The Role of Matrix Metalloproteinases and Their Inhibitors in Irinotecan-Induced Oral Mucositis; An Animal Model

Abdul Rahman Al-Azri
B.A, BDS (TCD), MFDS (RCPS Glasg)

School of Dentistry
Faculty of Health Sciences

Thesis submitted for the degree of Doctor of Clinical Dentistry in Oral Pathology

December 2012
Declaration

This thesis is submitted for the fulfilment of the Doctor of Clinical Dentistry (Oral Pathology). I declare that it contains no material which has been accepted for the award of any other degree or diploma in any university and that, to the best of my knowledge and belief, the Thesis contains no material previously published or written by another person, except where due reference is made in the text.

I give consent to the thesis when deposited in the University Library, being made available for photocopying and loan, subject to the provisions of the Copyright Act 1968.

Abdul Rahman Al-Azri

December 2012
Table of contents

Declaration ... iii

Table of contents .. iv

Abstract .. xi

Acknowledgments ... xiv

Explanation of the Thesis .. xvi

Animal Ethics ... xvii

List of Figures .. xviii

List of Tables .. xx

List of Abbreviations ... xxi

List of Appendices .. xxii

CHAPTER 1

INTRODUCTION .. 1

1.1 Introduction ... 2

CHAPTER 2

LITERATURE REVIEW ... 5
2.1 Oral mucosa .. 6

2.1.1 The structure of and functions of oral mucosa ... 6

2.1.2 The extracellular matrix (ECM) ... 10

2.2 Chemotherapy and oral mucosa ... 12

2.2.1 Terminology ... 12

2.2.2 Clinical presentation and incidence of chemotherapy-induced oral mucositis ... 14

2.2.2.1 Cytotoxic “conventional” chemotherapy ... 14

2.2.2.2 Targeted therapies and oral mucosa ... 17

 Inhibitors of mammalian target of rapamycin .. 18

 Monoclonal antibodies ... 19

 Tyrosine kinase inhibitors ... 19

2.2.3 Animal research in oral mucositis ... 21

2.2.4 Characterization of changes in the oral mucosa following chemotherapy ... 22

2.3 Pathophysiology of oral mucositis ... 24

2.4 Matrix metalloproteinases and their function ... 27

2.4.1 Regulation and control of matrix metalloproteinases 30

2.4.2 Matrix metalloproteinases in inflammation, immune response and healing 32

2.5 Matrix metalloproteinases in pathologies .. 34

2.5.1 Matrix metalloproteinases in skin diseases .. 34

2.5.2 Matrix metalloproteinases in gastrointestinal (GI) diseases 36

2.5.3 Matrix metalloproteinases in dysplasia, cancer and metastasis (including oral cancer) ... 42

2.5.4 Matrix metalloproteinases in oral mucosal lesions .. 46

 2.5.4.1 Matrix metalloproteinases in recurrent aphthous ulceration 47
2.5.4.2 Matrix metalloproteinases and oral lichen planus 47
2.5.5 Matrix metalloproteinases in chemotherapy induced AT mucositis 48
2.6 Common matrix metalloproteinases and their inhibitors in mucosal diseases 50
2.7 The effects of synthetic inhibition of matrix metalloproteinases 52
2.8 Conclusion .. 56

CHAPTER 3 ..
MATERIALS AND METHODS.. 58

3.1 The animals model used in the study... 59
3.2 Experimental design ... 59
3.3 Histological examination .. 62
 3.3.1 Haematoxylin and Eosin (H&E) Staining .. 62
 3.3.2 Light microscopy .. 62
3.4 Immunohistochemistry (IHC).. 65
 3.4.1 Antibody optimization .. 65
 3.4.2 Sections preparation ... 66
 3.4.3 Antigen retrieval ... 66
 3.4.4 Endogenous peroxidase activity block ... 66
 3.4.5 Non-specific antibody binding block .. 67
 3.4.6 Avidin-biotin Block .. 67
 3.4.7 Primary and secondary antibodies incubation .. 67
 3.4.8 Avidin: biotinylated enzyme complex (ABC) labelling 69
 3.4.9 Visualization and counterstaining... 69
 3.4.10 Immunohistochemistry data collection ... 71
3.5 Statistical analysis.. 73

CHAPTER 4 .. 76

RESULTS ... 76

4.1 Histological examination .. 77

4.1.1 Effects of irinotecan on oral mucosa .. 77

4.1.2 Epithelial thickness of tongue mucosa... 79

4.2 Immunohistochemistry ... 81

4.2.1 MMP-2 expression ... 81

4.2.1.1 Pattern of expression of MMP-2 .. 81

4.2.1.2 Expression in the ventral surface of tongue ... 83

4.2.1.3 Expression in the dorsal surface of tongue .. 85

4.2.1.4 Comparison of MMP-2 tissue expression between ventral and dorsal surfaces of tongue .. 87

4.2.1.5 Expression of MMP-2 in the cellular component of lamina propria layer ... 88

4.2.2 MMP-3 expression ... 90

4.2.2.1 Pattern of expression of MMP-3 .. 90

4.2.2.2 Expression in the ventral surface of tongue ... 92

4.2.2.3 Expression in the dorsal surface of tongue .. 94

4.2.2.4 Comparison of MMP-3 tissue expression between ventral and dorsal surfaces of tongue .. 96

4.2.2.5 Expression of MMP-3 in the cellular component of lamina propria layer ... 97
4.2.3 MMP-9 expression

4.2.3.1 Pattern of expression of MMP-9

4.2.3.2 Expression in the ventral surface of tongue

4.2.3.3 Expression in the dorsal surface of tongue

4.2.3.4 Comparison of MMP-9 tissue expression between ventral and dorsal surfaces of tongue

4.2.3.5 Expression of MMP-9 in the cellular component of lamina propria layer

4.2.4 TIMP-1 expression

4.2.4.1 Pattern of expression of TIMP-1

4.2.4.2 Expression in the ventral surface of tongue

4.2.4.3 Expression in the dorsal surface of tongue

4.2.4.4 Comparison of TIMP-1 tissue expression between ventral and dorsal surfaces of tongue

4.2.4.5 Expression of TIMP-1 in the cellular component of lamina propria layer

4.3 Summary of results

4.3.1 Histological changes and immunohistochemistry results

Histological and IHC results analysis in epithelium

4.3.3 Quantity of positively stained cells in lamina propria layer: A summary

CHAPTER 5

DISCUSSION

5.1 Introduction
5.2 Research in oral mucositis ... 123

5.3 The effects of irinotecan treatment on histological features of tongue mucosa . 124

The “Clinical” signs of OM.. 125

Difference between human and rat oral mucosa 127

5.4 Tissue expression of MMP-2, -3, -9 and TIMP-1 in oral mucositis 129

5.4.1 The expression of MMP-2, -3, -9 and TIMP-1 in the epithelium......... 129

5.4.2 The expression of MMP-2, -3, -9 and TIMP-1 in the sub-epithelial layer .. 131

5.4.3 The expression of MMP-2, -3, -9 and TIMP-1 in the cells of lamina propria ... 132

5.4.4 MMP and the 5-phase model of OM pathophysiology 135

MMPs and initiation phase of OM .. 135

MMPs and inflammatory/immune mediated damage in OM 136

MMPs and apoptosis .. 138

MMPs and ulceration ... 139

MMPs, healing and tissue regeneration .. 140

5.5 Tissue inhibitor of metalloproteinases (TIMP-1) and OM 141

5.6 OM versus gastrointestinal mucositis ... 142

5.7 Limitations and future research directions in the role of MMPs in OM 143

5.8 Targeting MMPs and interventional opportunities 145

CHAPTER 6... 147

CONCLUSIONS AND FUTURE DIRECTIONS ... 147
Abstract

Background

Chemotherapy-induced oral mucositis is defined as damage of oral mucosa caused by unwanted detrimental effects of the cytotoxic chemotherapy. Oral mucositis presents as widespread painful ulcerations and erythematous eruptions and occurs in between 40-100% of all patients undergoing chemotherapy. Currently, there are no standard treatments available to prevent oral mucositis and the consequences on health care systems remain extensive.

Research into the pathogenesis of oral mucositis has shown a complex underlying process, involving several overlapping biological events in the epithelium and submucosal layers. However, this pathogenesis is still not fully understood. A group of proteolytic enzymes called matrix metalloproteinases (MMPs) have been recently postulated to play a part in mediating the damaging process seen in oral mucositis. It is well established that MMPs and their naturally existing inhibitors (tissue inhibitors of metalloproteinases; TIMPs) maintain a balanced level in normal physiological status of oral mucosa. Their dysregulated balance underlies some pathophysiological aspects of several diseases including some diseases of the oral and gastrointestinal mucosae. These mucosal diseases include ulcerative colitis, Crohn’s disease, recurrent aphthous stomatitis and oral lichen planus. However, as MMPs and TIMPs have not been well studied in oral mucositis, this formed the basis of this thesis.
Hypothesis and Aims of the thesis

If MMPs and TIMPs are involved in the pathogenesis of oral mucositis, their tissue levels will change following the administration of cytotoxic chemotherapy. This may correlate to any histopathological changes in the oral mucosa. This thesis aimed to investigate the morphological changes and the tissue expression levels of MMP-2, -3, -9 and TIMP-1 within the oral cavity in a well-established pre-clinical animal model of chemotherapy-induced oral mucositis.

Results and Discussion

The findings presented in this thesis demonstrate epithelium thickness reduces without obvious ulceration in the oral mucosa very early after chemotherapy administration. Maximum atrophy is observed 60 min following chemotherapy in both dorsal and ventral surfaces of the tongue. This reduction in epithelial thickness is associated with significant up-regulation of MMP-2, -3, -9 and down-regulation of TIMP-1 in all layers of the oral mucosa. MMP-9 is also up-regulated at later time point.

These findings support previous evidence that oral mucositis involves changes in the submucosa before it is clinically evident. The early reduction in epithelial thickness confirms similar findings reported in earlier studies of oral mucositis in rat buccal mucosa. The up-regulation of MMP-2, -3, -9 and down-regulation of TIMP-1 coincided with the previously described early up-regulation of transcription factors and pro-inflammatory cytokines in oral mucosa, suggesting a relationship between their up-regulation/down-regulation and the release of these factors and cytokines. Furthermore, the different patterns of expression demonstrated by MMP-2, -3, -9 suggest that these
MMPs are involved in various aspects of the 5-phase model of OM pathophysiology including initiation of inflammatory response and tissue injury, recruitment of other mediators of OM and restoration of oral mucosa to normal physiological status.

Conclusion

This thesis has provided evidence that MMPs play a key role in the aetiology of oral mucositis. Research in this area needs to be directed towards studying other relevant MMPs and also towards interventional therapies aiming to target MMP-2, -3 and -9 to prevent or reduce the severity of oral mucositis, as well as to promote faster healing of OM lesions. This will help provide an optimum treatment outcomes provided to cancer patients and improve the quality of life during and after their treatment.
Acknowledgments

“All Praise is due to Allah” for the guidance and assistance He has given to me to achieve this.

I would like, first of all, to express my sincere gratitude to my principal supervisor, Professor Richard Logan, the Head of Oral Diagnostic Sciences, School of Dentistry, for giving me the opportunity to come to Adelaide and undertake the Doctorate of Clinical Dentistry Program in Oral Pathology. This opportunity was the turning point of my professional life. I very much value having him as a mentor, and as friend.

All the help and support I received from him and from my co-supervisors; Dr. Rachel Gibson and Professor Dorothy Keefe was second to none and I will always be grateful to them. Their continuous encouragement and constructive feedback in every part of this work have been invaluable throughout my candidature.

I also would like to extend my special thanks to all people who helped me in a way or another to complete this work. In laboratory techniques: again Dr. Rachel Gibson, Mrs. Nadia Gagliardi (from discipline of Anatomical Sciences), Masooma Sultani and also all members of Adelaide Mucositis Research Group; in statistical analyses: Mr. Thomas Sullivan, Senior Statistician, Department of Public Health, University of Adelaide.

I must also acknowledge the support I received from the Ministry of Health of Oman for sponsoring my study and stay in Adelaide.
The time spent with my friends in Adelaide during my candidature was most rewarding. Coffee outings and extended discussions, whenever I needed them, with Dr. Akram Qutob, Dr. Mohammed El-Kishawi, Dr. Mohammed Al-Ajmi, Dr. Ricky Kumar and Dr. Abdul Aziz Al-Majid were helpful.

Thanks must also go to my parents, Salim and Aisha, and my mother-in-law Aisha for their prayers and encouragement from overseas. Last but not least, I am most grateful to my supportive loving wife Narmin, without her I could not have done this. She and my two lovely sons Mohammed and Omar were with me at all times, whether in Adelaide or when they were back home in Oman.
Explanation of the Thesis

This thesis is entitled „The Role of Matrix Metalloproteinases and Their Inhibitors in Irinotecan-Induced Oral Mucositis; An Animal Model”. It is composed of 7 Chapters presented in the conventional thesis format. Chapter 1 is an introductory chapter that provides a background to the research area undertaken for fulfilment of the Doctorate of Clinical Dentistry (Oral Pathology). The next Chapter 2 is the “Literature Review” that addresses the published literature related to the impact of chemotherapy on the normal function and structure of oral mucosa, matrix metalloproteinases and their inhibitors and their role in mediating various diseases, focusing on the potential role they may play in oral mucositis and interventional opportunities targeting them. Chapter 3 describes the materials and methods used in this study. The results of this study are outlined in Chapter 4. Chapter 5 discusses the major findings of the study, comparing or correlating them to previous studies. Chapter 6 is the “Conclusions and Future Directions”: it outlines the significance of the findings obtained from this study and provides recommendations for future research directions. The list of references is provided in the Bibliography Chapter (7) at the end. All relevant work and list of publications during candidature are included in the Appendices section.
Animal Ethics

The established animal model used in this study was approved by the Animal Ethics Committee of The University of Adelaide and of The Institute of Medical and Veterinary Sciences. They complied with the National Health and Medical Research Council (Australia) Code of Practice for Animal Care in Research and Training (2004). Due to the potentially severe nature of the diarrhoea caused by irinotecan, animals were monitored four times daily and if any animals showed certain criteria (as defined by the Animal Ethics Committee) they were euthanized. These criteria included a dull ruffled coat with accompanying dull and sunken eyes, coolness to touch with no spontaneous movement, and a hunched appearance.
List of Figures

All Figures and Illustrations that appear in this thesis have been created or taken by the candidate, unless otherwise acknowledged.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1: The oral cavity</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2: Histology of the oral mucosa</td>
<td>9</td>
</tr>
<tr>
<td>Figure 3: Components of the oral mucosa</td>
<td>11</td>
</tr>
<tr>
<td>Figure 4: Clinical presentation of oral mucositis</td>
<td>16</td>
</tr>
<tr>
<td>Figure 5: Summary of experimental design of the study</td>
<td>61</td>
</tr>
<tr>
<td>Figure 6: Measurements of oral epithelial thickness</td>
<td>64</td>
</tr>
<tr>
<td>Figure 7: Indirect Immunohistochemistry</td>
<td>70</td>
</tr>
<tr>
<td>Figure 8: IHC-stained oral mucosa</td>
<td>72</td>
</tr>
<tr>
<td>Figure 9: Pattern of IHC-stained oral mucosa</td>
<td>74</td>
</tr>
<tr>
<td>Figure 10: Control tissues in IHC staining</td>
<td>75</td>
</tr>
<tr>
<td>Figure 11: Histological features of control versus experimental rat oral mucosa</td>
<td>78</td>
</tr>
<tr>
<td>Figure 12: Mean epithelial thickness in the tongue mucosa over 72 hrs versus baseline</td>
<td>80</td>
</tr>
<tr>
<td>Figure 13: MMP-2 stained tongue mucosa</td>
<td>82</td>
</tr>
</tbody>
</table>
Figure 14: MMP-2 staining intensity in tongue mucosa (ventral surface) 84

Figure 15: Staining intensity of MMP-2 in tongue mucosa (dorsal surface) 86

Figure 16: The quantity of MMP-2 positive cellular component of lamina propria layer . 89

Figure 17: MMP-3 stained tongue mucosa ... 91

Figure 18: Staining intensity of MMP-3 in tongue mucosa (ventral surface) 93

Figure 19: Staining intensity of MMP-3 in tongue mucosa (dorsal surface) 95

Figure 20: The quantity of MMP-3 positive cellular component of lamina propria layer .98

Figure 21: MMP-9 stained tongue mucosa ... 100

Figure 22: Staining intensity of MMP-9 in tongue mucosa (ventral surface) 102

Figure 23: Staining intensity of MMP-9 in tongue mucosa (dorsal surface) 104

Figure 24: The quantity of MMP-9 positive cellular component of lamina propria layer 107

Figure 25: TIMP-1 stained tongue mucosa .. 109

Figure 26: Staining intensity of TIMP-1 in tongue mucosa (ventral surface) 111

Figure 27: Staining intensity of TIMP-1 in tongue mucosa (dorsal surface) 113

Figure 28: The quantity of TIMP-1 positive cellular component of lamina propria layer 116
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1:</td>
<td>Studies of MMPs and TIMPs involvement in human ulcerative colitis (UC) and Crohn's disease (from year 1994 to 2002)</td>
<td>38</td>
</tr>
<tr>
<td>Table 2:</td>
<td>Studies of MMPs and TIMPs involvement in human ulcerative colitis (UC) and Crohn's disease (from 2003 to 2010)</td>
<td>39</td>
</tr>
<tr>
<td>Table 3:</td>
<td>Studies of MMPs and TIMPs involvement in coeliac disease</td>
<td>40</td>
</tr>
<tr>
<td>Table 4:</td>
<td>Studies of MMPs and TIMPs involvement in induced experimental mucosal injuries</td>
<td>41</td>
</tr>
<tr>
<td>Table 5:</td>
<td>Studies demonstrating MMPs & TIMPs involvement in cancer development of the oral cavity and head and neck region</td>
<td>45</td>
</tr>
<tr>
<td>Table 6:</td>
<td>Summary of the commonly described MMPs and TIMPs in mucosal diseases of gastrointestinal tract and oral cavity, and the specific location of their tissue expression</td>
<td>51</td>
</tr>
<tr>
<td>Table 7:</td>
<td>Details of primary anti-MMP-2, -3, -9 and TIMP-1 antibodies and secondary antibodies used in IHC</td>
<td>68</td>
</tr>
<tr>
<td>Table 8:</td>
<td>Summary of results (Results of changes in epithelial thickness and IHC staining levels in time groups are for both surfaces of tongue i.e. VT and DT, unless otherwise specified)</td>
<td>119</td>
</tr>
<tr>
<td>Table 9:</td>
<td>Important findings in examination of positive cells quantity in lamina propria layer</td>
<td>120</td>
</tr>
<tr>
<td>Table 10:</td>
<td>Tissue expression and peaking levels (maximum and minimum) of the investigated MMPs, TIMP-1, NF-κB and pro-inflammatory cytokines from present and previous studies</td>
<td>134</td>
</tr>
</tbody>
</table>
List of Abbreviations

Commonly used abbreviations in the thesis

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-FU</td>
<td>5-fluorouracil</td>
</tr>
<tr>
<td>AE</td>
<td>Apical layer of epithelium</td>
</tr>
<tr>
<td>AT</td>
<td>Alimentary tract</td>
</tr>
<tr>
<td>BE</td>
<td>Basal layer of epithelium</td>
</tr>
<tr>
<td>CT</td>
<td>Chemotherapy</td>
</tr>
<tr>
<td>DA</td>
<td>Dark Agouti (rats)</td>
</tr>
<tr>
<td>DT</td>
<td>Dorsal surface of tongue</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>H&E</td>
<td>Haematoxylin and Eosin</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>LP</td>
<td>Lamina propria layer</td>
</tr>
<tr>
<td>MMP/s</td>
<td>Matrix Metalloproteinase/s</td>
</tr>
<tr>
<td>NF</td>
<td>Nuclear factor</td>
</tr>
<tr>
<td>OM</td>
<td>Oral mucositis</td>
</tr>
<tr>
<td>TIMP/s</td>
<td>Tissue inhibitor/s of metalloproteinases</td>
</tr>
<tr>
<td>RT</td>
<td>Radiotherapy</td>
</tr>
<tr>
<td>SM</td>
<td>Submucosal layer</td>
</tr>
<tr>
<td>VT</td>
<td>Ventral surface of tongue</td>
</tr>
</tbody>
</table>
List of Appendices

APPENDIX I: HAEMATOXYLIN AND EOSIN (H&E) STAINING PROTOCOL 173

APPENDIX II: IMMUNOHISTOCHEMISTRY PROTOCOL 174

APPENDIX III: RECEIVED GRANTS FOR STUDY AND TRAVEL DURING CANDIDATURE .. 177

APPENDIX IV: OTHER ACTIVITIES DURING CANDIDATURE 178

APPENDIX V: PUBLICATIONS DURING CANDIDATURE 181

PUBLISHED PAPER ... 182