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Abstract

Route stability of Mobile Ad-Hoc Networks (MANETs) is one of the major

problems in defence tactical wireless networks. The dynamic nature of MANETs

may cause the network topology to change frequently as a result of unstable

links, which may result in frequent route changes. Unstable routes may cause

retransmissions and drop outs. Therefore, the network can experience heavy

traffic overload and high packet losses. Many network applications rely on a

stable and reliable route. Hence, it is important for the military to have a reliable

network that allows effective communications amongst various platforms to

effectively perform the tasks they have been assigned. For this reason, the route’s

stability in MANETs needs to be understood. However, many existing MANET

routing protocols are not explicitly designed for route stability. It is expected

that prediction can assist in increasing a MANET’s route stability. This thesis

explores the potential benefits and the trade-offs in the use of prediction with the

Ad-hoc On-demand Distance Vector (AODV) routing protocol.

In the context of using prediction in routing, research has shown that using

“accurate” predictions can improve MANETs’ routing performance. However,

Chapter 3 shows that it is difficult to achieve accurate predictions. To the

author’s knowledge, very little work has been attempted to analyse the routing

performance with reduced prediction accuracies, and the effects of having

inaccurate prediction. Thus more specifically, this thesis examines the robustness

of using link duration prediction with various accuracies for MANETs, and

identifies the conditions for which predictions can improve routing performance.

xii



This is achieved by first examining how using perfectly accurate link duration

prediction can improve routing performance. For this purpose, a new

routing protocol, Ad-hoc On-demand Distance Vector with Perfect Prediction

(AODV-PP), has been created to propagate link duration prediction information

for route establishment. The OPNET simulator was used to simulate network

scenarios with AODV and AODV-PP for analysis, and the routing performance

of the two protocols have been compared.

The thesis later explores how inaccurate link duration prediction affects routing

performance. However, the AODV-PP protocol does not inform the source

about the change in predicted link duration. This can cause delays in route

re-establishment and high packet loss. Hence, AODV with Prediction Update

(AODV-PU) has been proposed to allow link duration prediction updates to be

sent to the source for route maintenance. Network scenarios with AODV-PU

were simulated to analyse and compare its routing performance with AODV and

AODV-PP.

This thesis shows stable routes can be found with perfect prediction, which

reduces packet loss and routing overhead. However, it also indicates that it is

difficult to use link duration prediction to find a more stable route with inaccurate

long-term predictions. Nevertheless, link duration prediction can be useful

for route updates and route re-establishments, which only requires short-term

predictions, to allow more seamless route transitions and to reduce packet loss.

The trade-off being that more control traffic is required for route maintenance.

This in turn creates a more robust platform for the military applications that

require this type of network.
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Chapter 1

Introduction

A Mobile Ad-Hoc Network (MANET) is a dynamic multihop infrastructureless

self-forming mobile network. In a MANET all the nodes are able to operate as a

router as well as a host, so that any node has the ability to send, receive and route

traffic within the same network. Such infrastructureless networks are useful in

the military, where forces may be deployed at a location where there is no reliable

communication infrastructure; or for disaster relief, where the fixed network

infrastructure has been disrupted. Also in a highly dynamic environment using

fast moving platforms, the structure of any network is changing so frequently that

the routing protocols designed for fixed topology networks may not be capable of

handling the network’s information requirements. For these and other scenarios

it is important to have a reliable MANET1 to enable communication to occur in

the network efficiently and robustly.

Routing performance2 of MANETs [1] has been a major area of research for a

number of years. In the last decade, research has shown that accurate mobility

or link state predictions can improve the routing performance of MANETs

1A reliable MANET means having reliable end-to-end connectivity between communicating

nodes with low jitter, end-to-end delay, packet loss and loss of connectivity.
2Routing performance includes jitter, end-to-end delay, packet loss, routing overhead traffic,

and route setup time.

1



2 CHAPTER 1. INTRODUCTION

[2–15]. The benefits of accurate network state prediction include the following:

reducing the route re-convergence times; reducing the packet loss and delay; and

increasing the stability and reliability of the routes. However, very little work

has been done on comparing the robustness of proposed prediction methods

and subsequent effects on routing performance. It is important to understand

the impacts of the prediction accuracy on measures of routing performance.

This research project examines the robustness of existing prediction methods

proposed for MANETs and identifies the conditions for which predictions can

improve routing performance. This is undertaken by modifying the existing

Ad-hoc On-Demand Distance Vector (AODV) [16] routing protocol so that a

realistic study of these effects may be undertaken. AODV is chosen for the

modification is because AODV is a commonly used routing protocol for research,

which is readily available in various simulation tools, and it is easily modifiable.

1.1 Research Motivation

The nodes in a MANET are mobile and are connected wirelessly. Between

any two nodes, the wireless connection may constantly change because of

the changing attenuation due to distance, and different fading and interference

patterns. Consequently, the connectivity between nodes may change. The

building blocks of any route through the MANET are these unstable links, and

thus the routes through the network will change with the changing network

conditions. As a result, the routes may become less reliable, which affects the

routing performance of MANETs in the following ways:

1. Frequent route changes;

2. Fluctuation in end-to-end delays;

3. Varying packet loss rates;

4. Out of order packet arrival;

5. Changing amounts of routing overhead traffic; and

6. Varying traffic loads on the network due to retransmission of data traffic.
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Over the years, many attempts have been made to improve the routing

performance of MANETs. A typical attempt to enhance the performance of

a MANET is to develop new and improved routing protocols. To date, many

routing protocols have been proposed in the literature, yet there is no single

routing protocol that is well suited for all environments in which MANETs may

operate [17–24]. This is because of the dynamic nature of MANETs where nodes

can move freely, the network density varies, the network size changes as nodes

join and leave the network, the wireless channel characteristics fluctuates, and

traffic patterns fluctuate. The protocols that are robust for fast moving nodes may

not be suitable for slow moving nodes, and the ones that are suitable for large

networks may not work well for small networks. Also the protocols that are more

appropriate for highly loaded networks may not be appropriate for networks with

light traffic.

In many existing routing methods, routes are formed and maintained based on the

currently received information of the network. A single snap shot of the network

is used to determine the best routes through the network. Such information may

be outdated at the time the information is being received and used, especially

for long duration information transfers. The change of link state, from active

to in-active, may not be known to the sender at the time the node sends a

packet. This may result in packet loss and/or increased delay in delivering the

packet to the destination. Moreover, the network information obtained may

not be accurate, which causes difficulties in establishing and maintaining the

routes. This is because most of the existing routing protocols (for both reactive

and proactive protocols) are reactive to the change in link availability, i.e. the

protocol waits until a link problem is detected before it searches for a new route.

Thus, the routes may be unstable depending on how the routes are selected.

Furthermore, traditional routing can only be accomplished if all the links along a

path are connected at any one time. Therefore, it may be difficult to route packets

successfully through a dynamic MANET. This is more so for a sparse MANET,

where the connectivity of the network at any one time may be low, thus sending

packets to a currently isolated node may not be possible. This is why many of

the existing routing methods may not always be efficient and effective.
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Some routing strategies attempt to mitigate these effects by looking at average

link packet loss. A protocol such as Better Approach To Mobile Adhoc

Networking (BATMAN) [25] uses the historical record of link packet loss to

better choose a route through the network. But this approach works mainly

in a fixed network in which the past behavior is a reliable guide to future

performance. Where the nodes are mobile and so the links connectivity is

changing in time this type of approach no longer works. In fact by using some out

of date historical information these protocols may hold onto a route longer than

is necessary after a radio link change has occurred. (As opposed to a fluctuation

link3 for which these strategies are primarily aimed.)

Route stability is one of the most crucial issues in MANET routing, and this is

more so for the military networks. For example, in situations where there are fast

moving platforms moving in and out of range of the slow moving platforms, low

stability links may form between the slow and the fast moving platforms. During

route discovery, the routing protocol then needs to make a decision between the

route through a shorter but less stable route or a longer but more stable one. The

choice made would affect the routing performance differently depending on the

environment and the situation. Frequent route discoveries due to choosing less

stable links can result in an increase in routing overhead traffic, increase packet

loss and the order of packet arrival. This can increase traffic loads on the network,

and can cause changes in end-to-end delays. Some applications are not robust to

these varying route conditions and will not work in these conditions. Hence by

increasing the stability of the route, routing issues such as packet loss, routing

overhead traffic and data traffic loads can be reduced. This in turn enables a

better performance of the MANET for the user. Thus, a more effective way of

routing in a dynamic environment may be to predict changes of the network state

and prepare for the changes in advance. Whereas standard MANET protocols do

not take the expected longevity of a link into consideration when choosing a

route through a network, one based on prediction can filter out expected short

lived links and routes. This leaves the longer lived, more robust, routes which in

turn increases the performance of the network for the users.

3A fluctuation link is a link that is affected by fading and interference.
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Routing through platforms with multi-bearers is another area where prediction

may be useful. For instance, when multi-bearers (with a wide range of

frequencies) are available on each of the platforms, some bearers (usually with

lower frequencies) may form more stable links compared to other bearers (that

are in the higher frequencies), however, low frequency channels will often have

a lower data rate compared to high frequency channels. Furthermore, different

frequencies may be more reliable in different weather conditions and different

environment. This may further complicate the selection of links for routing.

If a standard MANET routing protocol is used, it is expected to choose the

shortest path or the one with the least cost, however this may not be the ideal

choice. For example, consider a network which has a satellite link connected

to all the nodes in the network, so there is always a one hop route (through the

satellite) between all the nodes. This satellite route is then likely to be chosen

for all routes. However, the satellite link may be unstable due to adverse weather

conditions. In this situation, other non-satellite link routes should be used. The

longevity of the unstable satellite links should inform the routing protocol, and

this information used accordingly.

Various strategies have been proposed in an attempt to improve route stability.

One strategy is to select a route that satisfies different conditions that would affect

the stability of the route. Koul et al. [26] have used the current parameters such

as distance between two nodes, frequency and Receiver Signal Strength Indicator

(RSSI) to decide whether a link should be used. However, this method only uses

the current parameters, no historical records nor future predictions have been

used in the route selection decision making.

By using network state prediction, routes can be constructed based on predicted

link duration, which can be based on the mobility of the nodes and/or the

stability of the link, rather than relying on the currently observed network state

information that may be outdated. Using prediction may reduce the likelihood

of using an unreliable or a fully loaded link, and may also reduce the need for

re-routing by maximising the lifetime of a route. In turn, this may reduce packet

loss, end-to-end delay and routing overhead traffic. Furthermore, if one can
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predict that a node will be connected to the destination at some point in time,

packets may be forwarded to that node even though there is no physical route to

the final destination, and those packets can be kept in that node for a period of

time or until a route to the final destination becomes available.

On the other hand, it is uncertain whether or not routing with prediction is

realistic. In reality, information may be inaccurate, lost or outdated, and

predictions may not always be accurate. Thus, if prediction is to be used in

routing, it is important to explore the maximum benefits and the trade-offs of

using prediction, the degree of prediction accuracy required, and the feasibility

of using prediction for MANET routing. Furthermore it is also important to

address the feasibility and the issues of implementing a routing protocol using

prediction, and whether current well established MANET routing protocols can

be modified simply so that the predictive effects will be added to the current

capabilities of this protocol.

1.2 Objectives

The objectives of this research study are to:

1. Investigate whether mobility prediction is feasible in the context of

MANET routing;

2. Learn what degree of accuracy is required for making practical

improvements in routing performance;

3. Establish whether prediction accuracy can be improved to an extent where

it will be useful for routing; and

4. Determine whether an existing MANET protocol can be realistically

modified to include prediction.

These objectives can be achieved by doing the following:

1. Determining an appropriate way to evaluate the accuracy of mobility

prediction methods for MANET routing;

2. Identifying, analysing and exploring the factors that affect the accuracy of
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existing prediction methods;

3. Evaluating the effects of prediction accuracy on network routing

performance, in order to determine the utility of using prediction in routing

for dynamic environments; and

4. Modifying the AODV routing protocol to introduce prediction, simulating

this enhanced AODV protocol, and analysing the performance of routing

with mobility prediction using the resultant simulation.

1.3 Outline

Chapter 2 provides some background knowledge to this thesis. This includes

information on various types of MANET routing protocols in the literature,

the mobility models that are commonly used by MANET researchers, and the

prediction methods used.

Chapter 3 studies three different evaluation metrics that can be used for

evaluating the accuracy of prediction for MANETs. Two of the three evaluation

metrics are chosen to evaluate the accuracy of three different mobility prediction

methods. The findings of this study are summarised at the end of this chapter.

Chapter 4 compares the routing performance between AODV routing protocol

and AODV with perfect prediction. This study provides a benchmark for the

best performance AODV can possibly achieve when prediction is used.

Chapter 5 looks at the effect of inaccurate prediction, and how prediction

accuracy affects routing performance. In this chapter, the routing performance is

evaluated for cases where prediction is not always accurate.

Chapter 6 summarises the accomplishments and contributions of the study, and

discuss some future directions of the research.



Chapter 2

Background and Literature Review

2.1 Introduction

This chapter provides an overview of the literature that is related to MANET

routing using predictions and prediction methods that have been used for wireless

networks in general. Section 2.2 explains different types of routing protocols.

Section 2.3 provides an introduction to some common mobility models that have

been used for MANET simulations. The various types of prediction methods

that have been studied or used for MANET routing are explained in Section 2.4.

2.2 Types of MANET Routing Protocols

Routing protocols are required in a network to search for and maintain routes

between a traffic source and the destination of that traffic. Although routing

protocols such as the traditional Open Shortest Path First (OSPF) [27] have been

widely used on wired networks for decades, and have worked effectively, they

are not sufficient for dynamic networks with constantly changing topologies and

unstable link connectivity. These protocols can only react to changes in the

8
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network, as they are designed for networks with a static topology. When there is

a topology change, OSPF needs to propagate a large amount of overhead traffic,

which is not appropriate for MANETs which often have limited resources.

In military networks, it is crucial to have reliable infrastructureless mobile

communications to support tactical military operations, hence a reliable MANET

routing protocol is necessary. Whereas a fixed infrastructure is more reliable in

urban environments, the military often operate in isolated localities. Whether in

a military or a humanitarian operation, what fixed infrastructure had existed may

no longer be in operation, networks must be quickly deployed and are likely to

be dynamic. In spite of the known issues with MANETs in these circumstances,

they are usually the only option available, and to be effective, they must be made

as robust as possible.

For these and other reasons, over the last couple of decades many routing

protocols have been proposed and evaluated. However, not many have been

successfully deployed on a real MANET, as many of these routing protocols do

not work well in practice. Many of the proposed MANET routing protocols can

only react to changes in the network after the change has occurred. A route may

be set up after a link has been broken for a short period of time. During this

time, not only has the route not carried the traffic which requested the route, but

possibly limited resources have been expended on overheads necessary for the

setting up of the route.

In general, MANET routing protocols can be classified into the following

categories:

1. Proactive (table-driven) versus reactive (on-demand);

2. Distance vector versus link state;

3. Flat versus Hierarchical; and

4. With Prediction versus without Prediction.
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2.2.1 Proactive Routing Protocols

Proactive routing protocols such as Destination Sequenced Distance Vector

(DSDV) [28], Optimized Link State Routing (OLSR) [29] and OLSR version 2

(OLSRv2) [30] which is a successor of OLSR, actively search for new routes and

maintain existing routes periodically, regardless of whether the routes are being

used or not. All possible routes through the network are calculated using efficient

shortest path algorithms. When using proactive routing protocols, every node in

the network updates its routing information at a regular interval, to maintain

the knowledge of the route or the next hop to any reachable destination. Since

the path to the destination is known, there is no need for route discovery when

there is a packet to be sent. This may reduce the path initialisation latency and

increase the reliability of the network. However, constant routing overhead traffic

is required to maintain the routing table, which consumes a lot of bandwidth.

Therefore with proactive routing protocols, it is important to choose an

appropriate updating interval for different rate of change of network topology,

as a lack of route updates may result in invalid routes and frequent route updates

may result in high overhead. For example, a highly dynamic network may need

more frequent route updates in respect to a slow moving network, but on the

other hand, the more frequent the route update is, the more routing traffic will be

sent, and hence requires higher bandwidth consumption. This may be an issue if

the bandwidth is limited.

In [31], Yadav and Mishra have compared the performance between four

proactive routing protocols: Fisheye State Routing (FSR), OLSR, Intrazone

Routing Protocol (IARP) and Bellman-Ford Routing Protocol. This study shows

that OLSR performs better in general, but IARP seems slightly better in terms of

end-to-end delay, while FSR performs very poorly. This study indicates that the

performance of different proactive routing protocols can vary greatly.
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2.2.2 Reactive Routing Protocols

In reactive routing protocols like Dynamic Source Routing (DSR) [32], Ad-hoc

On-demand Distance Vector (AODV) [16] and Dynamic MANET On-demand

(DYMO or AODVv2) [33] which is a successor of AODV, routes are only

requested and maintained when there are packets to be sent. The main advantage

of such routing protocols over proactive routing protocols is that it reduces the

routing overhead traffic, with a trade-off of having longer path initialisation

times. This is especially true if a small proportion of the available routes are used.

Reactive routing protocols are generally suitable for more dynamic environment

or networks with high mobility.

A number of comparison studies have been made between proactive and reactive

routing protocols [34–37]. The studies in [34, 35] compared the AODV, DSR

and DSDV protocols has shown that DSR performs better than AODV and

DSDV, while DSDV performs more poorly comparatively. Whereas the studies

in [36, 37] have made a comparison between AODV, DSR and OLSR protocols,

and their results show that the proactive routing protocol, OLSR, performs well

in most cases, except, according to [37], that it uses more bandwidth. However,

there are some variations in the results shown between AODV and DSR in

different literature. Although studies [36, 37] show that DSR is generally better

than AODV, in [36], AODV is shown to perform better compared to DSR in more

demanding scenarios1. Furthermore, AODV is shown to induce lower delays for

most scenarios except the scenarios with varying speeds up to 20m/s in [36].

However in [37], the delays and jitter are higher in AODV compared to DSR

when the number of traffic flows is less than around 50, but lower for other

cases. The results in [37] indicates that AODV tends to perform better than

DSR, except it has a higher routing load when varying the number of traffic

flows. These conflicting results presented in different literature can be due to the

following factors:

1This includes higher traffic loads (i.e. greater than around 75kbps), more number of traffic

flows (i.e. more than about 17 traffic flows) and higher mobility (i.e. more than about 12m/s)
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1. Different network simulation tools2;

2. Different mobility models and parameters;

3. Different simulation parameters such as field size, network size,

transmission range, average speed of the nodes and pause time;

4. Different traffic parameters such as traffic types, packet sizes, traffic loads,

number of traffic flows, traffic duration; and

5. Different routing protocol parameters.

Given these differences in research studies performed by different people

for different purposes, the conclusions drawn from the routing performance

results of different studies can become conflicting, and hence, inconclusive.

Furthermore, since there are no error bars in any of the comparison studies

mentioned above, it is difficult to judge the confidence level of the results.

As suggested in the evaluation study of a number of routing protocols in [17], the

proactive routing protocols tend to use more bandwidth due to the high overhead

for route updates, but have lower delays as the routes are pre-established.

Whereas for reactive route protocols, less bandwidth is required, but its trade-off

is longer delays and jitter. Hence, there is no clear best type of routing protocol.

2.2.3 Distance Vector Routing Protocols

In typical distance vector routing protocols such as DSDV and AODV, the

Bellman-Ford algorithm [38] is commonly used to compute the shortest paths. In

a distance vector routing protocol, each node maintains a record of the distance

(i.e. the number of hops) and the next node to each valid destination, and every

node is required to inform its neighbours periodically of its own status and

routing information for maintenance. The advantage of using distance vector

is that it is simple to implement and compute, and hence requires less power

and memory. Also, it only requires to send updates to its immediate neighbours.

However, this means that each node only has information about its neighbours,

2[36] used OPNET and [37] used NS-2
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which may cause count-to-infinity problems to occur if there are link failures.

Furthermore, distance vector may not scale well due to the long latency and the

flooding of packets that are required to discover a new route after a link failure.

2.2.4 Link State Routing Protocols

Dijkstra’s shortest path algorithm is commonly used for link state routing like

OLSR. In link state routing protocols, every node maintains its own view of

the whole network topology. As opposed to distance vector, link state routing

protocols need to inform all the nodes in the network of any topology changes,

thus, it floods its routing information (i.e. its link state) to the whole network.

Though link state routing may be more expensive to implement compared to

distance vector due to its computational complexity, it is more resilient to routing

loops and it tends to be more scalable3 compared to distance vector if proactive

routing is used for both cases, as new routes can be found with relatively short

convergence time, though flooding of the link state information is required.

However, the scalability4 of a MANET routing protocol not only depends on

whether the protocol is distance vector or link state, but other factors such as

reactive or proactive, and flat or hierarchical, as discussed in Section 2.2.6.

2.2.5 Flat

A flat routing topology is when all the nodes in the network are “peers” to one

another, i.e. all the nodes can exchange routing information the same way. The

advantage of using flat routing is that it is simple to implement. However, flat

routing protocols are generally not scalable and routing overhead traffic can be

quite high, and thus, it is suitable for a small network with low mobility. AODV,

3A MANET routing protocol is considered to be more scalable if the number of nodes in the

network can increase while the routing performance is comparatively good.
4Scalability is the ability of a routing protocol to support more nodes with good routing

performance.
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DSR, DSDV are all classified as flat routing protocols.

2.2.6 Hierarchical

A hierarchical routing topology consists of two or more levels of layers of nodes

in clusters. Such routing protocols, like in Zone Routing Protocol (ZRP) [39]

and Fisheye State Routing (FSR) [40], allow some selected nodes to be cluster

heads to form a hierarchy of clusters. All the nodes will maintain only local

routing information within its own cluster. Only the cluster heads are able to

exchange routing information between clusters. This can reduce the routing

overhead traffic, and can support better scalability, but such routing protocols can

be complex. Another advantage of using a hierarchical structure or clustering is

that a choice of either proactive and reactive routing schemes can be made on

different hierarchy levels, such hybrid protocols can take the advantages of both

proactive and of reactive routing. However, the drawbacks are that there may be

problems with the exchange of information, and that the problem of electing a

cluster head can be difficult.

2.2.7 Routing Protocols with Prediction

As noted earlier, there is no single routing protocol that is suitable for all

environments [17–24]. Over the last decade, researchers have started to explore

the use of prediction to enhance MANET routing. Research on using mobility

predictions in MANET routing has shown improvements in routing performance

over the traditional MANET routing methods [2–12]. However, many of

these studies show little improvement in performance compared to conventional

MANET routing protocols, and only simple and unrealistic mobility models

were selected for simulating and evaluating the routing protocols in the research

studies. Moreover, the mobility of the nodes can affect the accuracy of the

prediction [4], which affects the routing performance [41, 42]. Hence to date,
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there is not yet enough evidence to conclude that mobility predictions can

effectively improve routing performance when applied on real MANETs.

2.3 Mobility Models

As shown in [41–44], the mobility of the nodes can affect the outcome of the

network simulations. Thus, a variety of mobility models have been proposed

in an attempt to imitate the "real" mobility of the mobile nodes for network

simulations. These mobility models can be classified into two categories: the

traces-based model; and the "synthetic"-based model [41]. In a traces-based

model, the mobility information is obtained based on a real system. For

"synthetic"-based model, the mobility of the nodes is computed using probability

distributions and statistics.

The "synthetic"-based models can be further classified into two types: the entity

mobility model (EMM); and the group mobility model [42–44]. In an EMM,

the nodes’ movement are independent of one another. Some examples of EMMs

include Random Walk Model (RWM), Random Waypoint (RWP) Model and

Gauss Markov Model (GMM). Whereas for group mobility model, the nodes

move in groups, so the mobility of the nodes within the same group depends on

the mobility of that group.

Three of the commonly used EMMs are selected for this thesis. RWM and RWP

model are chosen for this research because they are widely used for modelling the

mobility of mobile nodes. However, the mobility characteristics of these models

are similar to each other, thus GMM is selected for its differences in mobility

characteristics compared to RWM and RWP model. These three mobility models

are described in this section.
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2.3.1 Random Walk Model

The Random Walk Model (RWM) is one of the most basic form of random

mobility models that can be used for simulating random motions [42–44]. In

a basic RWM, a node begins at a randomly chosen location within a simulation

field boundary, it then moves at a randomly selected speed towards a randomly

selected direction for a fixed period of time, T , or a fixed distance, D. When the

time is up or the node has travelled the required distance, the node will change

direction and move in the new direction for duration T or distance D at another

chosen speed. This process continues until the simulation ends.

Note that with the traditional RWM, if a node touches the boundary of the

simulation field, the node “bounces” off the boundary in a direction depending

on the incoming angle. However, in this study, the RWM is modified so that

the node will never touch the boundary. This is achieved by discarding all the

directions that lead to the node hitting the boundary, and use only the direction

that will ensure the node does not touch the boundary for duration T or distance

D, depending on the implementation that will be used. However, this type of

mobility model is characterised as an “unrealistic” model due to the “sharp turns”

and “sudden stops” in the mobility model [42].

If the duration T or the distance D of an RWM is short, the node changes

direction more quickly, hence the node remains very close to the original

location. On the other hand, if a long duration or distance is used, the network

topology may become more dynamic.

In terms of prediction, it is expected that the RWM can be predicted more

accurately using a deterministic prediction method due to its constant velocity

motion, except when there is a change in direction. Therefore, the longer the

duration or distance is, the more accurate the prediction will become. However,

if the duration or distance is very short, the network topology becomes more

static. In which case, using deterministic prediction techniques may induce great

errors as the nodes continually changing directions while the network topology
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remains relatively stable.

2.3.2 Random Waypoint Model

Random Waypoint (RWP) Model was initially used by Johnson and Maltz [45],

and is widely used in MANET research studies [3, 7, 10, 42–44, 46, 47]. In

RWP models, a node moves in one direction at the same speed until it reaches

the destination. When the node arrives at the destination, it pauses for a time

randomly selected from a specified interval. Once the pause time is up, the node

will move towards a newly chosen destination at a different speed within a given

range of speeds. Hence the “sudden stops” issue is also in this mobility model.

However, this model is a little more realistic compared to RWM, as pause time

is introduced.

The motions of the RWP model is affected by both the speed and the pause time.

When RWP model is used, the network topology can be more stable if either the

pause time is long, or if the speed is slow.

Since the nodes either move at a constant velocity or not moving at all, it may be

more appropriate to use deterministic prediction for this mobility model.

2.3.3 Gauss Markov Model

Gauss-Markov Model (GMM) was originated by Liang and Haas [48], and has

been used to model nodes’ mobility in other research studies [10, 41–44, 46, 49].

In GMMs, a node moves in a weighted random speed and direction towards

a selected destination at every step it makes. Once a destination is reached, the

node picks another destination to move towards with random speed and direction

for each step. If the step is outside the boundary, which is quite possible when a

GMM is used, the node will pick a new destination and begin to move towards
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that new destination.

This model was designed to introduce some randomness to the node’s movement.

This is achieved by using the following equations to determine the speed, sn, and

direction, dn, of a node at the nth instant:

sn = αsn−1 +(1−α)s̄+
√

(1−α2)sxn−1

dn = αdn−1 +(1−α)d̄ +
√

(1−α2)dxn−1

(2.1)

where α ∈ [0,1] is the tuning parameter for varying the randomness; s̄ and d̄ are

the mean value of the speed and direction; and sxn−1
and dxn−1

are the random

variables from a Gaussian distribution.

Therefore, the next position (xn+1,yn+1) of a node can be computed by the

following equations:

xn+1 = xn + sn cosdn

yn+1 = yn + sn sindn
(2.2)

where (xn,yn) are the x and y coordinates of a mobile node’s position at the nth

instant.

In GMMs, the “sudden stops” problem can be resolved by selecting the next

velocity according to the current and the past velocities, hence it can be more

realistic. The motion is more random in GMMs, hence more difficult to

predict accurately using deterministic techniques. Thus, stochastic or heuristic

techniques may be more appropriate. A discussion on the different types of

prediction techniques is given in Section 2.4.4.
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2.4 Prediction

The mobility of the nodes and the wireless medium have posed some challenges

to routing performance of MANETs. As mentioned in Chapter 1 that prediction

may increase the lifetime of the routes, which in turn may improve the routing

performance. The existing prediction approaches proposed in the literature for

MANETs will be discussed in this section.

Harri and others in [50] have identified a variety of prediction methods that

have been proposed for wireless networks (including cellular networks, access

point based WiFi networks and MANETs). However, many proposed prediction

methods have not been tested on MANETs, and some may not even be suitable

for MANETs. One reason may be because a MANET may consist of mobile

nodes that have limited computational power and/or memory, and some of the

prediction methods that were developed for cellular networks or wireless LANs

may require a high computational complexity or a large database to store historic

mobility records. Another reason is that some prediction methods rely on historic

mobility patterns which require a fixed point of reference that may not be feasible

for MANETs. Or it could also be because some prediction methods rely on using

some centralised nodes to make predictions. Nevertheless, some research studies

have shown that prediction can be used to improve MANET routing [2–15],

however a lot of these assumed that the predictions are highly accurate, and that

the transmission range is constant, such assumptions are unrealistic.

In order to make predictions for routing, one needs to determine what types of

network state information can be used for making predictions, what needs to

be predicted, and how the network state information can be obtained and the

predicted information can be used in the routing protocols to assist routing.

As some information can be more difficult to obtain, some information may

be inaccurate, some may require more bandwidth to propagate the information

through the network, and others may be difficult in terms of making accurate

predictions. These issues are discussed in this section.
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2.4.1 What Network State Information to Use?

Network state information consists of parameters that describe the state of a

network at any one time. This includes the location and the velocity of the nodes,

the Received Signal Strength (RSS), the Signal-to-Noise Ratio (SNR) and the

link state. In order to make future predictions for routing, one or more of these

parameters described in this section can be used.

2.4.1.1 Location and Velocity

The location and the velocity of the nodes can be used to calculate the distance

between any two nodes. This information can be used to predict the future

locations of the nodes, as well as the future distance between the nodes. Hence,

one can use this information to either predict the future link state or the link

lifetime.

Due to the increase in the popularity of Global Positioning Systems (GPS),

nodes’ location information are commonly assumed to be obtained from GPS

[2–4, 6, 9, 51–63]. This is particularly true in the case of military platforms

for which location is of paramount importance. However, this information may

not always be available, and another issue is that link availability is not entirely

dependent on the distance between two nodes, as a link can be affected by fading

or interference.

2.4.1.2 Received Signal Strength

The Received Signal Strength (RSS) measures can provide indication to the

connectivity strength between two nodes. The RSS can be obtained by

measuring the power level of the signal received, and it can be useful in

circumstances when the location information is not available. The studies

presented in [64, 65] have suggested that various techniques can be used to
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estimate the current locations of the nodes using RSS. The estimated locations

may then be used to predict the future link state or link lifetime. However, many

of these RSS-based location estimation techniques are inaccurate [65–67].

In [68], Wu and others have used the transmitted signal strength, PT , and the

RSS, PR, to estimate the distance, di, between two nodes using Equation 2.3.

From a series of estimate distances, the relative velocity of the two nodes can be

calculated, which can then be used to predict the lifetime of the link. However,

this method requires the receiver to know the transmitter’s signal strength, which

may not be feasible.

di =
√

PT

4πPR
(2.3)

Paul et al. in [69] have proposed a scheme to periodically evaluate the “affinity”,

i.e. the strength of a link, between two nodes using a series of RSS. This means

if the “affinity” value is high, the link is strong, and the lifetime can be long,

and vice versa. The “affinity” value has been applied in routing [69, 70] in an

attempt to select a stable route. However, the authors in [70] found that the

“affinity” estimation is not very accurate.

2.4.1.3 Signal-to-Noise Ratio

The Signal-to-Noise Ratio (SNR) of a link can be measured by the receiver node.

This information can be used to predict the future SNR values to estimate the

reliability of a link. In [15], the SNR values are predicted using a time series

of SNR values that are filtered by using a Kalman filter to eliminate the noise

of the data. The results indicate that the accuracy of the predicted SNR values

are affected by the mobility patterns of the nodes. The study suggests that for

mobility models where mobility patterns are more predictable, the prediction

accuracy drops to a threshold if the mobility is high. And if the mobility patterns

are more random, the prediction accuracy reduces linearly as mobility increases.



22 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.4.1.4 Link State

The link state is the status of a link’s availability. A link state can either be on

for connected or off for disconnected. This information can easily be obtained.

A link can be considered to be available if a transmission frame is received

successfully. In studies [71–73], Jiang and others have proposed an algorithm

to predict whether a link will be available continuously for a fixed period of

time time Tp given that a link is currently available. However, this method of

estimating link availability is not very accurate.

2.4.2 What to Predict?

Traditionally, a routing protocol selects a route based on the link’s availability of

all the links along the route. Therefore if one can predict if a link is available at a

future time, or how long a link will remain available, the routing protocol can use

this information to select a more long-lived route. This can achieved by making

location or distance predictions, link availability predictions, or link duration or

lifetime predictions.

2.4.2.1 Location or Distance Prediction

The location of a mobile node or the distance between two mobile nodes can

be predicted using different methods (these prediction methods are discussed in

more detail in Section 2.4.4). The predicted location or distance between two

nodes are often used to estimate either the link availability or the link lifetime

for making routing decisions. For example, the authors in [74] designed a Neural

network to predict a series of future distances between two nodes to estimate the

link lifetime.
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2.4.2.2 Link Availability Prediction

The predicted link availability can be used for route maintenance. The future

link availability can be predicted using one or more of the current and/or the past

network state information explained in Section 2.4.1. Future link availability

may be estimated using the link state information, like the method proposed in

[71–73].

2.4.2.3 Link Duration or Lifetime Prediction

Link duration or lifetime prediction can be used to select a more long-lived route.

The duration or the lifetime of a link is often predicted using the location and

velocity information of the nodes [3, 75], the relative distance between two nodes

[76], or the relative velocity of two nodes [77].

2.4.3 Prediction Approaches

Prediction approaches are ways in which predictions are made. Using the

observed network state information, future network state can then be predicted

by using proactive and/or reactive approaches described in this section.

2.4.3.1 Proactive Approaches

Proactive approaches can be used to describe prediction methods where a

time series of nodes’ locations or link state information is required to make

predictions. Each node has to proactively transmit information to other nodes

at regular time intervals. The advantage of this is that the nodes in the network

have the knowledge of the whole network, and thus can predict the network state

for the entire network and make routing decisions accordingly. Such methods
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can be suitable for proactive routing protocols. However, information needs

to be broadcast at a regular interval, which may consume a lot of bandwidth

unnecessarily if the relative mobility between the nodes is low, and the volume

of data traffic is low. Also, backup strategies may be required for cases where

location information is missing or delayed. One example of proactive prediction

method used for MANET routing is proposed in [15], where a series of SNR

values are collected to predict the future SNR values. In another example

presented in [74], Kaaniche and Kamoun have proposed to use two series of

locations of two nodes to predict the future distances between two nodes.

2.4.3.2 Reactive Approaches

Reactive approaches include methods that can make predictions without a time

series of information. Information can be transmitted anytime by attaching it to

data packets, routing packets or other control packets. This can save bandwidth,

but the predictions may be less accurate if the volume of traffic is low, and the

nodes may not know the state of the whole network, in which case, routing

decisions can only be made based on this partial view of the network. The study

in [4] is an example that utilises reactive prediction method in MANET routing.

In that study, the authors used the transmission range, current locations, speeds

and directions of the nodes to predict the Link Expiration Time (LET) of any

two nodes. This method only requires the current knowledge to predict when the

link-change will be. This type of method is useful for making route decisions

during route discovery, so that longer lasting routes can be chosen. However,

this requires the prediction to be accurate. If the prediction is inaccurate, it may

cause the routing protocol to perform more poorly compared to when there is no

prediction.
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2.4.4 Prediction Techniques

Since predictions can assist routing protocols to select better routes provided that

the predictions are accurate, a number of mobility prediction methods have been

proposed for wireless networks [3, 12, 15, 49, 78–83]. In general, prediction

techniques can be classified into the following categories:

1. Deterministic - assumes Constant-Velocity or Constant-Acceleration;

2. Stochastic - includes Markov Models, Kalman Filter and Particle Filter;

3. History-based; and

4. Heuristic - includes Artificial Neural Networks and Evolutionary

Algorithm.

2.4.4.1 Deterministic

Deterministic is the simplest form of prediction technique. It makes predictions

based on the observed location, velocity and/or acceleration of the target node,

and assumes that the target node moves at a constant velocity or a constant

acceleration. In [49], the authors have compared the prediction accuracy

between the proposed prediction schemes that uses only the location information,

with velocity information assuming constant velocity, and with acceleration

information which assumes constant acceleration. Their results showed that the

prediction scheme with velocity information available can make more accurate

predictions.

A number of research studies have proposed using deterministic mobility

prediction models in routing protocols to predict future positions. Their methods

use the current location, speed and direction of a node to calculate its future

location by assuming either constant velocity or constant acceleration. However,

deterministic prediction methods are not very accurate for fast and dynamic

movements. The studies in [7, 10] have shown that using deterministic prediction

techniques can reduce the packet delivery ratio, end-to-end delay and routing

overhead traffic load. Nevertheless, these studies did not test their protocol with
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highly dynamic motions using different mobility prediction techniques.

In [2–4], Su, Lee and Gerla proposed the use of GPS location and mobility

information to predict the Link Expiration Time (LET) between the nodes along

the paths for selecting the most stable routes for unicast and multicast routing

protocols. A new route can be setup in advance just before the LET to handover

before the link breaks. Their studies have shown that their proposed routing

protocols with mobility prediction can reduce the routing overhead traffic and

packet loss if the prediction is accurate. However, they did not show whether

their protocols can reduce end-to-end delay, which is also an important routing

performance metric. Their studies also show that routing performance degrades

with short waypoint distance and with high mobility. This indicates that these

predictive routing protocols require some degree of accuracy, meaning that it

may not be suitable for some real life situations like driving on a winding road.

A number of other researchers have proposed different routing algorithms using

the LET prediction method [6, 9, 11]. Yet these studies have not assessed their

routing algorithms with different mobility models and other prediction methods

to see how the accuracy of predictions may affect the routing performance, and

did not compare the performance of different types of predictive protocols with

different network sizes, density and rate of change.

2.4.4.1.1 Constant-Velocity

Constant-Velocity Based Prediction (CVBP) is a deterministic prediction

approach where the velocity of a node is assumed to be constant. This means

that the next position of the node, dt+1, is defined by summing the current

position of the node, dt , and the multiplication of the current velocity, νt , and

the time difference, Δt, between the current and the next position as follow:

dt+1 = dt +νtΔt. (2.4)
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2.4.4.1.2 Constant-Acceleration

Constant-Acceleration based prediction technique assumes that the nodes

move with a constant acceleration. Given the current acceleration of the node,

at , the next position of the node, dt+1, can be defined as:

dt+1 = dt +atΔt2. (2.5)

2.4.4.2 Stochastic

Stochastic is a probabilistic prediction technique that includes techniques such

as Autoregressive Model, Regression Model, Markov Model, Kalman Filter, and

Particle Filter or Monte Carlo Method. Autoregressive Model has been used to

predict the location of mobile nodes [84, 85]; Regression Model can be used to

predict the duration of the link [86]; Markov Model can be used to predict link

availability [87–89]; Kalman Filters are commonly used to predict the state (i.e.

location, velocity, acceleration and/or direction) of the mobile nodes [56, 76];

and Particle Filters have been used to track the state of the mobile nodes [90,

91]. However, the researchers in these literatures have not tested their stochastic

prediction methods on MANET routing protocols.

Stochastic prediction methods have been used to estimate a future node’s

position or link availability, and have been extensively used in areas such as

target tracking and traffic prediction. However, only a few researchers have

chosen to apply stochastic prediction methods to MANET routing mobility

predictions. Although stochastic prediction techniques are not as commonly used

in MANET routing as deterministic prediction techniques, a few research studies

have explored the possibility of using stochastic prediction method in MANET

routing. Farkas, Hossmann and others in [14, 15] have shown that the Kalman

Filter can utilise SNR to predict the link quality for MANET routing, and has

evaluated the accuracy of the prediction with different mobility models, but they

did not show whether this method can improve routing performance over other
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routing protocols.

Similarly, the study described in [13] used signal strength as the distance between

the nodes to predict the connectivity between nodes using a Markov model, but

failed to show its advantages over other MANET routing techniques.

Creixell and Sezaki’s work [12] has indicated that using an autoregressive

process with a Least Squares Lattice Filter can predict the future location of the

nodes for making routing decisions, and that their proposed protocol performs

better than the Greedy Perimeter Stateless Routing protocol and the ellipsoid

protocol in packet delivery ratio. They did not evaluate their protocol with other

important routing performance metrics such as end-to-end delay and routing

overhead traffic ratio. Although they claimed that their proposed protocol is

independent of the mobility that is caused by varying the pause time, they did

not test their protocol with other highly dynamic mobility models.

Despite that, stochastic prediction methods are well developed and extensively

studied by researchers in other fields, very few have compared the performance

of MANETs routing using stochastic prediction methods. Hence there is a need

to explore how well stochastic prediction methods perform in MANET routing

comparing to existing routing protocols.

Han et al. in [78] proposed a Link availability-Based Routing Protocol (LBRP).

This protocol predicts the duration of the previous link and selects the path

with the best path availability based on the predicted link quality using a

stochastic prediction method. However, the authors have indicated that this

technique can only predict the link availability accurately “over a short period

of time”. Hence this may not be suitable for networks with high mobility nodes.

Furthermore, the paper has made a routing performance comparison with other

routing protocols such as AODV, DSR and ZRP in terms of percentage of packet

delivery, end-to-end delay and the number of messages per delivery over traffic

flows and network size. This work did not show how the accuracy of predictions

may affect the routing performance of the LBRP.
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2.4.4.3 History-based

History-based techniques have been widely used to predict users’ mobility in

cellular networks [79–82]. Such techniques allow the network to accurately

predict when the users will switch to another base station. Often, History-based

techniques are required to keep a record of some common user mobility patterns,

so that regularly used paths can be predicted accurately. However, these

techniques mostly require a fixed base station or an access point present in the

network to function as a point of reference. Unfortunately, there is no regular

mobility pattern for MANETs, as the motion of the nodes in a MANET is

dynamic, and MANETs are infrastructureless and hence may not have a fixed

non-mobile node. Therefore, such techniques are most likely unsuitable for

MANETs.

2.4.4.4 Heuristic

Heuristic techniques have also been proposed for mobility prediction in wireless

networks. Neural networks have been proposed for node mobility prediction

in [92, 93], and Mala et al. [83] have proposed to use Genetic algorithm

for mobility prediction. However, these techniques were designed for cellular

networks.

It is less common to use heuristic techniques for mobility prediction. This may

be due to their higher demand of computational power, and their requirement

of using historic records for training. Nevertheless, Kaaniche and Kamoun [74]

have proposed to use a Neural network to predict the next N future locations of

each MANET node, which are then used to estimate the LET of the link between

any two nodes by determining the time the distance between two node is larger

than the range. However, the number of future locations predicted is fixed, so

this technique may not be suitable if the LET is longer than N. Furthermore, it

is uncertain how useful it is when it is applied in routing, as the authors did not

compare the this technique with other techniques, and have not tested it on any
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MANET routing protocols.

2.5 Conclusion

This chapter has provided an overview of the advantages and disadvantages

of different types of MANET Routing Protocols, some common EMMs used

in other MANET research, and different types of prediction methods used in

MANET routing research.



Chapter 3

Prediction Methods and Evaluation

3.1 Introduction

As mentioned in Chapter 2, research studies have shown that routing with

mobility predictions can provide some advantages over conventional routing

methods with the assumption that the predictions are accurate. However, routing

with predictions may perform poorly if the prediction accuracy is low. Therefore,

it is important to explore how accurate the prediction is required to be in order to

show improvements in routing performance.

In order to study the prediction accuracy and the evaluation techniques, it is

important to evaluate the accuracy of mobility predictions using one or more

evaluation metrics that are relevant to routing, such as the link states and the

change of link states1. Hence this chapter compares the differences of three

evaluation metrics for MANET mobility prediction, and applies these methods

on different mobility models and different prediction methods to compare the

different prediction methods. This is achieved with the assumption that the

connectivity of any wireless link between two nodes can be determined by the

1The change of link states are referred to as the “link changes”.

31
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distance between the nodes.

Firstly, Section 3.2 provides an overview of existing work on mobility prediction,

and introduces the three evaluation metrics that can be used for evaluating

the accuracy of MANET mobility prediction. Section 3.3 compares the three

evaluation metrics by evaluating the accuracy of predicting three different

mobility models. Finally, an evaluation of the accuracy of different prediction

methods using two of the three evaluation metrics is provided in Section 3.4.

3.2 Evaluation Metrics

In the literature, the accuracy of mobility prediction has been commonly

evaluated by calculating the average Euclidean distance (or the Root Mean

Square Error (RMSE)) between the real location and the predicted location [49,

51, 56, 57, 85, 91, 94, 95], between the real and the predicted Received Signal

Strength (RSS) [64], or between the real and the predicted Signal-to-Noise

Ratio (SNR) [15]. For example, Xu et al. in [49] have compared the

Velocity-based and Acceleration-based predictions with the Random Waypoint

and the Gauss-Markov mobility models using RMSE between the real and the

predicted location of the nodes. Likewise, Zaidi and Mark [56, 57, 85, 95]

have compared the accuracy of their Autoregressive prediction models using

RMSE. Such metrics have been very useful for evaluating the accuracy for target

tracking, and tracking for cellular networks. However, it fails to provide a

meaningful indication of how accurate the predicted topology of the network

or the predicted link changes are.

Alternatively, Sharma et al. in [5] have evaluated the prediction accuracy by

counting the number of predicted grid numbers that are correctly predicted. This

evaluation method can be useful for networks that use a grid system, but it may

not be appropriate for all MANET routing methods. This is because having

accurately predicted grid numbers does not mean that the link state of the nodes
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can be predicted.

MANET routing performance is affected by the network topology and the link

changes. Hence predicting the Euclidean distance error and the grid counting

methods may not be as practical for evaluating the prediction accuracy for

routing. Routing performance is predominately affected by the link state and the

link change. It is anticipated that link state and link change metrics may be more

useful for evaluating the accuracy of mobility prediction for routing. However,

Euclidean distance error, which can be used to represent the signal strength, may

provide a more realistic view of the link quality as opposed the grid counting

method. Thus for comparison, the following three evaluation metrics have been

selected to evaluate the accuracy of mobility prediction:

1. Average Euclidean Distance Error;

2. Probability of Incorrectly Predicted Link State (IPLS); and

3. Probability of Incorrectly Predicted Link Change (IPLC).

3.2.1 Average Euclidean Distance Error

The average Euclidean Distance Error is the mean distances between the real

location (xR, yR) and the predicted location (xP, yP) of each of the nodes in the

network at a given time. The Euclidean Distance Error, derr, is calculated by:

derr = |LR−LP|=
√

(xR− xP)2 +(yR− yP)2 (3.1)

where LR and LP are the real location and the predicted location of a node

respectively. Thus, the average Euclidean Distance Error over a time series of T

steps is represented by:

E [derr] =

T
∑

t=1

(
N
∑

n=1
derr (n, t)

)
/N

T
(3.2)

where N is the total number of nodes in the network; and derr(n, t) is derr for the

nth node at time t.
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Evaluating the distance error can provide some insights about the prediction error

in the link quality, which can be useful. However, as mentioned previously,

calculating the distance error may not be appropriate for evaluating the accuracy

of the predictions used for MANET routing. The reason is that routing

performance is affected by the link quality which is not linearly dependent

on the distance between the nodes. If two nodes are within the transmission

range of each other, they are connected regardless of how close they are located.

Likewise, if two nodes are out of range, they are disconnected regardless of their

distance apart. In a perfect environment, link quality is a step function. Thus it

may be more appropriate to measure the accuracy of prediction in terms of link

state, as discussed in more detail in Section 3.2.2.

3.2.2 Probability of Incorrectly Predicted Link State (IPLS)

IPLS describes a link state that is predicted incorrectly. The term “link state” is

used to describe the state of a link such that if the link state between two nodes is

on (= 1), the two nodes are in range (or connected)2, and if the link state between

two nodes is off (= 0), the two nodes are out of range (or disconnected).

The probability of IPLS at any one time, t, can be represented by the graph

distance3 [96], d (GR(t),GP(t)), between the real topology or graph GR(t), a

matrix that represents the real network topology at time t, and the predicted

topology or graph GP(t), a matrix that represents the predicted network topology

(that is predicted at time t−Δt) for time t. The graph distance can be calculated

by the following equation:

d (GR(t),GP(t)) = 1− |mcs(GR(t)∩GP(t))|
|GR(t)∪GP(t)| (3.3)

where mcs(GR(t)∩GP(t)) is the maximum common subgraph of GR(t) and

GP(t). Therefore, the average probability of IPLS can be evaluated by the

2Connected means data can be exchanged reliably.
3Graph Distance is a measure to evaluate the difference between two or more graphs.
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following equation:

P{IPLS}= E [d (GR(k),GP(k))] =

K
∑

k=1
d (GR(k),GP(k))

K
(3.4)

where k represents the kth time step where predictions were made; and K is the

total number of predictions made.

3.2.3 Probability of Incorrectly Predicted Link Change
(IPLC)

Link change is one of the most important parameters that affect routing

performance. If one can predict the link change accurately, routing issues that are

caused by nodes’ mobility and connectivity can be solved. The authors in [97]

have evaluated the accuracy of cluster change prediction with different prediction

methods for cellular networks and cluster based networks. However, this study

only focuses on the cluster change in cellular and cluster based networks, the

accuracy of predicted link changes for MANETs with different mobility models

remains unexplored. Therefore in this study, the prediction accuracy in terms of

link change for MANETs with different mobility models has been evaluated in

comparison with the accuracy of link state prediction. This section explains how

the accuracy of predicted link changes in a MANET will be evaluated, which

will be referred to as the Incorrectly Predicted Link Change (IPLC).

Link change describes the change of link state between the previous time step,

t−Δt, and the current time step, t. This means there is a link change if the link

state at time t −Δt is different to the link state at time t, and there is no link

change if the link states are the same. Therefore, the relationship between link

state Ls and link change Lc can be represented by the following equation:

Lc(t) = Ls(t−Δt)⊕Ls(t) (3.5)
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Similar to IPLS, the probability of IPLC at time t can be evaluated measuring

the similarity between the matrix representing the real link changes of a network

from time t−Δt to time t and the matrix representing the predicted link change

of a network predicted at time t−Δt.

In relation to the network graph of real link state, the graph of real link change

representing all the link changes that occur from time t−Δt to time t is denoted

by the following equation:

CR(t) = GR(t−Δt)⊕GR(t)

=
∣∣∣∣GR(t−Δt)∩GR(t)′

∣∣∪ ∣∣GR(t−Δt)′ ∩GR(t)
∣∣∣∣ (3.6)

The graph of predicted link change representing all the links that have been

predicted at time t − Δt to be changed at time t is denoted by the following

equation:

CP(t) = GR(t−Δt)⊕GP(t)

=
∣∣∣∣GR(t−Δt)∩GP(t)′

∣∣∪ ∣∣GR(t−Δt)′ ∩GP(t)
∣∣∣∣ (3.7)

Thus, the graph distance between CR(t) and CP(t) at time t is given by the

following equation:

d (CR(t),CP(t)) = 1− |mcs(CR(t)∩CP(t))|
|CR(t)∪CP(t)| (3.8)

And the average probability of IPLC is:

P{IPLC}= E [d (CR(k),CP(k))] =

K
∑

k=1
d (CR(k),CP(k))

K
(3.9)
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3.3 A Comparison of the Evaluation Metrics

This section compares the three evaluation metrics described in Section 3.2. In

order to achieve this, a number of simulations (described in Section 3.3.1) have

been executed to explore the different prediction accuracy evaluation metrics,

and what the evaluation metrics say about the prediction accuracy of different

mobility models (discussed in Section 3.3.1). Since the simulations are intended

to study the differences between the three evaluation metrics described in Section

3.2, there is no need to implement any protocols within the nodes or any traffic

between the nodes. Also, the simulations implemented only consist of nodes

moving in a fixed 2-dimensional field, with the following assumptions being

made:

1. The state (location) information about all the mobile nodes in the

simulation at any given time is known immediately - "The ideal observer"

- i.e. no time is required to transmit that information;

2. The connectivity of the nodes will be determined by the distance between

the nodes;

3. The links are bidirectional; and

4. All the location and velocity information about the nodes are accurate.

The assumptions above were made to artificially create an ideal simulation

environment. This ensures that the errors obtained in the results will purely

be induced by the errors in the prediction, rather than by other factors such as

fading, uni-directional links, missing or inaccurate location information.

3.3.1 Simulation Methodology

A program for generating the mobility patterns and the predicted location of the

nodes on a field has been written in a JAVA package called MASON [98], which

is a discrete-event multiagent simulation package. MATLAB [99] is then used to

analyse the generated data from MASON. MATLAB is a scientific software tool
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that is useful for algorithm computations, signal processing and data analysis.

The simulations used for this study are based on a fixed rectangular area of size

2400m× 1800m with 25 mobile nodes, and the range of these mobile nodes

are assumed to be 300m. This means a link is considered to be available if the

distance between any two mobile nodes is less then or equal to 300m.

Three mobility models were chosen to model the nodes’ movements - RWM,

RWP model and GMM, as discussed in Section 2.3. These mobility models

were chosen because they have different mobility properties. The prediction

model that was chosen to predict the nodes’ motion is the Constant-Velocity

Based Prediction (CVBP) model, as described in Section 2.4.4.1. This was

chosen because it is the most basic form of prediction method and it is easy

to understand.

The minimum, maximum and average speeds chosen for the RWM and RWP

models are 1.5, 4.5 and 3m/s respectively. The minimum, maximum and average

pause times for the RWP model are 0, 60 and 30s. And the parameters used

for GMM are: pause time = 0s; mean speed (s̄) = 3m/s; mean direction (d̄) = 0

degree; tuning parameter (α) = 0.5; and the variance for both speed and direction

(σ2) = 1.

For each mobility model, separate simulations have been executed with different

durations of prediction step intervals (or sampling intervals) - 1, 2, 5, 10, 20,

30, 50, 60, 80, 100, 150, 200 and 250s. A prediction step interval is defined as

the interval for which a prediction is made. For example, if the prediction step

interval is 1 second, the prediction that is made at time t seconds, is predicting

the location at time t + 1 seconds. Similarly, if the duration of a prediction step

interval is Δt seconds, the prediction made at time, t seconds, is predicting the

location at time, t +Δt seconds. Note that varying the step interval is equivalent

to varying the node speed, hence only slow (walking/running) speeds are used,

and that it is unnecessary to vary the node speeds.
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Ten thousand steps will be executed for each simulation, i.e the duration of each

simulation is (10,000× sampling interval) seconds. This means the duration of

each simulations is different depending on the sampling interval used, but this

ensures that 10,000 samples will be collected for evaluations.

3.3.2 Results and Analysis

Results obtained from the simulations described in Section 3.3.1 indicate that all

three evaluation metrics differ in various ways. These results are discussed and

analysed in this section in more detail.

The graph in Figure 3.1 shows the average Euclidean Distance Error between

the real and predicted location of each node for GMM, RWM and RWP mobility

models. The x-axis in Figure 3.1 represents the prediction step interval in

seconds, and the y-axis indicates the average Euclidean Distance Error. The

graph shows that the longer the step interval, the prediction error increases

exponentially, this means that the prediction is less accurate if the step interval

is large. The high Euclidean distance error for GMM indicates that it is much

more difficult to predict compared to RWM and RWP models. This is because

there is some randomness in the motion of GMMs, but CVBP assumes constant

velocity. Whereas for both RWM and RWP models, the velocity and direction

remains unchanged for a period of time, hence these RWM and RWP motions

can be predicted more accurately with CVBP. Also keep in mind that with all

three mobility models, the Euclidean Distance Error increases exponentially as

the step interval increases.
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Figure 3.1: Average Euclidean Distance Error for GMM, RWM and RWP
mobility models using CVBP method over a range of step intervals.
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Figure 3.2 represents the probability of IPLS between the real and the predicted

network topologies for GMM, RWM and RWP mobility models against different

duration of step intervals. This plot scales from 0 to 1, with 0 meaning perfect

accuracy, and 1 means no link is predicted correctly. Each data point on the

plot is obtained by averaging over five simulations with different seeds, and

each simulation was executed over a time series of ten thousand steps, and was

calculated by using Equation 3.4 on page 35. The graph in Figure 3.2 indicates

that for small prediction step intervals, the link state predictions were quite

accurate for all three mobility models, but for large prediction step intervals, the

probability of IPLS approaches one, i.e. almost all the link states are predicted

incorrectly when the step interval is large. The graph also shows that GMM

becomes less accurate in link state prediction at a faster rate in comparison

to RWM and RWP models, which agrees with the average Euclidean distance

error graphs. This is expected, as GMM’s motion is less likely to be predicted

by using CVBP. Note that because IPLS has a bounded scale between 0 to 1,

the prediction error saturates at 1 rather than increases exponentially like the

Euclidean Distance Error. So using this metric, the difference between the

accuracy of GMM and the other two models peaks at a step interval of around

100s, and gradually reduces for larger step intervals.

Due to the uncertainties in the confidence level of the results represented in

Figure 3.2, to give an indication of the difference of the accuracy of using CVBP

to predict RWM and RWP models, a graph with error bars is given in Figure

3.3. This graph shows the probability of IPLS for RWM and RWP models with a

2400m×1800m field and 300m transmission range with error bars indicating the

confidence intervals of the IPLS measured at different prediction step intervals.

The error bars on the graph indicate that the confidence intervals are smaller for

small prediction step intervals, indicating that the results are more reliable when

the step interval is short. However, the confidence interval grew as the prediction

step interval increases. Since the accuracy of the prediction in terms of graph

distance varies with large prediction step intervals, it is indicating less reliable

results. This graph also indicates that the IPLS of both RWM and RWP models

are similar to one another.
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Figure 3.2: Probability of IPLS for GMM, RWM and RWP mobility models using
CVBP method over a range of step intervals.
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Figure 3.3: Probability of IPLS for RWM and RWP mobility models with
confidence intervals.
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The graph of probability of IPLC for RWM, RWP and GMM mobility models

against the duration of prediction step intervals is shown in Figure 3.4. It shows

that both RWM and RWP models are very accurate in terms of link change

prediction when the step intervals are small, but the probability of IPLC increases

to around 0.5 for large step intervals, meaning that the accuracy drops rapidly.

The reason that the probability of IPLC only reaches around 0.5 is because of the

artifact of using a bounded simulation field and making unbounded predictions.

When the step interval is small, the predicted locations are unlikely to be out

of boundary, but if the step interval is large, the likelihood that the predicted

locations are outside the boundary is large. Therefore, when the step interval is

large, the real locations of the nodes at time t remains within the simulation

area, but the locations of the nodes that were predicted for time t can be

sparsely distributed outside the boundary, thus the probability that any two nodes

are predicted to be connected is lower than the probability that the nodes are

connected in the real simulation. This means for a very large step interval, all the

existing links will be predicted to be disconnected at the next step, and no new

links will be predicted (as the predicted nodes’ locations are too far away from

each other). But in the real simulation, new links will form while most of the old

links will disconnect. Hence, for very large step intervals, only around 50% of

the link changes can be correctly predicted.

Figure 3.4 also shows that the link changes of GMM is difficult to be predicted

using a Constant-Velocity Based prediction model even for small step intervals.

This is because a link change only occurs when the nodes are near the edge of

one another, so a small error may affect the predicted link change dramatically,

and the speed and direction of the nodes in GMM can vary at each time step.

Thus it is very difficult to predict the link change of the GMM using a CVBP

model. Due to the stochastic motion characteristic of GMMs, it is believed that

stochastic prediction methods can make better predictions for GMMs, which is

explored later in Section 3.4.
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Figure 3.4: Probability of IPLC for GMM, RWM and RWP mobility models using
CVBP method over a range of step intervals.
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In this chapter, the results for large prediction step intervals are affected by the

artifact of having a fixed number of nodes moving within a bounded simulation

field while the prediction model is able to predict the future location of the node

to be outside the simulation field. Although there have been studies addressing

the effects of using different mobility models within a bounded simulation area

on the performance of MANET routing protocols [42, 44], to the author’s

knowledge, there has been no literature discussing the implications of having

a boundary affecting the prediction results. There is no known method that

can completely overcome the boundary problem, as different models will cause

different problems. For example, if the simulation field is extended or made

unbounded, the nodes can be sparsely distributed that the connectivity between

any nodes will be reduced. If the field is made to wrap around, the formation of

the network is unrealistic. And if the predicted location is ensured to be within

the boundary, the accuracy of the prediction would be affected. However, this is

out of the scope of this research study.

Overall, the results show that RWM and RWP models can be predicted more

accurately in comparison to GMM for all cases. This is because for both RWM

and RWP models, the nodes travel at a constant velocity for some distance before

changing speed and direction, whereas for GMM, the speed and direction change

every second. When the step intervals are small, all three metrics show that

RWM and RWP models can be predicted accurately, but GMM is only accurate

in terms of Average Euclidean distance error and IPLS, and much less accurate

when it is evaluated against IPLC even at very small time intervals. This is due

to the stochastic properties of GMM, and because the chances of getting a link

change is small, it is more difficult to predict link changes accurately.

It can be seen from the results that each of the three types of evaluation methods

can make different conclusions in terms of the accuracy of the predictions. The

Euclidean Distance Error measures the errors in terms of distance. Thus, this

evaluation metric shows higher accuracy for mobility simulations with small step

intervals or with slow mobility, but fails to show when the accuracy becomes

too low for routing, and this evaluation method can only be used for prediction
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methods that make predictions in terms of location, distance, time or signal

strength.

IPLS indicates the likelihood of predicting a link state accurately. Therefore,

with this method high accuracy can be illustrated for small step intervals and/or

slow mobility simulations, and low accuracy for simulations with large step

intervals, high mobility and/or frequent change of directions. Whereas IPLC

shows the probability of whether a link change can be predicted. Link changes

are more difficult to predict compared to link states, because link changes occur

rarely and they rely on accurate link state predictions. Thus, high link change

accuracy can be achieved for mobility with less frequent or very small change

of directions and with slow mobility. Since IPLS and IPLC appears to be better

evaluation methods for MANETs, these two evaluation metrics are selected for

evaluating the prediction accuracies for different prediction methods.

3.4 Evaluation of the Accuracy of Prediction
Methods

In the previous sections, three different mobility prediction evaluation metrics

have been discussed and compared by evaluating the accuracy of using CVBP

method on GMM, RWM and RWP mobility models. However, CVBP is not the

only prediction method available, and there are many prediction methods that

have been shown to be more accurate for predicting more random motion. In this

section, two other prediction methods are selected and compared against CVBP

to show how different prediction methods are suitable for different mobility

models. The accuracy of these prediction methods are analysed for different

mobility models and evaluated using IPLS and IPLC evaluation metrics.
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3.4.1 Prediction Methods

In order to compare the accuracy of different prediction methods, prediction

methods include CVBP, Markov Chain link state prediction and Kalman Filter

are used for this study. Details on the Markov Chain and Kalman Filter prediction

methods are described in Sections 3.4.1.1 and 3.4.1.2 below.

The mobility models selected for this study are RWM and GMM. These two

mobility models are chosen (with RWP model excluded) is because the results

from Section 3.3.2 show very little differences in the prediction accuracies

between the RWM and RWP models for all three evaluation metrics, while

GMM’s performance is very different. Furthermore, the motion of the RWM

and RWP models are very similar. Hence, either RWM or RWP model can be

selected for evaluating the different prediction methods. Since RWM is more

similar to GMM, and it is likely to be more dynamic compared to RWP model as

it has no pause time between changing directions, RWM and GMM are chosen

for the evaluation of the prediction accuracies for different prediction methods.

3.4.1.1 Markov Chain Link State Prediction Method

Studies in [87, 88, 100, 101] have shown that Markov Chains can be used

for mobility predictions. In this study, the Markov Chain link state prediction

method is implemented by using a discrete time Markov model proposed by

Hwang and Kim in [88] that predicts the next link state between any two nodes

in the network. This Markov model consists of two states (connected, C, and

disconnected, D) as illustrated in the state transition diagram in Figure 3.5,

where:

1. pDC = P{Xk = C|Xk−1 = D} is the probability of any two nodes

disconnected at time k−1 becomes connected at time k;

2. pCD = P{Xk = D|Xk−1 = C} is the probability of a connected link at time

k−1 being disconnected at time k;

3. pCC = P{Xk = C|Xk−1 = C} = 1− pCD is the probability of two nodes



3.4. EVALUATION OF THE ACCURACY OF PREDICTION METHODS 49

staying connected from time k−1 to time k; and

4. pDD = P{Xk = D|Xk−1 = D} = 1− pDC is the probability of two nodes

remaining disconnected from time k−1 to time k;.

D C

pDC

pCD

pDD pCC

Figure 3.5: Markov Link State Prediction Transition Probability Model Diagram.

Hence, the transition probability matrix, P, can be written as:

P =

[
pDD pCD

pDC pCC

]
=

[
1− pDC pCD

pDC 1− pCD

]
(3.10)

As time approaches infinity, the stationary matrix is:

Q = lim
k→∞

Pk =

[
pCD

pDC+pCD

pCD
pDC+pCD

pDC
pDC+pCD

pDC
pDC+pCD

]
(3.11)

Therefore, the probability a link is connected at time k, pC(k), and the probability

that a link is disconnected at time k, pD(k), are:

lim
k→∞

pC(k) =
pDC

pDC + pCD
(3.12)

lim
k→∞

pD(k) =
pCD

pDC + pCD
(3.13)

A Markov Chain model is required to be trained before it can be used for

making predictions. The training stage is required to compute the state transition

probability matrix, which can then be used for prediction. For this Markov

Chain model, the state transition probability matrix can be obtained by counting

the number of times the link state remains at either state C and state D over n
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time steps (during the training phase). Through simulation, the probability that

a link is connected and disconnected can be computed using NC/n and ND/n

respectively, where NC is the number of times the link is connected, ND is the

number of times the link is disconnected, and n is the number of time steps.

By substituting these values into Equations 3.12 and 3.13, the state transition

probabilities can be calculated, and hence the link state can be predicted using

the state transition matrix. After the training, the transition matrix is then used to

make predictions for the remaining time, and during this time the state transition

properties will continue to be updated at each time step during the prediction

stage in an attempt to improve the accuracy of the prediction while predicting.

3.4.1.2 Kalman Filter Prediction Method

Kalman Filter [102, 103] is another stochastic prediction method that has been

widely used for tracking. A linear Kalman Filter consists of a set of equations

that are used to estimate the state vector of a discrete-time process, x∈ℜn, where

n is the number of real numbers in the vector x. The predicted state vector is

represented as:

xk = Fxk−1 +Buk−1 +wk−1 (3.14)

where F is the state transition matrix; B is the control-input matrix; xk−1 is the

previous state vector; uk is the control vector; and wk ∼ N(0,Qk) is the process

noise with zero mean and covariance Qk.

The measurement, zk ∈ℜm is:

zk = Hxk + vk (3.15)

where H is the observation matrix; and vk ∼ N(0,Rk) is the observation noise

with zero mean and covariance R.

There are two main processes involved in a Kalman Filter estimation process.

At each time iteration, the Kalman Filter predicts the process state, and then it
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gets a feedback from the measurement.

1. Predict:
This process consists of two equations. One predicts the current process

state using the previous process state, and the other one predicts the

covariance of the process noise, w.

The predicted (a priori) state estimate vector, x̂k|k−1, at the kth time step is

given by:

x̂k|k−1 = Fx̂k−1|k−1 +Buk−1 (3.16)

The predicted (a priori) error covariance, Pk|k−1, is then given by:

Pk|k−1 = FPk−1|k−1FT +Q (3.17)

where Pk−1|k−1 is the previous error covariance matrix.

2. Update:
This process is to update the state estimate using the current observed

measurements and the predicted state estimate.

The Kalman gain, Kk, is computed using:

Kk = Pk|k−1HT (HPk|k−1HT +R)−1 (3.18)

Update the state estimate, x̂k, using the measurements:

x̂k|k = x̂k|k−1 +Kk(zk−Hx̂k|k−1) (3.19)

The error covariance matrix, Pk, is updated as follow:

Pk|k = (I−KkH)Pk|k−1 (3.20)

Note that the variables F , H, Q, R and P are unknown. Therefore in order to
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make predictions using this Kalman Filter, these variables need to be initialised.

In this study, Kalman Filter is used to predict the location and the velocity of the

nodes. With the assumption that the acceleration is constant, the state vector of

each node is represented by a linear state vector, [x,y, ẋ, ẏ]. The variables x and y

represent the location of the node; and ẋ and ẏ represent the velocity of the node.

Assuming that the sampling interval is S seconds, the variables F , H, Q, R and P

are initialised as follow:

The state transition model F is:

F =

⎡
⎢⎢⎢⎢⎣

1 0 S 0

0 1 0 S

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (3.21)

The observation model H is:

H =

[
1 0 0 0

0 1 0 0

]
(3.22)

The process noise covariance Q is:

Q =

⎡
⎢⎢⎢⎢⎣

S3/3 0 S2/2 0

0 S3/3 0 S2/2

S2/2 0 S 0

0 S2/2 0 S

⎤
⎥⎥⎥⎥⎦q (3.23)

where q is the process noise intensity. The observation noise covariance R is:

R =

[
Rx 0

0 Ry

]
(3.24)

where Rx is the covariance of x; and Ry is the covariance of y. And the error
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covariance matrix P is:

P =

⎡
⎢⎢⎢⎢⎣

Rx 0 Rx/S 0

0 Ry 0 Ry/S

Rx/S 0 2Rx/S2 0

0 Ry/S 0 2Ry/S2

⎤
⎥⎥⎥⎥⎦ (3.25)

Note that the process noise intensity, q, and the covariance of x and y can be

adjusted to tune the Kalman Filter to adapt to different mobility models. The

values chosen for the variables q, x and y are discussed in Section 3.4.2.

3.4.2 Simulation Methodology

The simulations executed in this section are similar to that explained in Section

3.3.1. The difference is that in this section, the prediction accuracy of three

prediction methods are evaluated and compared with two mobility models. In

achieving this, GMM and RWM are selected to simulate the nodes’ movements.

As mentioned previously, the prediction methods chosen for this exercise are

CVBP, Markov Chain and Kalman Filter.

All three prediction methods, CVBP, Markov Chain and Kalman Filter, are

implemented in MATLAB. The mobility models and parameters that are used for

the simulations in this section (Section 3.4) are the same as the ones in Section

3.3 on comparing the evaluation metrics.

The sampling intervals chosen to be evaluated are 1, 2, 5, 10, 20, 30, 40, 50,

80, 100, 150, 200 and 250s. For each sampling interval, 25 mobile nodes are

randomly placed in a fixed rectangular area of size 2400m×1800m with a fixed

range of 300m. Each simulation runs for ten thousand steps.

For the Markov Chain prediction model, the number of time steps used for
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training, n, is 1000. After the training phase, the transition probability matrix

derived from training is then used for prediction for the rest of the simulation.

The parameters for Kalman Filter are set as follow: process noise intensity (q) =

0.2; covariance of x (Rx) = 0.2; and covariance of y (Ry) = 0.2. For this analysis,

these values are selected by trial and error. A few simulations were executed with

a number of different randomly chosen process noise intensity and covariance

values, and it is found that relatively good predictions have been made using

these chosen values.

3.4.3 Results and Analysis

The results in this section show how well the three selected mobility prediction

methods (CVBP, Markov Chain and Kalman Filter) performs against different

mobility models.

The results in Figure 3.6 shows the probability of IPLS for GMM using three

different prediction methods: deterministic with CVBP method; 2-state Markov

Chain link state prediction method; and Kalman Filter prediction method. It

illustrates that out of the three prediction methods, Kalman Filter is the best

prediction method for GMM. It is expected that the Kalman Filter is a better

prediction method compared to the deterministic method for GMM mobility

model, because of the stochastic nature of both the GMM and the Kalman

Filter. Although the results indicated that the worst prediction method is Markov

Chain, this is not to say that Markov Chain is inappropriate for making link

state predictions. This is because the Markov Chain link state prediction method

that was implemented is a very simple prediction method that predicts the state

of the link using only the current link state. Though there may be other more

accurate stochastic techniques, such as Markov Models with more states or

Hidden Markov Model (HMM), that can be used, they are not implemented for

comparison in this study. This is because the Kalman Filter prediction model

has shown sufficient improvement in prediction accuracy for the GMM. An
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exploration of other prediction techniques may be left to future work.

Figure 3.6: Probability of IPLS for GMM using CVBP, Markov Chain and
Kalman Filter prediction methods.

With no error bars in Figure 3.6, it is difficult to tell if Kalman Filter can really

make better predictions compared to CVBP. Thus, a graph with 95% confidence

intervals is presented in Figure 3.7. Note that this graph is zoomed in to show

the probility of IPLS for GMM motion for step intervals up to 50 seconds. The

small confidence intervals on the graph indicates that the confidence levels of

the results are high, thus Kalman Filter is a better prediction technique for GMM

mobility model.
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Figure 3.7: Probability of IPLS for GMM with confidence intervals.
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For a comparison, Figure 3.8 is plotted to show the probability of IPLS for RWM

mobility model using deterministic with CVBP method, Markov Chain link state

prediction method and Kalman Filter prediction method. This graph indicates

that the CVBP method is a better prediction method for RWM, followed by the

Kalman Filter prediction method. This is because the nodes in RWM always

move at a constant velocity for a selected period of time, the nodes’ motion is

more deterministic, and hence, deterministic prediction method performs better

in this case. Although higher accuracy may be possible with Kalman Filter, it

requires tuning the model. This means adaptive prediction method is required to

predict different motion.

Figure 3.8: Probability of IPLS for RWM using CVBP, Markov Chain and
Kalman Filter prediction methods.
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The results showing the probability of IPLC for GMM using CVBP method,

Markov Chain link state prediction method and Kalman Filter prediction method

are summarised in Table 3.1. These results indicate that predicting the link

change of the nodes using GMM mobility model is not very accurate even

with very small time step intervals, and that it is almost impossible to use the

Markov Chain method to predict the link change. The reason it is more difficult

to predict the link change than to predict the link state is due to the fact that

link changes only occur when the nodes are located at a distance close to the

maximum transmission range of each other. Thus, any slight randomness in the

nodes’ movement can reduce the accuracy of the link change prediction.

Step Interval (s) 1 2 5 10

CVBP 0.2021 0.3333 0.4394 0.4765

Kalman Filter 0.1829 0.2677 0.3360 0.3300

Markov Chain 0.3688 0.5821 0.8484 0.9657

Table 3.1: Probability of IPLC for GMM using CVBP, Markov Chain and
Kalman Filter prediction methods.

In summary, the results indicate that Kalman Filter is a better prediction method

for GMM while CVBP is more appropriate for deterministic mobility models

such as RWM. Therefore, in order to make accurate predictions, it is important

to select the right prediction method and/or tune the prediction model for the type

of motion it will be predicting. However, regardless of which prediction method

and mobility model are selected, making accurate predictions for a distanced

future is very difficult.

3.5 Conclusion

In this chapter, three mobility prediction evaluation metrics are introduced. It has

been shown that the prediction accuracy of a network can be evaluated by using

different evaluation metrics. Different metrics are useful in evaluating different

aspects of prediction accuracy of a network. The accuracy of the location of the
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nodes can be determined by the Euclidean Distance metrics; the accuracy of the

predicted link states can be evaluated by the IPLS method; and the accuracy of

the link changes can be evaluated by the IPLC metric.

This chapter also showed that different combinations of mobility models and

prediction methods used can affect the accuracy of the predictions. GMMs are

more difficult to predict compared to RWMs and RWP models, thus a Kalman

Filter is a better prediction method for a GMM, while the CVBP method is a

better prediction method for a RWM. The results from the simulations indicate

that it is difficult to find a prediction method that can make accurate mobility

predictions for many different mobility models. Therefore, the prediction

method needs to be adaptive to the mobility models in order to improve the

accuracy of the prediction.

Rather than looking more closely into ways to improve the accuracy of prediction

to enhance routing performance, the author believes that it would be useful

to explore the possible improvements in routing performance when perfect

prediction is used for routing. Hence, the effects of perfect prediction has on

routing performance are discussed in Chapter 4.

Literature such as [3] has proposed some routing protocols with prediction with

the assumption that the prediction needs to be accurate. However, it may not

always be true that accurate predictions is necessary for making routing decisions

to improve routing performance. This may depend on the routing protocol and

the way the prediction information is used. Thus, it is important to explore

the situations and the level of accuracy that maybe required to make informed

routing decisions in order to improve routing performance in Chapter 5.



Chapter 4

AODV with Perfect Prediction

4.1 Introduction

A number of research studies that have proposed to use prediction to enhance

routing performance have been discussed Chapter 2. However, many studies

have shown little improvements in routing performance with prediction being

used [4, 70, 78]. It is unclear whether this lack of improvement was due to the

accuracy of the prediction, the MANET routing protocol used, the mobility of

the nodes, or the relevance of statistics studied. It is anticipated that by studying

the improvements in routing performance in terms of route lifetime, packet

loss and end-to-end delays between the routing protocol without prediction and

the routing protocol with perfect prediction, one can identify more clearly the

advantages and disadvantages of using prediction, and understand how predictive

routing can be improved.

In order to accomplish this, it is assumed that the link duration can be predicted

accurately during the route setup stage. In this chapter, a variation of the standard

AODV routing protocol, AODV with Perfect Prediction (AODV-PP), has been

created to allow the predicted route duration to be broadcast during the route

60



4.2. AODV ROUTING PROTOCOL 61

setup stage. This enables the route with the longest lifetime to be selected,

which enables the route to better carry the expected traffic that will use this

route. Furthermore, it allows a route re-discovery to take place before one of the

links along the route disconnects. Since the link duration is predicted accurately,

route prediction updates are not implemented in this protocol. Therefore if

this protocol is used with inaccurate link duration predictions, the function of

a standard AODV protocol would take place to re-establish a route when a link

is broken. With perfect prediction, this should be a less likely event.

In this chapter, comparisons between the performance of the standard AODV

and AODV-PP are made using network simulations and analysis, by evaluating

the data delivery ratio, the average lifetime of the routes and the average route

setup/discovery time. This chapter first gives an overview of the AODV routing

protocol in Section 4.2, then Section 4.3 explains how AODV-PP works and

its differences to standard AODV. Section 4.4 describes how OPNET1 is being

used in the research, the changes made to OPNET’s AODV model to perform

standard AODV routing, the modifications made to implement AODV-PP, and

the tracking model implemented for making link duration predictions. In Section

4.5, an evaluation is made of the difference between AODV and AODV-PP

routing protocols and the advantages and disadvantages of using prediction is

discussed.

4.2 AODV Routing Protocol

AODV [16] is selected to be the benchmark routing protocol, as it is one of the

most commonly used reactive routing protocols. There is much literature about

AODV [16, 104] and it has been implemented in OPNET [105]. This section

presents an overview of the AODV routing protocol.

1OPNET is a network modelling and simulation tool
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4.2.1 Route Discovery

AODV is a reactive distance vector routing protocol. This means that a route

will only be discovered when it is needed. When a node has a packet to

send and there is no route to the destination node, a route request (RREQ)

packet will be broadcast from the source node to search for a route, and this

node waits for a route reply (RREP) packet from the destination node for a

duration of RING_TRAVERSAL_TIME2. Upon receiving the RREQ packet,

the “Hop Count” field is incremented. If the hop count is greater than the

NET_DIAMETER3, the RREQ packet is discarded.

When a node receives the first RREQ packet, it checks if it has a valid route to

the source. If so, and if the RREQ packet has a higher source sequence number,

or has the same source sequence number and a smaller hop count (i.e. shorter

path), it updates the routing table (or the “route entry”4) with the new routing

information from the RREQ packet. Any subsequent RREQ packets that do not

meet the criteria above will be discarded.

If the receiver of the RREQ packet is an intermediate node, and its

“destination-only” flag is enabled, then broadcast the RREQ packet. Otherwise,

a RREP packet can be sent back to the source node. The purpose of the

“destination-only” flag is explained in more detail in Section 4.2.4. Alternatively,

if the receiver of the RREQ packet is the destination, and the RREQ packet has

not been discarded, the destination node sends a RREP packet back to the source

through the path that the RREQ packet has taken.

Meanwhile at the source node, if a RREP packet has not been received by the

2RING_TRAVERSAL_TIME is how long the source will wait for a RREP after a RREQ

packet has been sent. This is calculated using a formula specified in the AODV standard, as

shown in Table D.1 of Appendix D.1.
3NET_DIAMETER is the maximum number of hops allowed between two nodes in the

network. See Table D.1 in Appendix D.1 for the default value specified in the AODV standard.
4“Route entry” is a structure in OPNET’s AODV model that records the current routing

information for a specific destination node. The routing information (variables) of an AODV

route entry are listed in Table D.2 of Appendix D.2.
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source after timeout, the source will broadcast another RREQ packet with a

longer timeout period and a higher Time-To-Live (TTL) value. Note that the

TTL value can be used to limit the radius of the route search, which can be

used to reduce the protocol’s overheads. This process repeats until a maximum

number of retries has been reached, in which case, the packet(s) queued to be

sent to the destination will be discarded. If a RREP packet has been received

by the source, all the queued packets will be sent to the destination using the

discovered routes.

4.2.2 Route Maintenance

When a node has one or more active routes, a HELLO packet will be broadcast

at every HELLO_INTERVAL5. If a node has not received a HELLO packet from

its neighbour of an active route for more than ALLOWED_HELLO_LOSS6 ×
HELLO_INTERVAL, the node will consider that the link to this neighbour is

lost, so the route to this neighbour will be set to inactive.

4.2.3 Route Repair

When a link breaks in an active route, if “local repair” is enabled, and the

destination was less than MAX_REPAIR_TTL7 hops away, the node would

repair the route locally by broadcasting a RREQ for the destination. If data

packets arrive during the route discovery period of a “local repair”, these

packets will be buffered. When the discovery period ends, and no RREP has

been received for that destination, the buffered packets will be dropped and

5HELLO_INTERVAL is the time interval between two HELLO packets from the same node.

See Table D.1 in Appendix D.1 for the default value specified in the AODV standard.
6ALLOWED_HELLO_LOSS is a constant value. See Table D.1 in Appendix D.1 for the

default value specified in the AODV standard.
7MAX_REPAIR_TTL is the maximum number of hops allowed for an intermediate node to

repair a link. See Table D.1 in Appendix D.1 for the calculation of the parameter in the AODV

standard.
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a route error (RERR) message will be broadcast to all the precursors of the

destination. Although “local repair” may reduce data packet loss, it may cause

the applications to fail, due to the increase in end-to-end delay of the buffered

packets, and the increase in the number of hops to the associated destinations.

If “local repair” is disabled, the node will broadcast a RERR message to the

precursors of all the destinations using that broken link. Upon receiving a RERR

message, the node will set the routes to the unreachable nodes to inactive and

broadcast a RERR message to the precursors until there are no more precursors.

The inactive route will be removed from the route table if it has been inactive for

a DELETE_PERIOD8. The down side to this configuration is that all the data

packets that are destined for the unreachable nodes will be dropped.

4.2.4 Destination-Only Flag

A “destination-only” flag can be used to ensure that only the destination is

allowed to send a RREP packet. Although this setting causes longer route

discovery time, it ensures that the shortest path (with the least number of hops)

can be found at the time of route discovery. When this flag is disabled, an

intermediate node is allowed to send a RREP packet upon receiving a RREQ

packet if it has a valid route to the destination.

When the “destination-only” flag is disabled, the route discovery time may be

reduced. This is because the RREQ packet does not need to reach the destination

if the intermediate node has a route to the destination. However, there are a few

down sides to this:

1. One problem is that it limits the chance of finding the best possible route;

2. Another problem is that it can cause more route changes due to the

possibility of receiving multiple RREPs when there are more than one

intermediate nodes having a route to the destination; and

8DELETE_PERIOD is the maximum time that allows for a node to keep an inactive route to

the destination. See Table D.1 in Appendix D.1 to see how this parameter is obtained.
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3. The third problem is that only the route discovered by the destination

would be used if the RREQ packet can reach the destination, regardless

of whether or not the intermediate nodes have a route to the destination.

This is because the sequence number is incremented only when the RREQ

reaches the destination, and only the RREP with the highest sequence

number will be considered.

However, the option of disabling the “destination-only” flag is not functioning

properly in OPNET (see Section 4.4.4.2 for an explanation), therefore this flag

is enabled for all simulations.

4.3 AODV with Perfect Prediction

AODV with Perfect Prediction (AODV-PP) has been designed and implemented

for this research in order to make comparisons with standard AODV. It has been

implemented in a simulated environment where the link durations of all the links

in the network are known, i.e. with the assumption that “Perfect Prediction”

can be achieved. (It has also been designed so that routing without perfect

prediction can be easily implemented as well - this is described in Chapter 5.)

Using OPNET simulations, ”Perfect Prediction” can be obtained when the paths

of all the nodes in the network are predetermined and the transmission range is

constant. The prime purpose of using AODV-PP is to enable AODV to select

routes based on the duration or the stability of the routes while searching for

a route to the destination, with the assumption that the initial route durations

estimated were accurate, so that no duration updates are needed. Therefore, it

is designed to operate only when the route duration predictions are accurate.

With this assumption, the HELLO packets that were required for AODV can be

eliminated. AODV-PP is different to AODV in a number of ways as described in

this section.
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4.3.1 Route Discovery

As with AODV, route discovery is only required when the node needs to send

to the destination, and no route is available. When a data packet arrives from

the higher layer of the Open Systems Interconnection (OSI) protocol stack for

an unknown or an inactive destination, a RREQ packet will be broadcast to

search for the destination, similar to AODV. However in AODV-PP, the RREQ

packet requires an additional field, called “Pathchange Time”, to keep track of

the estimated path-change time of the return route. This enables the intermediate

and destination nodes that have received the RREQ packet to select the route

with the longest route lifetime, and to establish a route back to the source node

with an estimated route expiry time set to the estimated path-change time. The

format of the RREQ packet structure for AODV-PP is illustrated in Appendix

B.1.1.

When a RREQ packet is received by a neighbouring node, the following RREQ

packet fields are updated:

1. Hop Count - This field is initiated to zero by the source, and is

incremented by each receiver of the RREQ packet; and

2. Pathchange Time - This field is initially set to infinity by the source, and is

updated to the minimum value of the previous link’s estimated link-change

time and the “Pathchange Time” field of the received RREQ packet.

The previous hop’s route entry is updated if there is a route entry to the previous

hop of the RREQ and the estimated link-change time is longer than the route

expiry time of the route entry. Alternatively, add a route entry for the previous

hop if there there is no existing route entry. This is to maintain the neighbour’s

connectivity. In AODV-PP, the route entry is a structure that records the current

and the future (pre-route) routing information to a specific node. Note that if the

current routing information is valid, all the new routing information updates will

be stored temporarily as “pre-route” information until a RREP packet is received

(for intermediate nodes) or until it is time to send a RREP (for destination nodes).

The routing information of a route entry is listed in Tables D.2 and D.3 of
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Appendix D.2. (The variables in Table D.3 are added to AODV for implementing

AODV-PP.)

The node will discard the RREQ packet if one of the following conditions is true:

1. If the new predicted path-change time is too short (i.e. less than the current

time);

2. If the source route entry exists, and the new source sequence number of the

received RREQ packet is less than the current and the pre-route sequence

number of the route entry; or

3. If the source route entry exists, the new source sequence number is equal

to the pre-route sequence number of the route entry, and the new predicted

path-change time is less than the pre-route route expiry time.

If the RREQ packet is the first RREQ received with the same source and

destination node, the node does one of the following tasks:

1. It creates a new route entry for the source if no source route entry exists;

or

2. It updates the source route entry with the information from the received

RREQ packet if one of the following conditions is true:

(a) The source route entry is not valid; or

(b) The new source sequence number is greater than the pre-route

sequence number.

Alternatively, if a subsequent RREQ packet is received, the node updates the

source route entry if one of the following conditions is true.

1. The source route entry is not valid;

2. The new predicted path-change time is longer than the pre-route route

expiry time; or

3. The new source sequence number is equal to the pre-route sequence

number, and the new predicted path-change time is greater than the

pre-route route expiry time.

If the node is not the destination of the RREQ packet, the node will broadcast the



68 CHAPTER 4. AODV WITH PERFECT PREDICTION

RREQ packet, and set a pre_route_expiry_timer9 to end the pre-route session if

no RREP is received before timeout. Otherwise if the node is the destination, it

waits for a period of time that is set according to the TTL value in the IP header

that encapsulates the received RREQ packet, before sending a RREP packet

at timeout set by the rrep_send_timer10. The pre_route_expiry_timer, tPreRexp,

and the rrep_send_timer, tRrepSend , can be computed using Equation 4.1 and 4.2

respectively.

tPreRexp = t0 +2.0× tNT × (NT T L−1+Btimeout) (4.1)

tRrepSend = t0 + tNT ×NT T L (4.2)

where t0 is the time of the first RREQ arrival; tNT is the

NODE_TRAVERSAL_TIME11; NT T L is the TTL12 value; and Btimeout is

the TIMEOUT_BUFFER13.

The rrep_send_timer, tRrepSend , is set by the destination node to wait for any

subsequent RREQs to allow the destination to choose the path with the longest

route lifetime and send a single RREP packet. The packet structure of the

RREP packet for AODV-PP is illustrated in Appendix B.1.2. The advantages

of using the rrep_send_timer is to reduce the number of RREPs sent, and can

prevent multiple RREPs to be sent through different paths, which can minimise

the number of route changes with very short route duration and can reduce the

routing overhead. The drawback is that this can induce extra delay in route

discovery. However with AODV-PP, a route can be re-established before any

9The pre_route_expiry_timer is the time for the destination node to send a RREP packet, or

for the source and the intermediate nodes to end the pre-route state. This timer is added to the

route entry to implement AODV-PP, and is listed in Table D.3 of Appendix D.2.
10rrep_send_timer is one of the new variables added to the route entry to implement AODV-PP.

See Table D.3 in Appendix D.2.
11NODE_TRAVERSAL_TIME is the estimate time for a node to transmit a packet to another

node. See Table D.1 in Appendix D.1 for the calculation of this parameter.
12TTL is an integer that limits the number of hops of the RREQ packet.
13TIMEOUT_BUFFER is an integer used in AODV to allow extra time for the

RING_TRAVERSAL_TIME to end. See Table D.1 in Appendix D.1 for the default value

specified in the AODV standard.
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link becomes unavailable14, hence the problem with delay in route discovery

may only be a once-off problem for each source-destination pair.

The difference between the RREP packet in AODV and AODV-PP is that a

“Pathchange Time” field is added to the RREP packet to record the estimated

path-change time from the destination back to the source. There are two reasons

for using this field:

1. One reason is so that the intermediate node will know the route expiry

time between itself and the destination, rather than the route expiry time

between the source and the destination; and

2. The other reason is to ensure that the source node is getting the latest route

expiry time. Although this is not necessary for AODV-PP, this field is

useful for routing with inaccurate predictions.

In AODV-PP, the “Lifetime” and the “Pathchange Time” fields of the RREP

packet are initially set to the route expiry time of the route to the source

and infinity respectively by the destination node. When a node receives a

RREP packet, the “Pathchange Time” field is updated to the minimum of the

estimated link-change time of the last hop to the destination node and the existing

“Pathchange Time” field of the RREP packet.

If the receiver node of the RREP has no route entry to the destination, it sets up

a new route entry with the route expiry time set to the new path-change time.

Alternatively, a route entry to the destination exists, then update the route entry

according to the received RREP packet if at least one of the following cases is

true:

1. If the route entry is invalid;

2. If the destination sequence number of the RREP packet is greater than the

sequence number of the route entry; or

3. If the sequence numbers are equal and the updated “Pathchange Time”

field of the received RREP packet is greater than the existing route expiry

time in the route entry.

14Further information about route re-establishment can be found in Section 4.3.2
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Once the route entry is updated, if the node that has received the RREP is the

source, it starts sending the queued data packets. If not, the node checks if it

has a route entry to forward to the source. If the route entry does not exist, then

the RREP packet is dropped. Otherwise, if the pre_route_expiry_timer has not

expired, then update the route entry with the latest pre-route information that was

obtained from the RREQ. The node then forward the RREP packet to the next

hop of the forward route entry if the current node is not the source.

To illustrate the differences between the route discovery process of AODV and

AODV-PP, some state diagrams are presented in Figures 4.1 to 4.4. Figures 4.1

and 4.2 show the route discovery process for AODV in two different situations

over the same network scenario. The other two figures show two different

situations for AODV-PP. The difference in the two situations is the order of

the RREQ packet received by the receiver. The order of the arrival of the

RREQ packets at the intermediate nodes and the destination may affect the

route being selected. For all the diagrams, the coloured arrows represent a route

discovery through different paths. The sharp brighter coloured arrows represent

the propagating RREQs that will be accepted by the receivers, and the lighter

coloured arrows are the ones that will be rejected.

The route discovery processes in these diagrams are indicating that the route

discovery process of both AODV and AODV-PP begins by broadcasting a RREQ

in the same way. A RREQ packet is broadcast by the [src] node to search

for the [dest] node, and is received by the neighbouring nodes, [ f ast1] and

[slow1]). Each receiver of the RREQ packet will process the received packet,

and re-broadcast it to its neighbours. However, for the 2nd hop shown in Figures

4.1 and 4.2 show that in AODV, the node, [slow1], would discard the RREQ from

the node, [ f ast1], as there are more hops in the RREQ from [ f ast1] compared

to the previous route found. Whereas the “2nd hop” diagrams from Figures

4.3 and 4.4 indicate that in AODV-PP, [slow1] would accept the new route,

and forward [ f ast1]’s RREQ, which has a longer route lifetime. The process

continues until the destination is found. The route discovery processes presented
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in the state diagrams for AODV indicate that AODV is able to find its “best”15

route with the least number of hops, but it may have a short lifetime. And the

route discovery processes presented in the diagrams for AODV-PP illustrate that

AODV-PP selects the route with the longest lifetime, but with more number of

hops.

These state diagrams have shown how AODV-PP selects the most long-lived

route, while AODV selects the path with the least hops, which may have a shorter

route lifetime. Therefore, if there are links with different longevity in a mobile

network, AODV may have a higher tendency to find routes with shorter lifetimes,

while AODV-PP will be able to find the ones that are the most long lasting.

4.3.2 Route Re-establishment

In AODV-PP, the source node is required to find a new route before a link

becomes unavailable. To achieve this, the source estimates the time that it may

take to re-route before the route expiry time, and sets the pre_route_start_timer16,

tRrepSend . When the pre_route_start_timer is up, a Pre-Route RREQ (PreRREQ)

packet is broadcast.

The pre_route_start_timer, tPreRREQ, is defined in Equation 4.3

tPreRREQ = tRexp− tMaxRingTrav (4.3)

where tRexp is the current route expiry time of the route entry; and tMaxRingTrav is

the MAX_RING_TRAVERSAL_TIME that is defined as:

tMaxRingTrav = 2.0× tNT × (Nd +Btimeout) (4.4)

15The meaning of “best” is protocol dependent.
16The pre_route_start_timer is the time to send Pre-Route RREQ (PreRREQ), and it is one of

the variables added to the route entry to implement AODV-PP. This timer is listed in Table D.3

of Appendix D.2.
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where tNT is the NODE_TRAVERSAL_TIME; Nd is the NET_DIAMETER;

and Btimeout is the TIMEOUT_BUFFER. These three parameters used here are

the default values specified in the AODV standard [16], and are replicated in

Table D.1 of Appendix D.1.

Similar to what happens when a node receives a RREQ, the nodes that have

received the PreRREQ packet and have a valid route to the source will keep

a record of the new best possible return route to the source for update after a

timeout, while it continues to use the old route to forward the data packets. If the

received PreRREQ has a better route duration, it will update the “Pathchange

Time” and the “Hop Count” fields of the PreRREQ and re-broadcast the

PreRREQ packet. At intermediate nodes that have broadcast the PreRREQ, the

pre_route_expiry_timer is set. If this timer expires before the receipt of a RREP,

the new pre-route record will be discarded.

Upon receiving a PreRREQ at the destination, and if it is the first PreRREQ

received from the source, the pre-route record of the route entry for the source

will be updated, and wait until the rrep_send_timer is up. Between the current

time and the end of the rrep_send_timer, if another PreRREQ from the same

source arrives, and has a longer route expiry time, the pre-route route entry

will be updated with this new route. When the rrep_send_timer expires, the

destination will send a RREP back to the source, as explained in Section 4.3.1.

4.3.3 Route Maintenance

As previously mentioned, route maintenance is not needed for AODV-PP,

as the prediction is assumed to have 100% accuracy. However, to ensure

that this protocol will not fail with imperfect prediction, route maintenance

is implemented. This is achieved by estimating the link-change time upon

receiving a data packet. This enables a node to update the connectivity status

(and the route expiry time) of its neighbouring nodes, so that if a link is

disconnected, the routes that ultilse the disconnected link can be removed
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immediately. (As opposed to AODV, a node does not know a neighbouring node

is disconnected until some time after the link becomes unavilable.)

If a data packet is received for a destination that the node has no valid route entry

to, a RERR packet is sent or broadcast to the precursor nodes. Upon receiving a

RERR packet, the node will create and forward a new RERR packet containing

any destinations in the node’s routing table with one or more precursors that are

listed as unreachable in the received RERR packet. If the node is the source, a

subsequent RREQ is broadcast for route re-establishment.

4.4 Network Modelling and Implementations

As mentioned previously, network modelling and simulations are used to

compare and analyse AODV and AODV with Perfect Prediction. This can be

done using existing network modelling and simulations tools. Products such as

NS-2 [106], OPNET [105], Qualnet [107] and OMNeT++ [108], are some of the

most commonly used network simulators [109–112].

OPNET is chosen to be the network simulator used for this study, as it is a

proprietary network modelling and simulation tool, and it is one of the most

widely used and well developed commercial communication networks tools

available, with reputation for model fidelity, and has client support. As such, it

has a large selection of built-in models for the OSI protocol stack from physical

layer up to application layer, so a MANET simulation with standard protocols

can be set up and executed very quickly. On the other hand, it is highly flexible,

allowing the users to modify the built-in models and to implement new protocols

and models using C/C++ programming language. These models can be very

simple with low fidelity, or very complex with high fidelity. This enables users

to build networks with simple but less realistic nodes, or networks with detail

and more realistic nodes with the full OSI stack.
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To accomplish this study, modifications have been made to a number of existing

models, and new models have been added to implement prediction in AODV.

A tracking model is implemented and incorporated to each mobile node in

OPNET to obtain and predict the locations of the nodes, and to predict the

time when link’s connectivity will be lost. The relevant OPNET issues with the

AODV model have been addressed. OPNET’s AODV routing protocol model

has been modified to access and utilise the prediction information for routing

using AODV-PP. This was a major modification of OPNET’s AODV protocol

and required extensive programming in the OPNET environment.

This section of the chapter explains the models used for this study, and the issues

in the existing models, and the modifications made to the OPNET models.

4.4.1 MANET Model

In OPNET, a MANET is modelled by placing some wireless nodes onto a

rectangular field, as shown in Figure 4.5. Each of these wireless nodes is a

node model. The white lines represent the motion of the nodes. This means that

the nodes that have no white lines attached to it indicate that those nodes are

stationary. Notice that there is a node that looks different to the others labelled

“SmartMAC”. This node is a central configuration tool that is used to configure

the “Smart MAC” model’s attributes that are common to all the nodes in the

network to perform physical layer functions which is to be explained in Section

4.4.3.

Figure 4.6 shows a node model that consists of various process models (the

square blocks) that are used to model each node of the MANET. This node

model consists of a physical layer, a Medium Access Control (MAC) layer,

an Address Resolution Protocol (ARP) layer, a routing layer, a transport layer

and an application layer. The physical layer consists of a transceiver port and a

receiver port. The MAC layer uses the “Smart MAC” model. The ARP layer is

modelled by the “ARP” model. The routing layer consists of the Internet Protocol
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Figure 4.5: OPNET - A 5-node network model of a MANET.
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(IP) and the AODV/AODV-PP protocols. User Datagram Protocol (UDP) is

used by the transport layer. The application layer is implemented by a source

generator, “traf_src”.

Figure 4.6: OPNET - A sample of a node model.

The functions of a node can be implemented by one or more process models. A

process model is a state diagram which can be programmed in C/C++ to imitate

any protocol in the OSI layer stack or other processes to send, receive and process

packets to implement the function of a particular protocol.
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4.4.2 Tracking Process Model

OPNET built-in models do not come with any tracking functions to make

predictions. Hence, a tracking process model, called “tracking_mgr” (see Figure

4.7), has been designed and written in OPNET to make predictions. This process

model is added to all the nodes in the network (i.e. the node model). The

“tracking_mgr” model is designed to make perfect link duration predictions by

calculating the exact times when the link changes will take place by using the

full knowledge of the location and motion (i.e. velocity) of all the nodes in the

network. Although the “tracking_mgr” model is designed to make perfect link

duration prediction, it is implemented in a way so that other prediction methods

may be added in the future for future research.

Figure 4.7: OPNET - The “tracking” process model.
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The “tracking_mgr” model has the following attributes that can be easily set or

modified by the user from the network model:

1. Tracking - This determines whether tracking is enabled or disabled. This

can be set to ”disable” if prediction is not needed for the routing protocol;

2. Delay - It specifies the delay between the time its own location is sent and

the time location information of other nodes are received;

3. Sampling Interval - The sampling interval in seconds is the time gap

between sending its own positions;

4. History Size - The number of previous location information records that

a node will use for making future predictions (this is not used for perfect

prediction);

5. Prediction Method - When there are other prediction methods

implemented, a prediction method can be selected; and

6. Prediction Parameters - This includes the Future Size indicating the

number of future predictions that will be made, Connect Time Enable

indicates whether the link connection time will be predicted, Link State

Enable indicates whether the link states of the links will be predicted, and

SNR Enable indicates whether the Signal-to-Noise Ratio (SNR) will be

predicted.

Initially, at the beginning of the simulation, this model computes the link-change

times between all the nodes in the network. This will help analyse the accuracy

of prediction when different prediction methods are implemented.

During a simulation, this “tracking_mgr” process is interrupted periodically at a

time given in the “sampling interval” attribute to retrieve the location of its own

node. The node then sends its own location information to all other nodes in

the network (this is done without using the wireless medium). After a “delay”

period, the other nodes will obtain the locations of all the other nodes. Each

node will store a series of all the nodes’ locations limited by the “history size”

specified by the user.
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4.4.3 Physical and MAC Layer Models

The physical and the Medium Access Control (MAC) layers control the

point-to-point transmission between any two nodes of the network. OPNET

provides a number of different built-in models for the MAC layer such as the

“Wireless LAN” model, the “WiMAX” model, the “TDMA” model, and the

“Smart MAC” model. The “Wireless LAN”, “WiMAX” and the “TDMA”

models imitate the IEEE 802.11 WiFi standard, the WiMAX standard and

Time Division Multiple Access (TDMA) standard respectively, where as “Smart

MAC” is a model that has no protocol, it simply calculates the validity of a

point-to-point link by distance calculations without any real MAC protocol.

For the purpose of this study, the physical and the MAC layer are simplified

by using “Smart MAC”, as shown in Figure 4.8. Using this “Smart MAC”

model, the nodes are able to transmit packets to the receiver at anytime without

collisions as long as the two nodes are in range, which is determined by the

distance between the two nodes, and that the receiver will always be able to

receive the packet transmitted by the sender.

This process model has been modified so that it provides an option to the

user to choose to transfer neighbours’ connectivity and location information to

AODV-PP with every packet transfer (even when there is no traffic sent to a

specific node). This modification can provide more location information data

to AODV-PP to make more accurate predictions. However, there is a constant

stream of traffic generated by the source nodes in the simulation scenarios

designed for this study, so this option is not activated.
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Figure 4.8: OPNET - The “Smart MAC” process model.
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4.4.4 Routing Layer Models

AODV routing protocol is the focus of this thesis, thus it is important to ensure

that it is functioning correctly. In order to verify the AODV model, small network

simulations were designed to test and verify the AODV routing protocol. The

tests have shown that there are some issues with the current OPNET AODV

simulation that must be corrected before the AODV-PP can be implemented.

These issues and the solutions have been forwarded to the OPNET support team.

They have noted and have agreed on the issues on the OPNET Support Center

website (Software Report ID 153334) [113], and they have agreed on some of the

solutions. These problems are explained later in this section, and the solutions

are provided in Appendix A. In the routing layer, simulations have shown that the

performance of AODV in OPNET has a very high packet loss ratio. Furthermore,

the default setting of enabling the “local repair” function and the disabling the

"destination-only" flag have caused some issues in some simulation scenarios

that have been tested.

Identifying the problems in a routing protocol is not an easy task. This is

because routing protocol problems are not simple programming bugs that will

give errors while executing. In many cases, the protocol appears to work fine in

simulations, i.e. routes can be found and packets can be sent to the destination,

but poor routing performance may be observed. However, because poor routing

performance in MANET can be caused by many reasons, such as the mobility

of the nodes, the bit-error-rate, the signal-to-noise ratio, packet collision,

contention, jitter etc. It is difficult to know what causes the routing performance

to drop. Therefore, to eliminate these ambiguities, a “Smart MAC” model (as

mentioned in Section 4.4.3) with no errors, no collisions, no packets drop and

no contention has been used, and all jitter delays has been removed from the

protocols. Even with these settings simplifying the problem, it is difficult to find

the problems in routing when the protocol works, as it can perform the functions

of a routing protocol, but only lacks the performance. Furthermore, there are

occasions when the problems seem to have gone away after changing some

parameters, but some subtle problems reappear after expanding the network size.
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In which case, only careful analysis of the results can distinguish the problems

in the routing protocol.

Once it is realised that there are problems, identifying what causes the problem

is very time consuming, as detailed step by step traces often need to be used.

4.4.4.1 OPNET’s AODV - Local Repair Issue

It is found that when the “local repair” option in OPNET is enabled, there are

cases when routes may become very unstable. For example, consider the 5-node

network scenario as shown in Figure 4.5 on page 79. The 5 nodes are: [src],
[dest], [static], [mob1] and [mob2]. In this scenario, the [src] node is required to

send packets to the [dest] node, with the [src] node being permanently in range

with the [static] node. In this network, there is no path available to the destination

initially. The path will become available when the mobile nodes, [mob1] and

[mob2], move to some positions where they can form a route between the source

and the destination.

Initially in this scenario, the [src] node is in range with the [static] and the [mob2]
nodes, while the [dest] node is in range with the [mob1] node. At time 150s, the

[mob1] node begins to move towards the southwest direction at a speed of 2m/s.

When the node, [mob1], is in range with the [static] node and later with the [src]
node, they are then in range with one another. The node, [mob1], then stops for

44s and starts moving again at a speed of 10m/s, so it drops out of range from the

[dest] node, and then later drops from the [static] node. When the node, [mob2],
moves towards the northeast at time 171.44s at a speed of 10m/s, it first becomes

in range with the [dest] node, then falls out of range with the [src] node, and later

also drops out with the [static] node. Finally the node, [mob2], turns around and

moves back towards its original location at a speed of 1m/s. In this scenario, the

“local repair” function fails in the following situation:

1. The first established route to this scenario is: [src]→ [static]→ [mob1]→
[dest].
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2. When link [mob1]→ [dest] breaks, [dest] sets the routes to both [src] and

[mob1] as invalid.

3. [mob1] sends a RERR to [static].
4. In the mean time, [src] has a data packet for [dest], so it sends the data

packet to [static], as [src] does not yet know the route to [dest] is invalid.

5. [static] receives the RERR from [mob1], and sends a RERR to [src].
6. [src] receives a RERR from [static], and removes its route to [dest].
7. [static] receives a data packet for [dest] from [src], but has no route to

[dest], thus it broadcasts a RREQ and queue the data packet.

8. [mob2] receives a RREQ from [static], and broadcasts the RREQ.

9. [dest] receives a RREQ from [mob2] (at this stage, [dest] and [mob2] are

in range), and sends a RREP back to [static] via [mob2]. Now ([dest] has

active routes to both [static] and [mob2]).
10. [mob2] receives the RREP from [dest] to [static], and forwards it to [static].
11. [static] receives the RREP from [dest] via [mob2], so [static] now has

a path to [dest] (i.e. [static] → [mob2] → [dest]), and sends the queued

packet to [dest].
12. [src] has a data packet for [dest], but does not have a route to [dest]

(because it had received a RERR from [static] in step 6). So [src]
broadcasts a RREQ.

13. [static] receives a RREQ from [src], and has a route to [dest]. Thus it sends

a RREP to [src].
14. [mob1] also receives the RREQ from [src], but has no route to [dest], so it

broadcasts the RREQ.

15. [src] receives the RREP from [static], but it has the same sequence number

as the current sequence number, no changes is made to the route to [dest].
(Route = [src]→ [static]→ [mob2]→ [dest]).

16. [mob2] receives a RREQ from [mob1], and has a route to [dest]. It sends a

RREP to [src] via [mob1].
17. [mob1] receives the RREP from [mob2], and forwards it to [src].
18. [src] receives the RREP from [mob1], but it has the same destination

sequence number as the existing sequence number, no changes is made

to the route to [dest] (Route = [src]→ [static]→ [mob2]→ [dest]).
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19. [dest] only knows that it has a route connection with [static] and no other

nodes, but [static] is not the source of the data packets, so the route expiry

time for [static] is not updated, and thus expires due to not receiving any

data packets from [static]. As a result, there is no more active route exist

in [dest], and hence stops broadcasting HELLO packets.

20. [mob2] stops receiving HELLO packets from [dest], and perceives that its

link to [dest] has been broken, so it broadcasts a RERR packet.

21. [src] has a data packet for [dest], so it sends the data packet to [static], as

[src] does not yet know the route to [dest] is invalid.

22. [dest] receives the RERR from [mob2], but has no unreachable destination.

23. [static] receives the RERR from [mob2], removes the active route to [dest],
and sends the RERR to [src].

24. [src] receives the RERR from [static], and removes the active route to

[dest].
25. Repeat from step 7.

The scenario described above shows that with “local repair” enabled, it is

possible that this routing protocol can continue to loop continuously with RREQ,

RREP and RERR packets if the [src] node continues to send a data packet before

it has received a RERR from node 3. This is due to the fact that during “local

repair”, the intermediate node can send a RREQ to the destination, and the

destination falsely believes that the intermediate node is the source. Hence, the

route expiry time is not updated as it receives a data packet from the [src] node.

When the only active route at the [dest] node expires, it stops sending HELLO

messages. Eventually, its neighbours disconnect because no HELLO messages

have been received, and activates a RERR to be sent. If the data packet from

source comes at the right time, it can trigger another “local repair”. This problem

exists in the fundamental OPNET AODV model.

According to the scenario above, there seems to be a number of problems with

the “local repair” function. These problems include:

1. If “local repair” is enabled and the destination is less than

MAX_REPAIR_TTL hops away, RERR should not be sent to the
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precursor nodes until after checking if a route to the destination can be

found;

2. The destination sequence numbers from the RREPs of the intermediate

nodes are smaller or equal to the the ones from the destination node. So

the source would not accept the routes from RREPs that came from the

intermediate nodes;

3. The route expiry time in OPNET is not updated when a node receives a

data packet that came from a source that the node has no valid route entry.

This can cause the route entry to the previous hop to end too early; and

4. The neighbour connection time in OPNET is not updated if the route of

the received data packet’s source does not exist in the routing table. This

causes routes to become invalid even when it should be available.

It is perceived that the first problem identified above can be avoided if the

“local repair” function is disabled. The second problem is addressed in Section

sec:AODV - Destination-Only Flag Disabled Issue. The last two problems are

addressed in Sections 4.4.4.3 and 4.4.4.4.

4.4.4.2 OPNET’s AODV - Destination-Only Flag Disabled Issue

When the ”destination-only” flag is disabled, the intermediate node is able to

send a RREP back to the source if the node has a route to the destination.

This may cause a problem where the destination can be using a different route

to the intermediate node(s). In the scenario mentioned in Section 4.4.4.1, the

destination ([dest]) node would be using the path, [dest]→ [mob1]→ [static]→
[src], as it does not know about the path change, while the source and all the

intermediate nodes ([src], [static]-[mob2]) are using [src]→ [static]→ [mob1]→
[mob2]→ [dest]. The destination may not know about the new route. Although

this does not seem to create much problems with this small network. This can be

an issue when the network is big. If this causes problems to routing, the problem

can be avoided by enabling the ”destination-only” flag.
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4.4.4.3 OPNET’s AODV - Route Expiry Time Update Problem

In AODV, upon receiving a broadcast packet from a neighbour, the route expiry

times for all the relevant routes using that neighbour as their next hop are

updated. However, in OPNET’s AODV, only the route expiry time of the

neighbouring node gets updated. This is because the code to support route expiry

time updates to all the relevant routes is missing. Thus, it causes the routes

to drop out more frequently than it should, and hence more route setups were

required. This can be fixed by adding a few lines of code to check all the routes

in the routing table and update the route expiry time of the relevant route entries.

The solution to this problem is given in Appendix A.3.

4.4.4.4 OPNET’s AODV - Neighbour Update Problem

In standard AODV, when a HELLO packet is received, the route expiry time of

all the routes that use the source of the HELLO packet for its next hop need

to be updated. In OPNET, upon receiving a HELLO packet, only the route

expiry time of the neighbouring node is updated, the route expiry time of all

other routes using that neighbouring node are not updated. This causes link

timeouts to occur, and eventually stop transmitting HELLO packets when all

its neighbours’ route expiry time have expired. The pseudo code in Appendix

A.4.1 shows the modifications made to fix this problem. This problem has been

rectified by OPNET, and a reference to the report of this problem and solution

(Software Report ID 151780) can be found in OPNET’s support center [114].

Furthermore, OPNET’s AODV maintains a neighbour connectivity table that

keeps track of all the neighbouring nodes’ connectivity expiry times. A

neighbouring node is kept connected by performing a neighbour connectivity

update to update its expiry time when a data or a routing packet is received. If this

time expires, the link will be considered to be disconnected, and hence the route

to that neighbour will be removed from the routing table. Just like what happens

when the route expiry time of the route entry to the neighbour ends. Therefore,
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whenever the route expiry time of the neighbour is updated, the connectivity

expiry time in the neighbour connectivity table should also be updated. However

in OPNET’s model, when a data packet is received, the neighbour connectivity

table is not updated while the route expiry time of the neighbour is, causing the

neighbour connectivity expiry time to expire while the link is still valid according

to the routing table, and often the expired neighbour is also physically available.

This causes many RERR packets to be sent unnecessarily, and as a result, routes

get disconnected, and hence, RREQ and RREP are sent to re-establish the routes,

resulting a high routing traffic load on the network. This can be fixed by ensuring

the connectivity expiry times in the neighbour connectivity table are also updated

while the route expiry time of the route entry in the routing table is updated after

receiving a data packet. Again, the solution to this problem is in Appendix A.4.2.

4.4.4.5 OPNET’s AODV - Send RERR Problem

In AODV, when a link break is detected, the related nodes unicast/broadcast

a RERR notifying their neighbours about their unreachable nodes due the link

break. Each node that receives a RERR will check if there are any precursors that

are sending to any of the unreachable nodes through the sender of that RERR

packet. If there are precursors, the node would unicast/broadcast a RERR packet

with its unreachable nodes and a list of unreachable nodes from the received

RERR packet. However, with OPNET’s AODV model, there are times when

some precursors are not informed about the unreachable nodes. It is found

that this problem occurs when a node is checking for precursors for a list of

unreachable nodes, if the last unreachable node in the list only has one precursor,

the node will send the RERR directly to that precursor regardless of how many

other precursors for other unreachable nodes it has previously found. This

problem was detected when a larger network was simulated with more traffic

sending from different nodes. This problem can be fixed by ensuring that when

there are one or more precursors, the RERR is broadcast. The pseudo code for

the solution of this problem is in Appendix A.1.



92 CHAPTER 4. AODV WITH PERFECT PREDICTION

4.4.4.6 OPNET’s AODV - Precursor List Maintenance Problem

This problem in OPNET’s AODV protocol causes a lot of packet drops in the

network. This is because the precursor list is not maintained properly. In order

to ensure the precursor list is maintained correctly, when a data packet for a

destination arrives at an intermediate node, the previous hop of the data packet

should be added to the precursor list of the destination’s route entry if it is not

already added. In OPNET, it is found that there are cases when a route to the

destination was previously set up due to receiving a RREQ from the destination,

and if there is a packet from the application layer arrives for that destination, no

RREQ needs to be sent for route discovery, as it has already got a route to the

destination. However, this creates a problem, because in OPNET the precursor

list for the destination gets updated only when a RREP packet is received or

sent, not when a data packet is received. So it is possible that the precursors

have not been added to the precursor list of the destination in the intermediate

nodes along the route. This problem can be prevented by adding some code that

causes the node to update precursor list of the source route entry whenever a data

packet needs to be forwarded to the destination is received. The solution to this

problem, in pseudo code, can be found in Appendix A.2.

4.4.4.7 Modifications to AODV for Implementing AODV-PP

As explained in Section 4.3, there are differences between AODV and AODV-PP.

Thus, a number of modifications have been made to the AODV model in OPNET

to implement AODV-PP17. A summary of the modifications made to AODV

include:

1. Adding a “Pathchange Time” field to the RREQ packet to enable the nodes

to select the route with the longest lifetime;

2. Upon receiving a RREQ for a destination, the node broadcasts the RREQ if

it has a longer estimated path-change time, and discard it otherwise. (The

pseudo code for handling the arrival of the RREQ packet is illustrated in

17The pseudo code for the modifications listed can be found in Appendix B.
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Appendix B.2);

3. After the first RREQ has arrived at the destination node, the node waits for

a defined period of time for subsequent RREQs with a longer path-change

time before sending a RREP;

4. When it is time for the destination to send a RREP, it selects the return

hop that has the largest estimated path-change time to the source. (See

appendix B.3 for the pseudo code to send a RREP packet upon an interrupt

call at rrep_send_timer);

5. Upon receiving a RREP, store the route information from the RREP into

the route entry to the destination, and change the existing route information

of the route entry to the source with its pre-route information, then forward

the RREP using the new route information. (For further details, see the

pseudo code for processing the arrival of the RREP packet illustrated in

Appendix B.4);

6. New routes are to be pre-fetched (i.e. broadcast a PreRREQ) before the

estimated route expiry time is reached. (The pseudo code for broadcasting

a PreRREQ can be found in Appendix B.5, and the code in Appendix B.7

sets the timer to broadcast the PreRREQ packet);

7. Additional route entry information are required to be stored temporarily

during the “pre-route” stage to keep track of the latest best route for later

use (when a RREP to the source is received);

8. If a RREP has not been received and the route entry is still valid, the

pre-route data will be discarded; and

9. Whenever a data packet is received or being sent, the link lifetime and the

route lifetime are updated. (The code for this is illustrated in the pseudo

code in Appendix B.6).

The modifications listed above may increase the routing overhead traffic due to

the extra RREQ packets that the intermediate nodes may need to be broadcast

due to a higher path-change time is estimated. This may cause an increase of

routing traffic during the RREQ-RREP phase. Routing traffic can be reduced by

making the following modifications:

1. When an intermediate node receives a RREQ, it can wait for a short period
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of time longer to see if more RREQs will arrive, then broadcast a RREQ

with the longest path duration. However, this may further increase the

end-to-end delay during path initialisation; and

2. An intermediate node may choose not to forward the subsequent RREQs

that have a slightly longer path lifetime.

Though the two aforementioned methods for reducing routing traffic can be

implemented in AODV-PP, they are not implemented. This is because not using

these methods is closer to the existing AODV model, and it can ensure that the

path with the longest lifetime to be found.

4.4.5 Application Layer Model

The application layer’s process model that is chosen allows the user to specify

the parameters for traffic generation. This enables the user to determine the

destinations, the packet’s inter-arrival times and the packet sizes of each node,

which can either be fixed or randomly distributed.

This process model has been modified for data analysis purposes. It enables

the destination to keep track of all the packets have been sent by the source

and received by the destination, as well as the ones that are not received. This

is achieved by allowing the source to inform the destination with the packet

ID that is to be sent to that destination. When that packet is received by

the destination, the packet ID information is removed, and the packet received

counter is incremented.

4.4.6 Additional Statistics

Additional statistics are needed to record the data transmitted and received in

AODV. Hence, code is added to the ip_rte_support external C code to trigger a

statistics update in AODV while transmitting or receiving a data packet.
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4.4.6.1 Statistics Collection

The existing statistics information collected in OPNET statistics is not enough

for analysing the routing performance. Firstly, the route duration is not measured

in OPNET’s statistics. The route duration is measured by each source node to

record the duration of the route, from the time when the route is first set up to

the time when the route is either changed (a change in hop count or a change

in destination address) or became invalid. However, if a node did not send any

packet within the duration of the route, that node is not considered to be a source.

In order to calculate the route duration in OPNET, a record of the following

information is added to the AODV-PP model.

1. Route Begins Time - This is added to the routing table entry to keep track

of the time when a route was set up for calculating the duration of a route;

and

2. Source Node Flag - A flag to indicate whether the node is a source or not.

This flag is reset to false if the route has been changed.

Moreover, the statistics collected in OPNET cannot be used to draw error bars.

Therefore, codes have been added to the OPNET models for printing the statistics

into a file, so that the statistics can be plotted in MATLAB. The following

information is collected for detailed analysis:

1. Route duration;

2. Link changes;

3. Packet loss;

4. End-to-End delay; and

5. Routing traffic.

4.4.7 Testing the Models

Tests have been performed to ensure that MANET with AODV and Smart

MAC models works the way it is expected. This is achieved by setting up a

5-node network scenario with three stationary nodes and two mobile nodes in
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a controlled situation, where the two mobile nodes have their own designated

paths as shown in Figure 4.5 on page 79.

The tests have shown that there are some issues with this simplified node model.

There is a long unpredictable delay between the time when a path can be obtained

and when the route is actually found. This delay is caused because the source

does not know when a path will become available, so the RREQs are often not

sent as soon as a path can be obtained, instead, the source would wait until after

its timer expires before sending a RREQ to search for the route. The delay varies

because the timeout timer varies, and a path can become available at different

stage of the RREQ process.

Through the tests, it is discovered that the route that was found was not always

the shortest path when the OPNET AODV model was used. This is because

in the AODV routing model, it has deliberately introduced some jitter while

re-broadcasting the route request packet. This jitter is introduced to either

provide some variation in packet processing time in different computers or to

introduce a random delay so that the packets will be less likely to collide.

4.5 Simulation, Evaluation and Discussion

In order to conduct a comparative study between AODV and AODV-PP routing

protocols to understand how predictive routing affect routing performance, a

discussion on how AODV and AODV-PP are simulated and analysed is presented

in this section.

4.5.1 Simulation Methodology

This section provides a description of the network scenarios used, the simulation

parameters chosen for the scenarios, and the parameters configured for the node
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settings.

4.5.1.1 Network Scenarios

This chapter is aimed to explore the maximum benefits and the trade-offs

between using AODV with perfect prediction and AODV routing protocols. The

network scenarios used for the simulations consist of 24 nodes. The mobility

model used for these nodes is RWP model. This model is chosen as it is

more realistic compared to random walk motions that has no pause times. The

parameters used for the RWP model is the same as that used in Section 3.3.1.

In each network, 12 of the nodes move at one average speed, v1; and the other

12 move at a different average speed, v2. The nodes are placed randomly at

approximately 2 km apart from each other to ensure that there is a route from

one end of the network to the other end at all times. The first set of mobile nodes

move randomly within a local area at average speeds of 0, 1, 2, 3 and 5m/s. The

second set of mobile nodes move randomly within a local area at average speeds

of 1, 2, 3, 5, 10, 20, 30, 50, 60 and 80m/s. 10 variations of scenarios are setup

and executed for each pair of speeds v1 and v2. Each simulation runs for an hour.

A sample of the network scenario is shown in Figure 4.9.

4.5.1.2 Node Configuration

The simulations are configured with the attribute settings for the physical layer,

MAC layer, routing layer, the application layer, and tracking.

4.5.1.2.1 Physical Layer

In the physical layer, the transmission range for all the nodes is fixed at

4000m with no loss.
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Figure 4.9: OPNET - A sample of a 24-node network model scenario.

4.5.1.2.2 MAC Layer

As mentioned previously in Section 4.4.3, “Smart MAC” is a ’near’ ideal

MAC model that is supplied with OPNET. This model is used in place of a

MAC protocol like WiFi to minimise the effects caused by the MAC layer, such

as hidden node collision, has on the routing protocol’s performance. The default

values are used for this model.

4.5.1.2.3 Routing Layer

AODV and AODV-PP are used in the simulations for comparison. Hence

for both AODV and AODV-PP, the default AODV protocol settings set by

OPNET are used, except for the following attributes:

1. Destination-Only - This is enabled, so that only the destination can send

a RREP packet back to the source. This increases the chance of selecting
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the best routes18;

2. Local repair - This is disabled, so the intermediate nodes are not allowed

to repair the route. Thus if a connection is lost, a RERR will be sent to the

source to notify about the link break, so the source can send a RREQ to

search for a new route;

3. Hello interval - This is set to 1 second;

4. New AODV Routing - This is for choosing to use either OPNET’s AODV

or the corrected AODV. For simulations with OPNET’s AODV, set this to

“disable”; and

5. Simple Prediction Routing - This is for choosing whether or not

prediction is used. To use prediction, enable this attribute.

The “simple prediction routing” attribute is used to toggle between AODV and

AODV-PP protocols. When the “simple prediction routing” attribute is disabled,

AODV is used, and when this attribute is enabled, prediction is used.

4.5.1.2.4 Application Layer

Only 8 of the 24 nodes are generating traffic for a couple of randomly

selected destinations. For each “traffic generation parameter”, the “start time”

for the traffic is 100s, the “packet inter-arrival time” is exponentially distributed

with a mean of 0.1s, and the “packet size” is 1024 bits.

4.5.1.2.5 Tracking Configuration

In general, the default values are used. However, there is an option to

disable the tracking model, called “track”, if tracking is not required. Or if

AODV-PP is used, enable the “track” attribute.

18The best route is determined by the route selection criteria. Therefore for AODV, the best

route is the least number of hops, and for AODV-PP, the best route would be the one with the

largest path-change time.
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4.5.2 Comparison Metrics

The following metrics are used to compare the two protocols:

1. Route Lifetime - This is a measure of the duration or lifetime of a route

in seconds without link changes;

2. Number of Link Changes - This is the average of the total number of

link changes occur in each simulation. This measure is used to indicate

whether the number of link changes in a network is proportional to the

average speed of the nodes;

3. Packet Delivery Ratio - The number of bytes of application data packet

received by the destination over the number of bytes of data packet sent by

the source; and

4. Route Setup Time - The time required for route discovery, i.e. to establish

and re-establish a route.

Note that routing overhead is not used for comparison. This is because the

overhead traffic of AODV can be reduced substantially by utilising the MAC

layer traffic to maintain the links of the active routes through cross-layer

interactions, rather than using the HELLO packets. The author realised that a

fair comparison of the overhead traffic between the routing protocols can only be

obtained when this option is utilised. Hence, the routing overhead traffic is not

analysed in this thesis. However, implementing the option of utilising the MAC

layer traffic for route maintenance in OPNET’s AODV model, and comparing

the routing overhead traffic between the protocols, can be left for future work.

4.5.3 Results and Analysis

The results for comparisons between OPNET’s AODV and the corrected AODV

models, and between the corrected AODV and AODV-PP are analysed and

discussed in Sections 4.5.3.1 and 4.5.3.2.



4.5. SIMULATION, EVALUATION AND DISCUSSION 101

4.5.3.1 Comparisons between OPNET’s AODV and the Corrected AODV

In ensuring that AODV-PP is actually comparing with a correctly functioning

AODV, the aforementioned changes were made and verified by comparing

OPNET’s AODV model with the corrected AODV model. In this process, the

corrected AODV protocol model is found to perform much better compared to

OPNET’s AODV in all the scenarios that were used. This can be observed from

the average route lifetime graph and the average packet loss graph presented in

Figures 4.10 and 4.11 respectively.

The graph in Figure 4.10 compares OPNET’s AODV with corrected AODV with

nodes moving at different average speeds. It shows that with OPNET’s AODV,

the average route lifetime for low speeds are not too different compared to the

route lifetime for high speeds. However, with the corrected AODV, the average

route lifetime can be seen to drop exponentially from much longer lifetimes for

low speeds to short lifetimes for high speeds.

The problem in OPNET’s AODV can also be verified by comparing the number

of packet loss in both protocol models. It is shown in Figure 4.11, that the

number of packet loss is so great for OPNET’s AODV that the packet loss for

the corrected AODV is insignificant in comparison.

The corrected AODV model is a fixed up model of OPNET’s AODV model

done according to the AODV RFC standard [16]. These two graphs (Figures

4.10 and 4.11) indicate that the low routing performance achieved by OPNET’s

AODV model is not suitable for making comparisons with AODV-PP, while the

corrected AODV model will provide a fair comparison. Hence the results shown

later in Section 4.5.3.2 are generated using the corrected AODV model rather

than the original OPNET AODV model.
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Figure 4.10: Average Route Lifetime at varying speeds - OPNET’s AODV vs
Corrected AODV.
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Figure 4.11: Average Packet Loss in Bytes at varying speeds - OPNET’s AODV
vs Corrected AODV.



104 CHAPTER 4. AODV WITH PERFECT PREDICTION

4.5.3.2 Comparisons between AODV and AODV-PP

A comparison of the AODV and the AODV-PP protocols was made by

comparing the average route lifetimes, the data delivery ratio and the route

establishment times of the two protocols.

4.5.3.2.1 Average Route Lifetime

Figure 4.12 shows the average route lifetimes for AODV and AODV-PP

when one set of nodes move at an average speed of 0, 1, 2, 3 and 5m/s against

the average speeds of another set of nodes. The graph indicates that the average

route lifetimes for AODV-PP is much longer than AODV for all cases. Although

the route lifetime is greater with AODV-PP than with AODV, in the case where

the shortest path (with the least number of hops) has the longest route lifetime,

AODV-PP has no advantage over AODV.

Furthermore, Figure 4.12 indicates that as the speed of one set of nodes increases,

the average route lifetime decreases for AODV, but it is not always the case for

AODV-PP. This is because AODV selects the shortest path, so the network is

more likely to have a greater number of link changes when the nodes have a

higher average speed, as shown in Figure 4.13, and hence more route changes,

i.e. shorter route lifetime. Whereas with AODV-PP, the path with the longest

lifetime is selected, in which case, more link changes does not necessarily mean

more route changes. Figure 4.13 also indicates that when both sets of nodes

are moving, the number of link change increases as the nodes’ speeds increase,

however, if one set of nodes is stationary, there are more link changes compared

to cases where both sets of nodes are moving.
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Figure 4.12: Average Route Lifetime at varying speeds - AODV vs AODV-PP.
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Figure 4.13: Average Number of Link Changes at varying speeds.
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4.5.3.2.2 Packet Delivery Ratio

Figure 4.14 shows the average data packet delivery ratio for the two routing

protocols when one set of nodes move at an average speed of 0, 1, 2, 3 and 5m/s

against the average speeds of another set of nodes. The graph shows the number

of bits received by the destination over the number of bits sent by the source,

so it scales between 0 (meaning no transmitted packets has been received) and

1 (meaning 100% of the data transmitted has been received). The graph shows

that when perfect prediction is used the packet delivery ratio remains at almost

100% delivery regardless of the speeds of the nodes (the lines on the graph are

overlapped). Whereas without prediction, the packet delivery ratio is slightly

lower in percentage. This is because when there is no prediction, the rapid link

changes in high mobility networks causes more route changes, which increases

the packet loss. But when prediction is used, the routes are re-established before

the route breaks, hence no packet loss. Therefore, the more mobile the network

is, the better the AODV-PP is compared to AODV.

Another point to notice from Figure 4.14 is that the difference in packet loss

between AODV and AODV-PP is not that great. The reason for this is that for

AODV, the time between the link being disconnected and when the source node is

notified about the broken route (which can be estimated to be around 2 seconds

according to the AODV protocol) is relatively small compared to the lifetime

of the route, and the traffic load is low, hence there is not much packet loss.

This is why the data delivery ratio remains quite high on the graph even for

the AODV scenarios with some fast moving nodes. Nevertheless, 2 seconds

without connectivity (which causes packet loss) can cause congestion problems

in Transmission Control Protocol (TCP)19, because TCP assumes that packet

losses are caused by congestions [115, 117].

19TCP congestion problem is a well known problem, and has attracted many researchers, and

thus many solutions have been proposed [115]. However, most proposed solutions still require

further development. Nevertheless, TCP Vegas [116] can be a feasible solution to this problem

as it performs effectively in most cases. It utilises the round trip time of the packets rather than

using packet loss to detect congestion.
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Figure 4.14: Average Data Packet Delivery Ratio at varying speeds - AODV vs
AODV-PP.
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4.5.3.2.3 Route Setup Time

The average route setup time shown in Figure 4.15 indicates that AODV-PP’s

average route setup time is longer than AODV. This is due to the long waiting

time at the destination node of AODV-PP upon receiving a RREQ in an attempt

to wait for subsequent RREQs with longer route lifetimes. However, because

a route can last longer in AODV-PP, it does not need to re-establish a route

as often, thus the total route setup time of AODV-PP is less than AODV, as

presented in Figure 4.16.

Figure 4.15: Average Route Setup Time at varying speeds - AODV vs AODV-PP.
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Figure 4.16: Total Route Setup Time - AODV vs AODV-PP.
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Overall, these results show that when prediction is used, the duration of the routes

are substantially longer and fewer routes change compared to without prediction.

This indicates that the routes of the network are more stable when prediction

is used. Furthermore, the packet delivery ratio and throughput is greater with

prediction due to its ability to find a new route before link breaks. However,

the trade-off for using prediction is that it increases the end-to-end delay as a

more long-lived route may not be the shortest path. Moreover, the route set up

time may be higher too, because the protocol has to wait for more RREQs before

deciding which path to choose. Though it is possible to send a RREP as soon as

a RREQ is received, more RREP will need to be sent if any subsequent RREQ

received came from a more stable path. In which case, there may be more route

changes during route setup.

4.6 Conclusion

The results in Chapter 4 has shown that AODV can be modified to utilise link

duration prediction information to enable the destination to select a route that

has the longest link duration (or the most stable). According to this study, using

perfect prediction can maximise the route duration, minimise the number of route

changes and increase throughput. However, there is a trade-off of increasing

route set up time and end-to-end delay. Overall, this study indicates that routing

with link duration prediction can be more suitable for networks or services that

requires a more stable route, and that it would be useful when the nodes in the

network are moving at different speeds independently causing some links to be

less stable than other.

Although this study has provided some insights into how well routing can be

performed with accurate link duration prediction, it does not indicate whether it

will be useful for real life situation where prediction accuracy can vary. Hence,

there are still a number of questions that need to be investigated. These include:

1. What happens to the routing performance when there are errors in the link
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duration predictions?

2. How well can predictive routing tolerate errors in the prediction?

3. What level of prediction accuracy is required to improve routing

performance?

4. Is it feasible to use prediction for routing, and if so, what are the benefits?

The next chapter of this thesis is intended to provide more in depth understanding

to the study of using prediction in routing, which answers the above questions.



Chapter 5

AODV with Prediction Update

5.1 Introduction

A performance comparison has been made between AODV and AODV-PP in

Chapter 4. The work in Chapter 4 shows that by adding accurate link duration

prediction to AODV will generally lead to improved routing performance that,

in many cases, find a much more stable route. However, in reality, predictions

are not always accurate, as indicated in Chapter 3. In what circumstances

would prediction still be useful when there are errors in the predicted paths?

The purpose of this chapter is to study how prediction errors affect the routing

performance. This has been achieved by evaluating the performance of AODV

with prediction when errors are present, and how well can predictive routing

tolerate errors compared to AODV and AODV-PP.

For the purpose of this study, a further development to the AODV-PP routing

protocol has been made. The initial change was to create a new variation of the

AODV routing protocol that allows the nodes to select a route with the longest

predicted route duration. Now new functionality is added, which enables update

link duration changes to take place where necessary. This novel routing protocol

113
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is called, AODV with Prediction Updates (AODV-PU), and it will be explained in

more detail in Section 5.2. Section 5.3 describes the modelling of the AODV-PU

protocol and the tracking model. The simulation method, and the evaluation and

discussion of the results are explained in Section 5.4.

5.2 AODV with Prediction Update

In a real MANET, nodes move around randomly and signal strength at

platforms’ receivers varies due to changing signal attenuation caused by different

transmission paths and changing environments. Accurately predicting these

changes is a very difficult exercise. Thus, it is highly likely that there will be

errors in the link duration predictions made. In Chapter 4, it has been shown

that stable routes with little link changes can be selected if the prediction is very

accurate, and that knowing the link change time allows a new route to be found

before a link breaks so there will be no packet loss. However, in the presence

of errors in the link duration predictions, it is uncertain how the stability of the

routes and hence the packet loss will be affected.

In the previous chapter, an enhanced version of AODV, AODV-PP, enables the

predicted route duration value to be broadcast through the network via RREQ

and RREP. This protocol only works based on the assumption that the link

duration predictions are accurate. This is because with perfect link duration

prediction, there is no route expiry time update required, as there is no error in

the initial prediction. It would fail in the presence of errors, as it cannot inform

the source if the predicted link duration has changed. In order to accommodate

this change, the protocol is required to be able to forward the link and route

duration updates back to the source. A new variation of AODV-PP routing

protocol, AODV with Prediction Update (AODV-PU), has been developed to

allow route duration prediction updates for any destination to be propagated back

to the source before the link breaks. This ensures a more graceful route updating

process than having the route break unexpectedly.
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New functionality has been added to AODV-PP to create AODV-PU in order for

the source to be informed about any prediction updates. This involves letting

the intermediate nodes process and send new route duration updates back to all

the sources for all the destinations that are caused by a change in link duration,

and allowing the source to process any changes in route duration and estimate

the time to search for a new route accordingly. The other existing functions of

AODV-PP remains unchanged.

Prediction updates can be accomplished using the following steps. The first

step is to continuously monitor and estimate the link duration of each hop, as

explained in more detail in Section 5.2.1. Second is to determine when to send

and inform the source(s) to update the link or route expiry time if the change in

link duration affects the route duration, as described in Section 5.2.2. The final

step is to send and propagate a route expiry time update (RUPDATE) packet back

to the source(s) about the new route expiry for a specific destination is explained

in Section 5.2.3.

5.2.1 Link Duration Estimation

In AODV-PP, the link duration is calculated according to the pre-determined

mobility model used for perfect accuracy. Now this study looks into how

prediction errors affect routing performance, therefore errors need to be

introduced into the prediction models. There are two simple ways to achieve

this. One way is to add some errors to the perfectly calculated link durations.

Alternatively, use an existing link duration prediction method that would provide

a range of accuracy when the nodes move and change directions at different rates.

Although any link duration prediction method can be utilised by the AODV-PU

protocol, for simplicity, the link duration in this study is estimated using the Link

Expiration Time (LET) formula proposed in [2–4]. This formula assumes that

the mobile nodes are moving at a constant velocity. If the transmission range is

r, the locations of node i and node j are (xi,yi) and (x j,y j), the speeds of node i
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and node j are vi and v j, and the directions of node i and node j are θ i and θ j

respectively, the LET between node i and node j, Ti, j, can be computed using

Equation 5.1.

Ti, j =
−(ab+ cd)+

√
(a2 + c2)r2− (ad−bc)2

(a2 + c2)
(5.1)

where a, b, c and d are:

a = vi cosθ i− v j cosθ j

b = xi− x j

c = vi sinθ i− v j sinθ j

d = yi− y j

(5.2)

Upon receiving a packet, the packet arrival time and the location information

of the sender and the receiver are retrieved from the simulation model. When

a packet from the same sender is received, and the packet arrival time and

the location information of the sender and the receiver are retrieved, the link

duration is then calculated using LET. For simplicity of implementation, this

study assumes the link duration estimation is performed upon receiving a data

packet. This assumption is realistic for the simulations presented in this chapter,

as the data packets are transmitted regularly from the source to the destination

without very big time gaps.

However, such an assumption may not be feasible for real networks, as the traffic

between any two nodes may not be regular. In this case, the link duration can

be estimated upon the arrival of other types of packets such as the management

and control frames of the MAC layer. Note that this is possible since the link

duration prediction can be estimated upon the arrival of any type of packets from

any layer using cross-layer methods.

It is also possible that this link duration estimation technique may not be suitable

for a real network, because it may require extra bandwidth to allow the location
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information to be broadcast to the neighbouring nodes, which is not accounted

for in the simulations of this study. Though, the location information can

be added to the routing packets, such as the HELLO packets of the AODV

protocol, or the management frames, like the BEACON frames of the MAC

protocol1, more bandwidth will be required for broadcasting. Alternatively, the

link duration estimation can be achieved by measuring the RSS and the SNR of

the incoming packets to estimate the location of the previous node or the lifetime

of the associated link.

5.2.2 Set Route Expiry Time Update Timer

In the case with perfect prediction, the source knows exactly when the route will

end, so it can always send a PreRREQ a short time before the route becomes

unavailable. In circumstances where prediction is not accurate, a link may break

before the predicted route expiry time, and the source would not know about

the link break until seconds later when a RERR is received. Or if the route is

later found to be longer than the original prediction, the source would send a

PreRREQ even if the route remains available for a longer duration. Therefore,

there is a need to improve the AODV-PP protocol so that the source can be

informed if there is a change in the predicted expiry time at any link along a

route. Hence AODV-PU is proposed. In this protocol, if the estimated link’s

lifetime has changed, the two associated nodes will broadcast a route expiry

time update (RUPDATE) packet to inform their precursors about a change in

route expiry time.

A RUPDATE packet consists of two fields, one contains the new route duration to

the destination, and the other is the associated destination address. The structure

of this packet can be found in Appendix C.1.1.

If the route duration to a destination has changed, a RUPDATE packet will be

sent to inform its precursor nodes. A RUPDATE packet can be sent before the

1BEACON frames are the management frames of WiFi that are broadcast periodically
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route expires, so that there will be enough time for the source to decide when to

find a new route to the destination.

There are two different times one can set to send a RUPDATE packet:

1. One option is to send an update whenever a route expiry time has changed.

However with this method, if the estimated link duration changes regularly,

there would be a lot of updates flooding the network.

2. The other option is to send the RUPDATE packet before a link breaks or

before the duration of the link gets extended. This can be achieved by

setting a timer to send a RUPDATE packet at either:

(a) Before the end of the latest estimated route expiry time

(new_route_expiry_time2) if the new_route_expiry_time is shorter

than the original route expiry time, so that the RUPDATE packet can

be sent before the link breaks; or

(b) Before the original route expiry time ends if the original route

expiry time is shorter than the new_route_expiry_time, so that the

RUPDATE packet can be sent to extend the route expiry time to the

new_route_expiry_time, for this and the precursor nodes.

Since the first method listed above is not very efficient with large overheads,

the second method is chosen for AODV-PU. With the second method, it is

important to determine the appropriate time to send the route expiry time update

to the senders, as it can affect the performance of the routing protocol. In order

to ensure that the RUPDATE packet can reach the source node with enough

time to re-establish a route (i.e. send a PreRREQ and receive a subsequent

RREP) before the route expires, a RUPDATE packet should be sent at least

1.5 times of the RING_TRAVERSAL_TIME3 before the end of either the

existing or the new route expiry time. Thus, to ensure that everything is

covered, extra time is given to allow some inaccuracies in the prediction.

2new_route_expiry_time is one of the new variables added to the route entry to implement

AODV-PU. See Table D.4 in Appendix D.2.
3RING_TRAVERSAL_TIME is used to set the timeout for receiving a RREP packet, and is

defined in Table D.1 of Appendix D.1
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Hence, the route_expiry_update_timer4 (tRexpU pdate) is defined to be 2 ×
MAX_RING_TRAVERSAL_TIME (tMaxRingTrav) less than the minimum value

of the route_expiry_time (tRexp) and the new_route_expiry_time (tNRexp), as

shown in the following equation:

tRexpU pdate = min(tRexp, tNRexp)−2× tMaxRingTrav (5.3)

where tMaxRingTrav (MAX_RING_TRAVERSAL_TIME) is defined in equation

4.4.

Although a coefficient of 2 is selected for this study, this value can be dynamic. It

can be varied according to the accuracy of the prediction. If the prediction is very

accurate, smaller value can be used. Otherwise, larger value may be required.

5.2.3 Route Expiry Time Update

A RUPDATE packet is broadcast to perform route expiry time update, which is

used to inform the source about the change in route expiry time for a specific

destination. This packet consists of the destination address and the route expiry

time from the sender (intermediate node) to the destination, as illustrated in

Appendix C.1.1.

When it is time for the intermediate node to send RUPDATE, the node checks if

there are any precursor nodes in the route entry of the destination. If there are no

precursor nodes, no RUPDATE needs to be sent, otherwise, a RUPDATE packet

is broadcast.

Upon the arrival of a RUPDATE packet at a neighbouring node, it checks if it

has a valid route entry for the destination that uses the sender of the RUPDATE

packet as its next hop to the destination. If so, the node updates the new route

4route_expiry_update_timer is the time to send a RUPDATE packet, and is one of the new

variables added to the route entry to implement AODV-PU. See Table D.4 in Appendix D.2.
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expiry time of the route entry. Otherwise, it ignores the packet. If there is one or

more precursor nodes in the route entry, set the route expiry time update timer

according to the way described previously to re-broadcast the RUPDATE packet.

Furthermore, if the receiver is the source for the destination specified in the

RUPDATE packet, it sets a timer to perform PreRREQ as explained in Section

4.3.2 of Chapter 4.

5.3 Modelling and Implementations

As with Chapter 4, OPNET Modeler has been used to implement models and

execute simulations for this study. The models that have been modified to

accomplish this study include the tracking process model and the AODV process

model.

5.3.1 Modifications of the Tracking Model

In the previous chapter, the tracking model was implemented with the prime

purpose of calculating the perfect link duration of a communication link with

any other node in the network. Section 5.2.1 has shown how errors are needed

for this study. Thus, an option is added to allow users to choose LET for the

prediction method, and an external function is added to the tracking model to

calculate the LET.

Unlike perfect predictions, true predictions can only be made when there is data

input. Hence, a constant update of the nodes’ locations need to be observed and

recorded. This can be achieved via storing the last one or two locations of all

the nodes in the tracking model. This information allows the link duration to be

calculated using LET when needed.
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5.3.2 Modifications for AODV-PU

The modifications made to AODV-PP in OPNET comprises of the following:

1. Upon receiving a data packet, if there is a valid route to the destination,

predict the link expiry time of the next hop and the route expiry time

of the destination. Then if the link expiry time is different to the one

in next hop’s route entry, set the route_expiry_update_timer and the

new_route_expiry_time in the route entries of the next hop and all other

destination nodes that use this hop as their next hop of their route, and for

each of these route entries, set an interrupt to send a RUPDATE packet

at the time specified in the route_expiry_update_timer. Otherwise, if the

route expiry time is different to the route entry of the destination, set

the route_expiry_update_timer and the new_route_expiry_time in its route

entry, and set an interrupt to send a RUPDATE packet at the time specified

in the route_expiry_update_timer. (See Appendix C.2 for the pseudo code

for setting a timer to update route expiry time for the appropriate route

entry upon receiving a data packet);

2. Added some code (in lines 19 to 24 in Code B.2.1) to the

predict_linkchange_time() function in Appendix C.2 to allow LET to be

used for link duration prediction method instead of perfect prediction;

3. Added the following parameters to the route entry structure:

(a) new_route_expiry_time - used to record the new route expiry time,

so that the current route expiry time will be updated to the new route

expiry time when RUPDATE is sent;

(b) route_expiry_update_timer - used to keep a record of the time

when a RUPDATE packet needs to be sent; and

(c) last_route_expiry_update_timer - the time when a RUPDATE

packet is sent is recorded so that a RUPDATE packet will not be

sent if one has previously been sent within a short period of time.

This is to avoid too many RUPDATEs being sent unnecessarily if the

predicted path-change time changes frequently.

A list of all other variables added to the route entry to accomplish route

expiry time updates in OPNET can be found in Table D.4 of Appendix
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D.2;

4. Add a new RUPDATE packet structure, which consists of the new route

expiry time and the destination address, as shown in Appendix C.1.1;

5. Add a function to send a RUPDATE packet to the precursor nodes when

the route_expiry_update_timer is up. (The pseudo code for this can be

found in Appendix C.3); and

6. Add a function to process the RUPDATE packet when it arrives. (The

pseudo code for processing the received RUPDATE packet can be found

in Appendix C.4).

5.4 Simulation, Evaluation and Discussion

This section consists of three parts. The first one provide information on the

simulation scenarios used and the simulation configurations, the second part

explains the metrics used, and the last part discusses and analyses the results

of the simulations.

5.4.1 Simulation Methodology

The aim of this chapter is to show what happens to the routing performance in

the presence of link duration prediction errors. Thus, this can be achieved by

using the scenarios with 12 stationary nodes and 12 mobile nodes with different

speeds, and RWP model as their mobility model, as mentioned in Section 4.5.1.1

of Chapter 4. The reason for choosing only the scenarios with 12 stationary

nodes is so that some predictions can be more accurate than others, which is

similar to a more realistic situation where some nodes may be more predictable

than others.

The node’s attribute settings for the simulations in this chapter are the same

as that discussed in Section 4.5.1.2 of Chapter 4. However, for AODV-PU
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simulations, the “prediction method” attribute in “tracking” is configured to use

“LET”.

5.4.2 Comparison Metrics

The following performance metrics are used to compare AODV and AODV-PU:

1. Route Lifetime - This is a measure of the duration or lifetime of a route

in seconds without link changes; and

2. Packet Delivery Ratio - The number of bytes of data packet received by

the destination over the number of bytes of data packet sent by the source.

5.4.3 Results and Analysis

This section provides the results from the simulations performed according

to the method and the evaluation metrics defined in Sections 5.4.1 and 5.4.2

respectively. Note that the accuracy of the prediction is not controlled in the

simulations of this chapter. However, the prediction accuracy is determined by

the average speed of the nodes. Although the accuracy is not measured, it can be

achieved by using the methods described in Chapter 3 if required.

The graph in Figure 5.1 shows the average route lifetimes for AODV, AODV-PP

and AODV-PU when a set of 12 nodes are stationary while the other set of 12

nodes are moving at different speeds. The graph indicates that the average route

lifetimes for AODV-PU is better than AODV when some nodes are moving at

low average speeds. However, at high average node’s speeds of 10m/s or more,

AODV-PU’s performance is similar to that of standard AODV. The reason for this

is that at slow average speeds, there are more accurate link duration predictions,

and the nodes are able to choose a more stable route with a longer duration

during route setup. Whereas at higher speeds, there are more chances for the

link duration predictions to be wrong, hence the chosen route is less likely to be

the most stable. Although the average route lifetimes for AODV-PU is better than
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AODV, it is far worse than AODV-PP. This is due to the reduction in accuracies

of the route lifetime predictions when LET prediction is used. This is indicating

that the more accurate the initial prediction is, the better it performs.

Figure 5.1: Average Route Lifetime for AODV, AODV-PP and AODV-PU.

The results presented in Figure 5.1 also indicate that at high speeds the

average route lifetime of AODV-PU is just as short as or may possibly be

shorter than AODV. This is because when the route duration is predicted to

be longer than the actual duration, if one of the links is later predicted to be

shorter, a route update will be sent to notify the source to send a PreREQ at

PRE_ROUTE_START_TIME. Provided that the accuracy of the prediction at

route setup is far from accurate, it is very unlikely that it will find any more stable

route. Furthermore, with highly mobile nodes, it is possible that some links may

only be disconnected for a short period of time. Therefore, with AODV, this time

may not be long enough for the neighbouring nodes to notice the fault of the link
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to inform the source for route re-establishment. Whereas with AODV-PU, a

disconnection could be predicted a short time before it breaks, hence an update

would be sent to inform the source, but the re-connection of the link cannot

re-establish the old route. Hence it is possible that the average route lifetime for

AODV can be longer than AODV-PU.

The average data packet delivery ratio for the three routing protocols is shown in

Figure 5.2. This graph indicates that when prediction is used the packet delivery

ratio is very close to 1, which means it is almost perfect with no packet loss,

even though there were errors in the prediction. Whereas data packet delivery

ratio of AODV drops to an average of around 0.969 at high average speeds of

80m/s. The near perfect result for AODV-PU is similar to the packet delivery

ratio results of AODV-PP, which indicates that packet loss can be substantially

reduced with prediction updates regardless of the high number of route changes

due to short route lifetimes. The good data packet delivery ratio in AODV-PU

is due to regular link duration predictions occurring at the intermediate nodes,

and route updates were sent to inform the source of any link duration changes,

enabling routes to be re-established before routes become unavailable. Unlike

AODV, AODV-PU is able to reduce the packet loss caused by unnoticed link

drop outs. Nevertheless, this cannot eliminate all packet losses, as predictions

can sometimes be inaccurate, and hence it may be possible that the route updates

cannot reach the source in time to search for a new route.

These results indicate that when the prediction is highly inaccurate, transmitting

the predicted route lifetime with the RREQ/PreRREQ packets during route setup

is not entirely useful in selecting a more stable route. Prediction seems to

be more useful when the prediction is reasonably accurate. However, in the

presence of highly inaccurate predictions, link duration prediction can still be

useful between neighbouring nodes to maintain the availability of the route, and

allow the source to establish a new route before it becomes unavailable, as this

can prevent excessive packet loss.
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Figure 5.2: Average Data Packet Delivery Ratio for AODV, AODV-PP and
AODV-PU.
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5.5 Conclusion

This chapter has provided an insight into how to incorporate prediction

information into AODV to perform route selection and route updates. It has

been shown that by using link duration prediction in AODV-PU, the routing

protocol is able to find a new route before the previous route becomes obsolete.

Its ability to re-establish a route before it breaks can reduce packet loss even

if the prediction is highly inaccurate. However, it is found that in the presence

of large link duration prediction errors, it fails to find a stable route, as finding

a stable route requires more accurate link duration prediction during the route

establishment or re-establishment stages.

This research shows that using prediction for routing may not always be suitable.

This routing protocol is shown to be suitable for networks that are sensitive to

packet loss. In cases where link durations are more accurate, AODV-PU is also

able to find a stable route. However, the trade-off for this protocol is similar

to that of AODV-PP, which requires a longer route establishment time, and the

selected route may have a longer end-to-end delay depending on the network

topology and the mobility of the nodes.

5.5.1 Further Improvements for AODV-PU

Although AODV-PU has reduced the packet loss issue in AODV, it is not perfect,

as predictions may not be accurate. Nevertheless, there are ways in which

AODV-PU can be modified and enhanced, which may possibly improve the

routing performance.

AODV-PU can be modified and enhanced in the following ways:

1. Using local route repair when there is an early link break rather than

sending a route update back to the source. However, the trade-off is that

this option may reduce the chance of finding the most stable route, as a
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local route repair is accomplished from an intermediate node; and

2. Enabling intermediate nodes to respond to a RREQ/PreRREQ with a

RREP if it has a route to the destination to reduce the RREQ/PreRREQ

traffic. However, this may reduce the chance of finding the most stable

route. This option may be better for scenarios with constant route changes

and less accurate predictions.



Chapter 6

Conclusion

The benefits and the trade-offs of using prediction in AODV routing protocol

have been identified in this thesis. The results of this thesis have shown that with

perfect prediction, a significant improvement can be made in terms of routes’

lifetime with almost no packet loss. This thesis has also identified the problem

with predictive routing in that it can be difficult to select a long-lived route when

prediction is not perfect. This is due to the difficulties in making near accurate

predictions far ahead of time. However, prediction can still be effective for route

maintenance, as route maintenance only requires short-term predictions, which

are more accurate compared to long-term predictions. In accomplishing this, two

new routing protocols, AODV-PP and AODV-PU, have been proposed.

Although the studies in this thesis have shown that prediction can enhance

routing performance with accurate prediction, it can be seen from Chapter 3 that

it is difficult to always make accurate predictions, especially when predicting

far into the future. Therefore, in cases where prediction is not so accurate, it

can shorten the lifetime of the routes considerably. Chapters 4 and 5 of this

thesis have analysed the difference in routing performance between perfect and

inaccurate prediction. In achieving this, two new variations of the AODV routing

protocol, AODV-PP and AODV-PU, have been implemented.

129
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In Chapter 4, it has been shown that AODV can be modified so that link duration

predictions can be used for selecting the most stable route when predictions is

accurate. The creation of the new AODV-PP protocol has been simulated in

the OPNET environment, and has lead to realistic results. The results from this

chapter indicate that with accurate predictions, stable routes can be found with a

trade-off of longer delays in route discoveries.

The proposed AODV-PU protocol in Chapter 5 has demonstrated that additional

functions can be added to AODV-PP to allow route duration updates to be sent

from the intermediate nodes back to the source node to inform the source of the

route duration changes. This enables new routes to be established before the

old ones become unavailable to minimise packet loss. Nevertheless, although

AODV-PU shows a little bit of improvements in average route lifetime over

AODV with slow mobility, the poor average route lifetime results for AODV-PU

compared to AODV-PP indicate that the accuracy of the prediction has a great

impact on the protocol’s ability to select a more stable route.

Though less stable routes are more likely to be selected when predictions are

less accurate for further away in time, the results have demonstrated that link

duration predictions with lower accuracy can still be useful in enabling smoother

route transitions. This is because the route updates are used in AODV-PU to

perform route maintenance. This allows the source to be informed about the

latest predicted route duration, which enables the source to re-establish the route

before it becomes unavailable. This can be achieved because route duration

updates do not require to make predictions that are too far into the future, hence

the predictions are more accurate.

The studies in this thesis have provided some insights about the trade-offs when

using predictions. One trade-off is the extended initial route establishment time

at route set up, which does not guarantee a more stable route to be found if the

accuracy of the prediction is not guaranteed. So perhaps using prediction to find

a more stable route at route setup may not be worth doing, given that the trade-off

and the reward is not balanced. Another trade-off related to the fore-mentioned
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trade-off is that the longer end-to-end delay time due to longer paths with more

hops were more likely to be predicted to be more stable. Once again however, a

more stable route cannot be guaranteed if the prediction is not guaranteed to be

accurate.

Through the studies in this thesis, it can be concluded that perhaps prediction

may not be as useful for selecting a more stable route during route establishment

phase as first anticipated. This is because this requires accurate predictions

to be made well in advance, and it is very difficult to make predictions for

something further away in the future, as the accuracy of prediction drops as the

time gap increases. However, it is found that prediction may be more useful

for maintaining and re-establishing an alternative route, since these only require

accurate predictions to be made a few seconds in advance, as opposed to tens of

minutes or hours in advance may be needed for initial route selections. Hence,

further research can be performed in using prediction for route maintenance and

route re-establishment.

For further study, it would be interesting to see how well other traffic types

(including traffic over TCP) perform over AODV-PP and AODV-PU. Because

with these protocols, route re-establishments are often accomplished before link

loss, which reduces packet loss and route re-establishment delay substantially,

TCP may work better over these protocols compared to AODV. Furthermore,

stable routes can be established with AODV-PP, thus it is expected that TCP may

function better over AODV-PP than AODV-PU.

One possible area of future research may be to perform local repair ahead of time

for route maintenance if a link is predicted to break. However, using local repair

may reduce the chance of finding a more stable alternative route from the source

to destination if the prediction is more reliable.

Another possible way to move forward could be to allow the routing protocol to

maintain multiple paths, since multiple paths were already found during route

setup when prediction is used. Having multiple paths can enable a smooth
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transition to be made to an alternative route when needed. However, more

routing traffic may be needed to maintain multiple paths.

Although selecting a stable route cannot be guaranteed when the accuracy of

prediction well in advance is not guaranteed, that is not to say that prediction

is useless for route establishment. Prediction may still be useful for route

establishment if the accuracy or the reliability of the prediction can be evaluated

and passed on with RREQ during route setup. For example, there may be

times when there are definite stable routes available, and if such routes can

be found and used, it would be much better than maintaining the less stable

routes. Furthermore, the route establishment time may be shortened by allowing

intermediate nodes to send a route reply upon receiving a route request if it has

a route to the destination, however, its trade-off is having a reduced chance of

finding a more stable route. With low prediction accuracy, allowing intermediate

nodes to send a route reply upon receiving a route request could be a good option.

To counter some of these trade-offs, it may also be possible to use some adaptive

methods so that for example if the prediction is estimated to be more accurate,

the routing protocol can use prediction for route establishment. Alternatively,

if the prediction is estimated to be not so reliable, standard shortest path route

selection can still be used.

This thesis has been focused on AODV. However, predictions can be

implemented on other routing protocols. Hence, expanding the use of prediction

on other routing protocols may be left for future work.

Depending on what the user requirements are: if the requirement is to have

short end-to-end delay for good voice conversations, protocols such as AODV

or DSR may be good enough; if the requirement is to have higher route stability

for TCP traffic, some accurate predictions may be useful; if the requirement

is to minimise packet loss, prediction may be used to assist in setting up for

a smooth route transition; or if the requirement is to have all of the above,

then unfortunately, no MANET routing protocol to date can satisfy all these
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requirements at once for all situation without conditions. Overall, there is still

no perfect routing protocol suitable for all types of MANETs for all cases. Even

with prediction, it is not necessarily better than the basic routing protocols such

as AODV, DSR and OLSR.



Appendix A

AODV Model Corrections

The changes that have been made to fix OPNET’s AODV model are included in

this appendix.

A.1 Send RERR

According to AODV standard, RERR packets should be broadcast if there are

one or more precursors destined to one or more destinations. In OPNET’s

AODV model, the RERR packets may sometimes be unicasted when it should

be broadcast. This is because there is one case missing in the code for setting the

destination address for the RERR packet. This can be fixed by adding several

lines of code to the aodv_rte_route_error_process() function in the Function

Block of the aodv_rte.m model, as indicated in the pseudo code below. Note

that lines 24 to 27 and 51 to 54 of the pseudo code are added to enable RERR

packets to be broadcast to all the precursors when required.
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Code A.1: aodv_rte_route_error_process() Function

1 vo i d a o d v _ r t e _ r o u t e _ e r r o r _ p r o c e s s ( n e i g h b o u r _ a d d r , u n r e a c h a b l e _ n o d e s _ l i s t ) {

2 . . .

3 c r e a t e u n r e a c h a b l e _ d e s t s _ l i s t ;

4 s e t Go t_One_Precu r so r t o FALSE ;

5 . . .

6 i f ( l i n k _ b r e a k _ d e t e c t e d f o r n e i g h b o u r _ a d d r ) {

7 f o r ( each r o u t e _ e n t r y i n t h e r o u t i n g t a b l e ) {

8 i f ( n e i g h b o u r _ a d d r i s used t o r e a c h t h e d e s t i n a t i o n o f t h e r o u t e _ e n t r y ) {

9 s e t n u m _ p r e c u r s o r s t o t h e s i z e o f ( r o u t e _ e n t r y −> p r e c u r s o r _ l i s t ) ;

10 i f ( n u m _ p r e c u r s o r s > 0) {

11 c r e a t e u n r e a c h a b l e _ n o d e wi th d e s t i n a t i o n and i t s sequence_number ;

12 add u n r e a c h a b l e _ n o d e t o u n r e a c h a b l e _ d e s t s _ l i s t ;

13 i f ( n u m _ p r e c u r s o r s == 1 && ! Got_One_Precu r so r ) {

14 remove p r e c u r s o r _ a d d r e s s i n r o u t e _ e n t r y −> p r e c u r s o r _ l i s t ;

15 s e t u n i q u e _ p r e c u r s o r _ a d d r t o p r e c u r s o r _ a d d r e s s ;

16 /∗ u n i q u e _ p r e c u r s o r _ a d d r w i l l be t h e d e s t a d d r e s s f o r RERR ∗ /

17 s e t Go t_One_Precu r so r t o TRUE ;

18 }

19 e l s e i f ( n u m _ p r e c u r s o r s > 1) {

20 s e t u n i q u e _ p r e c u r s o r _ a d d r t o INETC_ADDRESS_INVALID ;

21 w h i l e ( s i z e o f ( r o u t e _ e n t r y −> p r e c u r s o r _ l i s t ) > 0 )

22 remove p r e c u r s o r _ a d d r e s s i n r o u t e _ e n t r y −> p r e c u r s o r _ l i s t ;

23 }

24 else if (num_precursors == 1 && Got_One_Precursor) {
25 remove precursor in route_entry->precursor_list;

26 set unique_precursor_addr to INETC_ADDRESS_INVALID;

27 }
28 }

29 }

30 }

31 }

32 i f ( r e r r _ r e c e i v e d ) {

33 f o r ( each r o u t e _ e n t r y i n t h e r o u t i n g t a b l e ) {

34 f o r ( each u n r e a c h a b l e _ n o d e i n u n r e a c h a b l e _ n o d e s _ l i s t ) {

35 i f ( r o u t e _ e n t r y −> d e s t i n a t i o n i s u n r e a c h a b l e _ n o d e−> d e s t i n a t i o n &&

36 r o u t e _ e n t r y −>n e x t _ h o p _ a d d r i s n e i g h b o u r _ a d d r ) {

37 s e t n u m _ p r e c u r s o r s t o t h e s i z e o f ( r o u t e _ e n t r y −> p r e c u r s o r _ l i s t ) ;

38 i f ( n u m _ p r e c u r s o r s > 0) {

39 c r e a t e u n r e a c h a b l e _ n o d e wi th d e s t i n a t i o n and i t s sequence_number ;

40 add u n r e a c h a b l e _ n o d e t o u n r e a c h a b l e _ d e s t s _ l i s t ;

41 i f ( n u m _ p r e c u r s o r s == 1 && ! Got_One_Precu r so r ) {

42 remove p r e c u r s o r _ a d d r e s s i n r o u t e _ e n t r y −> p r e c u r s o r _ l i s t ;

43 s e t u n i q u e _ p r e c u r s o r _ a d d r t o p r e c u r s o r _ a d d r e s s ;

44 s e t Go t_One_Precu r so r t o TRUE ;

45 }

46 e l s e i f ( n u m _ p r e c u r s o r s > 1) {

47 s e t u n i q u e _ p r e c u r s o r _ a d d r t o INETC_ADDRESS_INVALID ;

48 w h i l e ( s i z e o f ( r o u t e _ e n t r y −> p r e c u r s o r _ l i s t ) > 0 )

49 remove p r e c u r s o r _ a d d r e s s i n r o u t e _ e n t r y −> p r e c u r s o r _ l i s t ;
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50 }

51 else if (num_precursors == 1 && Got_One_Precursor) {
52 remove precursor_address in route_entry->precursor_list;

53 set unique_precursor_addr to INETC_ADDRESS_INVALID;

54 }
55 }

56 }

57 }

58 }

59 }

60 }

A.2 Precursor List Maintenance

The problem with maintaining a correct precursor list is caused because there is

no code in OPNET to add the precursor node to the precursor list upon receiving

a data packet. This problem can be fixed by adding the code from line 28 to

line 39 of the aodv_rte_data_routes_expiry_time_update() function illustrated

in Code A.2 below.

Code A.2: aodv_rte_data_routes_expiry_time_update() Function

1 v o i d a o d v _ r t e _ d a t a _ r o u t e s _ e x p i r y _ t i m e _ u p d a t e ( ) {

2 . . .

3 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( r o u t e _ t a b l e , s r c _ a d d r ) t o g e t s r c _ r o u t e _ e n t r y ;

4 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( r o u t e _ t a b l e , d e s t _ a d d r ) t o g e t d e s t _ r o u t e _ e n t r y ;

5

6 i f ( s r c _ r o u t e _ e n t r y e x i s t s ) {

7 get the prev_hop_addr of pkptr;

8 call aodv_rte_neighbor_connectivity_table_update (prev_hop_addr,...) to set

9 neighbor connectivity expiry time = curr_time + ACTIVE_ROUTE_TIMEOUT;

10

11 if (src_route_entry->next_hop_addr is prev_hop_addr) {
12 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ e x p i r y _ t i m e _ u p d a t e ( ) t o s e t

13 s r c _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e = c u r r _ t i m e + ACTIVE_ROUTE_TIMEOUT ;

14 }

15

16 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( r o u t e _ t a b l e , p r ev _ hop_add r ) t o g e t

17 t h e p r e v _ r o u t e _ e n t r y from t h e r o u t i n g t a b l e ;

18 i f ( p r e v _ r o u t e _ e n t r y != OPC_NIL && s r c _ a d d r i s n o t p r ev_hop_add r &&

19 prev_route_entry->next_hop_addr is prev_hop_addr )

20 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ e x p i r y _ t i m e _ u p d a t e ( ) t o s e t
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21 p r e v _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e = c u r r e n t _ t i m e + ACTIVE_ROUTE_TIMEOUT ;

22 }

23

24 i f ( d e s t _ r o u t e _ e n t r y e x i s t s ) {

25 u p d a t e r o u t e _ e n t r y ( s ) a s normal ;

26 }

27

28 if (this node is not the source of the packet && src_route_entry does not exist) {
29 call aodv_route_table_entry_create() to create a new route_entry for the source;

30 }
31

32 if (src_route_entry exists && dest_route_entry exists) {
33 call aodv_rte_neighbor_connectivity_table_update (prev_hop_addr,...) to set

34 neighbor connectivity expiry time = curr_time + ACTIVE_ROUTE_TIMEOUT;

35

36 /* Update the precursor lists */

37 add precursor (next_hop_addr) to the src_route_entry;

38 add precursor (prev_hop_addr) to the dest_route_entry;

39 }

40 }

A.3 Route Expiry Time Update

Lines 15 to 22 are added to the aodv_rte_route_table_entry_update() function to

prevent early link timeout.

Code A.3: aodv_rte_route_table_entry_update() Function

1 v o i d a o d v _ r t e _ r o u t e _ t a b l e _ e n t r y _ u p d a t e ( ) {

2 . . .

3 i f ( r o u t e _ e n t r y does n o t e x i s t ) {

4 . . .

5 }

6 e l s e {

7 i f ( ( he l l o_msg ) | |

8 ( sequence_num > des t_seq_num ) | |

9 ( ( sequence_num == des t_seq_num ) && ( r o u t e _ e n t r y _ s t a t e == AodvC_Inva l id_Route ) ) | |

10 ( ( sequence_num == des t_seq_num ) && ( hop_coun t < 2 ) ) ) {

11 . . .

12 }

13

14 / / The f o l l o w i n g i s added t o e x t e n d t h e t i m e o u t p e r i o d .

15 for each route_entry in the routing table {
16 check if the route is valid;
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17 if (route_entry->next_hop_addr is ip_packet->prev_hop_addr &&

18 route_entry->route_expiry_time - curr_time < ACTIVE_ROUTE_TIMEOUT) {
19 call aodv_route_table_entry_expiry_time_update() to set

20 route_entry->route_expiry_time = curr_time + ACTIVE_ROUTE_TIMEOUT;

21 }

22 }

23 }

24 }

A.4 Neighbour Update

Changes for neighbour updates need to be made to two functions. One is when

a HELLO packet is received, and the other is when a data packet is received.

A.4.1 HELLO Packet

Upon receiving of a HELLO packet, the route expiry time for all the

destinations that are using that link needs to be updated, not just for the

neighbour. Therefore, the solution to this problem needs to be added to the

aodv_rte_route_table_entry_from_hello_update() function as indicated on lines

5 and 6 of the pseudo code below.

Code A.4: aodv_rte_route_table_entry_from_hello_update() Function

1 vo id a o d v _ r t e _ r o u t e _ t a b l e _ e n t r y _ f r o m _ h e l l o _ u p d a t e ( ) {

2 . . .

3 i f ( r o u t e _ e n t r y t o t h e p r e v i o u s hop e x i s t s ) {

4 u p d a t e t h e s e q u e n c e number ;

5 call aodv_rte_route_table_entry_update() to update

6 route_entry->route_expiry_time of all relevant route entries;

7 }

8 }
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A.4.2 Data Packet

Upon receiving of a data or a routing packet, all neigbouring nodes’ connectivity

expiry times should be updated to maintain the connectivity of the neighbouring

nodes that are in use. Thus, the following code (lines 7 to 9) is added

to the aodv_rte_data_routes_expiry_time_update() function in Code A.2 on

page 136 to achieve this purpose. Also note that in OPNET’s code,

aodv_route_table_entry_param_get() is called to get the next hop address of the

source route entry. This is inappropriate, because it is possible that the next hop

address in the source route entry is different to the previous node of the received

data packet’s path. Thus, line 7 is used to get the previous hop address from the

received data packet, instead of aodv_route_table_entry_param_get() was used

in OPNET’s code. Furthermore, lines 11 and 19 are added to ensure that the

correct route entries are updated. Line 11 is added to ensure that the source route

entry is only updated if the next hop address of the source route entry is the same

as the previous hop address of the received packet. Similarly, the condition in

line 19 is added for the route entry of the previous hop.



Appendix B

Modifications to AODV for
AODV-PP

The modifications that have been made to AODV to develop AODV-PP are

included in this appendix. Note that the pseudo codes in this appendix are not

the only modifications made to the OPNET’s model. There may be some minor

modifications that are not mentioned.

B.1 Packet Structures

This section shows all the packet structures that have been changed and used in

AODV-PP.

B.1.1 RREQ Packet Structure

In AODV-PP, routes are selected based on the predicted route expiry time of the

route, called the “Pathchange Time”. This parameter will have to be updated and

140
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carried with the RREQ packet through the network for route setup. Therefore,

an extra field is added to the standard AODV’s RREQ packet, as illustrated in

Table B.1 below. In additional to this, the first bit of the “Reserved” field is

replaced by the “Pre-Route” flag (i.e. after the “Unknown sequence number”

flag). This flag is to indicate that the RREQ is sent while a route was still valid.

00 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1

Packet Type Flags Reserved Hop Count

RREQ ID

Destination IP Address

Destination Sequence Number

Source IP Address

Source Sequence Number

Pathchange Time

Table B.1: RREQ Packet Structure.

Since the “Pathchange Time” is the predicted expiry time of the path, which is

equivalent to the “route expiry time” that have been used in the route entries of

OPNET’s AODV model. For simplicity, “Pathchange Time” with type “double”

is used. Initially, the “Pathchange Time” is set to the maximum value, which is

infinity in this case. Alternatively, “Pathchange Time” can be replaced by “Path

Lifetime”, which represents the predicted lifetime of the route.

B.1.2 RREP Packet Structures

According to standard AODV, the “Lifetime” field of the RREP packet structure

is set to a fixed duration that a route is expected to last. In AODV-PP, this

“Lifetime” field is set to the route expiry time of the route to the source. Another

difference is that AODV-PP has an additional field called “Pathchange Time”.

Similar to the RREQ packet, the “Pathchange Time” field stores the predicted

route expiry from the destination, and is updated at each hop along the return

route. The modified RREP packet is shown in Table B.2.
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00 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1

Packet Type Flags Reserved Prefix Hop Count

Destination IP Address

Destination Sequence Number

Source IP Address

Lifetime (optional)

Pathchange Time

Table B.2: RREP Packet Structure.

Again, the “Pathchange Time” field is initially set to the largest value by the

destination, which is infinity for OPNET. After the linkchange_time is predicted

at each hop, the node will set or update the “pathchange_time” of the route entry,

and the “Pathchange Time” field of the RREP will also be updated and sent to

the next hop towards the source.

B.2 Process RREQ Packets

Upon receiving a RREQ packet, it is processed in the modified function,

aodv_rte_rreq_pkt_arrival_handle(), as represented in pseudo Code B.2 below.

Code B.2: aodv_rte_rreq_pkt_arrival_handle() Function

1 vo id a o d v _ r t e _ r r e q _ p k t _ a r r i v a l _ h a n d l e ( . . . ,

2 AodvT_Packet_Opt ion∗ t l v _ o p t i o n s _ p t r ) {

3 s e t r r e q = ( AodvT_Rreq ∗ ) t l v _ o p t i o n s _ p t r −> v a l u e _ p t r ;

4 . . .

5 /∗ Added f o r P r e d i c t i o n t o p r e d i c t t h e p a t h c h a n g e t ime ∗ /

6 i f ( p r e d i c t i v e _ a o d v ) {

7 c a l l p r e d i c t _ l i n k c h a n g e _ t i m e ( p r ev_hop_add r ) t o p r e d i c t l i n k c h a n g e _ t i m e ;

8 i f ( l i n k c h a n g e _ t i m e < c u r r _ t i m e ) {

9 l i n k c h a n g e _ t i m e = c u r r _ t i m e ;

10 }

11 p a t h c h a n g e _ t i m e = min ( r r e q−>p a t h c h a n g e _ t i m e , l i n k c h a n g e _ t i m e ) ;

12 r r e q−>p a t h c h a n g e _ t i m e = p a t h c h a n g e _ t i m e ;

13 }

14 /∗ P r e d i c t i o n Ends ∗ /

15

16 c a l l a o d v _ r t e _ n e i g h b o r _ c o n n e c t i v i t y _ t a b l e _ u p d a t e ( prev_hop , FALSE) t o

17 add or u p d a t e t h e n e i g h b o u r c o n n e c t i v i t y t a b l e ;
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18

19 /∗ Modi f i ed f o r P r e d i c t i o n t o u p d a t e t h e r o u t e e n t r y t o prev_hop ∗ /

20 i f ( p r e d i c t i v e _ a o d v ) {

21 /∗ Update t h e r o u t e e n t r y f o r AODV−PP /AODV−PU ∗ /

22 i f ( r r e q−> p r e _ r o u t e _ f l a g i s TRUE)

23 c a l l a o d v _ r t e _ r o u t e _ t a b l e _ e n t r y _ u p d a t e ( ) ;

24 e l s e

25 c a l l a o d v _ r t e _ r o u t e _ t a b l e _ e n t r y _ u p d a t e ( ) ;

26 }

27 e l s e {

28 /∗ Update t h e r o u t e e n t r y f o r AODV ∗ /

29 c a l l a o d v _ r t e _ r o u t e _ t a b l e _ e n t r y _ u p d a t e ( ) ;

30 }

31 /∗ P r e d i c t i o n M o d i f i c a t i o n Ends ∗ /

32

33 . . .

34

35 /∗ Modi f i ed f o r P r e d i c t i o n t o d e c i d e whe the r t o a c c e p t ∗ /

36 /∗ or r e j e c t t h e RREQ by c h e c k i n g t h e RREQ f o r w a r d e d . ∗ /

37 c a l l a o d v _ r o u t e _ r e q u e s t _ f o r w a r d _ e n t r y _ e x i s t s ( ) t o o b t a i n

38 t h e e x i s t i n g r o u t e _ e n t r y −>p a t h c h a n g e _ t i m e and t o

39 check i f a RREQ has a l r e a d y been r e c e i v e d ;

40 i f ( r o u t e _ r e q u e s t _ f o r w a r d _ e n t r y _ e x i s t s ) {

41 /∗ P r e d i c t i o n M o d i f i c a t i o n Ends ∗ /

42 i f ( s t a n d a r d _ a o d v ) {

43 d i s c a r d RREQ/ IP Pkt ;

44 r e t u r n ;

45 }

46 /∗ Added f o r P r e d i c t i o n ∗ /

47 e l s e i f ( p r e d i c t i v e _ a o d v ) {

48 i f ( p a t h c h a n g e _ t i m e < r o u t e _ e n t r y −>p a t h c h a n g e _ t i m e ) {

49 d i s c a r d RREQ/ IP Pkt ;

50 r e t u r n ;

51 }

52 }

53 /∗ P r e d i c t i o n Ends ∗ /

54 }

55

56 /∗ Added f o r P r e d i c t i o n t o d i s c a r d RREQ i f t h e r o u t e ’ s ∗ /

57 /∗ p a t h c h a n g e t i me i s t o o s h o r t . ∗ /

58 i f ( p r e d i c t i v e _ a o d v i s TRUE && p a t h c h a n g e _ t i m e < c u r r _ t i m e ) {

59 d i s c a r d RREQ/ IP Pkt ;

60 r e t u r n ;

61 }

62 /∗ P r e d i c t i o n Ends ∗ /

63

64 /∗ Modi f i ed f o r P r e d i c t i o n t o add new RREQ i n t h e r e q u e s t t a b l e . ∗ /

65 c a l l a o d v _ r e q u e s t _ t a b l e _ f o r w a r d _ r r e q _ i n s e r t ( . . . , p a t h c h a n g e _ t i m e ) ;

66 /∗ P r e d i c t i o n M o d i f i c a t i o n Ends ∗ /

67
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68 r r e q−>hop_coun t ++;

69 i f ( r r e q−>hop_coun t > n e t _ d i a m e t e r ) {

70 d i s c a r d RREQ/ IP Pkt ;

71 r e t u r n ;

72 }

73

74 i f ( s t a n d a r d _ a o d v )

75 s e t m i n _ l i f e t i m e = ( ( 2 ∗ n e t _ t r a v e r s a l _ t i m e ) −
76 (2 ∗ r r e q−>hop_coun t ∗ n o d e _ t r a v e r s a l _ t i m e ) ) ;

77 /∗ Added f o r P r e d i c t i o n t o c a l c u l a t e t h e l i f e t i m e d i f f e r e n t ∗ /

78 /∗ t o AODV. ∗ /

79 e l s e i f ( p r e d i c t i v e _ a o d v )

80 s e t m i n _ l i f e t i m e = r r e q−>p a t h c h a n g e _ t i m e − op_s im_t ime ( ) ;

81 /∗ P r e d i c t i o n Ends ∗ /

82

83 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( ) t o g e t sou rce ’ s r o u t e _ e n t r y ;

84 i f ( r o u t e _ e n t r y does n o t e x i s t ) {

85 /∗ Modi f i ed f o r P r e d i c t i o n t o c r e a t e a r o u t e e n t r y , ∗ /

86 /∗ as new i n p u t p a r a m e t e r s a r e added t o t h e ∗ /

87 /∗ a o d v _ r o u t e _ t a b l e _ e n t r y _ c r e a t e ( ) f u n c t i o n . ∗ /

88 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ c r e a t e ( . . . , l i f e t i m e , . . . , Aodv_Stage ) t o

89 c r e a t e and add r o u t e _ e n t r y t o r o u t e _ t a b l e ;

90 /∗ P r e d i c t i o n M o d i f i c a t i o n Ends ∗ /

91 c a l l a o d v _ r t e _ a l l _ p k t s _ t o _ d e s t _ s e n d ( ) t o send a l l queued p a c k e t s t o

92 t h e s o u r c e o f t h e RREQ;

93 }

94 e l s e i f ( s t a n d a r d _ a o d v &&

95 ( ( r r e q−>src_seq_num > r o u t e _ e n t r y −>des t_seq_num ) | |

96 ( r r e q−>src_seq_num == r o u t e _ e n t r y −>des t_seq_num &&

97 r r e q−>hop_coun t < r o u t e _ e n t r y −>hop_coun t ) | |

98 ( r r e q−>src_seq_num == r o u t e _ e n t r y −>des t_seq_num &&

99 r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e i s I n v a l i d )

100 )

101 ) {

102 u p d a t e r o u t e _ e n t r y as normal ;

103 }

104 /∗ Added f o r P r e d i c t i o n ∗ /

105 e l s e i f ( p r e d i c t i v e _ a o d v ) {

106 s e t p r e _ r o u t e _ e x p i r y _ t i m e = c u r r _ t i m e + 2 . 0 ∗ n o d e _ t r a v e r s a l _ t i m e ∗
107 ( t t l − 1 + t i m e o u t _ b u f f e r ) ;

108

109 i f ( ( p r e _ r o u t e _ e x p i r y _ t i m e < r r e q−>p a t h c h a n g e _ t i m e − 0 . 1 ) &&

110 ( ( r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e i s n o t V a l i d ) | |

111 ( r r e q−>src_seq_num > r o u t e _ e n t r y −>p r e _ r o u t e _ d e s t _ s e q _ n u m ) | |

112 ( ( r r e q−>src_seq_num == r o u t e _ e n t r y −>p r e _ r o u t e _ d e s t _ s e q _ n u m ) | |

113 ( r r e q−>p a t h c h a n g e _ t i m e >=

114 r o u t e _ e n t r y −>p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e + 0 . 1 ) ) ) ) {

115 u p d a t e r o u t e _ e n t r y f o r AODV−PP /AODV−PU as f o l l o w :

116 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ d e s t _ s e q _ n u m = r r e q−>src_seq_num ;

117 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ n e x t _ h o p _ a d d r = p rev_hop_add r ;
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118 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ n e x t _ h o p _ p o r t _ i n f o = i n _ p o r t _ i n f o ;

119 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ h o p _ c o u n t = r r e q−>hop_coun t ;

120 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e = r r e q−>p a t h c h a n g e _ t i m e ;

121 s e t r o u t e _ e n t r y _ p t r −> p r e _ r o u t e _ s t a t e = TRUE;

122 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ p r e _ r o u t e _ t i m e r _ u p d a t e ( ) t o s e t an i n t e r r u p t

123 a t r o u t e _ e n t r y −> p r e _ r o u t e _ e x p i r y _ t i m e r = p r e _ r o u t e _ e x p i r y _ t i m e ;

124

125 i f ( r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e i s n o t V a l i d ) {

126 c a l c u l a t e r o u t e d u r a t i o n s t a t s ;

127 s e t r o u t e _ e n t r y −>des t_seq_num = r r e q−>src_seq_num ;

128 s e t r o u t e _ e n t r y −>n e x t _ h o p _ p o r t _ i n f o = i n _ p o r t _ i n f o ;

129 s e t r o u t e _ e n t r y −>hop_coun t = r r e q−>hop_coun t ;

130

131 i f ( r o u t e _ e n t r y −>n e x t _ h o p _ a d d r i s n o t p r e v _ h o p _ a d d r )

132 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ n e x t _ h o p _ u p d a t e ( ) t o u p d a t e

133 t h e r o u t e _ e n t r y wi th t h e p r e v i o u s hop ’ s i n f o r m a t i o n ;

134 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ e x p i r y _ t i m e _ u p d a t e ( ) t o

135 s e t r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e = r r e q−>p a t h c h a n g e _ t i m e ;

136 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ s t a t e _ s e t ( ) t o

137 s e t r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e = V a l i d ;

138 c a l l a o d v _ r t e _ a l l _ p k t s _ t o _ d e s t _ s e n d ( ) t o

139 send a l l queued a p p l i c a t i o n p a c k e t s t o t h e

140 d e s t i n a t i o n u s i n g t h e new r o u t e ;

141 }

142

143 /∗ S e t t h e v a l i d s e q u e n c e number f l a g f i e l d . ∗ /

144 i f ( r r e q−>src_seq_num == AODVC_DEST_SEQ_NUM_INVALID)

145 r o u t e _ e n t r y −>p r e _ r o u t e _ v a l i d _ d e s t _ s e q u e n c e _ n u m b e r _ f l a g = FALSE ;

146 e l s e

147 r o u t e _ e n t r y −>p r e _ r o u t e _ v a l i d _ d e s t _ s e q u e n c e _ n u m b e r _ f l a g = TRUE;

148 }

149 e l s e i f ( r o u t e _ e n t r y −>p r e _ r o u t e _ n e x t _ h o p _ a d d r != p rev_hop_add r ) {

150 d i s c a r d RREQ/ IP Pkt ;

151 r e t u r n ;

152 }

153 e l s e i f ( p r e _ r o u t e _ e x p i r y _ t i m e > r r e q−>p a t h c h a n g e _ t i m e ) {

154 d i s c a r d RREQ/ IP Pkt ;

155 r e t u r n ;

156 }

157 }

158 /∗ P r e d i c t i o n Ends ∗ /

159 e l s e i f ( r o u t e _ e n t r y −>n e x t _ h o p _ a d d r != p r e v _ h o p _ a d d r ) {

160 d i s c a r d RREQ/ IP Pkt ;

161 r e t u r n ;

162 }

163

164 i f ( t h i s _ n o d e i s d e s t _ n o d e ) {

165 /∗ I f t h i s node i s t h e d e s t i n a t i o n o f t h e RREQ. ∗ /

166 i f ( s t a n d a r d _ a o d v ) {

167 /∗ I f AODV, send RREP i m m e d i a t e l y . ∗ /
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168 send RREP now ;

169 }

170 e l s e {

171 /∗ Added f o r P r e d i c t i o n t o s e t a t i m e r t o send RREP . ∗ /

172 s e t r o u t e _ e n t r y −>r r e p _ s e n d _ t i m e r

173 t o send RREP ;

174 c a l l a o d v _ r o u t e _ t a b l e _ r r e p _ s e n d _ t i m e r _ u p d a t e ( ) t o send RREP

175 a t r o u t e _ e n t r y −>r r e p _ s e n d _ t i m e r ;

176 /∗ P r e d i c t i o n Ends ∗ /

177 }

178

179 d i s c a r d RREQ/ IP Pkt ;

180 r e t u r n ;

181 }

182

183 i f ( ga teway i s e n a b l e d &&

184 d e s t i s a known−a v a i l a b l e e x t e r n a l d e s t i n a t i o n ) {

185 . . .

186 }

187

188 i f ( d e s t _ r o u t e _ e n t r y e x i s t s ) {

189 i f ( d e s t _ r o u t e _ e n t r y −>des t_seq_num >= r r e q−>des t_seq_num &&

190 d e s t _ r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e i s V a l i d ) {

191 i f ( ! r r e q−>d e s t _ o n l y ) {

192 /∗ Thi s i s f o r Non D e s t i n a t i o n Only , ∗ /

193 /∗ Th i s o p t i o n i s n o t used . ∗ /

194 }

195 }

196 }

197 e l s e i f ( ga teway i s e n a b l e d ) {

198 /∗ Thi s o p t i o n i s n o t used . ∗ /

199 }

200

201 i f ( t t l == 1) {

202 d i s c a r d RREQ/ IP Pkt ;

203 r e t u r n ;

204 }

205

206 s e t n e w _ t t l = t t l −1;

207 e n c a p s u l a t e RREQ i n t o an IP p a c k e t ;

208

209 add s t a t i s t i c s ;

210

211 s c h e d u l e t o send RREQ;

212 }
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The previous function, aodv_rte_rreq_pkt_arrival_handle(), calls other functions

to complete the process upon receiving a RREQ. The required functions that have

been modified or added include:

1. predict_linkchange_time() (Code B.2.1);

2. aodv_request_table_forward_rreq_insert() (Code B.2.2);

3. aodv_route_request_forward_entry_exists() (Code B.2.3);

4. aodv_rte_route_table_entry_update() (Code B.2.4);

5. aodv_route_table_entry_create() (Code B.2.5);

6. aodv_route_table_entry_next_hop_update() (Code B.2.6);

7. aodv_route_table_rrep_send_timer_update() (Code B.2.7); and

8. aodv_route_table_pre_route_expiry_timer_update() (Code B.2.8).

B.2.1 predict_linkchange_time Function

The function, predict_linkchange_time(), is a new function that is called to get

the predicted linkchange time for a wireless link to a specific neighbouring

node. Thus, this function requires the neighbouring node’s address as its input,

and it returns the predicted link change time.

Code B.2.1: predict_linkchange_time() Function

1 d ou b l e p r e d i c t _ l i n k c h a n g e _ t i m e ( n e i g h b o u r _ a d d r ) {

2 g e t n e i g h b o u r _ i n f o ;

3

4 /∗ For each node i n t h e network , f i n d t h e n e i g h b o u r ∗ /

5 f o r ( i = 0 ; i < t r a c k _ i n f o _ p t r −>n _ o t h e r _ n o d e s ; i ++) {

6 g e t t h e t r a c k _ i n f o f o r node i ;

7 i f ( node i i s t h e n e i g h b o u r ) {

8 c a l l o p _ i m a _ o b j _ p o s _ g e t _ t i m e ( ) t o g e t t h e

9 c o o r d i n a t e s ( y11 , z11 ) o f t h i s node ;

10 c a l l o p _ i m a _ o b j _ p o s _ g e t _ t i m e ( ) t o g e t t h e

11 c o o r d i n a t e s ( y21 , z21 ) o f t h e n e i g h b o u r ;

12 c a l c u l a t e d i s t a n c e = s q r t ( ( y21−y11 )∗ ( y21−y11 ) + ( z21−z11 )∗ ( z21−z11 ) ) ;

13

14 i f ( p r e d i c t _ m e t h o d i s PERFECT_ALL) {

15 /∗ Thi s p a r t i s f o r p e r f e c t p r e d i c t i o n ∗ /

16 g e t l i n k c h a n g e _ t i m e = o t h e r s _ i n f o −>p r e d _ l i n k c h a n g e _ t i m e ;

17 s e t l i n k _ d u r a t i o n = l i n k c h a n g e _ t i m e − c u r r _ t i m e ;
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18 }

19 else if (predict_method is LET) {
20 /* This part is for predicting using LET */

21 call predict_link_break_time_let (tx_range, self_objid, neighbour_objid)

22 to predict the linkchange_time;

23 set link_duration = linkchange_time - curr_time;

24 }

25

26 i f ( ( l i n k _ d u r a t i o n > 0) && ( d i s t a n c e < t x _ r a n g e ) ) {

27 /∗ I f l i n k i s s t i l l a v a i l a b l e , r e t u r n t h e p r e d i c t e d l i n k c h a n g e _ t i m e ∗ /

28 n e i g h b o u r _ i n f o −> l i n k _ d u r a t i o n = l i n k _ d u r a t i o n ;

29 n e i g h b o u r _ i n f o −>l i n k c h a n g e _ t i m e = l i n k c h a n g e _ t i m e ;

30 c a l l i n e t _ a d d r _ h a s h _ t a b l e _ i t e m _ i n s e r t ( ) t o add t h e n e i g h b o u r i n g node

31 t o keep t r a c k of i t s n e i g h b o u r s ;

32

33 r e t u r n ( l i n k c h a n g e _ t i m e ) ;

34 }

35 e l s e {

36 /∗ I f l i n k i s n o t a v a i l a b l e , r e t u r n t h e p r e d i c t e d l i n k c h a n g e _ t i m e ∗ /

37 p r i n t a warn ing message ;

38

39 r e t u r n ( l i n k c h a n g e _ t i m e ) ;

40 }

41 }

42 }

43

44 r e t u r n −1;

45 }

B.2.2 aodv_request_table_forward_rreq_insert Function

The function, aodv_request_table_forward_rreq_insert(), is used to insert the

RREQ packet information into a table, in order to keep track of the RREQ

packets that have been received.

Code B.2.2: aodv_request_table_forward_rreq_insert() Function

1 v o i d a o d v _ r e q u e s t _ t a b l e _ f o r w a r d _ r r e q _ i n s e r t ( r e q _ t a b l e , r e q _ i d ,

2 o r i g i n a t o r _ a d d r , p a t h c h a n g e _ t i m e ) {

3 /∗ Check i f t h e r e e x i s t s a r e q _ e n t r y _ l i s t f o r t h e o r i g i n a t o r _ a d d r ∗ /

4 c a l l i n e t _ a d d r _ h a s h _ t a b l e _ i t e m _ g e t ( ) t o g e t r e q _ e n t r y _ l i s t ;

5

6 i f ( r e q _ e n t r y _ l i s t does n o t e x i s t s ) {

7 c a l l o p _ p r g _ l i s t _ c r e a t e ( ) t o c r e a t e r e q _ e n t r y _ l i s t ;
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8 c a l l i n e t _ a d d r _ h a s h _ t a b l e _ i t e m _ i n s e r t ( ) t o add

9 r e q _ e n t r y _ l i s t i n t o r e q _ t a b l e −> f o r w a r d _ r e q u e s t _ t a b l e ;

10 }

11

12 /∗ C r e a t e an e n t r y f o r t h i s new r e q u e s t ∗ /

13 r e q _ e n t r y = a o d v _ r e q u e s t _ t a b l e _ f o r w a r d _ e n t r y _ m e m _ a l l o c ( ) ;

14 r e q _ e n t r y −> r e q u e s t _ i d = r e q _ i d ;

15 r e q _ e n t r y −>p a t h c h a n g e _ t i m e = p a t h c h a n g e _ t i m e ;

16 r e q _ e n t r y −> i n s e r t _ t i m e = c u r r _ t i m e ;

17

18 /∗ I n s e r t t h i s new r e q u e s t i n t o t h e r e q u e s t t a b l e ∗ /

19 c a l l o p _ p r g _ l i s t _ i n s e r t ( r e q _ e n t r y _ l i s t , r e q _ e n t r y , OPC_LISTPOS_TAIL )

20 t o add r e q _ e n t r y t o t h e end of r e q _ e n t r y _ l i s t ;

21

22 o r i g _ a d d r _ p t r = i n e t _ a d d r e s s _ c o p y _ d y n a m i c (& o r i g i n a t o r _ a d d r ) ;

23 c a l l o p _ i n t r p t _ s c h e d u l e _ c a l l ( ) t o s c h e d u l e an i n t e r r u p t

24 a t c u r r _ t i m e + r e q _ t a b l e −>f o r w a r d _ r e q u e s t _ e x p i r y _ t i m e

25 t o c l e a r t h e r e q _ e n t r y _ l i s t ;

26 }

B.2.3 aodv_route_request_forward_entry_exists Function

The aodv_route_request_forward_entry_exists() checks if the node has received

a RREQ packet with the same request ID through a more stable route before by

looking into the route request entry table. This function also obtains the best

pathchange time of the route request entry before this new RREQ packet arrived.

Code B.2.3: aodv_route_request_forward_entry_exists() Function

1 Boolean a o d v _ r o u t e _ r e q u e s t _ f o r w a r d _ e n t r y _ e x i s t s ( r e q _ t a b l e , r e q _ i d ,

2 o r i g i n a t o r _ a d d r , i n c o m i n g _ p a t h c h a n g e _ t i m e , ∗ e x i s t i n g _ p a t h c h a n g e _ t i m e ) {

3 /∗ Check i f t h e r e e x i s t s a r e q _ e n t r y _ l i s t f o r t h e o r i g i n a t o r _ a d d r ∗ /

4 c a l l i n e t _ a d d r _ h a s h _ t a b l e _ i t e m _ g e t ( ) t o g e t t h e

5 r e q _ e n t r y _ l i s t o f t h e o r i g i n a t o r _ a d d r from r e q _ t a b l e ;

6

7 i f ( r e q _ e n t r y _ l i s t does n o t e x i s t s ) {

8 r e t u r n FALSE ;

9 }

10

11 s e t l i s t _ s i z e = o p _ p r g _ l i s t _ s i z e ( r e q _ e n t r y _ l i s t ) ;

12

13 f o r ( n = 0 ; n < l i s t _ s i z e ; n ++) {

14 c a l l o p _ p r g _ l i s t _ a c c e s s ( r e q _ e n t r y _ l i s t , n ) t o g e t t h e n−t h
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15 r e q _ e n t r y o f t h e r e q _ e n t r y _ l i s t ;

16

17 i f ( r e q _ e n t r y −> r e q u e s t _ i d == r e q _ i d ) {

18 s e t ∗ e x i s t i n g _ p a t h c h a n g e _ t i m e = r e q _ e n t r y −>p a t h c h a n g e _ t i m e ;

19

20 i f ( i n c o m i n g _ p a t h c h a n g e _ t i m e > r e q _ e n t r y −>p a t h c h a n g e _ t i m e )

21 s e t r e q _ e n t r y −>p a t h c h a n g e _ t i m e = i n c o m i n g _ p a t h c h a n g e _ t i m e ;

22

23 r e t u r n TRUE;

24 }

25 }

26

27 i f ( r e q _ e n t r y _ l i s t i s Empty ) {

28 c a l l i n e t _ a d d r _ h a s h _ t a b l e _ i t e m _ r e m o v e ( ) t o remove t h e

29 o r i g i n a t o r _ a d d r ’ s r e q _ e n t r y _ l i s t from t h e r e q _ t a b l e ;

30 c a l l prg_mem_free ( r e q _ e n t r y _ l i s t ) t o f r e e r e q _ e n t r y _ l i s t ;

31 }

32

33 r e t u r n FALSE ;

34 }

B.2.4 aodv_rte_route_table_entry_update Function

The aodv_rte_route_table_entry_update() function is called to

create or update the route_entry to the previous hop (prev_hop)

of the incoming control packet. This function is called by the

aodv_rte_rreq_pkt_arrival_handle(), aodv_rte_rrep_pkt_arrival_handle()

and aodv_rte_route_table_entry_from_hello_update() functions.

Code B.2.4: aodv_rte_route_table_entry_update() Function

1 v o i d a o d v _ r t e _ r o u t e _ t a b l e _ e n t r y _ u p d a t e ( . . . ,

2 AodvT_Packet_Opt ion∗ t l v _ o p t i o n s _ p t r , Aodv_Stage s t a g e ) {

3 g e t prev_hop from t h e a r r i v e d p a c k e t ;

4 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( ) t o g e t prev_hop ’ s r o u t e _ e n t r y ;

5 i f ( t l v _ o p t i o n s _ p t r −>t y p e i s AODVC_ROUTE_REQUEST) {

6 s e t r r e q = ( AodvT_Rreq ∗ ) t l v _ o p t i o n s _ p t r −> v a l u e _ p t r ;

7 . . . ( s e t sequence_num and l i f e t i m e )

8 /∗ Added f o r P r e d i c t i o n ∗ /

9 i f ( p r e d i c t i v e _ a o d v ) {

10 s e t l i f e t i m e = p r e d i c t e d _ l i n k c h a n g e _ t i m e ;

11 i f ( r o u t e _ e n t r y e x i s t s && r r e q−> p r e _ r o u t e _ f l a g &&

12 ! m a n e t _ r t e _ a d d r e s s _ b e l o n g s _ t o _ n o d e ( . . . , r r e q−>d e s t _ a d d r ) ) {
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13 r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e = r r e q−> p r e _ r o u t e _ f l a g ;

14 }

15 }

16 /∗ P r e d i c t i o n Ends ∗ /

17 }

18 e l s e i f ( t l v _ o p t i o n s _ p t r −>t y p e i s AODVC_ROUTE_REPLY) {

19 s e t r r e p = ( AodvT_Rrep ∗ ) t l v _ o p t i o n s _ p t r −> v a l u e _ p t r ;

20 . . . ( s e t sequence_num and l i f e t i m e )

21 /∗ Added f o r P r e d i c t i o n ∗ /

22 i f ( p r e d i c t i v e _ a o d v ) {

23 s e t l i f e t i m e = p r e d i c t e d _ l i n k c h a n g e _ t i m e ;

24 }

25 /∗ P r e d i c t i o n Ends ∗ /

26 }

27 e l s e i f ( t l v _ o p t i o n s _ p t r −>t y p e i s AODVC_HELLO) {

28 . . . ( s e t sequence_num and l i f e t i m e )

29 }

30 . . .

31 i f ( r o u t e _ e n t r y does n o t e x i s t ) {

32 i f ( s t a n d a r d _ a o d v ) {

33 . . .

34 }

35 /∗ Added f o r P r e d i c t i o n ∗ /

36 e l s e i f ( p r e d i c t i v e _ a o d v ) {

37 i f ( t l v _ o p t i o n s _ p t r −>t y p e i s AODVC_ROUTE_REQUEST) {

38 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ c r e a t e ( . . . , l i f e t i m e , . . . ,

39 t t l , aodv_type , a o d v _ s t a g e ) t o c r e a t e and add

40 r o u t e _ e n t r y f o r prev_hop t o r o u t e _ t a b l e ;

41 }

42 e l s e i f ( t l v _ o p t i o n s _ p t r −>t y p e i s AODVC_ROUTE_REPLY) {

43 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ c r e a t e ( . . . , l i f e t i m e , . . . ,

44 . . . , aodv_type , a o d v _ s t a g e ) t o c r e a t e and add

45 r o u t e _ e n t r y f o r prev_hop t o r o u t e _ t a b l e ;

46 }

47 e l s e i f ( t l v _ o p t i o n s _ p t r −>t y p e i s AODVC_HELLO) {

48 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ c r e a t e ( . . . , l i f e t i m e , . . . ,

49 1 , aodv_type , a o d v _ s t a g e ) t o c r e a t e and add

50 r o u t e _ e n t r y f o r prev_hop t o r o u t e _ t a b l e ;

51 }

52 }

53 /∗ P r e d i c t i o n Ends ∗ /

54 }

55 e l s e i f ( s t a n d a r d _ a o d v ) {

56 u p d a t e r o u t e _ e n t r y ;

57 . . .

58 }

59 e l s e i f ( p r e d i c t i v e _ a o d v ) {

60 /∗ Added f o r P r e d i c t i o n so t h a t t h e r i g h t v a r i a b l e s ∗ /

61 /∗ of t h e r o u t e _ e n t r y i s u p d a t e d c o r r e c t l y . ∗ /

62 copy t h e f o l l o w i n g p a r a m e t e r s from r o u t e _ e n t r y :
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63 des t_seq_num = r o u t e _ e n t r y −>des t_seq_num ;

64 hop_coun t = r o u t e _ e n t r y −>hop_coun t ;

65 r o u t e _ e n t r y _ s t a t e = r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e ;

66 p r e _ r o u t e _ d e s t _ s e q _ n u m = r o u t e _ e n t r y −>p r e _ r o u t e _ d e s t _ s e q _ n u m ;

67 p r e _ r o u t e _ h o p _ c o u n t = r o u t e _ e n t r y −>p r e _ r o u t e _ h o p _ c o u n t ;

68 p r e _ r o u t e _ s t a t e = r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e ;

69

70 s e t p r e _ r o u t e _ e x p i r y _ t i m e = c u r r _ t i m e ;

71 i f ( t l v _ o p t i o n s _ p t r −>t y p e i s AODVC_ROUTE_REQUEST) {

72 s e t p r e _ r o u t e _ e x p i r y _ t i m e += 2 . 0 ∗ n o d e _ t r a v e r s a l _ t i m e ∗
73 ( t t l − 1 + t i m e o u t _ b u f f e r ) ;

74 }

75

76 i f ( ( t l v _ o p t i o n s _ p t r −>t y p e i s AODVC_HELLO) | |

77 ( r o u t e _ e n t r y _ s t a t e i s n o t V a l i d ) | |

78 ( ( l i f e t i m e > p r e _ r o u t e _ e x p i r y _ t i m e ) &&

79 ( ( t l v _ o p t i o n s _ p t r −>t y p e == AODVC_ROUTE_REPLY) &&

80 ( r o u t e _ e n t r y −>n e x t _ h o p _ a d d r i s prev_hop ) &&

81 ( sequence_num > des t_seq_num ) ) | |

82 ( ( t l v _ o p t i o n s _ p t r −>t y p e == AODVC_ROUTE_REPLY) &&

83 ( sequence_num >= des t_seq_num ) &&

84 ( r r e p−>p a t h c h a n g e _ t i m e > r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e ) ) | |

85 ( ( ! p r e _ r o u t e _ s t a t e ) &&

86 ( sequence_num > des t_seq_num ) ) | |

87 ( l i f e t i m e > r o u t e _ e n t r y −> p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e + 0 . 1 )

88 ) ) {

89 i f ( r o u t e _ e n t r y _ s t a t e i s n o t VALID) {

90 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ n e x t _ h o p _ u p d a t e ( ) t o u p d a t e

91 t h e r o u t e _ e n t r y wi th t h e new n e x t hop ’ s i n f o r m a t i o n :

92 }

93 }

94 /∗ P r e d i c t i o n Ends ∗ /

95 }

96 }

Where aodv_type is either AODV or PREDICT, and aodv_stage keeps track

of what stage of AODV the model is in, such as Receiving RREQ, Receiving

PreRREQ or Receiving RREP.

B.2.5 aodv_route_table_entry_create Function

The aodv_route_table_entry_create() function creates a route entry (route_entry)

in the route table (route_table). It is called when there is no route entry exists.
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This function is modified so that it copies the route information into the

additional pre-route variables in the route_entry.

Code B.2.5: aodv_route_table_entry_create() Function

1 AodvT_Route_Entry∗ a o d v _ r o u t e _ t a b l e _ e n t r y _ c r e a t e ( r o u t e _ t a b l e , d e s t _ a d d r ,

2 subnet_mask , nex t_hop_addr , o u t _ p o r t _ i n f o , num_hops , des t_seq_num ,

3 e x p i r y _ t i m e , l i n k _ e x p i r y _ t i m e , t t l , aodv_type , a o d v _ s t a g e ) {

4 a l l o c a t e memory f o r r o u t e _ e n t r y ;

5 c a l l i p _ c m n _ r t e _ t a b l e _ d e s t _ p r e f i x _ c r e a t e ( d e s t _ a d d r , subne t_mask ) t o

6 s e t r o u t e _ e n t r y −> d e s t _ p r e f i x ; / / t h i s i s r e q u i r e d i n OPNET’ s AODV.

7 s e t r o u t e _ e n t r y −>des t_seq_num = des t_seq_num ;

8 i f ( des t_seq_num i s V a l i d )

9 s e t r o u t e _ e n t r y −>v a l i d _ d e s t _ s e q u e n c e _ n u m b e r _ f l a g t o TRUE;

10 e l s e

11 s e t r o u t e _ e n t r y −>v a l i d _ d e s t _ s e q u e n c e _ n u m b e r _ f l a g t o FALSE ;

12 s e t r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e = AodvC_Valid_Route ;

13 s e t r o u t e _ e n t r y −>n e x t _ h o p _ a d d r = n e x t _ h o p _ a d d r ;

14 s e t r o u t e _ e n t r y −>n e x t _ h o p _ p o r t _ i n f o = o u t _ p o r t _ i n f o ;

15 s e t r o u t e _ e n t r y −>hop_coun t = num_hops ;

16 s e t r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e = c u r r _ t i m e + e x p i r y _ t i m e ;

17 s e t r o u t e _ e n t r y −> r o u t e _ r e q u e s t _ t i m e = c u r r _ t i m e ;

18 s e t r o u t e _ e n t r y −>r o u t e _ b e g i n s _ t i m e = c u r r _ t i m e ;

19 s e t r o u t e _ e n t r y −>r r e p _ s e n d _ t i m e r _ e n a b l e d t o FALSE ;

20 s e t r o u t e _ e n t r y −>r r e p _ s e n d _ t i m e r = 0 ;

21 a l l o c a t e memory f o r r o u t e _ e n t r y −> r r e q _ o p t i o n _ p t r ;

22 s e t r o u t e _ e n t r y −>i p _ d g r a m _ f d _ p t r t o NULL;

23 i f ( p r e d i c t i v e _ a o d v ) {

24 s e t r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e = e x p i r y _ t i m e ;

25 s e t r o u t e _ e n t r y −> p r e _ r o u t e _ s t a r t _ t i m e r = r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e −
26 2 . 0 ∗ r o u t e _ e n t r y −> n o d e _ t r a v e r s a l _ t i m e ∗
27 ( r o u t e _ e n t r y −>n e t _ d i a m e t e r + r o u t e _ e n t r y −> t i m e o u t _ b u f f e r ) ;

28

29 s e t r o u t e _ e n t r y −> p r e _ r o u t e _ e x p i r y _ t i m e r = 0 ;

30 i f ( a o d v _ s t a g e == PRER_RREQ | | a o d v _ s t a g e == PRED_RREQ) {

31 s e t r o u t e _ e n t r y −> p r e _ r o u t e _ e x p i r y _ t i m e r = c u r r _ t i m e +

32 2 . 0 ∗ r o u t e _ e n t r y −>n o d e _ t r a v e r s a l _ t i m e ∗
33 ( t t l − 1 + r o u t e _ t a b l e −> t i m e o u t _ b u f f e r ) ;

34 c a l l o p _ i n t r p t _ s c h e d u l e _ c a l l ( ) t o s e t an i n t e r r u p t a t

35 r o u t e _ e n t r y −> p r e _ r o u t e _ e x p i r y _ t i m e r ;

36 }

37 }

38 e l s e {

39 s e t r o u t e _ e n t r y −> p r e _ r o u t e _ s t a r t _ t i m e r = −1;

40 s e t r o u t e _ e n t r y −> p r e _ r o u t e _ e x p i r y _ t i m e r = −1;

41 }

42

43 s e t r o u t e _ e n t r y −> r o u t e _ e x p i r y _ u p d a t e _ l p t r = o p _ p r g _ l i s t _ c r e a t e ( ) ;

44 s e t r o u t e _ e n t r y −> l a s t _ r o u t e _ e x p i r y _ u p d a t e _ t i m e = 0 ;
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45 s e t r o u t e _ e n t r y −>r o u t e _ e x p i r y _ u p d a t e _ t i m e r = 0 ;

46 s e t r o u t e _ e n t r y −>n e w _ r o u t e _ e x p i r y _ t i m e = s e t r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e ;

47 s e t r o u t e _ e n t r y −>l i n k _ e x p i r y _ t i m e = l i n k _ e x p i r y _ t i m e ;

48 s e t r o u t e _ e n t r y −>n e w _ l i n k _ e x p i r y _ t i m e = l i n k _ e x p i r y _ t i m e ;

49 s e t r o u t e _ e n t r y −> i s _ s h o r t e s t _ l i n k _ d u r a t i o n t o FALSE ;

50 i f ( abs ( r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e − r o u t e _ e n t r y −>l i n k _ e x p i r y _ t i m e ) < 0 . 0 0 1 )

51 s e t r o u t e _ e n t r y −> i s _ s h o r t e s t _ l i n k _ d u r a t i o n t o TRUE;

52

53 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ d e s t _ s e q _ n u m = des t_seq_num ;

54 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ n e x t _ h o p _ a d d r = n e x t _ h o p _ a d d r ;

55 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ n e x t _ h o p _ p o r t _ i n f o = o u t _ p o r t _ i n f o ;

56 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ h o p _ c o u n t = num_hops ;

57 s e t r o u t e _ e n t r y −> p r e _ r o u t e _ c o s t = 0 ;

58 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e = e x p i r y _ t i m e ;

59 s e t r o u t e _ e n t r y −> p r e _ r o u t e _ l i n k _ e x p i r y _ t i m e = l i n k _ e x p i r y _ t i m e ;

60 i f ( a o d v _ s t a g e == PRER_RREQ | | a o d v _ s t a g e == PRED_RREQ) {

61 s e t r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e t o TRUE;

62 }

63 e l s e {

64 s e t r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e t o FALSE ;

65 }

66 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ r e a d y t o FALSE ;

67 s e t r o u t e _ e n t r y −>i s _ s o u r c e _ n o d e t o FALSE ;

68 s e t r o u t e _ e n t r y −> l a s t _ a p p _ p k t _ t o _ d e s t _ t i m e = −1;

69 s e t r o u t e _ e n t r y −> l a s t _ p k t _ t o _ d e s t _ t i m e = −1;

70 i f ( r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e > c u r r _ t i m e ) {

71 i f ( e x p i r y _ t i m e != INFINITY ) {

72 c a l l o p _ i n t r p t _ s c h e d u l e _ c a l l ( ) t o s e t an i n t e r r u p t a t

73 r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e ;

74 }

75 }

76 e l s e {

77 s e t r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e = AodvC_Inva l id_Route ;

78 FRET ( r o u t e _ e n t r y _ p t r ) ;

79 }

80

81 c a l l i n e t _ a d d r _ h a s h _ t a b l e _ i t e m _ i n s e r t ( ) t o i n s e r t

82 r o u t e _ e n t r y i n t o AODV r o u t e _ t a b l e ;

83 c a l l Ine t_Cmn_Rte_Tab le_Ent ry_Add_Opt ions ( ) t o i n s e r t

84 r o u t e i n t h e IP r o u t i n g t a b l e

85

86 i n c r e m e n t r o u t e _ e n t r y −> a c t i v e _ r o u t e _ c o u n t ;

87

88 u p d a t e s t a t i s t i c s ;

89

90 r e t u r n r o u t e _ e n t r y ;

91 }
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B.2.6 aodv_route_table_entry_next_hop_update Function

The aodv_route_table_entry_next_hop_update() function is called by the

aodv_rte_rreq_pkt_arrival_handle(), aodv_rte_rrep_pkt_arrival_handle()

and aodv_rte_route_table_entry_update() functions. This is to update the

route_entry with the new sequence number of the destination (sequence_num),

next hop address to the destination (next_hop_addr), hop count to the destination

(hop_count), and out port information (out_port_info).

Code B.2.6: aodv_route_table_entry_next_hop_update() Function

1 vo id a o d v _ r o u t e _ t a b l e _ e n t r y _ n e x t _ h o p _ u p d a t e ( r o u t e _ t a b l e , r o u t e _ e n t r y ,

2 sequence_num , nex t_hop_addr , hop_count , o u t _ p o r t _ i n f o ) {

3 i f ( ( r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e i s v a l i d ) &&

4 ( i n e t _ c m n _ r t e _ t a b l e _ e n t r y _ e x i s t s ( r o u t e _ t a b l e −>i p _ c m n _ r t e _ t a b l e _ p t r ,

5 r o u t e _ e n t r y −> d e s t _ p r e f i x , &e n t r y _ p t r ) i s OPC_COMPCODE_SUCCESS ) ) {

6 c a l l Ine t_Cmn_Rte_Tab le_Ent ry_Upda te ( ) t o u p d a t e t h e r o u t i n g t a b l e ;

7 }

8 s e t r o u t e _ e n t r y −>des t_seq_num = sequence_num ;

9 s e t r o u t e _ e n t r y −>n e x t _ h o p _ a d d r = n e x t _ h o p _ a d d r ;

10 s e t r o u t e _ e n t r y −>n e x t _ h o p _ p o r t _ i n f o = i n _ p o r t _ i n f o ;

11 s e t r o u t e _ e n t r y −>hop_coun t = hop_coun t ;

12 s e t r o u t e _ e n t r y −> r o u t e _ r e q u e s t _ t i m e = c u r r _ t i m e ;

13 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ d e s t _ s e q _ n u m = sequence_num ;

14 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ n e x t _ h o p _ a d d r = n e x t _ h o p _ a d d r ;

15 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ n e x t _ h o p _ p o r t _ i n f o = i n _ p o r t _ i n f o ;

16 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ h o p _ c o u n t = hop_coun t ;

17 }

B.2.7 aodv_route_table_rrep_send_timer_update Function

The aodv_route_table_rrep_send_timer_update() function is called by the

aodv_rte_rreq_pkt_arrival_handle() at the destination node to set a timer to send

a RREP back to the source. A RREP is not sent immediately because there may

be other RREQs arrive later that have a better route lifetime. This is to avoid

nodes receiving multiple RREPs making the source and some intermediate

nodes to reset the route multiple times in a very short period of time. Changing

routes quickly may cause problems in TCP.
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Code B.2.7: aodv_route_table_rrep_send_timer_update() Function

1 i n t a o d v _ r o u t e _ t a b l e _ r r e p _ s e n d _ t i m e r _ u p d a t e (

2 r o u t e _ e n t r y , d e s t _ a d d r , exp_t ime , code ) {

3

4 c a n c e l e x i s t i n g e v e n t ( s ) i n r o u t e _ e n t r y −>r r e p _ s e n d _ t i m e r _ e v h a n d l e ;

5

6 i f ( c u r r _ t i m e <= exp_ t ime && exp_ t ime < OPC_DBL_INFINITY ) {

7 /∗ I f t h e exp_ t ime i s be tween now and i n f i n i t y , s e t an ∗ /

8 /∗ i n t e r r u p t t o send RREP when t h e t i m e r e x p i r e s . ∗ /

9 c a l l o p _ i n t r p t _ s c h e d u l e _ c a l l ( exp_t ime , code , a o d v _ r t e _ r r e p _ s e n d _ t i m e r _ h a n d l e ,

10 r o u t e _ e n t r y ) t o s c h e d u l e an i n t e r r u p t c a l l a t r r e p _ s e n d _ t i m e r t o send a

11 RREP , and keep t h e e v e n t h a n d l e r i n r o u t e _ e n t r y −>r r e p _ s e n d _ t i m e r _ e v h a n d l e ;

12 s e t r o u t e _ e n t r y −>r r e p _ s e n d _ t i m e r _ e n a b l e d = TRUE;

13 }

14 e l s e {

15 /∗ Do n o t s c h e d u l e any e v e n t i f t h e exp_ t ime i s ∗ /

16 /∗ b e f o r e t h e c u r r e n t t ime or i f i t i s i n f i n i t y . ∗ /

17 i f ( exp_ t ime < c u r r _ t i m e ) {

18 r e t u r n (AODVC_EXPTIME_UPDATE_SHORT ) ;

19 }

20 e l s e i f ( exp_ t ime == OPC_DBL_INFINITY ) {

21 r e t u r n ( AODVC_EXPTIME_UPDATE_INFINITE ) ;

22 }

23

24 r e t u r n (AODVC_EXPTIME_UPDATE_FAILURE ) ;

25 }

26

27 r e t u r n (AODVC_EXPTIME_UPDATE_SUCCESS ) ;

28 }

B.2.8 aodv_route_table_pre_route_expiry_timer_update
Function

The aodv_route_table_pre_route_expiry_timer_update() function is

called by the functions, aodv_rte_rreq_pkt_arrival_handle() and the

aodv_rte_route_table_entry_update(). This function is called by the intermediate

nodes to update the pre-route expiry timer for the received RREQ, so that the

node will disable the “pre-route state” of the route entry to the source. This is

needed for the node to determine what to do to the received RREQ, RREP or
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data packets, as different updates are needed depending on whether the route is

in the “pre-route state”.

Code B.2.8: aodv_route_table_pre_route_expiry_timer_update() Function

1 v o i d a o d v _ r o u t e _ t a b l e _ p r e _ r o u t e _ e x p i r y _ t i m e r _ u p d a t e (

2 r o u t e _ e n t r y , d e s t _ a d d r , exp_t ime , code ) {

3

4 c a n c e l e x i s t i n g e v e n t ( s ) i n r o u t e _ e n t r y −>p r e _ r o u t e _ e x p i r y _ t i m e r _ e v h a n d l e ;

5

6 i f ( r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e i s TRUE &&

7 c u r r _ t i m e <= exp_ t ime && exp_ t ime < OPC_DBL_INFINITY ) {

8 /∗ I f pre−r o u t e s t a t e i s a c t i v a t e d , and t h e exp_ t ime i s between ∗ /

9 /∗ now and i n f i n i t y , s e t an i n t e r r u p t t o a p p l y pre−r o u t e ∗ /

10 /∗ i n f o r m a t i o n when t h e p r e _ r o u t e _ t i m e r e x p i r e s . ∗ /

11 c a l l o p _ i n t r p t _ s c h e d u l e _ c a l l ( exp_t ime , code ,

12 a o d v _ r t e _ e n t r y _ p r e _ r o u t e _ t i m e r _ h a n d l e , r o u t e _ e n t r y ) t o s c h e d u l e an

13 i n t e r r u p t t o a p p l y pre−r o u t e i n f o r m a t i o n t o t h e r o u t e _ e n t r y , and s t o r e

14 t h e e v e n t h a n d l e r i n r o u t e _ e n t r y −>p r e _ r o u t e _ e x p i r y _ t i m e r _ e v h a n d l e .

15 }

16 e l s e {

17 /∗ Do n o t s c h e d u l e any e v e n t i f t h e exp_ t ime i s ∗ /

18 /∗ b e f o r e t h e c u r r e n t t ime or i f i t i s i n f i n i t y . ∗ /

19 i f ( r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e i f FALSE) {

20 i f ( exp_ t ime < now ) {

21 r e t u r n (AODVC_EXPTIME_UPDATE_SHORT_NOPRERTE ) ;

22 }

23 e l s e i f ( exp_ t ime == OPC_DBL_INFINITY ) {

24 r e t u r n (AODVC_EXPTIME_UPDATE_INFINITE_NOPRERTE ) ;

25 }

26 e l s e {

27 r e t u r n (AODVC_EXPTIME_UPDATE_NOPRERTE ) ;

28 }

29 }

30 e l s e {

31 i f ( exp_ t ime < now ) {

32 r e t u r n (AODVC_EXPTIME_UPDATE_SHORT ) ;

33 }

34 e l s e i f ( exp_ t ime == OPC_DBL_INFINITY ) {

35 r e t u r n ( AODVC_EXPTIME_UPDATE_INFINITE ) ;

36 }

37 }

38

39 r e t u r n (AODVC_EXPTIME_UPDATE_FAILURE ) ;

40 }

41

42 r e t u r n (AODVC_EXPTIME_UPDATE_SUCCESS ) ;

43 }
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B.3 Send RREP

When an interrupt to send a RREP is called, the function,

aodv_rte_rrep_send_timer_handle() in Code B.3, is executed. This function

calls aodv_route_table_apply_pre_route() (Code B.3.1) to update the route

entry, and then send a RREP back to the source of the RREQ, which is the

destination of the route entry.

Code B.3: aodv_rte_rrep_send_timer_handle() Function

1 vo id a o d v _ r t e _ r r e p _ s e n d _ t i m e r _ h a n d l e ( r o u t e _ e n t r y , code ) {

2

3 c a l l i p _ c m n _ r t e _ t a b l e _ d e s t _ p r e f i x _ a d d r _ g e t ( r o u t e _ e n t r y −> d e s t _ p r e f i x ) t o

4 g e t t h e d e s t _ a d d r ;

5 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( ) t o g e t t h e s r c _ r o u t e _ e n t r y ;

6 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( ) t o g e t t h e d e s t _ r o u t e _ e n t r y ;

7

8 i f ( code i s AODVC_PRE_RREP_SEND_ACTIVE &&

9 s r c _ r o u t e _ e n t r y e x i s t s &&

10 d e s t _ r o u t e _ e n t r y e x i s t s ) {

11 /∗ I f t h e i n t e r m e d i a t e node has a r o u t e t o t h e ∗ /

12 /∗ d e s t i n a t i o n and d e s t i n a t i o n o n l y f l a g i s o f f , ∗ /

13 /∗ then , a p p l y pre−r o u t e i n f o and send a RREP . ∗ /

14 c a l l a o d v _ r o u t e _ t a b l e _ a p p l y _ p r e _ r o u t e ( ) t o a p p l y pre−r o u t e i n f o r m a t i o n

15 f o r t h e s r c _ r o u t e _ e n t r y ;

16 c a l l a o d v _ r o u t e _ t a b l e _ a p p l y _ p r e _ r o u t e ( ) t o a p p l y pre−r o u t e i n f o r m a t i o n

17 f o r t h e d e s t _ r o u t e _ e n t r y ;

18 c a l l a o d v _ r t e _ r o u t e _ r e p l y _ s e n d ( ) t o send RREP t o t h e s o u r c e ;

19 }

20 e l s e i f ( s r c _ r o u t e _ e n t r y e x i s t s ) {

21 /∗ I f t h i s i s t h e d e s t i n a t i o n o f t h e RREQ, t h e n ∗ /

22 /∗ a p p l y pre−r o u t e i n f o and send a RREP . ∗ /

23 c a l l a o d v _ r o u t e _ t a b l e _ a p p l y _ p r e _ r o u t e ( ) t o a p p l y pre−r o u t e i n f o r m a t i o n

24 f o r t h e s r c _ r o u t e _ e n t r y ;

25 c a l l a o d v _ r t e _ r o u t e _ r e p l y _ s e n d ( ) t o send RREP t o t h e s o u r c e ;

26 }

27 }
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B.3.1 aodv_route_table_apply_pre_route Function

Code B.3.1: aodv_route_table_apply_pre_route() Function

1 vo id a o d v _ r o u t e _ t a b l e _ a p p l y _ p r e _ r o u t e (

2 r o u t e _ t a b l e , r o u t e _ e n t r y , d e s t _ a d d r , s t a g e ) {

3 / / Cance l r o u t e _ e x p i r y _ u p d a t e _ e v h a n d l e

4 r o u t e _ e n t r y _ p t r −>r o u t e _ e x p i r y _ u p d a t e _ t i m e r = 0 ;

5 o p _ e v _ c a n c e l _ i f _ p e n d i n g ( r o u t e _ e n t r y _ p t r −>r o u t e _ e x p i r y _ u p d a t e _ e v h a n d l e ) ;

6

7 i f ( r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e i s VALID | |

8 ( r o u t e _ e n t r y _ s t a t e i s INVALID &&

9 r o u t e _ e n t r y −>p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e > c u r r _ t i m e ) ) {

10 /∗ Apply pre−r o u t e i n f o t o t h e c u r r e n t r o u t e i n f o as f o l l o w . ∗ /

11

12 / / Cance l t h e f o l l o w i n g f u t u r e e v e n t s

13 o p _ e v _ c a n c e l _ i f _ p e n d i n g ( r o u t e _ e n t r y −>r o u t e _ e x p i r y _ e v h a n d l e ) ;

14 o p _ e v _ c a n c e l _ i f _ p e n d i n g ( r o u t e _ e n t r y −> p r e _ r o u t e _ s t a r t _ t i m e r _ e v h a n d l e ) ;

15 o p _ e v _ c a n c e l _ i f _ p e n d i n g ( r o u t e _ e n t r y −>p r e _ r o u t e _ e x p i r y _ t i m e r _ e v h a n d l e ) ;

16

17 i f ( r o u t e _ e n t r y i s i n t h e IP r o u t i n g t a b l e ) {

18 c a l l Ine t_Cmn_Rte_Tab le_Ent ry_Upda te ( ) t o u p d a t e t h e IP r o u t i n g t a b l e

19 wi th pre−r o u t e r o u t i n g i n f o r m a t i o n .

20 }

21 e l s e {

22 c a l l Ine t_Cmn_Rte_Tab le_Ent ry_Add_Opt ions ( ) t o add r o u t i n g i n f o r m a t i o n

23 i n t o t h e IP r o u t i n g t a b l e .

24 }

25

26 /∗ Free t h e c u r r e n t n e x t hop a d d r e s s i f needed ∗ /

27 remove r o u t e _ e n t r y −>n e x t _ h o p _ a d d r ;

28

29 /∗ S e t t h e f o l l o w i n g r o u t e _ e n t r y v a r i a b l e s ∗ /

30 r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e = VALID ;

31 r o u t e _ e n t r y −>des t_seq_num = r o u t e _ e n t r y −>p r e _ r o u t e _ d e s t _ s e q _ n u m ;

32 r o u t e _ e n t r y −>v a l i d _ d e s t _ s e q u e n c e _ n u m b e r _ f l a g =

33 r o u t e _ e n t r y −>p r e _ r o u t e _ v a l i d _ d e s t _ s e q u e n c e _ n u m b e r _ f l a g ;

34 r o u t e _ e n t r y −>n e x t _ h o p _ a d d r = copy ( r o u t e _ e n t r y −>p r e _ r o u t e _ n e x t _ h o p _ a d d r ) ;

35 r o u t e _ e n t r y −>n e x t _ h o p _ p o r t _ i n f o =

36 r o u t e _ e n t r y −>p r e _ r o u t e _ n e x t _ h o p _ p o r t _ i n f o ;

37 r o u t e _ e n t r y −>hop_coun t = r o u t e _ e n t r y −>p r e _ r o u t e _ h o p _ c o u n t ;

38 r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e =

39 r o u t e _ e n t r y −>p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e ;

40 r o u t e _ e n t r y −>n e w _ r o u t e _ e x p i r y _ t i m e =

41 r o u t e _ e n t r y −>p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e ;

42 r o u t e _ e n t r y −>l i n k _ e x p i r y _ t i m e = r o u t e _ e n t r y −> p r e _ r o u t e _ l i n k _ e x p i r y _ t i m e ;

43 r o u t e _ e n t r y −>n e w _ l i n k _ e x p i r y _ t i m e =

44 r o u t e _ e n t r y −> p r e _ r o u t e _ l i n k _ e x p i r y _ t i m e ;

45 i f ( ( r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e −
46 r o u t e _ e n t r y −>l i n k _ e x p i r y _ t i m e < 0 . 0 0 1 ) | |

47 ( r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e −



160 APPENDIX B. MODIFICATIONS TO AODV FOR AODV-PP

48 r o u t e _ e n t r y −>l i n k _ e x p i r y _ t i m e > 0 . 0 0 1 ) )

49 r o u t e _ e n t r y −> i s _ s h o r t e s t _ l i n k _ d u r a t i o n = TRUE;

50 r o u t e _ e n t r y −> r o u t e _ r e q u e s t _ t i m e = c u r r _ t i m e ;

51 i f ( r o u t e _ e n t r y −>r o u t e _ b e g i n s _ t i m e == −1 | |

52 ( r o u t e _ e n t r y _ s t a t e i s INVALID &&

53 r o u t e _ e n t r y −>p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e > c u r r _ t i m e ) )

54 r o u t e _ e n t r y −>r o u t e _ b e g i n s _ t i m e = c u r r _ t i m e ;

55 r o u t e _ e n t r y −> p r e _ r o u t e _ s t a r t _ t i m e r = 0 ;

56 r o u t e _ e n t r y −>r o u t e _ e x p i r y _ u p d a t e _ t i m e r = 0 ;

57

58 /∗ Free t h e pre−r o u t e n e x t hop a d d r e s s i f needed ∗ /

59 remove r o u t e _ e n t r y −>p r e _ r o u t e _ n e x t _ h o p _ a d d r ;

60

61 /∗ R e s e t t h e f o l l o w i n g pre−r o u t e i n f o r m a t i o n ∗ /

62 i f ( r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e i s VALID) {

63 r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e = OPC_FALSE ;

64 r o u t e _ e n t r y −>p r e _ r o u t e _ r e a d y = OPC_FALSE ;

65 }

66

67 i f ( r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e > c u r r _ t i m e &&

68 r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e < INFINITY ) {

69 i f ( ( r o u t e _ e n t r y −>i s _ s o u r c e _ n o d e i s TRUE) &&

70 ( c u r r _ t i m e − r o u t e _ e n t r y −> l a s t _ a p p _ p k t _ t o _ d e s t _ t i m e <

71 r o u t e _ e n t r y −> l a s t _ p k t _ t o _ d e s t _ p e r i o d ) ) {

72 /∗ I f t h i s i s t h e s o u r c e e , s e t t h e p r e _ r o u t e _ s t a r t _ t i m e r ∗ /

73 c a l l a o d v _ r o u t e _ t a b l e _ p r e _ r o u t e _ s t a r t _ t i m e r _ u p d a t e ( ) t o s e t

74 t h e p r e _ r o u t e _ s t a r t _ t i m e r ;

75 }

76

77 /∗ S c h e d u l e an i n t e r r u p t a t t h e r o u t e e x p i r y t i me . ∗ /

78 c a l l o p _ i n t r p t _ s c h e d u l e _ c a l l ( ) t o s c h e d u l e an i n t e r r u p t a t

79 r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e ;

80 }

81 }

82 }

B.4 Process RREP

Upon receiving a RREP packet from the destination, the

aodv_rte_rrep_pkt_arrival_handle() function is called to process the received

RREP packet. This involve creating or updating the route entries for the

destination and the previous hop of the RREP packet, and then forward the

RREP packet to the next hop along the path back to the source.
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Code B.4: aodv_rte_rrep_pkt_arrival_handle() Function

1 vo id a o d v _ r t e _ r r e p _ p k t _ a r r i v a l _ h a n d l e ( . . . , AodvT_Packet_Opt ion∗ t l v _ o p t i o n s _ p t r ) {

2 s e t r r e p = ( AodvT_Rrep ∗ ) t l v _ o p t i o n s _ p t r −> v a l u e _ p t r ;

3 . . .

4 /∗ Added f o r P r e d i c t i o n ∗ /

5 i f ( p r e d i c t i v e _ a o d v ) {

6 c a l l p r e d i c t _ l i n k c h a n g e _ t i m e ( prev_hop ) t o p r e d i c t l i n k c h a n g e _ t i m e ;

7 i f ( l i n k c h a n g e _ t i m e < c u r r _ t i m e ) {

8 l i n k c h a n g e _ t i m e = c u r r _ t i m e ;

9 }

10 p a t h c h a n g e _ t i m e = min ( r r e p−>p a t h c h a n g e _ t i m e , l i n k c h a n g e _ t i m e ) ;

11 r r e p−>p a t h c h a n g e _ t i m e = p a t h c h a n g e _ t i m e ;

12

13 i f ( l i n k c h a n g e _ t i m e < r r e p−> l i f e t i m e )

14 r r e p−> l i f e t i m e = l i n k c h a n g e _ t i m e − c u r r _ t i m e ;

15 }

16 /∗ P r e d i c t i o n Ends ∗ /

17

18 c a l l a o d v _ r t e _ n e i g h b o r _ c o n n e c t i v i t y _ t a b l e _ u p d a t e ( prev_hop , FALSE) t o

19 add or u p d a t e t h e n e i g h b o u r c o n n e c t i v i t y t a b l e ;

20

21 c a l l a o d v _ r t e _ r o u t e _ t a b l e _ e n t r y _ u p d a t e ( . . . , RECV_RREP) t o u p d a t e

22 t h e r o u t e _ e n t r y t o prev_hop ;

23

24 /∗ Added f o r P r e d i c t i o n ∗ /

25 i f ( p r e d i c t i v e _ a o d v &&

26 p a t h c h a n g e _ t i m e <= c u r r _ t i m e ) {

27 /∗ I f r o u t e r e q u e s t ’ s p a t h c h a n g e t ime i s t o o s h o r t , d i s c a r d t h e RREP . ∗ /

28 d i s c a r d RREP Pkt ;

29 r e t u r n ;

30 }

31 /∗ P r e d i c t i o n Ends ∗ /

32

33 r r e p−>hop_coun t ++;

34 i f ( r r e p−>hop_coun t > n e t _ d i a m e t e r ) {

35 /∗ I f hop c o u n t i s t o o l a r g e , d e s t r o y t h e r o u t e r e q u e s t . ∗ /

36 d i s c a r d RREP Pkt ;

37 r e t u r n ;

38 }

39

40 . . .

41

42 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( r o u t e _ t a b l e , r r e p−>d e s t _ a d d r ) t o

43 g e t d e s t i n a t i o n r o u t e _ e n t r y ;

44

45 i f ( r o u t e _ e n t r y t o t h e d e s t i n a t i o n does n o t E x i s t ) {

46 /∗ Modi f i ed f o r P r e d i c t i o n , a s t h e a o d v _ r o u t e _ t a b l e _ e n t r y _ c r e a t e ( ) ∗ /

47 /∗ f u n c t i o n has been m o d i f i e d . ∗ /

48 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ c r e a t e ( ) t o c r e a t e a

49 r o u t e _ e n t r y f o r r r e p−>d e s t _ a d d r ;
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50 s e t r o u t e _ u p d a t e d = TRUE;

51 /∗ M o d i f i c a t i o n Ends ∗ /

52 c a l l a o d v _ r t e _ a l l _ p k t s _ t o _ d e s t _ s e n d ( ) t o send p a c k e t s

53 t o r r e p−>d e s t _ a d d r ;

54 }

55 e l s e {

56 s e t des t_seq_num = r o u t e _ e n t r y −>des t_seq_num ;

57 s e t hop_coun t = r o u t e _ e n t r y −>hop_coun t ;

58 s e t r o u t e _ e n t r y _ s t a t e = r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e ;

59

60 /∗ Added f o r P r e d i c t i o n ∗ /

61 i f ( p r e d i c t i v e _ a o d v )

62 p r e _ r o u t e _ s t a t e = r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e ;

63 /∗ P r e d i c t i o n Ends ∗ /

64

65 /∗ Modi f i ed f o r P r e d i c t i o n ∗ /

66 i f ( ( r r e p−>des t_seq_num > des t_seq_num ) | |

67 ( ( r r e p−>des t_seq_num == des t_seq_num ) &&

68 ( r o u t e _ e n t r y _ s t a t e i s INVALID ) ) | |

69 ( p r e d i c t i v e _ a o d v && ( r r e p−>des t_seq_num == des t_seq_num ) &&

70 ( r r e p−>p a t h c h a n g e _ t i m e > r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e + 0 . 1 ) ) | |

71 ( p r e d i c t i v e _ a o d v && ( r r e p−>des t_seq_num == des t_seq_num ) &&

72 ( r r e p−>p a t h c h a n g e _ t i m e >

73 r o u t e _ e n t r y −>p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e + 0 . 1 ) ) | |

74 ( s t a n d a r d _ a o d v && ( r r e p−>des t_seq_num == des t_seq_num ) &&

75 ( r r e p−>hop_coun t < r o u t e _ e n t r y −>hop_coun t ) ) ) {

76 /∗ Record l a s t r o u t e d u r a t i o n f o r bo th AODV & AODV−PP . ∗ /

77 i f ( p r e d i c t i v e _ a o d v ) {

78 i f ( r o u t e _ e n t r y −>n e x t _ h o p _ a d d r i s n o t p r e v _ h o p _ a d d r | |

79 r o u t e _ e n t r y −>hop_coun t != r r e p _ o p t i o n _ p t r −>hop_coun t | |

80 ( t r a c k _ i n f o _ p t r −>p r e d i c t _ m e t h o d i s PERFECT_PREDICTION &&

81 r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e != r r e p−>p a t h c h a n g e _ t i m e ) ) {

82 /∗ I f r o u t e has changed , do t h e f o l l o w i n g . ∗ /

83 i f ( r r e p−> r o u t e _ e n t r y _ s t a t e i s VALID &&

84 r o u t e _ e n t r y −> l a s t _ a p p _ p k t _ t o _ d e s t _ t i m e > 0 &&

85 ( r o u t e _ e n t r y −>r o u t e _ b e g i n s _ t i m e <

86 r o u t e _ e n t r y −> l a s t _ a p p _ p k t _ t o _ d e s t _ t i m e | |

87 c u r r _ t i m e − r o u t e _ e n t r y −> l a s t _ a p p _ p k t _ t o _ d e s t _ t i m e <

88 l a s t _ p k t _ t o _ d e s t _ p e r i o d ) &&

89 r o u t e _ e n t r y −>r o u t e _ b e g i n s _ t i m e > 0) {

90 /∗ I f r o u t e has been used ove r t h e l i f e o f t h e l a s t r o u t e , ∗ /

91 /∗ r e c o r d l a s t r o u t e d u r a t i o n s t a t i s t i c s . ∗ /

92 }

93 s e t r o u t e _ e n t r y −>r o u t e _ b e g i n s _ t i m e = c u r r _ t i m e ;

94 }

95 }

96 e l s e {

97 i f ( r o u t e _ e n t r y −>n e x t _ h o p _ a d d r i s n o t p r e v _ h o p _ a d d r | |

98 r o u t e _ e n t r y −>hop_coun t != r r e p _ o p t i o n _ p t r −>hop_coun t ) {

99 /∗ I f r o u t e has changed , do t h e f o l l o w i n g . ∗ /
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100 i f ( r o u t e _ e n t r y _ s t a t e i s VALID &&

101 r o u t e _ e n t r y −> l a s t _ a p p _ p k t _ t o _ d e s t _ t i m e > 0 &&

102 ( r o u t e _ e n t r y −>r o u t e _ b e g i n s _ t i m e <

103 r o u t e _ e n t r y −> l a s t _ a p p _ p k t _ t o _ d e s t _ t i m e | |

104 c u r r _ t i m e − r o u t e _ e n t r y −> l a s t _ a p p _ p k t _ t o _ d e s t _ t i m e <

105 l a s t _ p k t _ t o _ d e s t _ p e r i o d ) &&

106 r o u t e _ e n t r y −>r o u t e _ b e g i n s _ t i m e > 0) {

107 /∗ I f r o u t e has been used ove r t h e l i f e o f t h e l a s t r o u t e , ∗ /

108 /∗ r e c o r d l a s t r o u t e d u r a t i o n s t a t i s t i c s . ∗ /

109 }

110 s e t r o u t e _ e n t r y −>r o u t e _ b e g i n s _ t i m e = c u r r _ t i m e ;

111 }

112 }

113

114 i f ( s t a n d a r d _ a o d v | |

115 r o u t e _ e n t r y _ s t a t e i s n o t VALID | |

116 r r e p−>des t_seq_num > des t_seq_num | |

117 ( p r e d i c t i v e _ a o d v && ( r r e p−>des t_seq_num == des t_seq_num ) &&

118 ( r r e p−>p a t h c h a n g e _ t i m e > r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e ) ) ) {

119

120 s e t r o u t e _ e n t r y −>hop_coun t = r r e p _ o p t i o n _ p t r −>hop_coun t ;

121 s e t r o u t e _ e n t r y −>n e x t _ h o p _ p o r t _ i n f o = i n _ p o r t _ i n f o ;

122 s e t r o u t e _ e n t r y −>n e w _ l i n k _ e x p i r y _ t i m e = l i n k c h a n g e _ t i m e ; / / f o r AODV−PU

123

124 i f ( r o u t e _ e n t r y _ s t a t e i s n o t VALID | |

125 ( p r e d i c t i v e _ a o d v && ! p r e _ r o u t e _ s t a t e ) ) {

126 /∗ I f i t i s n o t a v a l i d r o u t e o r i t i s n o t i n a pre−r o u t e s t a t e , ∗ /

127 /∗ u p d a t e t h e pre−r o u t e v a r i a b l e s i n t h e AODV model . ∗ /

128 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ h o p _ c o u n t = r r e p−>hop_coun t ;

129 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ n e x t _ h o p _ p o r t _ i n f o = i n _ p o r t _ i n f o ;

130 s e t r o u t e _ e n t r y −>p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e = r r e p−>p a t h c h a n g e _ t i m e ;

131 s e t r o u t e _ e n t r y −> p r e _ r o u t e _ l i n k _ e x p i r y _ t i m e = l i n k c h a n g e _ t i m e ;

132 }

133

134 i f ( p r e d i c t i v e _ a o d v && p r e _ r o u t e _ s t a t e && r o u t e _ e n t r y _ s t a t e i s VALID) {

135 c a l l Ine t_Cmn_Rte_Tab le_Ent ry_Upda te ( ) t o u p d a t e t h e IP r o u t i n g t a b l e ;

136 f r e e r o u t e _ e n t r y −>n e x t _ h o p _ a d d r ;

137 s e t r o u t e _ e n t r y −>des t_seq_num = r r e p−>des t_seq_num ;

138 s e t r o u t e _ e n t r y −>n e x t _ h o p _ a d d r = pr e v _ h o p _ a d d r ;

139 s e t r o u t e _ e n t r y −> r o u t e _ r e q u e s t _ t i m e = c u r r _ t i m e ;

140 i f ( r o u t e _ e n t r y −>r o u t e _ b e g i n s _ t i m e == −1)

141 s e t r o u t e _ e n t r y −>r o u t e _ b e g i n s _ t i m e = c u r r _ t i m e ;

142 }

143 e l s e {

144 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ n e x t _ h o p _ u p d a t e ( r o u t e _ t a b l e , r o u t e _ e n t r y ,

145 r r e p−>dest_seq_num , prev_hop_addr , r r e p−>hop_count , i n _ p o r t _ i n f o )

146 t o u p d a t e t h e n e x t hop and t h e hop c o u n t o f t h e r o u t e _ e n t r y wi th

147 t h e new v a l u e s f o r bo t h s t a n d a r d and pre−r o u t e i n f o r m a t i o n ;

148 }

149
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150 i f ( r o u t e _ e n t r y _ s t a t e i s n o t VALID) {

151 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ s t a t e _ s e t ( r o u t e _ t a b l e , r o u t e _ e n t r y ,

152 r r e p−>d e s t _ a d d r , VALID) t o s e t t h e r o u t e t o be a v a l i d r o u t e ;

153

154 i f ( p r e d i c t i v e _ a o d v )

155 c a l l a o d v _ r o u t e _ t a b l e _ a p p l y _ p r e _ r o u t e ( . . . ) t o r e p l a c e t h e r o u t e

156 i n f o r m a t i o n o f t h e r o u t e _ e n t r y wi th p r e _ r o u t e i n f o r m a t i o n ;

157

158 i f ( r o u t e _ e n t r y −>i s _ s o u r c e _ n o d e )

159 add r o u t e s e t u p s t a t i s t i c s ;

160 }

161

162 /∗ Mark t h e d e s t i n a t i o n s e q u e n c e a s v a l i d ∗ /

163 a o d v _ r o u t e _ t a b l e _ e n t r y _ p a r a m _ s e t ( r o u t e _ e n t r y ,

164 AODVC_ROUTE_ENTRY_VALID_SEQ_NUM_FLAG, TRUE ) ;

165

166 /∗ S e t t h e d e s t i n a t i o n s e q u e n c e number t o t h a t i n t h e RREP message ∗ /

167 a o d v _ r o u t e _ t a b l e _ e n t r y _ p a r a m _ s e t ( r o u t e _ e n t r y ,

168 AODVC_ROUTE_ENTRY_DEST_SEQ_NUM, r r e p−>des t_seq_num ) ;

169

170 i f ( s t a n d a r d _ a o d v )

171 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ r o u t e _ e x p i r y _ t i m e _ u p d a t e ( . . . ,

172 r r e p−> l i f e t i m e , AODVC_ROUTE_ENTRY_INVALID) t o s e t t h e

173 r o u t e e x p i r y t im e ;

174 e l s i f ( p r e d i c t i v e _ a o d v )

175 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ r o u t e _ e x p i r y _ t i m e _ u p d a t e ( . . . ,

176 r r e p−>p a t h c h a n g e _ t i m e − c u r r _ t i m e , AODVC_ROUTE_ENTRY_INVALID)

177 t o s e t t h e r o u t e e x p i r y t im e ;

178 }

179

180 i f ( p r e d i c t i v e _ a o d v && ! p r e _ r o u t e _ s t a t e ) {

181 i f ( r r e p−>p a t h c h a n g e _ t i m e < r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e ) {

182 r r e p−>p a t h c h a n g e _ t i m e = r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e ;

183 }

184

185 /∗ Check i f t h e d e s t i n a t i o n i s a n e i g h b o u r . ∗ /

186 n e i g h b o r _ i n f o = ( AodvT_Conn_Info ∗ ) i n e t _ a d d r _ h a s h _ t a b l e _ i t e m _ g e t (

187 n e i g h b o r _ c o n n e c t i v i t y _ t a b l e , &r r e p−>d e s t _ a d d r ) ;

188

189 i f ( n e i g h b o r _ i n f o e x i s t s ) {

190 /∗ I f d e s t i n a t i o n i s t h e n e i g h b o u r o f t h i s node , remove t h e n e i g h b o u r . ∗ /

191 o p _ e v _ c a n c e l _ i f _ p e n d i n g ( n e i g h b o r _ i n f o −>c o n n _ e x p i r y _ h a n d l e ) ;

192

193 c a l l i n e t _ a d d r _ h a s h _ t a b l e _ i t e m _ r e m o v e ( n e i g h b o r _ c o n n e c t i v i t y _ t a b l e ,

194 &( n e i g h b o r _ i n f o −>n e i g h b o r _ a d d r e s s ) ) t o remove t h e e n t r y f o r t h i s

195 node from t h e n e i g h b o r _ c o n n e c t i v i t y _ t a b l e ;

196 f r e e ( n e i g h b o r _ i n f o ) ;

197 }

198

199 c a l l a o d v _ r o u t e _ t a b l e _ a p p l y _ p r e _ r o u t e ( r o u t e _ t a b l e , r o u t e _ e n t r y ,
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200 r r e p−>d e s t _ a d d r , RECV_RREP) t o a p p l y pre−r o u t e i n f o r m a t i o n ;

201 }

202

203 c a l l a o d v _ r t e _ a l l _ p k t s _ t o _ d e s t _ s e n d ( ) t o send a l l queued p a c k e t s t o

204 t h e d e s t i n a t i o n ;

205

206 s e t r o u t e _ u p d a t e d = TRUE;

207 }

208 /∗ M o d i f i c a t i o n Ends ∗ /

209 }

210

211 i f ( r e a c h e d _ s r c ) {

212 . . .

213 }

214

215 g e t f w d _ r o u t e _ e n t r y = a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( r o u t e _ t a b l e , r r e p−>s r c _ a d d r ) ;

216 i f ( f w d _ r o u t e _ e n t r y E x i s t s &&

217 ( f w d _ r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e i s n o t INVALID ) ) {

218 /∗ I f t h e f o r w a r d r o u t e e n t r y back t o t h e s o u r c e e x i s t s and i s v a l i d , ∗ /

219 /∗ f o r w a r d t h e r o u t e r e p l y . ∗ /

220

221 s e t n e x t _ h o p _ a d d r = f w d _ r o u t e _ e n t r y −>n e x t _ h o p _ a d d r ;

222 s e t hop_coun t = f w d _ r o u t e _ e n t r y −>hop_coun t ;

223 s e t r o u t e _ e x p i r y _ t i m e = f w d _ r o u t e _ e n t r y−>r o u t e _ e x p i r y _ t i m e ;

224

225 /∗ Update t h e r e v e r s e r o u t e e x p i r y t ime b e f o r e s e n d i n g o u t t h e RREP ∗ /

226 s e t e x i s t i n g _ l i f e t i m e = r o u t e _ e x p i r y _ t i m e − c u r r _ t i m e ;

227

228 /∗ a c t i v e _ r o u t e _ t i m e o u t = m y _ r o u t e _ t i m e o u t / 2 , use t h i s a c c o r d i n g t o RFC ∗ /

229 s e t l i f e t i m e = a o d v _ r t e _ m a x _ f i n d ( e x i s t i n g _ l i f e t i m e , m y _ r o u t e _ t i m e o u t / 2 ) ;

230

231 /∗ Added f o r P r e d i c t i o n ∗ /

232 i f ( p r e d i c t i v e _ a o d v ) {

233 s e t l i f e t i m e = f w d _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e − c u r r _ t i m e ;

234

235 /∗ P r i n t p r e v i o u s r o u t e d u r a t i o n ∗ /

236 i f ( ( f w d _ r o u t e _ e n t r y −>n e x t _ h o p _ a d d r !=

237 f w d _ r o u t e _ e n t r y −>p r e _ r o u t e _ n e x t _ h o p _ a d d r ) | |

238 ( f w d _ r o u t e _ e n t r y −>hop_coun t != f w d _ r o u t e _ e n t r y −>p r e _ r o u t e _ h o p _ c o u n t ) | |

239 ( t r a c k _ i n f o _ p t r −>p r e d i c t _ m e t h o d i s PERFECT_PREDICTION &&

240 f w d _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e !=

241 f w d _ r o u t e _ e n t r y −>p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e ) ) {

242 i f ( f w d _ r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e i s VALID &&

243 f w d _ r o u t e _ e n t r y −> l a s t _ a p p _ p k t _ t o _ d e s t _ t i m e > 0 &&

244 ( f w d _ r o u t e _ e n t r y −>r o u t e _ b e g i n s _ t i m e <

245 f w d _ r o u t e _ e n t r y −> l a s t _ a p p _ p k t _ t o _ d e s t _ t i m e | |

246 c u r r _ t i m e − f w d _ r o u t e _ e n t r y −> l a s t _ a p p _ p k t _ t o _ d e s t _ t i m e <

247 l a s t _ p k t _ t o _ d e s t _ p e r i o d ) &&

248 f w d _ r o u t e _ e n t r y −>r o u t e _ b e g i n s _ t i m e > 0) {

249 /∗ I f r o u t e has been used ove r t h e l i f e o f t h e l a s t r o u t e , ∗ /
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250 /∗ r e c o r d l a s t r o u t e d u r a t i o n s t a t i s t i c s h e r e . ∗ /

251 }

252

253 /∗ s e t r o u t e _ b e g i n s _ t i m e e v e r y t im e r o u t e u p d a t e i s t o be a c c o m p l i s h e d ∗ /

254 s e t f w d _ r o u t e _ e n t r y −>r o u t e _ b e g i n s _ t i m e = c u r r _ t i m e ;

255 }

256

257 s e t n e x t _ h o p _ a d d r = f w d _ r o u t e _ e n t r y−>p r e _ r o u t e _ n e x t _ h o p _ a d d r ;

258 s e t hop_coun t = f w d _ r o u t e _ e n t r y −>p r e _ r o u t e _ h o p _ c o u n t ;

259 s e t r o u t e _ e x p i r y _ t i m e = f w d _ r o u t e _ e n t r y −>p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e ;

260 s e t l i f e t i m e = f w d _ r o u t e _ e n t r y−>p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e − c u r r _ t i m e ;

261

262 /∗ Mark t h e d e s t i n a t i o n s e q u e n c e a s v a l i d ∗ /

263 a o d v _ r o u t e _ t a b l e _ e n t r y _ p a r a m _ s e t ( f w d _ r o u t e _ e n t r y ,

264 AODVC_ROUTE_ENTRY_VALID_SEQ_NUM_FLAG, TRUE ) ;

265

266 s e t f w d _ r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e = FALSE ;

267

268 /∗ Apply pre−r o u t e i n f o ∗ /

269 a o d v _ r o u t e _ t a b l e _ a p p l y _ p r e _ r o u t e ( r o u t e _ t a b l e , f w d _ r o u t e _ e n t r y ,

270 r r e p−>s r c _ a d d r , PRER_RREP ) ;

271

272 c a l l a o d v _ r t e _ a l l _ p k t s _ t o _ d e s t _ s e n d ( . . . ) t o send a l l p a c k e t s queued t o

273 t h e d e s t i n a t i o n o f t h e f w d _ r o u t e _ e n t r y ;

274

275 /∗ Check i f t h e d e s t i n a t i o n i s a n e i g h b o u r . ∗ /

276 n e i g h b o r _ i n f o = ( AodvT_Conn_Info ∗ ) i n e t _ a d d r _ h a s h _ t a b l e _ i t e m _ g e t (

277 n e i g h b o r _ c o n n e c t i v i t y _ t a b l e , &r r e p−>d e s t _ a d d r ) ;

278

279 i f ( n e i g h b o r _ i n f o e x i s t s ) {

280 /∗ I f d e s t i n a t i o n i s t h e n e i g h b o u r o f t h i s node , remove t h e n e i g h b o u r . ∗ /

281 o p _ e v _ c a n c e l _ i f _ p e n d i n g ( n e i g h b o r _ i n f o _ p t r −>c o n n _ e x p i r y _ h a n d l e ) ;

282

283 c a l l i n e t _ a d d r _ h a s h _ t a b l e _ i t e m _ r e m o v e ( n e i g h b o r _ c o n n e c t i v i t y _ t a b l e ,

284 &( n e i g h b o r _ i n f o −>n e i g h b o r _ a d d r e s s ) ) t o remove t h e e n t r y f o r t h i s

285 node from t h e n e i g h b o r _ c o n n e c t i v i t y _ t a b l e ;

286 f r e e ( n e i g h b o r _ i n f o ) ;

287 }

288

289 /∗ I n d i c a t e t h a t t h e r o u t e has been c r e a t e d ∗ /

290 s e t r o u t e _ u p d a t e d = TRUE;

291 }

292 /∗ P r e d i c t i o n Ends ∗ /

293 e l s e {

294 /∗ I f s t a n d a r d AODV, u p d a t e r o u t e e x p i r y t im e . ∗ /

295 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ r o u t e _ e x p i r y _ t i m e _ u p d a t e ( f w d _ r o u t e _ e n t r y ,

296 r r e p−>s r c _ a d d r , l i f e t i m e , AODVC_ROUTE_ENTRY_INVALID) t o u p d a t e t h e

297 r o u t e e x p i r y t ime of t h e f o r w a r d r o u t e e n t r y ;

298 }

299
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300 . . .

301

302 r e c o r d s t a t i s t i c s f o r f o r w a r d i n g RREP ;

303 }

304

305 . . .

306 }

B.5 Start and End PreRREQ

The aodv_rte_entry_pre_route_timer_handle() function is called via an interrupt

in two occasions: one is when it is time to start sending a PreRREQ; and the

other one is when PreRREQ has expired. In the first scenario this function

creates a RREQ packet and broadcasts it to search for a route before the route

expires. The second scenario involves route entry update.

Code B.5: aodv_rte_entry_pre_route_timer_handle() Function

1 vo id a o d v _ r t e _ e n t r y _ p r e _ r o u t e _ t i m e r _ h a n d l e ( r o u t e _ e n t r y , code ) {

2 i f ( r o u t e _ e n t r y E x i s t s ) {

3 i f ( code == AODVC_PRE_RREQ_START &&

4 r o u t e _ e n t r y −>i s _ s o u r c e _ n o d e i s TRUE) {

5 /∗ F i r s t s c e n a r i o − Thi s i s t h e s o u r c e node , send PreRREQ ∗ /

6

7 i n i t i a l i s e l i n k c h a n g e _ t i m e = −1;

8 i n i t i a l i s e p a t h c h a n g e _ t i m e = INFINITY ;

9

10 s e t t t l = ( i n t ) min ( ( r o u t e _ e n t r y −>hop_coun t + (2∗ t t l _ i n c r e m e n t ) ) , n e t _ d i a m e t e r ) ;

11 s e t r e q u e s t _ e x p i r y _ t i m e = 2 . 0 ∗ n o d e _ t r a v e r s a l _ t i m e ∗ ( t t l + t i m e o u t _ b u f f e r ) ;

12

13 i f ( c u r r _ t i m e − r o u t e _ e n t r y −> l a s t _ a p p _ p k t _ t o _ d e s t _ t i m e <

14 u s e _ d u r a t i o n _ t h r e s h o l d &&

15 r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e > c u r r _ t i m e ) {

16 /∗ I f t h e r o u t e i s s t i l l i n use r e c e n t l y , and i f t h i s has been ∗ /

17 /∗ t h e sou rce , u p d a t e t h e p r e _ r o u t e _ e x p i r y _ t i m e r and t h e ∗ /

18 /∗ p r e _ r o u t e _ s t a t e t o TRUE . ∗ /

19 s e t r o u t e _ e n t r y −> p r e _ r o u t e _ e x p i r y _ t i m e r = c u r r _ t i m e + r e q u e s t _ e x p i r y _ t i m e ;

20 s e t r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e = TRUE;

21 }

22 e l s e i f ( r o u t e _ e n t r y _ p t r −>r o u t e _ e x p i r y _ t i m e < c u r r _ t i m e ) {

23 c a l c u l a t e and r e c o r d r o u t e s t a t i s t i c s ;

24 }



168 APPENDIX B. MODIFICATIONS TO AODV FOR AODV-PP

25

26 /∗ Send a RREQ p a c k e t f o r Pre−Route ∗ /

27 i f (RREQ i s n o t i n t h e r e q u e s t _ t a b l e ) {

28 c a l l a o d v _ r t e _ r o u t e _ r e q u e s t _ s e n d ( r o u t e _ e n t r y , d e s t _ a d d r , t t l ,

29 r e q u e s t _ e x p i r y _ t i m e , 0 ) t o send RREQ;

30 }

31

32 i f ( r o u t e _ e n t r y −> p r e _ r o u t e _ p r e c u r s o r _ l p t r i s n o t empty ) {

33 remove a l l p r e c u r s o r nodes from t h e l i s t ;

34 }

35 }

36 e l s e i f ( code i s AODVC_PRE_RREQ_EXPIRY) {

37 /∗ Second s c e n a r i o − Pre−Route RREQ has e x p i r e d . ∗ /

38 /∗ Update t h e r o u t e e n t r y i n f o r m a t i o n . ∗ /

39

40 s e t r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e t o FALSE ;

41

42

43 i f ( r o u t e _ e n t r y −>n e x t _ h o p _ a d d r == r o u t e _ e n t r y −>p r e _ r o u t e _ n e x t _ h o p _ a d d r ) &&

44 r o u t e _ e n t r y −>hop_coun t == r o u t e _ e n t r y −>p r e _ r o u t e _ h o p _ c o u n t ) {

45 /∗ I f t h e pre−r o u t e i n f o f o r t h e n e x t hop a r e t h e same as t h e c u r r e n t ∗ /

46 /∗ r o u t e i n f o , copy t h e pre−r o u t e i n f o t o t h e r o u t e e n t r y . ∗ /

47 s e t r o u t e _ e n t r y _ p t r −>des t_seq_num =

48 r o u t e _ e n t r y _ p t r −>p r e _ r o u t e _ d e s t _ s e q _ n u m ;

49 s e t r o u t e _ e n t r y _ p t r −>n e w _ r o u t e _ e x p i r y _ t i m e =

50 r o u t e _ e n t r y _ p t r −>p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e ;

51 }

52 }

53 }

54 }

B.6 Update and Verification

Although the expiry time is meant to be predicted accurately, an update is used,

upon receiving of a data packet, to verify whether the predicted link change time

is correct.

Code B.6: aodv_rte_data_routes_expiry_time_update() Function

1 v o i d a o d v _ r t e _ d a t a _ r o u t e s _ e x p i r y _ t i m e _ u p d a t e ( P a c k e t ∗ p k p t r ) {

2 . . .

3 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( ) t o g e t s r c _ r o u t e _ e n t r y ;

4 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( ) t o g e t d e s t _ r o u t e _ e n t r y ;
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5

6 i f ( s r c _ r o u t e _ e n t r y e x i s t s ) {

7 . . .

8 i f ( s t a n d a r d _ a o d v ) {

9 u p d a t e r o u t e _ e n t r y ( s ) a s shown i n code A . 2 ;

10 }

11 e l s e {

12 /∗ I f p r e d i c t i o n i s used , u p d a t e s r c _ r o u t e _ e n t r y as f o l l o w . ∗ /

13

14 /∗ s e t l i n k c h a n g e _ t i m e ∗ /

15 c a l l p r e d i c t _ l i n k c h a n g e _ t i m e ( p r ev_hop_add r ) t o p r e d i c t l i n k c h a n g e _ t i m e ;

16

17 i f ( s r c _ r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e i s TRUE) {

18 i f ( s r c _ r o u t e _ e n t r y −> p r e _ r o u t e _ e x p i r y _ t i m e r > c u r r _ t i m e ) {

19 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ p r e _ r o u t e _ t i m e r _ u p d a t e ( ) t o e n s u r e

20 t h e p r e _ r o u t e i n f o r m a t i o n of t h e r o u t e _ e n t r y w i l l be a p p l i e d

21 when t h e s r c _ r o u t e _ e n t r y −> p r e _ r o u t e _ e x p i r y _ t i m e r e x p i r e s ;

22 e l s e {

23 s e t s r c _ r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e t o FALSE ;

24 c a l l a o d v _ r o u t e _ t a b l e _ a p p l y _ p r e _ r o u t e ( ) t o r e p l a c e t h e r o u t e

25 i n f o r m a t i o n o f t h e r o u t e _ e n t r y wi th p r e _ r o u t e i n f o r m a t i o n ;

26 }

27 }

28 e l s e {

29 i f ( s r c _ r o u t e _ e n t r y −>n e x t _ h o p _ a d d r i s p r e v _ h o p _ a d d r ) {

30 /∗ s e t p a t h c h a n g e _ t i m e ∗ /

31 s e t p a t h c h a n g e _ t i m e = s r c _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e ;

32 i f ( l i n k c h a n g e _ t i m e < p a t h c h a n g e _ t i m e )

33 s e t p a t h c h a n g e _ t i m e = l i n k c h a n g e _ t i m e ;

34 s e t p a t h c h a n g e _ t i m e o u t = p a t h c h a n g e _ t i m e − c u r r _ t i m e ;

35 i f ( p a t h c h a n g e _ t i m e o u t <= 0)

36 s e t p a t h c h a n g e _ t i m e o u t = 0 ;

37

38 /∗ Update t h e e x p i r y t ime of t h e r o u t e e n t r y . ∗ /

39 i f ( s r c _ r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e i s FALSE)

40 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ e x p i r y _ t i m e _ u p d a t e ( ) t o u p d a t e t h e

41 s r c _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e t o p a t h c h a n g e _ t i m e o u t ;

42 }

43

44 /∗ Update t h e e n t r y f o r t h e p r e v i o u s hop ’ s r o u t e e n t r y . ∗ /

45 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( ) t o g e t t h e p r e v _ h o p _ r o u t e _ e n t r y ;

46 i f ( p r e v _ h o p _ r o u t e _ e n t r y i s n o t Empty &&

47 p r e v _ h o p _ r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e i s FALSE &&

48 s r c _ a d d r i s n o t p rev_ hop_add r &&

49 p r e v _ h o p _ r o u t e _ e n t r y −>n e x t _ h o p _ a d d r i s p r e v _ h o p _ a d d r ) {

50 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ e x p i r y _ t i m e _ u p d a t e ( r o u t e _ t a b l e ,

51 p r e v _ h o p _ r o u t e _ e n t r y , p rev_hop_addr , l i n k c h a n g e _ t i m e o u t ,

52 AODVC_ROUTE_ENTRY_INVALID, RECV_PKT, aodv_ type ) t o u p d a t e

53 t h e p r e v _ h o p _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e ;

54 }
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55 }

56 }

57 }

58 e l s e i f ( t h i s node i s n o t t h e s o u r c e o f t h e p a c k e t ) {

59 /∗ I f s r c _ r o u t e _ e n t r y does n o t e x i s t and i f ∗ /

60 /∗ t h i s i s n o t t h e s o u r c e node , a new r o u t e ∗ /

61 /∗ e n t r y needs t o be c r e a t e d . ∗ /

62 g e t t h e p o r t and s u b n e t mask i n f o r m a t i o n ;

63

64 /∗ The f o l l o w i n g code i s added t o s e t t h e p a t h c h a n g e _ t i m e o u t ∗ /

65 /∗ t h a t w i l l be used i n c r e a t i n g a r o u t e _ e n t r y f o r t h e s o u r c e . ∗ /

66 i f ( s t a n d a r d _ a o d v ) {

67 p a t h c h a n g e _ t i m e o u t = r o u t e _ t a b l e _ p t r −>r o u t e _ e x p i r y _ t i m e ;

68 }

69 e l s e {

70 /∗ s e t l i n k c h a n g e _ t i m e ∗ /

71 c a l l p r e d i c t _ l i n k c h a n g e _ t i m e ( p r ev_hop_add r ) t o p r e d i c t l i n k c h a n g e _ t i m e ;

72

73 /∗ s e t p a t h c h a n g e _ t i m e ∗ /

74 s e t p a t h c h a n g e _ t i m e = t h e l a s t p r e d i c t e d p a t h c h a n g e _ t i m e ;

75 i f ( l i n k c h a n g e _ t i m e < p a t h c h a n g e _ t i m e )

76 s e t p a t h c h a n g e _ t i m e = l i n k c h a n g e _ t i m e ;

77 s e t p a t h c h a n g e _ t i m e o u t = p a t h c h a n g e _ t i m e − c u r r _ t i m e ;

78 i f ( p a t h c h a n g e _ t i m e o u t <= 0)

79 s e t p a t h c h a n g e _ t i m e o u t = 0 ;

80 }

81

82 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ c r e a t e ( ) t o c r e a t e a new

83 r o u t e _ e n t r y f o r t h e s o u r c e ;

84 }

85

86 i f ( d e s t _ r o u t e _ e n t r y e x i s t s ) {

87 . . .

88 i f ( s t a n d a r d _ a o d v ) {

89 u p d a t e r o u t e _ e n t r y ( s ) a s normal ;

90

91 i f ( s r c _ r o u t e _ e n t r y does n o t e x i s t &&

92 t h i s node i s t h e s o u r c e o f t h e p a c k e t ) {

93 s e t d e s t _ r o u t e _ e n t r y −>i s _ s o u r c e _ n o d e t o TRUE;

94 s e t d e s t _ r o u t e _ e n t r y −> l a s t _ a p p _ p k t _ t o _ d e s t _ t i m e = c u r r _ t i m e ;

95 }

96 }

97 e l s e {

98 /∗ I f p r e d i c t i o n i s used , u p d a t e d e s t _ r o u t e _ e n t r y as f o l l o w . ∗ /

99

100 /∗ s e t l i n k c h a n g e _ t i m e ∗ /

101 c a l l p r e d i c t _ l i n k c h a n g e _ t i m e ( n e x t _ h o p _ a d d r ) t o p r e d i c t l i n k c h a n g e _ t i m e ;

102

103 i f ( d e s t _ r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e i s TRUE) {

104 i f ( d e s t _ r o u t e _ e n t r y −> p r e _ r o u t e _ e x p i r y _ t i m e r > c u r r _ t i m e ) {
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105 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ p r e _ r o u t e _ t i m e r _ u p d a t e ( ) t o e n s u r e

106 t h e p r e _ r o u t e i n f o r m a t i o n o f t h e r o u t e _ e n t r y w i l l be a p p l i e d

107 when t h e d e s t _ r o u t e _ e n t r y −> p r e _ r o u t e _ e x p i r y _ t i m e r e x p i r e s ;

108 e l s e {

109 s e t d e s t _ r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e t o FALSE ;

110 c a l l a o d v _ r o u t e _ t a b l e _ a p p l y _ p r e _ r o u t e ( ) t o r e p l a c e t h e r o u t e

111 i n f o r m a t i o n o f t h e r o u t e _ e n t r y wi th p r e _ r o u t e i n f o r m a t i o n ;

112 }

113 }

114 e l s e {

115 i f ( d e s t _ r o u t e _ e n t r y −>n e x t _ h o p _ a d d r i s n e x t _ h o p _ a d d r ) {

116 /∗ s e t p a t h c h a n g e _ t i m e ∗ /

117 s e t p a t h c h a n g e _ t i m e = d e s t _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e ;

118 i f ( l i n k c h a n g e _ t i m e < p a t h c h a n g e _ t i m e )

119 s e t p a t h c h a n g e _ t i m e = l i n k c h a n g e _ t i m e ;

120 s e t p a t h c h a n g e _ t i m e o u t = p a t h c h a n g e _ t i m e − c u r r _ t i m e ;

121 i f ( p a t h c h a n g e _ t i m e o u t <= 0)

122 s e t p a t h c h a n g e _ t i m e o u t = 0 ;

123

124 /∗ Update t h e e x p i r y t ime of t h e r o u t e e n t r y . ∗ /

125 i f ( d e s t _ r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e i s FALSE)

126 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ e x p i r y _ t i m e _ u p d a t e ( r o u t e _ t a b l e ,

127 d e s t _ r o u t e _ e n t r y , d e s t _ a d d r , p a t h c h a n g e _ t i m e o u t ,

128 AODVC_ROUTE_ENTRY_INVALID, RECV_PKT, aodv_ type ) t o u p d a t e

129 t h e d e s t _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e ;

130 }

131

132 /∗ Update t h e e n t r y f o r t h e n e x t hop ’ s r o u t e e n t r y . ∗ /

133 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( ) t o g e t t h e n e x t _ h o p _ r o u t e _ e n t r y ;

134 i f ( n e x t _ h o p _ r o u t e _ e n t r y i s n o t Empty &&

135 n e x t _ h o p _ r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e i s FALSE &&

136 d e s t _ a d d r i s n o t n e x t _ h o p _ a d d r &&

137 n e x t _ h o p _ r o u t e _ e n t r y −>n e x t _ h o p _ a d d r i s n e x t _ h o p _ a d d r ) {

138 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ e x p i r y _ t i m e _ u p d a t e ( r o u t e _ t a b l e ,

139 n e x t _ h o p _ r o u t e _ e n t r y , nex t_hop_addr , l i n k c h a n g e _ t i m e o u t ,

140 AODVC_ROUTE_ENTRY_INVALID, RECV_PKT, aodv_ type ) t o u p d a t e

141 t h e n e x t _ h o p _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e ;

142 }

143 }

144

145 i f ( s r c _ r o u t e _ e n t r y does n o t e x i s t &&

146 t h i s node i s t h e s o u r c e o f t h e p a c k e t ) {

147 i f ( d e s t _ r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e i s FALSE &&

148 c u r r _ t i m e < d e s t _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e −
149 MAX_RING_TRAVERSAL_TIME &&

150 ( d e s t _ r o u t e _ e n t r y −>i s _ s o u r c e _ n o d e i s FALSE | |

151 d e s t _ r o u t e _ e n t r y _ −> p r e _ r o u t e _ s t a r t _ t i m e r !=

152 d e s t _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e −
153 MAX_RING_TRAVERSAL_TIME ) ) {

154 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ p r e _ r o u t e _ t i m e r _ u p d a t e ( ) t o
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155 re−s c h e d u l e t h e p r e _ r o u t e _ s t a r t _ t i m e r i n t e r r u p t t o

156 d e s t _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e − MAX_RING_TRAVERSAL_TIME ;

157 }

158

159 s e t d e s t _ r o u t e _ e n t r y −>i s _ s o u r c e _ n o d e t o TRUE;

160 s e t d e s t _ r o u t e _ e n t r y −> l a s t _ a p p _ p k t _ t o _ d e s t _ t i m e = c u r r _ t i m e ;

161 }

162 }

163 }

164

165 u p d a t e p r e c u r s o r l i s t s a s shown i n code A . 2 ;

166 }

B.7 Pre-Route RREQ Start Timer

The aodv_route_table_pre_route_start_timer_update() function is called

by any source node to update the pre-route start time and to trigger an

interrupt to start sending RREQ before the route expires. This function is

only needed when the nodes have data packets to send to the destination.

Therefore this function can be called by a number of functions such as

aodv_rte_rrep_send_timer_handle(), aodv_rte_rrep_pkt_arrival_handle(),

aodv_rte_data_routes_expiry_time_update() and

aodv_rte_all_pkts_to_dest_send().

Code B.6: aodv_route_table_pre_route_start_timer_update() Function

1 vo id a o d v _ r o u t e _ t a b l e _ p r e _ r o u t e _ s t a r t _ t i m e r _ u p d a t e ( r o u t e _ t a b l e ,

2 r o u t e _ e n t r y , d e s t _ a d d r , r t e _ e x p _ t i m e , code ) {

3 s e t p r e _ r o u t e _ s t a r t _ t i m e = r t e _ e x p _ t i m e − ( 2 . 0 ∗
4 r o u t e _ t a b l e −> n o d e _ t r a v e r s a l _ t i m e ∗
5 ( r o u t e _ t a b l e −>n e t _ d i a m e t e r + r o u t e _ t a b l e −> t i m e o u t _ b u f f e r ) ) ;

6

7 c a n c e l e x i s t i n g e v e n t ( s ) i n r o u t e _ e n t r y −> p r e _ r o u t e _ s t a r t _ t i m e r _ e v h a n d l e ;

8

9 i f ( c u r r _ t i m e <= p r e _ r o u t e _ s t a r t _ t i m e &&

10 p r e _ r o u t e _ s t a r t _ t i m e < OPC_DBL_INFINITY ) {

11 /∗ I f pre−r o u t e s t a t e i s a c t i v a t e d , and t h e exp_ t ime i s between ∗ /

12 /∗ now and i n f i n i t y , s e t an i n t e r r u p t t o send pre−r o u t e RREQ ∗ /

13 /∗ a t p r e _ r o u t e _ s t a r t _ t i m e . ∗ /

14 s e t r o u t e _ e n t r y −> p r e _ r o u t e _ s t a r t _ t i m e r = p r e _ r o u t e _ s t a r t _ t i m e ;

15 c a l l o p _ i n t r p t _ s c h e d u l e _ c a l l ( ) t o s c h e d u l e an i n t e r r u p t c a l l t o send
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16 a PreRREQ b e f o r e t h e r o u t e e x p i r e s a t p r e _ r o u t e _ s t a r t _ t i m e ;

17 }

18 e l s e {

19 /∗ Do n o t s c h e d u l e any e v e n t i f t h e exp_ t ime i s ∗ /

20 /∗ b e f o r e t h e c u r r e n t t ime or i f i t i s i n f i n i t y . ∗ /

21 i f ( p r e _ r o u t e _ s t a r t _ t i m e < now ) {

22 r e t u r n (AODVC_EXPTIME_UPDATE_SHORT ) ;

23 }

24 e l s e i f ( exp_ t ime == OPC_DBL_INFINITY ) {

25 r e t u r n ( AODVC_EXPTIME_UPDATE_INFINITE ) ;

26 }

27

28 r e t u r n (AODVC_EXPTIME_UPDATE_FAILURE ) ;

29 }

30

31 r e t u r n (AODVC_EXPTIME_UPDATE_SUCCESS ) ;

32 }



Appendix C

Modifications to AODV-PP for
AODV-PU

The modifications that have been made to AODV-PP to develop AODV-PU are

included in this appendix. These modifications are the major modifications made

to the model, they are not all the modifications made.

C.1 Packet Structures

The RREQ, RREP, RERR and HELLO packets used for AODV-PU are the same

as AODV-PP. However, AODV-PU requires to send route prediction updates, a

new packet type, RUPDATE, is added.

174
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C.1.1 RUPDATE Packet Structure

The 96-bit RUPDATE packet structure illustrated in Table C.1 consists of the

following fields:

1. Packet Type: 6;

2. Destination Address: The IP address of the destination to be updated with

a new destination pathchange time; and

3. Destination Pathchange Time: The new pathchange time of the

destination in the route entry.

00 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1

Packet Type Reserved

Destination Address

Destination Pathchange Time

Table C.1: RUPDATE Packet Structure.

C.2 Route Expiry Time Update Timer

A link and route expiry prediction update is accomplished upon receiving a data

packet. A new field, route_exp_time, is added to the IP datagram fields structure,

IpT_Dgram_Fields (in the ip_dgram_sup.h file), in OPNET to store the route

expiry time. This field is initiated as infinity (or the largest value), by the source

node. When a data packet came from a neighbouring node, the duration of that

link or the link expiry time will be estimated, and the duration of the route to the

source will also be evaluated, by comparing the link expiry time with the route

expiry time, and the route expiry time field in the IP packet is updated after each

hop. The route expiry time of all the route entries that use the previous node

as the next hop will also be compared with the estimated expiry time of this

link. If the link expires before the route expiry time, the new_route_expiry_time

field of the route_entry needs to be updated, and RUPDATE is then scheduled

to be sent. If the received data packet is to be forwarded to the next node, the

link duration of the forwarding link will also be estimated. This is done because

when a packet is sent, it is assumed that cross-layer information can be used,
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and that Request-To-Send (RTS) and Clear-To-Send (CTS) frames are assumed

to be exchanged in the Medium Access Control (MAC) Layer, and therefore,

the link duration can be estimated from the signal strength information gathered

through this and the previous RTS/CTS exchange upon sending the data packets.

The changes made to do prediction update is illustrated in the pseudo code of

the aodv_rte_data_routes_expiry_time_update() function in Code C.2 below.

Code C.2: aodv_rte_data_routes_expiry_time_update() Function

1 v o i d a o d v _ r t e _ d a t a _ r o u t e s _ e x p i r y _ t i m e _ u p d a t e ( . . . ) {

2 . . .

3 g e t a l i s t o f a l l t h e r o u t e e n t r i e s , r e n t r y _ l p t r ;

4

5 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( ) t o g e t s r c _ r o u t e _ e n t r y ;

6 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( ) t o g e t d e s t _ r o u t e _ e n t r y ;

7

8 i f ( s r c _ r o u t e _ e n t r y e x i s t s ) {

9 g e t p r ev_hop_add r from t h e r e c e i v e d p a c k e t ;

10 . . .

11 i f ( s t a n d a r d _ a o d v ) {

12 u p d a t e r o u t e _ e n t r y ( s ) a s shown i n code A . 2 ;

13 }

14 e l s e {

15 /∗ I f p r e d i c t i o n i s used , u p d a t e s r c _ r o u t e _ e n t r y as f o l l o w . ∗ /

16

17 /∗ p r e d i c t t h e l i n k c h a n g e _ t i m e by c a l l i n g p r e d i c t _ l i n k c h a n g e _ t i m e ( ) ∗ /

18 s e t l i n k c h a n g e _ t i m e = p r e d i c t _ l i n k c h a n g e _ t i m e ( p rev_hop_add r ) ;

19

20 /∗ Update i p _ f i e l d −>r o u t e _ e x p _ t i m e (A f i e l d added t o IP da tag ram ) ∗ /

21 i f ( i p _ f i e l d −>r o u t e _ e x p _ t i m e > l i n k c h a n g e _ t i m e )

22 i p _ f i e l d −>r o u t e _ e x p _ t i m e = l i n k c h a n g e _ t i m e ;

23

24 /∗ s e t p a t h c h a n g e _ t i m e ∗ /

25 s e t p a t h c h a n g e _ t i m e = i p _ f i e l d −>r o u t e _ e x p _ t i m e ;

26 s e t p a t h c h a n g e _ t i m e o u t = p a t h c h a n g e _ t i m e − c u r r _ t i m e ;

27 i f ( p a t h c h a n g e _ t i m e o u t <= 0)

28 s e t p a t h c h a n g e _ t i m e o u t = 0 ;

29

30 /∗ Update a l l t h e r o u t e e n t r i e s t h a t use p rev_hop_add r ∗ /

31 /∗ as t h e i r n e x t hop t o t h e d e s t i n a t i o n . ∗ /

32 f o r ( r t e _ e n t r y _ c o u n t =0; r t e _ e n t r y _ c o u n t < num_rou tes ; r t e _ e n t r y _ c o u n t ++) {

33 g e t r t e _ e n t r y = o p _ p r g _ l i s t _ a c c e s s ( r e n t r y _ l p t r , r t e _ e n t r y _ c o u n t ) ;

34 g e t r t e _ e n t r y _ d e s t _ a d d r = i p _ c m n _ r t e _ t a b l e _ d e s t _ p r e f i x _ a d d r _ g e t

35 ( r t e _ e n t r y −> d e s t _ p r e f i x ) ;

36

37 i f ( r t e _ e n t r y _ d e s t _ a d d r i s n o t d e s t _ a d d r &&

38 r t e _ e n t r y _ d e s t _ a d d r i s n o t n e x t _ h o p _ a d d r &&
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39 r t e _ e n t r y −>n e x t _ h o p _ a d d r i s p r e v _ h o p _ a d d r ) {

40 c a l l a o d v _ r t e _ e x p i r y _ t i m e _ u p d a t e _ p r o c e s s ( ) t o d e c i d e whe the r

41 RUPDATE or RERR needs t o be s e n t t o t h e p r e c u r s o r nodes ,

42 i f so , s e t an i n t e r r u p t ;

43 }

44 }

45 }

46 }

47 e l s e i f ( t h i s node i s n o t t h e s o u r c e o f t h e p a c k e t ) {

48 /∗ I f s r c _ r o u t e _ e n t r y does n o t e x i s t and i f t h i s i s n o t t h e s o u r c e ∗ /

49 /∗ node , a new r o u t e e n t r y needs t o be c r e a t e d as f o l l o w . ∗ /

50

51 g e t t h e p o r t and s u b n e t mask i n f o r m a t i o n ;

52

53 /∗ The f o l l o w i n g code i s added t o s e t t h e p a t h c h a n g e _ t i m e o u t ∗ /

54 /∗ t h a t w i l l be used i n c r e a t i n g a r o u t e _ e n t r y f o r t h e s o u r c e . ∗ /

55 i f ( s t a n d a r d _ a o d v ) {

56 p a t h c h a n g e _ t i m e o u t = r o u t e _ t a b l e _ p t r −>r o u t e _ e x p i r y _ t i m e ;

57 }

58 e l s e {

59 /∗ s e t l i n k c h a n g e _ t i m e ∗ /

60 c a l l p r e d i c t _ l i n k c h a n g e _ t i m e ( p r ev_hop_add r ) t o p r e d i c t l i n k c h a n g e _ t i m e ;

61

62 / / Update t h e e s t i m a t e d r o u t e e x p i r y t ime of t h e incoming d a t a p a c k e t

63 i f ( i p _ f i e l d −>r o u t e _ e x p _ t i m e > l i n k c h a n g e _ t i m e )

64 i p _ f i e l d −>r o u t e _ e x p _ t i m e = l i n k c h a n g e _ t i m e ;

65

66 /∗ s e t p a t h c h a n g e _ t i m e ∗ /

67 s e t p a t h c h a n g e _ t i m e = i p _ f i e l d −>r o u t e _ e x p _ t i m e ;

68 s e t p a t h c h a n g e _ t i m e o u t = p a t h c h a n g e _ t i m e − c u r r _ t i m e ;

69 i f ( p a t h c h a n g e _ t i m e o u t <= 0)

70 s e t p a t h c h a n g e _ t i m e o u t = 0 ;

71 }

72

73 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ c r e a t e ( ) t o c r e a t e a new r o u t e _ e n t r y

74 f o r t h e s o u r c e ;

75 }

76

77 i f ( d e s t _ r o u t e _ e n t r y e x i s t s ) {

78 g e t n e x t _ h o p _ a d d r from d e s t _ r o u t e _ e n t r y −>n e x t _ h o p _ a d d r ;

79 . . .

80 i f ( s t a n d a r d _ a o d v ) {

81 u p d a t e r o u t e _ e n t r y ( s ) a s i n code B . 6 ;

82 }

83 e l s e {

84 /∗ I f p r e d i c t i o n i s used , u p d a t e d e s t _ r o u t e _ e n t r y as f o l l o w . ∗ /

85

86 /∗ s e t l i n k c h a n g e _ t i m e ∗ /

87 c a l l p r e d i c t _ l i n k c h a n g e _ t i m e ( n e x t _ h o p _ a d d r ) t o p r e d i c t l i n k c h a n g e _ t i m e ;

88
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89 /∗ s e t p a t h c h a n g e _ t i m e ∗ /

90 s e t p a t h c h a n g e _ t i m e = min ( d e s t _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e , l i n k c h a n g e _ t i m e ) ;

91

92 /∗ Update a l l t h e r o u t e e n t r i e s t h a t use n e x t _ h o p _ a d d r ∗ /

93 /∗ as t h e i r n e x t hop t o t h e d e s t i n a t i o n . ∗ /

94 f o r ( r t e _ e n t r y _ c o u n t =0; r t e _ e n t r y _ c o u n t < num_rou tes ; r t e _ e n t r y _ c o u n t ++) {

95 g e t r t e _ e n t r y = o p _ p r g _ l i s t _ a c c e s s ( r e n t r y _ l p t r , r t e _ e n t r y _ c o u n t ) ;

96 g e t r t e _ e n t r y _ d e s t _ a d d r = i p _ c m n _ r t e _ t a b l e _ d e s t _ p r e f i x _ a d d r _ g e t

97 ( r t e _ e n t r y −> d e s t _ p r e f i x ) ;

98

99 i f ( r t e _ e n t r y _ d e s t _ a d d r i s n o t s r c _ a d d r &&

100 r t e _ e n t r y _ d e s t _ a d d r i s n o t p rev_hop_add r &&

101 r t e _ e n t r y −>n e x t _ h o p _ a d d r i s n e x t _ h o p _ a d d r ) {

102 c a l l a o d v _ r t e _ e x p i r y _ t i m e _ u p d a t e _ p r o c e s s ( ) t o d e t e r m i n e i f a RUPDATE

103 or RERR needs t o be s e n t t o p r e c u r s o r s , i f so , s e t an i n t e r r u p t ;

104 }

105 }

106

107 i f ( s r c _ r o u t e _ e n t r y does n o t e x i s t &&

108 t h i s node i s t h e s o u r c e o f t h e p a c k e t ) {

109 /∗ I f t h e node i s t h e s e n d e r o f t h e p a c k e t ( i . e . t h e p a c k e t a r r i v e s ∗ /

110 /∗ from t h e a p p l i c a t i o n l a y e r , t h e n t h e pre−r o u t e s t a r t t i m e r needs ∗ /

111 /∗ t o be u p d a t e d a c c o r d i n g t o t h e d e s t _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e . ∗ /

112 i f ( d e s t _ r o u t e _ e n t r y −> p r e _ r o u t e _ s t a t e i s FALSE &&

113 c u r r _ t i m e < d e s t _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e −
114 MAX_RING_TRAVERSAL_TIME &&

115 ( d e s t _ r o u t e _ e n t r y −>i s _ s o u r c e _ n o d e i s FALSE | |

116 d e s t _ r o u t e _ e n t r y _ −> p r e _ r o u t e _ s t a r t _ t i m e r !=

117 d e s t _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e −
118 MAX_RING_TRAVERSAL_TIME ) ) {

119 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ p r e _ r o u t e _ t i m e r _ u p d a t e ( ) t o re−s c h e d u l e

120 t h e p r e _ r o u t e _ s t a r t _ t i m e r i n t e r r u p t t o

121 d e s t _ r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e − MAX_RING_TRAVERSAL_TIME ;

122 }

123

124 s e t d e s t _ r o u t e _ e n t r y −>i s _ s o u r c e _ n o d e t o TRUE;

125 s e t d e s t _ r o u t e _ e n t r y −> l a s t _ a p p _ p k t _ t o _ d e s t _ t i m e = c u r r _ t i m e ;

126 s e t d g r a m _ f i e l d s _ p t r −>r o u t e _ e x p _ t i m e = i n f i n i t y ;

127 }

128 }

129 }

130

131 u p d a t e p r e c u r s o r l i s t s a s shown i n code A . 2 ;

132 }

Other functions that have been modified for AODV-PU to update the route expiry

time include:

1. predict_linkchange_time() (lines 19 to 24 in Code B.2.1) - is used to
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predict the link change time;

2. aodv_rte_expiry_time_update_process() (Code C.2.1) - is called to update

the newly predicted route expiry time and schedule an interrupt to send a

RUPDATE packet when required, or send a RERR if the route has already

expired.

3. aodv_rte_route_error_process() (Code C.2.2) - is used to create and send

a RERR packet;

4. aodv_rte_route_expiry_timer_update_handle() (Code C.2.3) - this is

executed upon an interrupt call to update the route expiry to the new route

expiry time, and to send a RUPDATE packet.

C.2.1 aodv_rte_expiry_time_update_process Function

This function is called to set an interrupt to update the route expiry time, and

to send a RUPDATE for a route_entry if the predicted route expiry time has

changed, or send a RERR if the route has already expired.

Code C.2.1: aodv_rte_expiry_time_update_process() Function

1 vo id a o d v _ r t e _ e x p i r y _ t i m e _ u p d a t e _ p r o c e s s ( r t e _ e n t r y , r t e _ e n t r y _ d e s t _ a d d r ,

2 nex t_hop_addr , i s _ p r e d i c t e d _ p a t h c h a n g e _ t i m e _ r e a l ,

3 i s _ l i n k _ b r o k e n , i s _ s r c ) {

4 /∗ I n i t i a l i s e some p a r a m e t e r s ∗ /

5 s e t i s _ r u p d a t e _ r e q u i r e d = FALSE ;

6 s e t r t e _ e n t r y −>n e w _ l i n k _ e x p i r y _ t i m e = l i n k c h a n g e _ t i m e ;

7

8 /∗ Do n o t do a n y t h i n g i f t h e r o u t e e n t r y i s n o t v a l i d ∗ /

9 i f ( r t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e != AodvC_Valid_Route ) {

10 r e t u r n ;

11 }

12

13 i f ( r t e _ e n t r y −>n e x t _ h o p _ a d d r i s n e x t _ h o p _ a d d r ) {

14 i f ( p r e d i c t _ m e t h o d i s LET ) {

15 /∗ Th i s p a r t o f t h e code i s f o r i n a c c u r a t e p r e d i c t i o n s . ∗ /

16

17 /∗ Update t h e n e w _ r o u t e _ e x p i r y _ t i m e i n t h e r o u t e e n t r y . ∗ /

18 i f ( i s _ p r e d i c t e d _ p a t h c h a n g e _ t i m e _ r e a l &&

19 l i n k c h a n g e _ t i m e < r t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e )

20 r t e _ e n t r y −>n e w _ r o u t e _ e x p i r y _ t i m e = l i n k c h a n g e _ t i m e ;

21 e l s e i f ( i s _ p r e d i c t e d _ p a t h c h a n g e _ t i m e _ r e a l )

22 r t e _ e n t r y −>n e w _ r o u t e _ e x p i r y _ t i m e = p a t h c h a n g e _ t i m e ;
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23 e l s e

24 r t e _ e n t r y −>n e w _ r o u t e _ e x p i r y _ t i m e = r t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e ;

25

26 /∗ R e s e t t h e r o u t e _ e x p i r y _ u p d a t e _ t i m e r o f t h e r t e _ e n t r y . ∗ /

27 r t e _ e n t r y −>r o u t e _ e x p i r y _ u p d a t e _ t i m e r = 0 ;

28 c a l l o p _ e v _ c a n c e l _ i f _ p e n d i n g ( ) t o c a n c e l t h e pend ing i n t e r r u p t s

29 a s s o c i a t e d wi t h r t e _ e n t r y −>r o u t e _ e x p i r y _ u p d a t e _ t i m e r ;

30

31 /∗ S e t t h e r o u t e _ e x p i r y _ u p d a t e _ t i m e r o f t h e r t e _ e n t r y , i f t h e ∗ /

32 /∗ n e w _ r o u t e _ e x p i r y _ t i m e i s d i f f e r e n t t o t h e r o u t e _ e x p i r y _ t i m e ∗ /

33 /∗ more t h a n t h e n o d e _ t r a v e r s a l _ t i m e ( o r any o t h e r c o n s t a n t ) . ∗ /

34 /∗ The r o u t e _ e x p i r y _ u p d a t e _ t i m e r i s a lways s e t t o be t h e min ∗ /

35 /∗ of t h e new and o l d t i m e s − (2∗ m a x _ r i n g _ t r a v e r s a l _ t i m e ) . ∗ /

36 i f ( r t e _ e n t r y −>n e w _ r o u t e _ e x p i r y _ t i m e >

37 r t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e + n o d e _ t r a v e r s a l _ t i m e | |

38 r t e _ e n t r y −>n e w _ r o u t e _ e x p i r y _ t i m e <

39 r t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e − n o d e _ t r a v e r s a l _ t i m e )

40 s e t r t e _ e n t r y −>r o u t e _ e x p i r y _ u p d a t e _ t i m e r =

41 min ( r t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e , r t e _ e n t r y −>n e w _ r o u t e _ e x p i r y _ t i m e ) −
42 (2 ∗ m a x _ r i n g _ t r a v e r s a l _ t i m e ) ;

43

44 /∗ I f t h e n e w _ r o u t e _ e x p i r y _ t i m e i s l e s s t h a n now , t h e n s e t t h e ∗ /

45 /∗ r o u t e _ e x p i r y _ t i m e of t h e r o u t e e n t r y t o t h e new e x p i r y t ime , ∗ /

46 /∗ and s e t i s _ r o u t e _ e x p i r e d t o TRUE . Otherwise , i f r o u t e e x p i r y ∗ /

47 /∗ t i me u p d a t e i s r e q u i r e d , t h e n i f t h e p r e c u r s o r l i s t i s ∗ /

48 /∗ empty , u p d a t e t h e r o u t e _ e x p i r y _ t i m e , o r i f t h e r e a r e ∗ /

49 /∗ p r e c u r s o r s , s e t i s _ r u p d a t e _ r e q u i r e d t o TRUE t o send RUPDATE . ∗ /

50 i f ( r t e _ e n t r y −>n e w _ r o u t e _ e x p i r y _ t i m e < c u r r _ t i m e ) {

51 s e t r t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e = r t e _ e n t r y −>n e w _ r o u t e _ e x p i r y _ t i m e ;

52 s e t i s _ r o u t e _ e x p i r e d = OPC_TRUE ;

53 }

54 e l s e i f ( r t e _ e n t r y −>r o u t e _ e x p i r y _ u p d a t e _ t i m e r > 0) {

55 i f ( r t e _ e n t r y −> p r e c u r s o r _ l p t r i s empty )

56 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ r o u t e _ e x p i r y _ t i m e _ u p d a t e ( ) t o

57 s e t r t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e = r t e _ e n t r y −>n e w _ r o u t e _ e x p i r y _ t i m e ;

58 e l s e

59 s e t i s _ r u p d a t e _ r e q u i r e d = TRUE;

60 }

61 }

62 e l s e {

63 /∗ Thi s p a r t o f t h e code i s f o r p e r f e c t p r e d i c t i o n s . ∗ /

64

65 /∗ Update t h e r o u t e _ e x p i r y _ t i m e of t h e r o u t e e n t r y i f needed . ∗ /

66 i f ( i s _ p r e d i c t e d _ p a t h c h a n g e _ t i m e _ r e a l i s FALSE &&

67 l i n k c h a n g e _ t i m e < r t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e )

68 s e t e x p i r y _ t i m e = l i n k c h a n g e _ t i m e ;

69 e l s e i f ( i s _ p r e d i c t e d _ p a t h c h a n g e _ t i m e _ r e a l )

70 s e t e x p i r y _ t i m e = p a t h c h a n g e _ t i m e ;

71

72 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ r o u t e _ e x p i r y _ t i m e _ u p d a t e ( ) t o u p d a t e t h e
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73 r t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e = e x p i r y _ t i m e ;

74 }

75 }

76

77 i f ( p r e d i c t _ m e t h o d i s LET &&

78 r t e _ e n t r y −> p r e _ r o u t e _ s t a t e i s TRUE) {

79 /∗ The f o l l o w i n g p a r t o f t h e code i s f o r i n a c c u r a t e p r e d i c t i o n s , ∗ /

80 /∗ and i f t h e p r e _ r o u t e _ s t a t e i s TRUE . ∗ /

81

82 i f ( r t e _ e n t r y −>p r e _ r o u t e _ n e x t _ h o p _ a d d r i s t h e n e x t _ h o p _ a d d r ) {

83 /∗ I f t h e n e x t hop of t h e r o u t e e n t r y i s t h e same as t h e nex t_hop_addr , ∗ /

84 /∗ u p d a t e t h e p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e of t h e r o u t e e n t r y . ∗ /

85 i f ( i s _ p r e d i c t e d _ p a t h c h a n g e _ t i m e _ r e a l i s FALSE &&

86 l i n k c h a n g e _ t i m e < r t e _ e n t r y −>p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e )

87 r t e _ e n t r y −>p r e _ r o u t e _ r o u t e _ e x p i r y _ t i m e = l i n k c h a n g e _ t i m e ;

88 }

89 }

90

91 i f ( i s _ r o u t e _ e x p i r e d && r t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e < c u r r _ t i m e )

92 {

93 /∗ I f t h e r o u t e has e x p i r e d , s e t t h e r o u t e e x p i r y t i me t o and ∗ /

94 /∗ c a l l an i n t e r r u p t t o s e t t h e r o u t e e n t r y t o INVALID , t h e n ∗ /

95 /∗ s e n t a RERR, i f r e q u i r e d . ∗ /

96

97 C a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ r o u t e _ e x p i r y _ t i m e _ u p d a t e ( ) t o s e t t h e

98 r t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e = c u r r _ t i m e , so t h e r o u t e w i l l be s e t

99 t o INVALID immedia te ( a t t h e n e x t i n t e r r u p t a f t e r t h i s f u n c t i o n ) ;

100

101 /∗ Send RERR i f t h e r o u t e has been i n use ∗ /

102 i f ( r t e _ e n t r y −> l a s t _ p k t _ t o _ d e s t _ t i m e > c u r r _ t i m e − 5) {

103 i f ( i s _ l i n k _ b r o k e n && r t e _ e n t r y _ d e s t _ a d d r == n e x t _ h o p _ a d d r )

104 c a l l a o d v _ r t e _ r o u t e _ e r r o r _ p r o c e s s ( ) t o send a RERR f o r

105 AodvC_Link_Break_Detect ;

106 e l s e i f ( ! i s _ l i n k _ b r o k e n )

107 c a l l a o d v _ r t e _ r o u t e _ e r r o r _ p r o c e s s ( ) t o send a RERR f o r

108 AodvC_Route_Broken ;

109 }

110

111 /∗ Do n o t send RUPDATE ∗
112 s e t i s _ r u p d a t e _ r e q u i r e d = OPC_FALSE ;

113 }

114 e l s e i f ( i s _ r u p d a t e _ r e q u i r e d ) {

115 /∗ I f t h e r e i s a need t o send a RUPDATE, e i t h e r send i t now , o r ∗ /

116 /∗ s c h e d u l e t o send i t a t a t i me s e t i n t h e r o u t e _ e x p i r y _ u p d a t e _ t i m e r . ∗ /

117

118 i f ( r t e _ e n t r y −>r o u t e _ e x p i r y _ u p d a t e _ t i m e r < c u r r _ t i m e ) {

119 c a l l a o d v _ r t e _ r o u t e _ e x p i r y _ t i m e _ u p d a t e _ s e n d ( r t e _ e n t r y ) t o send

120 RUPDATE i m m e d i a t e l y ;

121 }

122 e l s e {
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123 c a l l o p _ i n t r p t _ s c h e d u l e _ c a l l ( ) t o s c h e d u l e an i n t e r r u p t t o send

124 RUPDATE a t r t e _ e n t r y _ p t r −>r o u t e _ e x p i r y _ u p d a t e _ t i m e r ;

125 }

126 }

127

128 i f ( ! i s _ r o u t e _ e x p i r e d && r t e _ e n t r y −>i s _ s o u r c e _ n o d e &&

129 r t e _ e n t r y −>n e x t _ h o p _ a d d r i s n e x t _ h o p _ a d d r &&

130 ( r t e _ e n t r y −> p r e _ r o u t e _ s t a t e i s FALSE | |

131 r t e _ e n t r y −> p r e _ r o u t e _ s t a r t _ t i m e r > c u r r _ t i m e ) ) {

132 /∗ I f t h i s i s a s o u r c e node , and t h e n e x t hop a d d r e s s o f t h e r t e _ e n t r y ∗ /

133 /∗ i s t h e same as t h e one t h a t i s p a s s i n g down t o t h i s f u n c t i o n , r e s e t ∗ /

134 /∗ t h e p r e _ r o u t e _ s t a r t _ t i m e r t o e i t h e r now or a t a l a t e r t ime depend ing ∗ /

135 /∗ on t h e n e w _ r o u t e _ e x p i r y _ t i m e r e c o r d e d i n t h e r t e _ e n t r y . ∗ /

136

137 i f ( c u r r _ t i m e < r t e _ e n t r y −>n e w _ r o u t e _ e x p i r y _ t i m e − m a x _ r i n g _ t r a v e r s a l _ t i m e ) {

138 c a l l a o d v _ r o u t e _ t a b l e _ p r e _ r o u t e _ s t a r t _ t i m e r _ u p d a t e ( ) t o s e t an

139 i n t e r r u p t t o s t a r t s e a r c h i n g f o r an a l t e r n a t i v e r o u t e i m m e d i a t e l y ;

140 }

141 e l s e i f ( c u r r _ t i m e < r t e _ e n t r y −>n e w _ r o u t e _ e x p i r y _ t i m e ) {

142 r t e _ e n t r y −> p r e _ r o u t e _ s t a r t _ t i m e r = c u r r _ t i m e ;

143 c a l l o p _ e v _ c a n c e l _ i f _ p e n d i n g ( r t e _ e n t r y −> p r e _ r o u t e _ s t a r t _ t i m e r _ e v h a n d l e )

144 t o c a n c e l t h e p r e v i o u s pre−r o u t e s t a r t t i m e r i n t e r r u p t ;

145 c a l l o p _ i n t r p t _ s c h e d u l e _ c a l l ( ) t o s c h e d u l e an i n t e r r u p t t o s t a r t

146 s e a r c h i n g f o r a new r o u t e i m m e d i a t e l y ;

147 }

148 }

149 }

C.2.2 aodv_rte_route_error_process Function

In standard AODV, the aodv_rte_route_error_process() function is called to

process route error when there is a link break, a RERR packet has been received,

or no route to the destination upon receiving a data packet. In AODV-PU, this

function can be called upon disconnection of a route is detected. Hence, this case

is added as indicated on line 4 of Code C.2.2.

Code C.2.2: aodv_rte_route_error_process() Function

1 vo id a o d v _ r t e _ r o u t e _ e r r o r _ p r o c e s s ( . . . ) {

2 . . .

3 i f ( r e r r _ t y p e == AodvC_Data_Packet_No_Route | |

4 r e r r _ t y p e == AodvC_Route_Broken ) {

5 . . .

6 }
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7 . . .

8 }

C.2.3 aodv_rte_route_expiry_timer_update_handle
Function

This function is executed when an interrupt is triggered to send a RUPDATE.

Code C.2.3: aodv_rte_route_expiry_timer_update_handle() Function

1 vo id a o d v _ r t e _ r o u t e _ e x p i r y _ t i m e r _ u p d a t e _ h a n d l e (

2 vo id∗ r o u t e _ e n t r y _ v p t r , i n t code ) {

3 s e t r o u t e _ e n t r y = ( AodvT_Route_Entry ∗ ) r o u t e _ e n t r y _ v p t r ;

4 c a l l a o d v _ r t e _ r o u t e _ e x p i r y _ t i m e _ u p d a t e _ s e n d ( r o u t e _ e n t r y ) ;

5 }

Besides the method mentioned above, the link duration can alternatively

be estimated from the signal strength information gathered by receiving the

periodically broadcast Management frames, such as the BEACON frames in

WiFi. However, this is option is not implemented in AODV-PU, as it is not

needed for the study.

C.3 Send RUPDATE

When it is time to send a RUPDATE packet, the

aodv_rte_route_expiry_time_update_send() function (in Code C.3), will

be called to construct and send RUPDATE.

Code C.3: aodv_rte_route_expiry_time_update_send() Function

1 vo id a o d v _ r t e _ r o u t e _ e x p i r y _ t i m e _ u p d a t e _ s e n d ( r o u t e _ e n t r y ) {

2 i n i t i a l i s e r o u t e _ e n t r y −>r o u t e _ e x p i r y _ u p d a t e _ t i m e r = 0 ;

3

4 i f ( p r e d i c t _ m e t h o d i s n o t LET | |
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5 r o u t e _ e n t r y −> r o u t e _ e n t r y _ s t a t e i s n o t VALID | |

6 ( r o u t e _ e n t r y −> l a s t _ r o u t e _ e x p i r y _ u p d a t e _ t i m e >

7 c u r r _ t i m e − (2 ∗ n o d e _ t r a v e r s a l _ t i m e ∗
8 ( r o u t e _ e n t r y −>hop_coun t + t i m e o u t _ b u f f e r ) ) ) ) {

9 /∗ Update t h e r o u t e _ e x p i r y _ u p d a t e _ t i m e r and e x i t w i t h o u t s e n d i n g ∗ /

10 /∗ RUPDATE, i f i n a c c u r a t e p r e d i c t i o n i s n o t used , o r i f t h e r o u t e ∗ /

11 /∗ e n t r y i s n o t v a l i d , o r i f t h e l a s t _ r o u t e _ e x p i r y _ u p d a t e _ t i m e ∗ /

12 /∗ happened n o t t o o lo ng b e f o r e t h e c u r r _ t i m e . ∗ /

13

14 /∗ Update t h e r o u t e e x p i r y u p d a t e t i m e r and re−s c h e d u l e t o send a ∗ /

15 /∗ RUPDATE. ∗ /

16 s e t r o u t e _ e n t r y −>r o u t e _ e x p i r y _ u p d a t e _ t i m e r =

17 r o u t e _ e n t r y −> l a s t _ r o u t e _ e x p i r y _ u p d a t e _ t i m e + (2 ∗ n o d e _ t r a v e r s a l _ t i m e ∗
18 ( r o u t e _ e n t r y −>hop_coun t + t i m e o u t _ b u f f e r ) + 0 . 1 ) ;

19

20 c a l l o p _ e v _ c a n c e l _ i f _ p e n d i n g ( ) t o c a n c e l t h e pend ing i n t e r r u p t s

21 a s s o c i a t e d wi th r o u t e _ e n t r y −>r o u t e _ e x p i r y _ u p d a t e _ t i m e r ;

22 c a l l o p _ i n t r p t _ s c h e d u l e _ c a l l ( ) t o re−s c h e d u l e t h e i n t e r r u p t t o

23 o c c u r a t r o u t e _ e n t r y −>r o u t e _ e x p i r y _ u p d a t e _ t i m e r ;

24

25 r e t u r n ;

26 }

27

28 c a l l i p _ c m n _ r t e _ t a b l e _ d e s t _ p r e f i x _ a d d r _ g e t ( ) t o g e t t h e d e s t _ a d d r from

29 t h e r o u t e _ e n t r y ;

30

31 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ r o u t e _ e x p i r y _ t i m e _ u p d a t e ( ) t o u p d a t e t h e

32 r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e = r o u t e _ e n t r y −>n e w _ r o u t e _ e x p i r y _ t i m e ;

33

34 i f ( r o u t e _ e n t r y −>i s _ s o u r c e _ n o d e ) {

35 i f ( c u r r _ t i m e < r o u t e _ e n t r y −>n e w _ r o u t e _ e x p i r y _ t i m e −
36 m a x _ r i n g _ t r a v e r s a l _ t i m e ) {

37 c a l l a o d v _ r o u t e _ t a b l e _ p r e _ r o u t e _ s t a r t _ t i m e r _ u p d a t e ( ) t o u p d a t e t h e

38 r o u t e _ e n t r y −> p r e _ r o u t e _ s t a r t _ t i m e r ;

39 }

40 e l s e {

41 s e t r o u t e _ e n t r y −> p r e _ r o u t e _ s t a r t _ t i m e r = c u r r _ t i m e ;

42 c a n c e l t h e e x i s t i n g r o u t e _ e n t r y −> p r e _ r o u t e _ s t a r t _ t i m e r i n t e r r u p t s ;

43 c a l l o p _ i n t r p t _ s c h e d u l e _ c a l l ( ) t o s c h e d u l e an i n t e r r u p t t o s t a r t

44 s e a r c h i n g f o r a new r o u t e i m m e d i a t e l y ;

45 }

46 }

47

48 i f ( No p r e c u r s o r e x i s t s ) {

49 /∗ E x i t w i t h o u t s e n d i n g RUPDATE ∗ /

50 r e t u r n ;

51 }

52

53 /∗ C r e a t e t h e r o u t e u p d a t e p a c k e t o p t i o n ∗ /

54 s e t r u p d a t e _ o p t i o n _ p t r = a o d v _ p k t _ s u p p o r t _ r u p d a t e _ o p t i o n _ c r e a t e
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55 ( r o u t e _ e n t r y −>r o u t e _ e x p i r y _ t i m e , 1 , d e s t _ a d d r ) ;

56

57 /∗ S e t t h e s i z e f o r RUPDATE p a c k e t ∗ /

58 s e t r u p d a t e _ s i z e = ( aodv_addres s ing_mode == Ine tC_Addr_Fami ly_v4 ) ? 96 : 192 ;

59

60 c a l l a o d v _ p k t _ s u p p o r t _ p k t _ c r e a t e ( r u p d a t e _ o p t i o n _ p t r , r u p d a t e _ s i z e ) t o s e t

61 t h e r o u t e u p d a t e o p t i o n i n t h e r u p d a t e _ p k p t r p a c k e t ;

62

63 i f ( aodv_addres s ing_mode == Ine tC_Addr_Fami ly_v4 ) {

64 c a l l a o d v _ r t e _ i p _ d a t a g r a m _ c r e a t e ( ) t o e n c a p s u l a t e r u p d a t e _ p k p t r i n t o

65 an IP da tag ram f o r IPv4 ;

66 }

67 e l s e {

68 c a l l a o d v _ r t e _ i p _ d a t a g r a m _ c r e a t e ( ) t o e n c a p s u l a t e r u p d a t e _ p k p t r i n t o

69 an IP da tag ram f o r IPv6 ;

70

71 /∗ I n s t a l l t h e ICI f o r IPv6 c a s e ∗ /

72 i p _ i c i p t r = o p _ i c i _ c r e a t e ( " i p _ r t e _ r e q _ v 4 " ) ;

73 o p _ i c i _ a t t r _ s e t ( i p _ i c i p t r , " m u l t i c a s t _ m a j o r _ p o r t " , m c a s t _ m a j o r _ p o r t ) ;

74 o p _ i c i _ i n s t a l l ( i p _ i c i p t r ) ;

75 }

76

77 s e t r o u t e _ e n t r y −> l a s t _ r o u t e _ e x p i r y _ u p d a t e _ t i m e = c u r r _ t i m e ;

78 c a l l m a n e t _ r t e _ t o _ c p u _ p k t _ s e n d _ s c h e d u l e ( ) t o send t h e r u p d a t e _ p k p t r p a c k e t ;

79

80 /∗ C l e a r t h e ICI i f i n s t a l l e d ∗ /

81 o p _ i c i _ i n s t a l l ( OPC_NIL ) ;

82

83 r u p d a t e _ s e n t _ c o u n t ++;

84 add s t a t i s t i c s ;

85 }

C.3.1 aodv_pkt_support_option_mem_copy Function

To create a RUPDATE packet, the aodv_pkt_support_option_mem_copy()

function is called by the aodv_pkt_support_pkt_create() function, which

is called by aodv_rte_route_expiry_time_update_send() function. This

function calls other functions to create different types of AODV control

packets. Since RUPDATE is a new packet type, a new RUPDATE option

is added to the aodv_pkt_support_option_mem_copy() function to call

aodv_pkt_support_rupdate_option_create() (which is illustrated in Code C.3.2)

to create a RUPDATE packet.
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Code C.3.1: aodv_pkt_support_option_mem_copy() Function

1 AodvT_Packet_Opt ion∗ aodv_pk t_suppor t_op t ion_mem_copy ( o p t i o n _ p t r ) {

2 s w i t c h ( o p t i o n _ p t r −>t y p e ) {

3 . . .

4 c a s e (AODVC_ROUTE_UPDATE ) :

5 s e t r u p d a t e _ o p t i o n _ p t r = ( AodvT_Rupdate ∗ ) o p t i o n _ p t r −> v a l u e _ p t r ;

6 c a l l a o d v _ p k t _ s u p p o r t _ r u p d a t e _ o p t i o n _ c r e a t e ( ) t o

7 c r e a t e c o p y _ o p t i o n _ p t r f o r t h e r u p d a t e o p t i o n ;

8 b r e a k ;

9 . . .

10 }

11 r e t u r n ( c o p y _ o p t i o n _ p t r ) ;

12 }

C.3.2 aodv_pkt_support_rupdate_option_create Function

A RUPDATE packet is created using this new function.

Code C.3.2: aodv_pkt_support_rupdate_option_create() Function

1 AodvT_Packet_Opt ion∗ a o d v _ p k t _ s u p p o r t _ r u p d a t e _ o p t i o n _ c r e a t e (

2 p a t h c h a n g e _ t i m e , d e s t _ a d d r ) {

3 /∗ A l l o c a t e memory f o r t h e r o u t e u p d a t e o p t i o n ∗∗ /

4 r u p d a t e _ o p t i o n _ p t r = a o d v _ p k t _ s u p p o r t _ r u p d a t e _ o p t i o n _ m e m _ a l l o c ( ) ;

5

6 /∗ S e t t h e v a r i a b l e s o f t h e r u p d a t e o p t i o n ∗ /

7 r u p d a t e _ o p t i o n _ p t r −>p a t h c h a n g e _ t i m e = p a t h c h a n g e _ t i m e ;

8 r u p d a t e _ o p t i o n _ p t r −>d e s t _ a d d r = i n e t _ a d d r e s s _ c o p y ( d e s t _ a d d r ) ;

9

10 /∗ A l l o c a t e memory t o s e t i n t o t h e AODV p a c k e t o p t i o n ∗ /

11 a o d v _ p k t _ o p t i o n _ p t r = a o d v _ p k t _ s u p p o r t _ o p t i o n _ m e m _ a l l o c ( ) ;

12 a o d v _ p k t _ o p t i o n _ p t r −>t y p e = AODVC_ROUTE_UPDATE;

13 a o d v _ p k t _ o p t i o n _ p t r −> v a l u e _ p t r = ( v o id ∗ ) r u p d a t e _ o p t i o n _ p t r ;

14

15 FRET ( a o d v _ p k t _ o p t i o n _ p t r ) ;

16 }
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C.3.3 aodv_pkt_support_rupdate_option_mem_alloc
Function

This function is added to allocate memory for the RUPDATE packet.

Code C.3.3: aodv_pkt_support_rupdate_option_mem_alloc() Function

1 AodvT_Rupdate∗ a o d v _ p k t _ s u p p o r t _ r u p d a t e _ o p t i o n _ m e m _ a l l o c ( ) {

2 i f ( r u p d a t e _ o p t i o n _ p m h _ d e f i n e d == FALSE) {

3 /∗ C a l l t h e poo l memory h a n d l e f o r t h e r o u t e u p d a t e o p t i o n ∗ /

4 r u p d a t e _ o p t i o n _ p m h = op_prg_pmo_def ine ( "AODV Route Update Opt ion " ,

5 s i z e o f ( AodvT_Rupdate ) , 3 2 ) ;

6 r u p d a t e _ o p t i o n _ p m h _ d e f i n e d = TRUE;

7 }

8

9 /∗ A l l o c a t e t h e r o u t e u p d a t e o p t i o n from t h e po o l ed memory ∗ /

10 r u p d a t e _ p t r = ( AodvT_Rupdate ∗ ) op_prg_pmo_a l loc ( r u p d a t e _ o p t i o n _ p m h ) ;

11

12 r e t u r n ( r u p d a t e _ p t r ) ;

13 }

C.4 Process RUPDATE

Upon receiving a RUPDATE packet from a neighbouring node, the

aodv_rte_pkt_arrival_handle() function is called, which is then call the

aodv_rte_rupdate_pkt_arrival_handle() function (Code C.4) to process the

RUPDATE packet. This function calls aodv_rte_expiry_time_update_process()

(Code C.2.1) to check whether the node needs to update the route entry

information, and whether it should broadcast a RUPDATE or not.

Code C.4: aodv_rte_rupdate_pkt_arrival_handle() Function

1 v o i d a o d v _ r t e _ r u p d a t e _ p k t _ a r r i v a l _ h a n d l e ( i p _ p k p t r , aodv_pkp t r ,

2 i p _ d g r a m _ f i e l d _ p t r , i c i _ f i e l d _ p t r , a o d v _ o p t i o n s _ p t r ) {

3

4 /∗ Get t h e r u p d a t e p a c k e t o p t i o n from t h e a r r i v e d p a c k e t ∗ /

5 s e t r u p d a t e _ p k p t r = ( AodvT_Rupdate ∗ ) t l v _ o p t i o n s _ p t r −> v a l u e _ p t r ;

6
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7 /∗ Get t h e p r e v i o u s hop a d d r e s s o f t h e r u p d a t e ∗ /

8 /∗ packe t , which i s t h e s o u r c e o f t h e IP p a c k e t . ∗ /

9 s e t p r ev_hop_add r = i p _ d g r a m _ f i e l d _ p t r −>s r c _ a d d r ;

10

11 /∗ P r e d i c t l i n k c h a n g e and p a t h c h a n g e t i m e s ∗ /

12 s e t l i n k c h a n g e _ t i m e = p r e d i c t _ l i n k c h a n g e _ t i m e ( p r e v i o u s _ h o p _ a d d r ) ;

13 s e t p a t h c h a n g e _ t i m e = min ( r u p d a t e _ p a c k e t _ p t r −>p a t h c h a n g e _ t i m e , l i n k c h a n g e _ t i m e ) ;

14

15 i f ( l i n k c h a n g e _ t i m e < c u r r _ t i m e )

16 s e t i s _ l i n k _ b r o k e n = TURE;

17

18 /∗ Check i f a RUPDATE i s r e q u i r e d t o be s e n t from t h i s node t o t h e ∗ /

19 /∗ p r e c u r s o r s o f t h e d e s t i n a t i o n s p e c i f i e d i n t h e r u p d a t e _ p k p t r . ∗ /

20 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( ) t o g e t t h e r o u t e _ e n t r y f o r

21 r u p d a t e _ p k p t r −>d e s t _ a d d r i n t h e RUPDATE p a c k e t from t h e r o u t e _ t a b l e ;

22

23 i f ( r o u t e _ e n t r y e x i s t s &&

24 r o u t e _ e n t r y −>nex t_hop i s p rev_hop_addr ) {

25 c a l l a o d v _ r t e _ e x p i r y _ t i m e _ u p d a t e _ p r o c e s s ( ) t o s e t an i n t e r r u p t t o send a

26 RUPDATE or a RERR t o t h e r o u t e _ e n t r y ’ s p r e c u r s o r nodes i f r e q u i r e d ;

27 }

28

29 /∗ Check i f a RUPDATE i s r e q u i r e d t o be s e n t from t h i s node t o ∗ /

30 /∗ t h e p r e c u r s o r s o f t h e s e n d e r o f t h e r u p d a t e _ p k p t r ( i . e . t h e ∗ /

31 /∗ p r e v i o u s hop t o t h e d e s t i n a t i o n . ∗ /

32 c a l l a o d v _ r o u t e _ t a b l e _ e n t r y _ g e t ( ) t o g e t t h e r o u t e _ e n t r y f o r

33 t h e p rev_hop_add r from t h e r o u t e _ t a b l e ;

34

35 i f ( r o u t e _ e n t r y e x i s t s &&

36 r u p d a t e _ p k p t r −>d e s t _ a d d r i s n o t p r e v_hop_add r &&

37 r o u t e _ e n t r y −>nex t_hop i s p rev_hop_addr ) {

38 c a l l a o d v _ r t e _ e x p i r y _ t i m e _ u p d a t e _ p r o c e s s ( ) t o s e t an i n t e r r u p t t o send

39 RUPDATE or RERR t o i t s p r e c u r s o r nodes i f r e q u i r e d ;

40 }

41 }



Appendix D

Parameters and Structures

This appendix contains information of the variables and parameters mentioned

in this thesis.

D.1 Standard AODV Parameters

Table D.1 on page 190 consists of all the AODV parameters listed in the AODV

standard [16].
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Parameter Value

ACTIVE_ROUTE_TIMEOUT 3,000 ms

ALLOWED_HELLO_LOSS 2

BLACKLIST_TIMEOUT RREQ_RETRIES ×
NET_TRAVERSAL_TIME

DELETE_PERIOD at least ALLOWED_HELLO_LOSS ×
HELLO_INTERVAL

HELLO_INTERVAL 1,000 ms

LOCAL_ADD_TTL 2

MAX_REPAIR_TTL 0.3 × NET_DIAMETER

MIN_REPAIR_TTL last known hop count to the destination

MY_ROUTE_TIMEOUT 2 × ACTIVE_ROUTE_TIMEOUT

NET_DIAMETER 35

NET_TRAVERSAL_TIME 2 × NODE_TRAVERSAL_TIME ×
NET_DIAMETER

NEXT_HOP_WAIT NODE_TRAVERSAL_TIME + 10

NODE_TRAVERSAL_TIME 40 ms

PATH_DISCOVERY_TIME 2 × NET_TRAVERSAL_TIME

RERR_RATELIMIT 10

RING_TRAVERSAL_TIME 2 × NODE_TRAVERSAL_TIME ×
(TTL_VALUE + TIMEOUT_BUFFER)

RREQ_RETRIES 2

RREQ_RATELIMIT 10

TIMEOUT_BUFFER 2

TTL_START 1

TTL_INCREMENT 2

TTL_THRESHOLD 7

TTL_VALUE TTL field in the IP header

Table D.1: AODV Parameters.
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D.2 Route Entry

A route entry structure, AodvT_Route_Entry, is used to store route information

for a specific destination. This structure has been modified for AODV-PP and

AODV-PU. The variables of the original AODV route entry structure are listed

in Table D.2, the variables that are added to the AODV route entry structure for

AODV-PP are listed in Table D.3 (on page 192), and the variables that are added

to AODV-PP for AODV-PU are listed in Table D.4 (on page 193).

Variables Descriptions

dest_prefix IpT_Dest_Prefix of the destination, which

can be converted to destination address.

dest_seq_num Sequence number of the destination.

valid_dest_sequence_number_

flag

A flag that indicates whether the destination

sequence number is valid.

route_entry_state State of the route entry includes:

UNDEFINED, VALID or INVALID.

next_hop_addr Next hop address.

next_hop_port_info Port information of the next hop address.

hop_count Number of hops to the destination.

precursor_lptr A list to store all the precursor nodes.

route_expiry_time Route expiry time.

route_expiry_evhandle Event handler for route expiry time

interrupts.

Table D.2: OPNET - Variables in struct AodvT_Route_Entry.
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Variables Descriptions

rrep_send_timer A timer set to send a RREP packet back to

the source (which is the destination of the

route entry). It is set when the destination

node receives a RREQ packet.

rrep_send_timer_evhandle An event handler for rrep_send_timer.

pre_route_start_timer The time at which pre-route RREQ will be

sent.

pre_route_start_timer_evhandle Event handler for pre_route_start_timer.

pre_route_expiry_timer The time when the pre-route process expires

(i.e. stops waiting for more RREQs)

and replace the route information with the

pre-route information, and if the node is a

destination, a RREP will be sent.

pre_route_expiry_timer_

evhandle

Event handler for pre_route_expiry_timer.

pre_route_dest_seq_num Pre-route destination sequence number.

pre_route_valid_dest_sequence_

number_flag

Pre-route flag indicating if the destination

sequence number is valid.

pre_route_next_hop_addr Pre-route next hop address.

pre_route_next_hop_port_info Pre-route port information for the next hop

address.

pre_route_hop_count Pre-route hop count to the destination.

pre_route_precursor_lptr Pre-route precursor nodes list.

pre_route_route_expiry_time Pre-route route expiry time.

pre_route_state Pre-route state - TRUE if waiting for more

RREQ; and FALSE otherwise.

is_source_node TRUE if the current node sends application

packets to the destination; and FALSE

otherwise.

last_app_pkt_to_dest_time The time of the last application packet sent

to the destination.

last_pkt_to_dest_time The time of the last data packet (either from

this or other nodes) sent/forwarded to the

destination.

Table D.3: OPNET - Variables added to AODV-PP’s AodvT_Route_Entry
structure.
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Variables Descriptions

last_route_expiry_update_time The time at which the last RUPDATE

packet was sent.

route_expiry_update_timer The time to send a RUPDATE packet.

= min(route_expiry_time,

new_route_expiry_time) - 2 ×
MAX_RING_TRAVERSAL_TIME

route_expiry_update_evhandle Event handler to handle interrupts for

sending a RUPDATE packet.

new_route_expiry_time The newly predicted route expiry time. This

value will be used to update the

route_expiry_time in Table D.2 upon

sending a RUPDATE packet.

link_expiry_time Link expiry time. (Used for debugging)

new_link_expiry_time The newly predicted link expiry time. (Used

for debugging)

pre_route_link_expiry_time Pre-route link expiry time. (Used for

debugging)

Table D.4: OPNET - Variables added to AODV-PP’s AodvT_Route_Entry
structure.
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