE differs significantly from GAs in that mutation is an important operator for DE, 
while in contrast, crossover is an important operator for GAs. It has been found that the 
success of the DE algorithm in solving different mathematical optimization problems 
crucially depends on the mutation strategy that is used. This paper aims to investigate 
the relative effectiveness of five frequently used mutation strategies of DE when applied 
to WDS optimization. The five DE variants with different mutation strategies are applied 
to two well-known WDS case studies: the New York Tunnels Problem and the Hanoi 
Problem. 
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Introduction  

The typical objective of optimal design for a water distribution network is to find the 
minimum cost network, while being able to satisfy the required water demands and head 
constraints at each node. Due to the nonlinear relationship between pipe discharge and 
head loss, and the availability of discrete pipe sizes, the optimal design of WDSs pose 
challenges for optimization tools. A number of deterministic optimization techniques 
such as linear programming and nonlinear programming have been used to tackle the 
WDS optimization problem (Alperovits and Shamir 1977; Fujiwara and Khang 1990). 
However, due to the multi-modal nature of WDS optimization problems, these 
deterministic approaches typically find only local optimal solutions, whereas the quality 
of the solution heavily depends on the initial starting point used for the optimization 
solver. In addition, the deterministic optimization methods such as linear and nonlinear 



programming are based on continuous search domains, which do not suit the discrete 
search space WDS optimization problem.  

Evolutionary algorithms (EAs) have emerged as an alternative choice for the 
optimization of the design of WDSs. Additionally, EAs have been found to outperform 
deterministic methods as they are more likely to find the global optimal solution as they 
tackle the discrete search space directly. Over the last two decades, a number of EAs 
have been employed to optimize the design of WDSs. Murphy and Simpson (1992) were 
first to introduce genetic algorithms (GAs) for water network optimization; Cunha and 
Sousa (2001) used simulated annealing to optimize WDSs; Geem et al. (2002) 
developed a harmony search model for optimizing WDSs; Eusuff and Lansey (2003) 
proposed a shuffled frog leaping algorithm (SFLA) for network optimization; and Maier 
et al. (2003) applied an Ant Colony Optimization approach to optimize WDSs. More 
recently, Tolson et al. (2009) developed a new algorithm (the hybrid discrete 
dynamically dimensioned search algorithm HD-DDS) to optimize WDSs. These 
techniques have been successfully applied to a number of optimization problems and 
have been demonstrated to be more effective in finding optimal solutions compared with 
deterministic optimization techniques. 

Differential evolution (DE), as a stochastic search method, was proposed by Storn and 
Price (1995). DE has been proven to be a simple but powerful evolutionary algorithm as 
it exhibits superior convergence properties when applied to a number of numerical case 
studies (Price et al. 2005). Vasan and Simonovic (2010) and Surbabu (2010) applied DE 
to the optimization of WDSs and concluded that the search ability of DE was at least as 
good as, if not better, than other EAs such as GAs and Ant Colony Optimization. Like 
other EAs, DE is a population-based search method that iteratively employs operators to 
guide the population towards the global optimum. There are three operators involved in 
DE: mutation, crossover and selection. The mutation operator is viewed as an important 
evolution mechanism for DE, (in contrast to crossover, which is considered a key 
operator within GAs). There are three parameters that need to be determined in the use 
of DE including population size (N), mutation strategy and its associated mutation 
weighting factor (F), and crossover rate (CR). It has been demonstrated that the 
performance of DE for numerical optimization problems is highly dependent on these 
control parameters and the mutation strategy used (Liu and Lampinen 2005). Liu and 
Lampinen (2005) claimed that DE, with a population size within the range of [3D, 10D] 
(D is the dimension of the optimization problem), F within the range of [0.5, 1.0], and 
CR within the range of [0.8, 1.0], generally showed good performance when applied to 
numerical optimization problems. Karaboga and Okdem (2004) introduced a DE with a 
dither mutation weighting factor (Fdither) and a dither crossover rate (CRdither) such that 
the values of mutation weighting factor and crossover rate were randomized in a given 
range for each individual rather than specified particular values. Within this work, 
Karaboga and Okdem (2004) addressed that the dither DE outperformed the standard 
DE with a given fixed F and CR based on testing a number of numerical optimization 
problems. A total of five mutation strategies have been frequently used for DE 
application to diverse optimization fields (Price et al. 2005). However, there exists a lack 



of knowledge for determining which mutation strategy is preferable for different 
optimization problems.  

The aim of this paper is to investigate the properties of the five mutation strategies 
applied to WDS optimization, thereby providing an effective guide for selecting an 
appropriate mutation strategy. In this study, for each case study, the population size (N) 
is set to be constant for the DE variants with different mutation strategies. A dither 
mutation weighting factor (Fdither) in the range of [0.5, 1.0] and a dither crossover rate 
(CRdither) in the range of [0.8, 1.0] are used for DE variants with the different mutation 
strategies. For each DE variant, a total of 50 runs with different random number seeds 
are performed to enable comparison of the performance of convergence properties. 
These five mutation strategies and the dither mutation and crossover strategy are 
described in the next section. 

The differential evolution algorithm 

    The differential evolution (DE) algorithm introduced by Storn and Price (1995) is a 
simple, yet powerful, EA for global optimization. The process of basic DE (Storn and 
Price 1995) is outlined as follows: 

Initialization 
An initial population is required to start the DE search. Normally, the initial 

population is generated by uniformly randomizing individuals within the search space as 
)( minmaxmin0,

jjjj
i xxUxx −+=  i=1, 2,….N, j=1, 2, ….D (1) 

where j
ix 0, represents the initial value of the jth parameter for the ith individual in the 

initial population. The symbols jxmin and jxmax  are the minimum and maximum bounds of 
the jth parameter, U represents a uniformly distributed random variable in the range [0, 
1], and N and D are the population size and dimension of the vector, respectively. The 
population size is not changed during the DE evolution process.  

Mutation 
    DE is mainly defined by its mutation approach, compared with GAs, in that a mutant 
vector Vi,G, with respect to each individual Xi,G, is produced by adding the weighted 
difference (with weight F) between several random population members to a third 
member from the current population. Each individual Xi,G associated with a mutant 
vector is denoted as target vector. A total of five frequently used mutation strategies in 
DE are given as: 
 
 
 
 
 



(1) DE1-Rand1:   
 )( ,3,2,1, GrGrGrGi XXFXV −+=  (2) 

where Vi,G is the mutant vector with respect to the target vector of Xi,G  at generation G. 
GrX ,1 , GrX ,2  and GrX ,3  are three vectors randomly selected from the current population 

G. As shown in Equation (2), DE1 generates a mutant vector Vi,G for each vector i by 
adding the weighted difference of two randomly selected vectors to a third vector. The 
random integers r1, r2 and r3 are different values from the population of size N. F is the 
weighted difference factor within the range [0, 1].  
 
(2) DE2-Best1:   

 )( ,2,1,, GrGrGbestGi XXFXV −+=  (3) 
DE2 is similar to DE1 in terms of producing the mutant vector except that the third 
vector that is to be perturbed is the best individual of the current generation ( GbestX , ). 
 
(3) DE3-Best2:   

 )( ,2,1,, GrGrGbestGi XXFXV −+= + )( ,4,3 GrGr XXF −  (4) 
where GbestX ,  is the best individual of the current generation G. DE3 uses two weighted 
differences of four randomly selected individuals and the best individual to produce the 
mutant vector. The random integers r1, r2, r3 and r4 are different values chosen from 
the population of size N. 
 
(4) DE4-CurrentToBest2:   
 )( ,2,,1, GrGbestGrGi XXFXV −+= + )( ,4,3 GrGr XXF −  (5) 
Like DE3, DE4 also employs two weighted difference individuals, but one is the 
weighted difference between the best individual and a random individual. In addition, 
for DE4, the individual to be perturbed is a random individual rather than the best 
individual that used in DE3. 
 
(5) DE5-rand2:   
 )( ,3,2,1, GrGrGrGi XXFXV −+= + )( ,5,4 GrGr XXF −  (6) 
DE5 is quite similar to DE3, only differing in that the individual to be perturbed is a 
random individual from the population for DE5, while the individual to be perturbed is 
the current best individual for DE3. The random integers r1, r2, r3, r4 and r5 are 
different values randomly selected from the population of size N. The search 
performance of DE variants with these five mutation strategies are investigated in this 
study.  

 

 



Crossover 
After mutation, a trial vector Ui,G is generated though selecting solution component 

values either from Xi,G or Vi,G. In the basic DE version (Storn and Price 1995), uniform 
crossover is employed as: 
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where j
Giu , , j

Giv , , j
Gix ,  are the jth parameter in the ith trial vector, mutant vector and target 

vector respectively, and Uj is a uniformly distributed random number between 0 and 1. If 
Uj is smaller than CR (0≤ CR ≤1), the value j

Giv ,  in the mutant vector is copied to the 

trial vector. Otherwise, the value j
Gix ,  in the target vector is copied to the trial vector.  

Selection 
    After crossover, all the trial vectors are evaluated using the objective function f(Ui,G) 
and compared with their corresponding trial vectors objective function f(Xi,G). The 
vector with a lower objective function value (assuming a minimization problem) 
survives for the next generation. That is 
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    Mutation, crossover and selection are repeated generation by generation until the 
stopping criteria is satisfied. The basic DE is a continuous global optimization search 
algorithm. Therefore, the DE is required to be modified to deal with a discrete WDS 
optimization problem. In this study, the continuous pipe sizes are rounded to a 
predetermined discrete set of pipe diameters (i.e. 1, 2, …, n where n is the number of 
discrete diameter sizes) after the mutation operator. For each vector element j

Gix , , if its 
value is smaller or larger than the minimum or maximum allowable pipe size, the 
minimum or maximum allowable pipe size is given for its discrete value. If its value is 
between two sequentially discrete pipe diameters, the pipe diameter that is closer to the 
continuous value is given as its discrete value. Constraint tournament selection is used in 
DE to handle pressure constraints (Deb 2000). 

Dither mutation and crossover factor 
     The dither mutation and dither crossover factor introduced by Karaboga and Okdem 
(2004) was randomized according to: 

)( lh
F
ildither FFUFF −+=  (9) 

)( lh
CR
ildither CRCRUCRCR −+=  (10) 



where hF  and lF  are the maximum and minimum values of mutation factor as specified 
by the user. hCR  and lCR  are the maximum and minimum values of crossover factor as 
specified by the user. F

iU  and CR
iU  are random numbers between 0 and 1 generated for 

each vector i for determining Fdither and CRdither values respectively. The dither mutation 
and crossover strategy have been employed in the research presented in this paper. 

Case studies  

Case Study 1: New York Tunnels Problem  

    The NYTP network has 21 existing tunnels and 20 nodes fed by the fixed-head 
reservoir as shown in Fig. 1. All the details of this network including the head 
constraints, pipe costs and water demands can be found in Dandy et al. 1996. The 
objective of this case study is to determine which of the least cost set of tunnels should 
be installed in parallel with the existing tunnels while satisfying the minimum head 
requirement at all nodes. There are 15 pipe diameters that can be selected for the NYTP. 
In addition, a zero tunnel size provides a total of 16 options (15 actual pipe diameters 
plus a zero tunnel size) for each link. Thus the total search space is 1621 (approximately 
1.934×1025). 
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Figure 1 The layout of the New York Tunnel network 



Case Study 2: Hanoi Problem 

The Hanoi Problem (HP) is a network design where all new pipes are to be selected. 
The network is composed of 34 pipes and 32 nodes which are fed by a single reservoir 
with the head of 100 meters as shown in Fig. 2. The minimum head requirement of the 
other nodes is 30 meters. A total of six pipe diameters of {12, 16, 20, 24, 30, 40} inches 
is selected for each new pipe. The total search space is 634≈2.8651×1026. The details of 
this network and the formulation of the cost for pipes are found in Fujiwara and Khang 
(1990). 

DE variants with five different mutation strategies are applied to these two case 
studies. The population size for DE applications to these two case studies is 100, which 
is in the range of [3D, 10D] as D is 21 and 34 for the NYTP and HP case studies 
respectively. The dither mutation factor and crossover factor are given the range of [0.5, 
1.0] and [0.8, 1.0] respectively, which was proposed by Liu and Lampinen (2005). The 
maximum number of allowable evaluations for each of these two case studies is equal to 
300,000. For each DE variant with the different mutation strategies, a total of 50 runs 
with different random number seeds have been performed. 
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Figure 2 The layout of the Hanoi problem network 

 



Results and discussion 

    In order to enable the assessment of the performance of DE with the different 
mutation strategies, a number of statistics have been determined for each of the DE 
variants applied to these two case studies. The statistics include the best solution found, 
the number of times the best solution was found, the average cost solution and average 
evaluations required to find the best solution based on 50 different runs. 

New York Tunnels Problem 
Table 1 gives the statistics of DE variants with the different mutation strategies 

applied to the NYTP case study. The current best known solution for the NYTP case 
study was first found by Maier et al. (2003) with a cost of $38.64 million. It is shown 
that this current best known solution was found by every DE variant with the five 
different mutation strategies in this study. As can be seen from Table 1, DE5 (Equation 
(6)) performed the best as it found the best known solution for the NYTP case study 
with a frequency of 96%, which is the highest among the five DE variants. However, 
DE5 required an average of 184,966 evaluations based on 50 different runs to converge, 
which is far more than that of other four DE variants as shown in Table 1. DE1 
(Equation (2)) and DE4 (Equation (5)) found the best known solution with a frequency 
of 86%, which is lower than DE5, while being significantly more computationally 
efficient. This is evidenced by the fact that DE1 and DE4 converged at only 40,726 and 
44,152 evaluations, which is 22% and 24% of that required by DE5. DE2 (Equation (3)) 
and DE3 (Equation (4))  performed the worst in terms of times that the best solution was 
found based on a total of 50 different runs, while converging the fastest as shown in 
Table 1. This can be explained in that it appears that the DE2 and DE3 were more likely 
to be trapped by local optimal solutions and hence result in premature convergence.  

Table 1 also gives the statistical results of HD-DDS (Tolson et al. 2009), GA (Dandy 
et al. 2010) and particle swarm optimization (PSO) (Dandy et al. 2010) applied to the 
NYTP case study. It is observed from Table 1 that DE1, DE4 and DE5 performed at 
least as well as, if not better than HD-DDS, GA and PSO in terms of frequency with 
which the best known solution was found. In terms of efficiency, DE1 and DE4 
performed similarly with HD-DDS (Tolson et al. 2009). 

 
 
 
 
 
 
 
 
 



Table 1 Performance comparison of DE variants with different mutation strategy 
applied to the NYTP case study 

Algorithms 
Number of 
different 

runs 

Best 
solution 

($M) 

Times with best 
solution found 

(percent of trials) 

Average 
cost 
($M) 

Maximum 
allowable 

evaluations 

Average 
evaluations 

required to find 
the best solutions 

DE1 50 38.64 43 (86%) 38.68 300,000 40,726 
DE2 50 38.64 6 (12%) 39.70 300,000 3,726 
DE3 50 38.64 28 (56%) 38.76 300,000 24,462 
DE4 50 38.64 43 (86%) 38.68 300,000 44,152 
DE5 50 38.64 48 (96%) 38.64 300,000 184,966 

HD-DDS1 50 38.64 43 (86%) 38.68 50,000 50,000 
GA2 30 38.64 21 (70%) 38.78 300,000 NA 
PSO2 30 38.64 12 (40%) 38.85 300,000 NA 

1Tolson et al. (2009). 2 Dandy et al. (2010). NA means not available. 

The Hanoi Problem 
The statistical results for the HP case study are given in Table 2. The current best 

known solution found for the HP case study was first reported by Reca and Martínez 
(2006) with a cost of $6.081 million. It has been found that, DE1 (Equation (2)), DE3 
(Equation (4))  and DE4 (Equation (5)) exhibited a similar performance in terms of 
times of finding the best known solution, while DE1 was able to converge far faster than 
DE3 and DE4 as shown in Table 2. In terms of the average cost solution, DE1 
performed the best as it generated the lowest average cost solution with a value of 
$6.088 million, which deviated only 0.12% from the best known solution for the HP 
case study. It was found that the DE5 performed the worst for the HP case study. As can 
be seen from Table 2, the best solution found by DE5 (Equation (6)) was $6.109 million, 
which is 0.46% higher than the best known solution of the HP case study. In addition, 
DE5 required the most evaluations to converge as shown in Table 2, showing the 
slowest convergence speed.  

For the HP case study, it is observed that all the five DE variants outperformed the 
GA (Dandy et al. 2010) and PSO (Dandy et al. 2010) in terms of best solution found and 
average cost solution found based on a range of trials with different random number 
seeds. DE1, DE3 and DE4 significantly outperformed HD-DDS (Tolson et al. 2009) in 
terms of frequency with which the best solution was found and the average cost solution 
based on 50 different trials. 

 
 
 
 
 
 
 
 



Table 2 Performance comparison of DE variants with different mutation strategy 
applied to the HP case study 

Algorithms 
Number of 
different 

runs 

Best 
solution 

($M) 

Times with 
best solution 

found (percent 
of trials) 

Average 
cost 
($M) 

Maximum 
allowable 

evaluations 

Average 
evaluations 

required to find 
the best solutions 

DE1 50 6.081 43 (86%) 6.088 300,000 74,584 
DE2 50 6.081 2 (4%) 6.240 300,000 6,660 
DE3 50 6.081 42 (84%) 6.109 300,000 195,872 
DE4 50 6.081 42 (84%) 6.100 300,000 189,432 
DE5 50 6.109 0 (0%) 6.180 300,000 283,454 

HD-DDS1 50 6.081 4 (8%) 6.252 100,000 100,000 
GA2 30 6.167 0 (0%) 6.277 300,000 NA 
PSO2 30 6.373 0 (0%) 6.483 300,000 NA 

1Tolson et al. (2009). 2 Dandy et al. (2010). NA means not available. 

Conclusions 

Analyzing the results obtained from these two case studies, it has been found that the 
DE1, (which generated the mutant vector using three different random vectors from the 
current population) consistently performed well overall in terms of robustness and 
efficiency. DE4 (that produced the mutant vector using two weighted differences and 
one is the difference between the best individual and a random individual) exhibited 
similar performance with DE1 in terms of robustness, while converging slower than 
DE1. It is also interesting to note that the DE5 (Equation (6)) performed the best on the 
NYTP case study, while performing the worst on the HP case study in terms of search 
ability. This can be explained in that the search ability of DE5 is sensitive to the fitness 
landscape of the problems being optimized. DE2 (Equation (3)) was generally found to 
show the worst performance on these two case studies.  

Based on this study, it is concluded that the DE1 and DE4 are more suitable for water 
distribution network optimization when compared with other three DE variants 
including DE2, DE3 (Equation (4)) and DE5. In addition, DE1 and DE4 outperformed 
other optimization techniques, such as HD-DDS (Tolson et al. 2009), GA and PSO 
(Dandy et al. 2010) in terms of robustness and efficiency. Thus, DE1 and DE4 can be 
viewed as being well–suited to water distribution system optimization.  
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