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Thesis Abstract  

Islet transplantation is a promising therapeutic option for Type 1 Diabetic (T1D) patients, with 

the ability to improve glycometabolic control and in select cases achieve insulin independence. 

Intraportally transplanted islets must reside in the hostile environment of the liver, where they are 

exposed to the instant blood mediated inflammatory reaction (IBMIR), alloimmunity, recurrence 

of islet specific autoimmunity, a highly toxic pro-inflammatory cytokine storm (e.g. IL-1β,    

IFN-α, IFN-γ and TNF-α) and hypoxia due to inadequate revascularization post-transplantation. 

The early loss of functional islet mass (50-70%) due to apoptosis following clinical 

transplantation contributes to islet allograft failure. Strategies to prevent apoptosis are therefore 

highly desirable to enhance islet survival for transplantation.  

In Chapter 3, the ability of Adenoviral (Ad) and Adeno-Associated Viral (AAV)-based vectors 

expressing a green fluorescent protein (GFP) reporter gene to transduce isolated human and rat 

pancreatic islets was investigated. Specific interest was placed on tyrosine mutant AAV-based 

vector types, which have not been previously explored in human and rodent pancreatic islets. Ad 

efficiently transduced isolated human and rat pancreatic islets while AAV failed to transduce 

human islets and showed a varied ability to transduce rat islets. The results in this chapter 

demonstrate that Ad vectors are more efficient at transducing isolated islets than AAV-based 

vector types. 

Chapter 4 aimed to characterise an Ad-based vector encoding an anti-apoptotic molecule termed 

Insulin-like Growth Factor-II (Ad-IGF-II). Ad-IGF-II effectively transduced rat pancreatic islets 

without affecting islet viability or function and did not induce uncontrolled islet cell proliferation. 

The results in this chapter suggest that Ad-IGF-II is an effective and non-toxic vector type for use 

in an islet gene therapy setting.  

 

In Chapter 5 and Chapter 6, the influence of local human IGF-II over expression on rat 

pancreatic islet cell survival in vitro and in vivo was examined, respectively. Over expression of 

IGF-II in islets resulted in enhanced islet survival in vitro and in an in vivo marginal mass islet 

transplant model. Transplantation of IGF-II over expressing islets under the kidney capsule of 

diabetic NOD-SCID mice restored euglycemia in 78% of recipients, compared to 46% and 18% 

of untransduced and Ad-GFP transduced control islet recipients, respectively. 



ix 

 

In summary, this thesis demonstrated that compared to AAV, Ad is currently the optimal vector 

for use in an islet gene therapy setting. Moreover, over expression of IGF-II did not affect the 

viability or insulin secreting capacity of islets. Finally, the induced expression of anti-apoptotic 

IGF-II led to enhanced islet survival in vitro and improved transplant outcomes in an in vivo 

marginal mass islet transplant model, indicating that IGF-II gene transfer is a potentially 

powerful tool to improve islet survival post-transplantation. 
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CHAPTER 1 

LITERATURE REVIEW 

1.1 Introduction 

Type 1 Diabetes (T1D) is an autoimmune disease that results from destruction of insulin-

producing β-cells of the pancreas.  β-cell loss leads to a progressive failure in the production 

of insulin, the hormone that regulates glucose cellular uptake (1). Intensive insulin therapy is 

the current treatment of choice for T1D patients as it leads to a reduction in the occurrence of 

diabetic complications such as retinopathy, neuropathy and kidney damage, however it is 

unable to control against debilitating hypoglycaemic unawareness (2).  

Islet transplantation is a promising therapeutic approach aimed at restoring β-cell function and 

obtaining optimal metabolic control above that offered by exogenous insulin therapy in T1D 

patients. However, due to substantial islet cell death (50 – 70%) in the immediate post-

transplant period, islet function declines over time and the majority of patients resume insulin 

therapy within five years (3).  

Therefore the use of gene transfer to deliver an anti-apoptotic molecule to islets prior to their 

transplantation may protect against islet apoptosis in the immediate post-transplant period and 

lead to an improvement in insulin independence rates. Based on this, the aim of this thesis is 

to study the optimal vector for gene transfer to islets, with specific emphasis on the ability of 

the anti-apoptotic molecule Insulin-like Growth Factor-II (IGF-II) to promote islet survival in 

vitro and in an in vivo islet transplant setting.  

1.2 The pancreas 

The pancreas is a gland which plays an integral role in the exocrine digestive system and the 

endocrine system (4). The pancreas develops through budlike structures on the primitive gut 

tube into a highly branched organ containing many specialised cell types (5). The pancreas is 

connected to the small intestine via the pancreatic duct, through which it empties pancreatic 

fluid, to aid in the digestion of food (6, 7). The endocrine pancreas is responsible for 

producing insulin which helps to control the amount of glucose in the blood. Whereas the 

exocrine pancreas secretes digestive enzymes to breakdown carbohydrates, proteins and fats 

and bicarbonates that neutralize acidic stomach acid (6). 
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1.3 Islet of Langerhans 

The Islet of Langerhans are highly vascularized micro-organs which constitute 1 – 2% of the 

total pancreas mass (8, 9). Pancreatic islets are composed of multiple cell types, including 

insulin-producing β-cells, glucagon-producing α-cells, somatostatin-producing δ-cells and 

pancreatic-polypeptide producing PP-cells (7, 10). The predominant role of β-cells is to 

produce the endocrine hormone insulin, which is required for glucose uptake and glycogen 

synthesis (11). 

There are reported differences in islet architecture and composition among mammalian 

species (12). For example, islets in the adult guinea pig are primarily composed of β-cells that 

are distributed throughout the islet (13, 14), with α-cells located in the periphery. Rodent 

islets have a highly ordered structure that is composed primarily of β-cells (60 – 80%) 

clustered in a central core, surrounded by α (15 – 20%), δ (<10%) and PP cells (<1%) in the 

periphery (15-17). Human islets display a more scattered organization of endocrine cells and a 

higher percentage of α-cells (50%) compared to rat islets (15 – 20%) (18, 19) (Figure 1.3).  

1.3.1 The β-cell and glucose homeostasis 

Within the body, blood glucose levels (BGL) are tightly controlled as to ensure homeostasis is 

maintained within the cells and tissues of the body. In the normal physiological state, the level 

of glucose in the blood exists within a range of 3.6 – 5.8 mmol/l. Insulin secretion from the β-

cell occurs in response to rapid increases in BGL, usually occurring following a meal (20-22). 

The first phase of insulin secretion consists of a sharp peak that results from the uptake of 

glucose into the β-cell via the glucose transporter 2 (GLUT2) receptor (23). Upon entering the 

β-cell, glucose is phosphorylated, leading to a rise in the ATP:ADP ratio and the opening of 

calcium channels (24). This promotes an influx of calcium ions, leading to insulin release and 

the subsequent release of c-peptide, a by-product of insulin secretion into the blood stream 

(25). The second phase, is characterised by sustained elevation of insulin secretion, which 

rises over a period of several minutes (26). 

1.4 Diabetes Mellitus 

Diabetes Mellitus is a group of metabolic diseases in which the pancreas does not produce 

enough insulin (type 1) or there is too much glucose in the blood (type 2). Approximately 346 

million people worldwide have diabetes and the world health organization predict that 

diabetes deaths will double between 2005 and 2030. Diabetes is a major health problem that 

significantly affects the health of ~898,000 Australians (http://www.aihw.gov.au/diabetes). 
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Figure 1.3. Diagrammatical representation of a rat and human islet endocrine cell. Human 

and rat pancreatic islets differ in their cellular composition. Human islets display a random 

distribution of β-cells, α-cells, γ-cells, somatostatin- and grehlin-producing cells. In contrast, 

rat islets contain a β-cell rich core, with all other endocrine cells located in the periphery. 

Figure adapted from Suckale et al (27). 
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1.4.1 Type 1 Diabetes 

T1D is an autoimmune disease, characterised by the progressive immune-mediated 

destruction of insulin producing β-cells within the pancreas (28). β-cell death in T1D occurs 

via apoptosis induced by infiltrating immune cells such as macrophages and T cells (29, 30). 

The immune cells secrete pro-inflammatory cytokines such as IL-1β, TNF-α, and IFN-γ (31, 

32), leading to the production of cytotoxic nitric oxide (NO) and the up-regulation of various 

pro-inflammatory mediators (33, 34). One such mediator is the transcription factor nuclear 

factor kappa B (NF-κB) which is responsible for the activation of autoreactive T cells (35). 

The onset of T1D generally occurs in the first two decades of life, with a peak incidence 

between 10 – 13 years of age. However, T1D may occur at any age, and approximately one 

quarter of all T1D cases develop later in life (36). Prior to the first clinical symptoms of T1D, 

the β-cell mass has already been reduced by 70 – 80% (37). The incidence of T1D is 

increasing worldwide (38, 39). In Australia, the incidence of T1D is rising at an average rate 

of 2.8% per year (40), if this continues there will be 2.5 – 3 million people with diabetes by 

2025 and approximately 3.5 million by 2033 (41).  

 

Diabetes is associated with a number of complications, which can occur from the onset of 

diagnosis, or many years after the diabetic disease has developed. Diabetes is the leading 

cause of lower limb amputation, retinopathy, neuropathy and end stage kidney failure (42, 

43).  

 

1.4.2 Immunology of Type 1 Diabetes 

 

Lymphocytic infiltration of pancreatic islets, termed ‘insulinitis’, is considered a hallmark 

clinical feature of T1D. Cytotoxic CD8+ T cells can directly kill β-cells, whereas CD4+ T cells 

activate B cells and thus, promote autoantibody production (44). While the exact trigger for 

the onset of T1D is unknown, once the immune system is activated it presents self antigens to 

T cells, leading to autoimmune destruction of the insulin-producing β-cells (45).  

 

Over 40 genes and regions have been found to be associated with risk of T1D (46). Genes 

located within the human leukocyte antigen class II region on chromosome 6p21 account for 

approximately 50% of genetic risk of T1D (47, 48). A region in the regulatory domain of the 

insulin gene has also been shown to provide approximately 10% of the genetic susceptibility 

to T1D (49). In addition to genetic factors, various environmental factors have been linked to 
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the development of T1D. Causative environmental triggers include viral infections, 

immunizations, diet, early exposure to cow’s milk, maternal age, history of pre-eclampsia, 

neonatal jaundice, among others (50). However, it may take multiple environmental insults, in 

genetically predisposed individuals, to trigger destruction of β-cells and individual patients 

may experience them in differing combinations (51). Autoantibodies to several pancreatic 

islet auto-antigens serve as biomarkers for T1D. The primary autoantibody detected is against 

glutamic acid decarboxylase (GAD65). Other autoantibodies include protein tyrosine 

phosphatase-like molecule IA-2 and insulin (52, 53).  

 

1.4.3 Type 2 Diabetes 

 

Type 2 diabetes (T2D) is the most common form of diabetes, accounting for 85 – 90% of all 

cases (54). T2D results from the progressive failure of pancreatic β-cells in the presence of 

chronic insulin resistance and inadequate insulin secretion (55). Insulin resistance is 

characterised by the inability of cells to respond appropriately to insulin, a hormone that 

clasically acts to control glucose release (56). 

 

T2D was formerly called non-insulin dependent or adult-onset diabetes, although it is now 

increasingly reported in younger individuals (57, 58). Long-term complications of T2D 

include retinopathy, kidney failure and amputation due to poor circulation. In addition, T2D 

patients have a 2 – 6 times increased risk of death from cardiovascular disease compared to 

the general population (59).  

 

The aetiology of T2D is associated with genetic and environmental risk factors, which include 

unhealthy eating and lack of physical activity in individuals that are genetically predisposed. 

The pathogenesis of T2D involves abnormalities in insulin action, secretion and endogenous 

glucose output (60). T2D is initially managed with a program of increased exercise and 

change in diet or patients are treated with oral anti-diabetic agents. As the disease progresses, 

patients must begin to use insulin therapy as a way to maintain glucose control (61).  
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1.4.4 Current treatments for Type 1 Diabetes 

 

Insulin therapy is the most effective treatment currently available for managing T1D, 

administered in the form of multiple daily injections or via an insulin pump (62). Insulin was 

discovered in 1921 by Canadian scientists Banting, Best, Macleod and Collip. Early after its 

discovery, animal insulin (porcine and bovine) was manufactured and administered to humans 

by injection to treat their diabetes (63). The use of human insulin, namely Humilin® rapid and 

Humilin N, was FDA approved in 1982. Since this time a number of biosynthetic recombinant 

“human” insulin or insulin analogues have been developed for clinical use worldwide. New 

insulin analogues more closely mimic the kinetic profile of endogenous insulin compared to 

past formulations, however insulin injections are not a cure for diabetes and diabetic 

complications can develop over time.  

 

Continuous subcutaneous insulin infusion also known as an insulin pump is considered to be 

the most physiologic way to deliver insulin, as it is able to stimulate the normal pattern of 

insulin secretion (64). Studies have shown that insulin pump therapy leads to lower average 

glycated haemoglobin levels in diabetic patients versus patients with multiple daily injections 

(65, 66). The disadvantages to using a pump include possible weight gain, high cost and 

inconvenience as patients must remain continually attached to the pump.  

 

The replacement of β-cells by whole pancreas transplantation represents an alternative 

therapy for diabetic patients. However, a pancreas transplant is generally only performed in 

combination with a kidney transplant in patients with end stage renal disease (67). 

Complications that can occur following whole pancreas transplantation include rejection, 

thrombosis, pancreatitis and infection (68). Whole pancreas transplantation is associated with 

significant cost and surgical risk which can lead to morbidity and mortality and is therefore 

not a viable option for most T1D patients. Since the endocrine tissue only comprises 1 – 1.5%  

of the total pancreatic mass, pancreatic islet transplantation arises as a logical alternative (69). 
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1.4.5 Islet Transplantation 
 

In clinical islet transplantation, islets are isolated from a deceased donor. The pancreas is 

digested within a ‘Ricordi Chamber’ using an enzyme blend of collagenase and neutral 

protease (70). The pancreatic islets are subsequently purified using density centrifugation to 

reduce the amount of acinar tissue and then transplanted into the liver via the portal vein 

(Figure 1.4.5).  

 

In 1967 Paul Lacy developed a enzymatic collagenase based method to isolate islets (71). 

Subsequent studies showed that transplantation of isolated islets can cure chemically induced 

diabetes in rodents and non-human primates (72, 73). The true clinical potential of islet 

transplantation for treatment of T1D was demonstrated in 2000, with the introduction of the 

‘Edmonton Protocol’. The study showed an initial 100% insulin independence success rate in 

seven out of seven transplanted patients, less frequent hyperglycaemia and overall improved 

blood glucose control (74). The Edmonton Protocol utilised a steroid free immunosuppressive 

regimen in addition to a large number of islets, often from multiple donors to achieve 

transplant success.  More than 750 islet transplants have been performed to date worldwide, 

with two-thirds of recipients achieving insulin independence and maintaining it out to one 

year, following their transplant (75). However, long term follow up reveals a marked 

reduction in islet graft function over time, leading to the majority of islet transplant patients 

needing to resume insulin therapy within five years (3).  
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Figure 1.4.5. Islet isolation and transplantation. Islets are isolated from a donor pancreas 

using a semi-automated digestion method designed by Professor Camillio Ricordi, termed the 

‘Ricordi Chamber’. The chamber mechanically breaks down the islet tissue which is then 

purified by density gradient centrifugation. Purified islets of high quality and yield are then 

infused into the portal vein of the recipient’s liver. The figure was adapted from Merani et al 

(76). 
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1.5 Barriers to successful islet transplantation 

A major limitation to the success of clinical islet transplantation is the early loss of up to 70% 

of the islet mass 24 – 48 hours post-transplantation (77, 78), which contributes significantly to 

declining islet function following transplantation (Figure 1.5). Eriksson et al (79) suggest a 

large proportion of the transplanted islet mass is lost within the first few minutes to hours 

following transplantation. Approximately 70% of islets are hypoxic 24 hours (h) following 

transplantation, as evaluated by Olsson and colleagues (80) using the hypoxia marker 

pimonidazole. 

Many factors contribute to islet cell death including the initial instant blood mediated 

inflammatory reaction (IBMIR). IBMIR occurs following the exposure of pancreatic islets to 

recipient blood and subsequently leads to platlet activation, clot formation, lymphocyte 

recruitment and islet destruction (81). Destruction of the islet microenvironment and loss of 

trophic support occurs as a consequence of the human islet isolation process and leads to local 

inflammation and ischemic islet cell death (82, 83). 

Native pancreatic islets are highly vascularized, a characteristic which ensures that the islets 

can adequately secrete insulin in response to glucose (84). However, the islet isolation process 

severs the connection between the islet vasculature and the systemic circulation, and 

subsequently renders the islets avascular for several days following transplantation (84). 

Moreover, prior to revascularization, islet survival is dependent on the diffusion of oxygen 

and nutrients, which is difficult to achieve within the liver micro environment (85, 86). The 

aggressive islet isolation process activates resident islet macrophages and leukocytes to 

release pro-inflammatory cytokines such as TNF-α, IL-1β and IFN-γ which induce the 

production of cytotoxic NO (87). NO is produced by the oxidation of L-arginine to L-

citrulline by NO synthase, and regulated by the transcription factor NF-κB (88). Generation of 

excess NO inhibits mitochondrial metabolism, promotes protein modification and DNA 

cleavage, leading to impaired insulin secretion and β-cell death (89, 90).  

Allogeneic islets trigger immune-mediated rejection that must be controlled with 

immunosuppressive drugs (91). Therefore, transplanted islets are continuously exposed to 

immunosuppressive drugs, which adversely impact β-cell survival and function (92). More 

widely, immunosuppressive drugs can be neprotoxic and induce other associated side effects 

such as ulcers, peripheral edema, anemia, weight loss, hypertension, hyperlipidemia and are 

associated with an increased risk of malignancies (93).    
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Figure 1.5. Islet transplantation is associated with a marked reduction in islet graft function 

over time. While short term glucose stabilization and insulin independence rates continue to 

improve in allogeneic islet transplant recipients, long-term follow up reveals a marked 

reduction in islet graft function over time. The reasons for the decline in insulin independence 

rates following islet transplantation are complex, beginning before pancreas procurement as 

brain death is associated with the production of pro-inflammatory cytokines such as TNF-α, 

IL-1β and IL-6. Once transplanted, islets must reside in the hostile environment of the liver, 

where they are exposed to a multitude of apoptotic stresses that contribute to early failure of 

the islet allograft. Figure adapted from Contreras et al (94). 
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1.6 Concepts and methods of gene therapy 

Section(s) 1.6 – 1.7 are adapted and modified from the published article (Appendix C): 

Hughes A, Jessup C, Drogemuller C, Mohanasundaram D, Milner C, Rojas D, Russ GR, 

Coates PT. Gene therapy to improve pancreatic islet transplantation for Type 1 diabetes 

mellitus. Curr Diabetes Rev. 2010 Sep;6(5):274-84. 

The development of highly efficient viral vectors capable of transferring useful genes to 

human cells has led to the concept of gene therapy (95). Early transplant stresses such as 

apoptosis may be overcome through the use of ex vivo gene therapy strategies to deliver anti-

apoptotic genes to the islets to improve post-transplant islet viability (96). 

Gene therapy can be defined as a set of approaches for the treatment of human diseases based 

on the transfer of genetic material (DNA) into cells, either outside the body (ex vivo) or by 

direct administration (in vivo) with the aim of preventing or correcting various types of 

disorders (97). Viral vectors are modified to carry a gene of interest (or ‘transgene’) into a 

specific target cell (98), such as islets. Compared to in vivo gene transfer, ex vivo gene transfer 

provides an important safety feature, whereby only the target cells express the gene of 

interest, avoiding unpredictable systemic side effects (97). Ex vivo gene therapy requires the 

harvest of cells from the patient. The cells are then infected or ‘transduced’ with the vector 

and returned to the patient at the time of their transplant. Successful ex vivo gene therapy has 

already been achieved for treatment of severe combined immune deficiency (SCID) (99, 100) 

and more recently, Parkinson’s disease and Haemophilia B (101, 102). 

1.6.1 Viral-mediated gene transfer to pancreatic islets 

There are four major classes of viral vectors utilized in gene therapy, adenoviruses (Ad), 

adeno-associated viruses (AAV), herpes simplex viruses (HSV) and retroviruses (including 

lentiviruses) as described in Table 1.6.1 and Figure 1.6.1. A number of studies have 

demonstrated the ability of these vectors to infect pancreatic islets of both human and animal 

origin (103-106). 
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Type Adenovirus Adeno-associated virus Herpes Simplex Virus Retrovirus Lentivirus 

Packaging Capacity Medium (≤7.5 kilo base 
pairs) 

Low (≤4.5 kilo base pairs) Large (≥30  kilo base pairs) Medium (≤7 kilo base pairs) Medium (≤8 kilo base pairs) 

Duration of 
expression 

Transient Stable, long-term Stable, long-term Transient, however stability 
of expression from newer 

generation vectors is 
markedly improved to 

produce sustained 
expression 

Stable, long-term 

Immunogenicity High Low Low Low Low 

Repeated dosing Not possible Possible Possible Possible Possible 

Clinical Trials Yes Yes Yes Yes Yes 

Advantages Infects both dividing and 
non-dividing cells, provides 

transient expression, 
particularly high short term 
expression, generates high 

titer viral stocks 

Infects both dividing and 
non-dividing cells, integrates 
into host genome, provides 

long-term expression in vivo, 
elicits minimal immune 
response, generates high 

viral titers 

Large genome, non-
pathogenic, unable to 

reactivate, broad host range, 
persists long-term. 

Integrates into host genome, 
provides long-term 

expression and stable 
transduction 

Infects both dividing and 
non-dividing cells, genome 

integration, long-term 
expression 

Disadvantages Immunogenic, cause mild 
respiratory disease in 

humans 

Requires helper virus, slow 
expression onset, inefficient 
large-scale virus production, 
small genome limiting the 
viruses packaging capacity 

Potentially provoke antiviral 
responses against HSV-

infected cells 

Low efficiency in vivo, risk 
of insertional mutagenesis, 

low titer, host range 
restricted to dividing cells 

only 

Safety concerns, production 
inefficient 

Table 1.6.1 Commonly used gene delivery viral vectors 

12 
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Figure 1.6.1. Entry mechanisms of viral vectors. (A) Ad binds to its receptor CAR through its 

fibre knob and integrin co-receptors facilitate entry into the cell via endocytosis. (B) AAV2 

binds to heparan sulphate proteoglycan (HSPG) on the target cell and then to its integrin co-

receptor. The virus is internalized via endocytosis. (C) Retrovirus (lentivirus): The virus 

adheres non-specifically to the cell surface, where the viral attachment glycoproteins bind 

irreversibly to their cognate receptors. Subsequent steps in the viral entry process vary 

between virus types but always result in release of the viral nucleocapsid into the cytoplasm. 

Figure adapted from Harrison et al (107).  
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1.6.1.1 Adenoviral Vectors 

Ad is a non-enveloped, icosahedral virus, 60 – 90 nanometer (nm) in diameter with a linear, 

double-stranded DNA genome and total molecular weight of 150 kilo dalton (kDa) (108). Ad 

was isolated from adenoid tissue in 1953, however the use of Ad for gene transfer into islet 

cells was first demonstrated in the early 1990s (109, 110). Studies have shown that Ad can 

transduce intact pancreatic islets and fetal insulin-secreting islet cell clusters (109, 111-114). 

However, Barbu et al (114) have demonstrated that Ad-mediated transduction is limited to the 

islet periphery and as such transduction effiency is approximately 30% of the total islet mass.  

Ad requires the Coxsackie Adenovirus Receptor (CAR) and an integrin co-receptor for 

infection (115, 116). CAR has been identified on murine islets and β-cell lines, which may 

explain the relatively high efficacy of Ad transduction in islets (117). Successful Ad infection 

of rodent pancreatic islets has been described by many research groups (109, 112, 113, 118, 

119). Safety studies in human islets demonstrated that Ad infection does not diminish β-cell 

viability or function in vitro (112, 118, 119).  

A major advantage of Ad vectors is that they can infect dividing and non-dividing cells, 

unlike lentiviral vectors, which integrate into the genome and as such are utilized for chronic 

transgene expression (120). The Ad genome is extra chromosomal, which significantly 

minimizes the risk of insertional mutagenesis that can result from insertion of exogenous 

DNA into the genome (115). Moreover, Ad vectors can be produced to high titer viral stocks 

(1012 – 1013 virus particles/ml) and offer high transduction efficiency of target cells (121, 

122).  

Ex vivo Ad gene therapy provides a significant advantage over in vivo gene therapy, which is 

often associated with induction of host immune response when using high viral load. This 

advantage also exists within an islet transplant setting, where the islets are transduced in vitro 

and washed of any unbound viral particles prior to transplantation. This important step 

reduces the risk of vector dissemination and off target infection of organ systems (98). 

One of the first barriers that gene therapy vectors have to circumvent in vivo is the immune 

response, in particular the complement system and other components of innate immunity as 

well as pre existing antibody-mediated immunity. An extreme example of immune response 

to viral vectors occurred in a patient with ornithine transcarbamylase deficiency who died of 

systemic inflammatory response syndrome after hepatic arterial injection of an Ad vector 

(123).The toxicity associated with the use of Ad is complex as it is dose dependent, related to 

the route of administration, dependent on the tissue and cell type targeted and varies with 
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species (124). One of the most important factors of toxicity is the ability of Ad to trigger both 

the innate and adaptive immune responses, which reduces the efficacy of gene transfer (125, 

126). However, the engineering of new generation ‘gutted’ or ‘helper-dependent’ vectors 

which are stripped of all viral genes, decreases the possibility of vector-mediated immune 

activation (98).  

1.6.1.2 Adeno-Associated Viral Vectors 

AAV are small, non-enveloped single-stranded DNA viruses. AAV fulfills many of the 

requirements of an ideal vector for gene transfer, it is non pathogenic, non toxic, poorly 

immunogenic, can infect both dividing and non dividing cells and can persist in the infected 

cells as an integrated provirus or in episomal forms, resulting in stable long term gene 

expression (127, 128). However, a major restriction to the use of AAV is their low packaging 

capacity of 4.5 kb (smaller then Ad) which limits the potential for inserting large or multiple 

transgenes (129). It is possible to package the AAV2 derived vector genome in capsids from 

different AAV serotypes, increasing the diversity of reachable target tissues and the viral 

transduction efficiency (130, 131).  AAV2 is the most widely studied AAV serotype. The 

ability of AAV2 to transduce a given cell type depends on the presence of membrane-

associated heparan sulphate proteoglycan (HSPG) receptors (132) and co-receptors including 

αvβ5 integrin (116, 133, 134).  

Transduction of islets with AAV has been shown by a number of groups (135-139). Wang 

and colleagues (135) revealed distinct AAV islet transduction efficiency and gene transfer 

patterns between different vector serotypes and administration routes. Local intra pancreatic 

ductal administration of AAV6 showed the most efficient transduction efficiency in β-cells. 

Intraductal and intraperitoneal administration of AAV8 revealed transduction of both exocrine 

acinar cells and endocrine β-cells. The transduction efficiency of AAV8 is attributable to the 

distinct properties of this viral serotype, including its receptor, laminin, which is highly 

expressed in the pancreas and facilitates viral entry into the pancreatic cells (136).  

AAV vectors have been identified as the current most promising gene delivery candidate for 

serious non-lethal diseases that need life-long treatment (140). As such, AAV has been tested 

in over 60 clinical trials for the treatment of Alzheimer’s disease, arthritis, cystic fibrosis, 

hemophilia B, HIV infection, parkinson’s disease, muscular dystrophy, and malignant 

melanoma, among others (Gene Therapy Clinical Trials Worldwide Gene Therapy Clinical 

Trials Worldwide, provided by the Journal of Gene Medicine). 
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1.6.1.3 Herpes Simplex Viral Vectors 

Herpes Simplex Virus (HSV) is a double-stranded linear DNA virus, 152 kb in size with a 

virion structure consisting of an envelope, tegument, capsid and core. HSV-1 forms part of 

the larger Herpesviridae family, and is the most frequently used herpes virus for gene 

transfer. HSV-1 infection is common in the general population, manifesting itself as cold-

sores however in rare cases it can cause encephalitis (141). 

 

HSV-1 possesses a broad host range with the ability to infect many cell types. In particular, 

HSV-1 vectors provide efficient transduction and gene expression within the nervous system 

(142-144). Therefore, most of the research utilizing HSV-1 vectors has focused on therapies 

to target neurological diseases. The large genome of HSV-1 (≥30 kb pairs) allows the vector 

to accommodate large or multiple transgenes or regions including regulatory elements or 

promoters (145). In addition, the HSV-1 vector remains as an extrachromosomal episome, 

which decreases the likelihood of insertional mutagenesis within the host’s genome (146). 

These properties combined with the ability of HSV-1 to infect non-dividing cells makes it a 

suitable vector system for use in islet gene therapy (145). 

 

To date, there have been a limited number of studies demonstrating the ability of HSV-1 to 

infect pancreatic islets (147, 148). Liu and colleagues (147) have shown that murine islets and 

a β-cell line were efficiently transduced by a HSV vector, and that cytokine-mediated β-cell 

apoptosis was blocked by transduction with an anti-apoptotic B-cell lymphoma 2 (Bcl-2) 

expressing HSV-1 vector. 

 

1.6.1.4 Retroviral vectors 
 
The first human gene therapy clinical trial was based on a retroviral vector, for correction of 

adenosine deaminase deficiency. In this study, both integrated retroviral vector and adenosine 

deaminase gene expression persisted for several years (149). Retroviral vectors possess many 

advantages over other viral vectors for long-term treatment or correction of gene defects. 

Retroviral vectors allow for an insert size of up to 7 kb pairs and they integrate into the target 

cell genome, resulting in sustained gene expression. 
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There are over 250 currently approved retroviral gene therapy clinical trials, accounting for 

nearly 30% of the total clinical trials approved worldwide (150). However, retroviral vectors 

are unable to infect non-dividing cells, such as islets, severely limiting their potential for use 

in islet gene therapy. Lentiviruses however are a subset of retroviruses with the ability to 

infect non-dividing cells and are therefore a logical retroviral candidate for use in islet gene 

therapy (151-153). The first successful transduction of adult human pancreatic β-cells was 

performed using lentivirus, by Ju and colleagues in 1998 (106). One study comparing 

infection of intact islets found that while no infection was achieved using other retroviral 

vectors, up to 25% of the β-cells could be infected with lentivirus (111). 

 

Lentiviral vectors have been shown to efficiently transduce dispersed islets (106), monolayer 

cultures of islets (111) and intact islets (105, 154-157) from different species including 

human. Giannoukakis and colleagues (105) demonstrated the ability of lentiviral vectors to 

transduce islets at a comparable efficiency to Ad without the drawbacks of immunogenicity. 

Furthermore, lentiviral vectors can efficiently transduce whole islets (104) and lentivirus 

transduced rat islets display no changes in islet morphology or function (158), further 

supporting their use in islet gene therapy.  

 

1.6.2 Non-viral mediated gene transfer to pancreatic islets  
 

Various non-viral islet transduction strategies such as bacterial plasmids, cationic lipid- and 

polymer-based carriers, gene gun technology and calcium phosphate precipitation have been 

considered (159-167), with low transduction efficiency being the major obstacle reported to 

date. Electroporation creates permeable membranes for gene transfer by applying high 

voltages to cells. However, Electroporation is only associated with gene transfer efficiencies 

in the order of 10-20% in isolated islets, which might prove inadequate for preventing 

apoptosis (168). To ensure efficient transduction, pancreatic islets would need to be 

dissociated into single cells, a process which may render them non-functional without the 

maintenance of their morphology (169). 

 

A number of research groups (165, 170, 171) have investigated the use of protein transduction 

technology in islet gene therapy. This is a novel technique which allows delivery of specific 

proteins or peptides fused to small cell-penetrating peptides known as protein transduction 

domains to cells or tissues (172). Delivery of a c-Jun N-terminal kinase inhibitory peptide via 

this system prevented islet apoptosis following isolation and improved islet graft function. 
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Furthermore, an NF-κB inhibitor infused into the mouse pancreatic duct prior to isolation 

yielded islets with enhanced viability (173).  

Non-viral vectors offer several advantages over their viral vector counterparts, including high 

clinical safety, no immunogenicity and ease of production. Despite this, non-viral vectors 

provide low islet transduction efficiency, owing to both the large size of the islets (167) and 

the diffusive barrier created by the islet nuclear membrane (166). In addition, non-viral 

vectors offer only transient gene expression and require high doses (160, 163, 164) when 

compared to viral vectors. At present, despite extensive investigation of non-viral approaches 

for use in islet gene therapy, no studies have progressed to clinical trials.  

1.7 Alternative strategies towards islet survival 

The portal vein is the current site for clinical islet transplantation, a process in which the 

isolated islets are implanted within the well-perfused liver sinuses of a diabetic patient (167). 

However, the transplantation of islets at this intravascular site can lead to diminished islet 

function and survival in the early post-transplant period (see section 1.5). To this end, a 

variety of alternative islet transplant sites, such as the pancreas, gastrointestinal tract , muscle, 

omentum, bone marrow, kidney capsule, peritoneum, anterior chamber of the eye, thymus, 

cerebral ventricles and spleen have been investigated as to identify the ideal anatomical 

location to promote long-term islet survival (174).  

Of those studies, Carlsson et al (85) syngenically transplanted islets to the kidney cortex, liver 

and spleen of diabetic rats but found that the oxygen tension of the grafts did not differ among 

the transplantation sites. Interestingly, the partial pressure of oxygen levels was decreased at 

all three transplant sites, compared to native islets, suggesting insufficient oxygenation of 

transplanted islets, irrespective of graft location. The major advantage of the omentum as an 

islet transplant site is the ease of access to the transplanted islets should the need for biopsy 

arise and the lack of exposure to elevated levels of immunosupression (175). Moreover, the 

omentum offers drainage of produced insulin into the portal vein for direct utilization in the 

liver (176). 

Extravascular transplantation of islets by methods such as encapsulation can prevent 

immunogenic reactions and abate the thrombotic and inflammatory events elicited when islets 

are transplanted via the hepatic portal vein (177). Macro and microencapsulation are two 

approaches that have been introduced to prevent immune mediated islet destruction and 

overcome the shortfalls associated with current clinical islet transplant practice. 

Macroencapsulation involves the encapsulation of large numbers of islets together in one 
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device or capsule consisting of a semi-permeable membrane, while microencapsulation can be 

defined as the encapsulation of single or small groups of islets. The major distinction between 

intravascular and extravascular islet transplantation is that the encapsulated islets do not 

require anastomosis to host vasculature and they can be implanted with minimal surgical risks 

to different sites such as the peritoneal cavity, subcutaneously or under the kidney capsule 

(178).    

 

Meyer et al (179) demonstrated long-term normoglycemia without immunosupression 

following the transplantation of porcine islets microencapsulated with highly purified barium-

alginate under the kidney capsule or into the peritoneal cavity of chemically diabetic Wistar 

rats. Others (180) have demonstrated the utility of alginate macroencapsulated porcine islets 

to normalize the diabetic state of non-immunosupressed primates for up to six months. 

Calafiore and colleagues (181) successfully transplanted microencapsulated human islets into 

the central abdominal region of non-immunosupressed T1D patients, leading to an 

improvement in glycated haemoglobin levels and frequency of hypoglycaemic episodes. 

 

Despite these promising results, xenotransplantation of porcine islets into humans is 

complicated by safety issues related to xenosis and xenorejection, however the former can be 

controlled by selection of a disease-free source herd (182). Moreover, encapsulated islets are 

disadvantaged by their inability to revascularize following transplantation, exacerbating islet 

hypoxia and subsequent β-cell death (183, 184).  In addition, transplanted islets remain 

vulnerable to highly toxic chemokines, cytokines and nitric oxide (NO), which are small 

enough to pass through the capsule membrane (185-187). 

 

1.8 Gene therapy towards islet survival 
 

There are a number of cellular processes that may be targeted by gene therapy to improve the 

outcome of islet transplantation. Effective therapy may result from the over expression of an 

active protein, or the inhibition of a deleterious gene. Genes that are likely to be useful for 

islet transplantation fall into three main categories: immunomodulatory, anti-apoptotic and 

angiogenic (summarised in Figure 1.8). A number of studies have investigated the potential 

of gene therapy for islet transplantation in animal models (Table 1.8).  

 

 



 20 

The clinical success of islet transplantation is currently limited by the substantial islet cell 

death and dysfunction occurring within the first few hours and days after islet transplantation 

(188). The major factors contributing to islet apoptosis include lack of islet oxygenation and 

re-innervation following transplantation, disruption of the islet extracellular matrix, a highly 

toxic pro-inflammatory cytokine storm, recurrence of anti-islet autoimmunity and allogeneic 

recognition (189-193). The outcomes of clinical islet transplantation could be improved by 

inhibiting the apoptotic damage sustained by pancreatic islets immediately after their 

transplantation. To this end, islet gene transfer using viral vectors to deliver an anti-apoptotic 

gene to the islets prior to their transplantation provides a method to improve islet viability and 

function. 

 

The clinical protocol of most transplant centers involves 24 – 48 h culture of isolated human 

islet preparations before transplantation (194-196). Therefore, this gives an excellent ‘window 

of opportunity’ to transduce islets with viral vectors expressing a therapeutic gene, prior to 

their transplantation. Depending on the therapeutic strategy designed to improve islet 

engraftment, transient or long-term transgene expression will be required (97). The duration 

of gene expression is mainly dependent on transgene DNA stability and promoter choice. In 

general, episomal vector systems such as Ad are associated with transient DNA stability. 

Whereas integrating vectors such as AAV are associated with persistent transgene DNA 

expression (97). To achieve maximal benefit, the anti-apoptotic gene expression would be 

required during the initial period of islet engraftment, a process that takes approximately 14 

days. This provides additional safety benefit, by circumventing the concerns of long-term 

apoptosis inhibition, on increased risk of malignancy or systemic toxicity. 
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Figure 1.8. Gene transfer strategies to improve islet transplantation. Three areas of islet cell 

biology that are currently being targeted by gene therapy are depicted. Immunomodulatory 

strategies (upper left panel) include co-stimulation blockade with CTLA4Ig and production of 

immunomodulatory interleukin-10 (IL-10) and interleukin-4 (IL-4). Anti-apoptotic 

approaches (upper right panel) target extrinsic (via stimulation of death receptors) and 

intrinsic (release of apoptotic factors by mitochondria) apoptosis pathways in the -cell.  Bcl-

XL and Bcl-2 (blue box) block pro-apoptotic proteins while XIAP (white box) directly 

inhibits caspases 3 and 9. Angiogenic (lower panel) factors VEGF, HGF, FGF and matrix 

metalloproteinases are induced during hypoxia and can be therapeutically overexpressed to 

enhance revascularization. Antisense blockade of angiostatic TSP-1 (white hexagons) 

improves the potency of proangiogenic factors. Figure represents a whole islet, with 

constituent - (blue; glucagon-producing), - (green; insulin-producing) and PP-(white; 

pancreatic polypeptide-producing) cells depicted in the upper left panel. Enlarged 

representations of infiltrating immune cells are shown (APC = antigen presenting cell; Ag = 

islet-specific antigen). Figure adapted from Hughes et al (96). 
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Pathway Transgene Vector Comment 

Immunomodulation CTLA4Ig Adenovirus Expression of CTLA4Ig in islets can prolong islet graft survival (197-200). 

 Lentivirus Islets transduced with CTLA4Ig prolong graft survival in a rat to mouse 
transplantation model (157) 

Interleukin-10 Adeno-associated virus IL-4 transduced islets resulted in impaired metabolic function in recipient mice and 
normoglycaemia in only 1/7 mice (201). Viral IL-10 introduced systemically sustained 
suppression of autoimmune responses and prolonged islet allograft survival (202) 

Interleukin-4 Adeno-associated virus AAV-8 mediated IL-4 gene transfer to islets prevented the onset of diabetes in NOD 
mice (203) 

CTLA4Ig/CD40Ig Adenovirus Results in simultaneous blockade of co-stimulation pathways (204) 

Anti-Apoptotic Bcl-2 Adenovirus Over expression of Bcl-2 in islet cells failed to prevent cytokine induced toxicity (205) 
and reduce inflammation in porcine islets (206) 

 Lentivirus Bcl-2 transduction of  pancreatic β-cell line provided protection against apoptosis 
induced by various stimuli including hypoxia and pro-inflammatory cytokines and 
corrected hyperglycaemia for several months when transplanted under the kidney 
capsule of diabetic C3H mice (205) 

 Herpes Simplex Virus-1 Cytokine-mediated β-cell apoptosis was blocked by transduction with an Bcl-2 
expressing HSV-1 vector (147) 

Bcl-XL Adenovirus Bcl-XL transduction of a rat insulinoma cell line blocked cytokine induced apoptosis 
(207) 

XIAP Adenovirus Adenoviral-XIAP transduced βTC-Tet cells and human islets are highly resistant to 
hypoxia and cytokine induced apoptosis in vitro and βTC-Tet cells transplanted into 
SCID mice successfully reverse diabetes in 3 days compared to 21 days for control 
cells (208-210) 

Table 1.8. Genes delivered to pancreatic islets using viral vectors 
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Angiogenic VEGF Adenovirus Rat islet grafts with elevated VEGF production exhibited significantly increased 
microvasculature, insulin content and reversed hyperglycaemia in diabetic mice (211) 

HGF Adenovirus Co-expression of hHGF and hIL-1Ra led to significant decrease in caspase-3 induced 
in human islets by cytokine challenge in vitro. Transduction of human islets improved 
the outcome of islet transplantation (212). Pre-transplant islet gene therapy with HGF 
markedly improved islet transplant outcomes even in the setting of 
immunosuppressant-induced insulin resistance and β-cell toxicity (213) 
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1.9 Insulin-like growth factor-axis 

The Insulin-like Growth Factor (IGF) family consists of two IGF peptides (IGF-I and IGF-II), 

three cell surface receptors (IGF-1R, IGF-IIR and insulin receptor (IR)), six binding proteins 

(IGFBP-1 – 6) and a glycoprotein termed the acid-labile subunit (ALS). The IGFBPs regulate 

the actions of IGF-I and IGF-II by inhibiting or promoting their interactions with cell surface 

membrane receptors. The acid labile subunit protein is essential for maintaining the integrity 

of the circulating IGF/IGFBP system (214). 

The IGFs were first discovered in 1975 when Salmon et al (215) identified a growth hormone 

dependent serum factor, termed ‘sulphation factor activity (SFA)’ that stimulated cartilage 

sulphation. Several laboratories also observed the ability of SFA to induce DNA replication, 

proteoglycan synthesis, glucosamine synthesis, protein synthesis and protein accumulation 

(216). Amino acid sequencing of SFA revealed the presence of two peptides, these were 

subsequently renamed to IGF-I and IGF-II because of their structural and functional 

homology with insulin (217). 

IGF-I and IGF-II are single chain polypeptides of approximately 7.5 kDa, which share 63% 

structural homology with each other and 50% with insulin (218). Most IGF-I and IGF-II is 

produced locally within tissues where either peptide exerts their actions (219), with the 

majority of circulating IGF-II produced in the liver. The IGFs exert a broad range of 

metabolic, mitogenic and anti-apoptotic functions on cells in vitro and in vivo, mediated via 

association with the type I IGF receptor (IGF-1R) (Figure 1.9). 
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Figure 1.9. Schematic representation of the IGF axis. IGFs are present in the circulation 

complexed to IGFBPs and/or a glycoprotein termed the acid-labile subunit (ALS). Cell 

response to IGFs depends on IGFBPs, which act to modulate the effects of IGF actions (A). 

These binding proteins undergo proteolysis by specific proteases to release free IGF (B) 

which can interact with surface receptors to exert cell growth responses and metabolic 

functions (C). This figure was adapted from Bayes-Genis et al (220). 
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1.9.1 Insulin-like Growth Factor-I  

IGF-I, also called Somatomedin C, is encoded by the IGF-I gene, which is located on 

chromosome 12. The IGF-I peptide is 70 amino acids in length and is a integral growth factor 

involved in embryonic and postnatal growth (221). IGF-I plays a pivotal role in brain 

development (222) and a preliminary link exists between increased serum levels of IGF-I and 

higher IQ in normal children (223). IGF-I is a survival factor for sensory and motor neurons 

(224) and has the potential to influence recovery from stroke through its effects on 

proliferation and differentiation (225).  

IGF-I binds to two receptors, the IGF-1R and the IR to mediate its effects. The physiological 

roles of IGF-I are considered to be mediated via the IGF-1R, which binds IGF-I at a 

significantly higher affinity than the IR. Moreover, the biological actions of IGF-I are 

regulated through association with high affinity IGFBPs, with IGFBP-3 being the 

predominant serum IGF binding protein (226). 

1.9.2 Insulin-like growth factor-II  

IGF-II is a potent growth factor made up of 67 amino acids with a molecular weight of 7.5 

kDa. The IGF-II gene is transcribed from four promoters (p1 – p4), located on chromosome 

11. IGF-II expression occurs from the paternal allele only.  Loss of imprinting leads to 

Beckwith-Wiedemann syndrome whereby excess IGF-II is associated with foetal overgrowth 

(227).  

The IGF-II gene consists of nine exons, of which exons 7, 8 and 9 encode a single transcript, 

which is translated into proIGF-II, a 156 amino acid protein expressed during foetal 

development (228). ProIGF-II becomes glycosylated and undergoes cleavage to yield mature 

IGF-II. IGF-II exerts the majority of its effects via the IGF-1R, including cell proliferation, 

survival, differentiation and migration (229). IGF-II is a major β-cell growth factor, as 

transgenic mice over expressing IGF-II have a 5-fold increase in mean islet size at birth, 

without an increase in islet number (230). During neonatal development, IGF-II knock out 

animals are smaller than control animals, but subsequent post-natal growth proceeds at a 

normal rate (231). Similarly, IGF-1R knockout mice die at birth with organ hypoplasia, 

delayed bone development and abnormal central nervous system development (231). 

IGF-II has been shown to promote pancreatic β-cell survival (232) and proliferation in a 

growth-arrested mouse β-cell line (βTC-tet) (233). IGF-II up-regulates hypoxia-induced 

vascular endothelial growth factor (VEGF) production in hepatocellular carcinoma cells, 
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suggesting it may also function as an angiogenic factor (234). Human and rat pancreatic islets 

are capable of secreting IGF-II (235, 236) and isolated α and β-cells express the IGF-1R 

(237). IGF-II inhibits apoptosis acting via the IGF-1R to stimulate the anti-apoptotic 

molecules Bcl-2 and Bcl-XL (238).  

1.9.3 Insulin-like growth factor-II expression  

IGF-II is expressed at high levels during embryonic development, but decreases in mice and 

rats post-natally. In contrast to this, in humans IGF-II remains the most abundant IGF in 

circulation throughout life (239). The expression of which is detected in many tissues 

including the central nervous system and adrenal medulla, pancreas, purified β-cells and 

insulin-producing cell lines (235, 240-246). The post-natal decline in IGF-II expression may 

be a result of differences in the IGF-II gene promoter structure between humans and rodents 

(247).  

The major role of IGF-II during embryonic development is the regulation of islet growth and 

differentiation (248). IGF-II is more highly expressed than IGF-I during development in 

rodents, ruminants and humans (249, 250), suggesting that it may be a more important IGF 

during development (251).  

1.9.4 Insulin-like growth factor-II signaling 

The phosphoinositide-3-kinase (PI3K)/Akt pathway plays a central role in preventing 

apoptotic cell death. Akt is activated following the binding of specific PI3K-generated 

phospholipids to Akt (252). Upon activation, Akt induces phosphorylation of BAD, a pro-

apoptotic member of the Bcl-2 family of proteins. When BAD is not phosphorylated, it will 

inhibit Bcl-2 and various members of the Bcl-2 family by direct binding (253). 

Phosphorylation of BAD changes its affinity for Bcl-2 molecules, and localizes BAD to the 

cytosol where its pro-apoptotic activity is neutralized.  

In the context of IGF-II function, binding of IGF-II to the IGF-1R leads to phosphorylation of 

insulin receptor substrate 2 (IRS-2), which recruits and activates down stream signaling 

molecules PI3K, phospho-inositide-dependent protein kinase (PDK), Akt, forkhead 

transcription factor (FOXO), glycogen synthase kinase 3β (GSK-3β), bcl-associated death 

promoter (BAD) and mammalian target of rapamycin (mTOR), among others (219). These 

pathways mediate gene expression, glucose metabolism, cell survival and growth signals 

(Figure 1.9.4) (219). 
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Figure 1.9.4 Intra-cellular components of the insulin-like growth factor system. Interactions 

with insulin receptor substrates (IRS) leads to activation of phospho-inositide-dependent 

protein kinase (PDK), protein kinase B (PKB), and downstream substrates that control 

transcription (forkhead transcription factors (FOXO)), metabolism (glycogen synthase kinase 

3β (GSK-3β)), apoptosis (bcl-associated death promoter (BAD)), cell growth and translation 

(mammalian target of rapamycin (mTOR), tuberous sclerosis gene product (TSC), Raptor, 

eukaryotic initiation factor (4E - eIF4E) and its binding protein 4E-BP1 and ribososmal 

protein S6 kinase (p70S6K)). Via similar protein–receptor interactions, activation of 

proliferation is mediated via the mitogen activated kinase family (MAPK) pathway. Figure 

adapted from Foulstone et al (254). 
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1.9.5 Insulin-like growth factor receptors 

IGF-I and IGF-II may bind to multiple signaling receptors, the IGF-1R, IGF-IIR, insulin 

receptor (IR) and IGF-1R/IR hybrid receptor, to mediate their cellular effects. The IGF-1R/IR 

hybrid receptor controls biological effects similar to those of the IGF-1R. The IGF-1R 

exhibits tyrosine kinase activity and can bind at least three different ligands, IGF-I, IGF-II and 

insulin (weakly). The IGF-1R is a dimer, which consists of an extracellular ligand binding α 

subunit and a transmembrane β subunit, linked by disulfide bonds (255). The IR has low 

affinity binding for IGFs, it binds IGF-II with an affinity 1/10th that of insulin (256).  

The IGF-IIR (also called the Mannose-6-phosphate receptor) is a single transmembrane 

domain glycoprotein (257) that can only bind IGF-II, lysosomal enzymes or Mannose-6-

phosphate. The IGF-IIR functions to regulate the bioavailability and activity of IGF-II (258) 

and does not possess any intrinsic signaling capability. The IGF-IIR binds IGF-II with 700 

fold greater affinity then IGF-1R (216) and internalizes IGF-II for degradation within the pre-

lysosomal compartment so as to control the extracellular IGF-II concentration (247). IGF-IIR 

mutants have increased circulating and serum levels of IGF-II, increased birth weight and 

organomegaly (259).  

Most of the biological actions of IGF-II, including its anti-apoptotic effects are mediated via 

the IGF-1R (260, 261). All endocrine pancreas cell types express both the IGF-1R and  

IGF-IIR (237, 262), providing support for an IGF-II mediated anti-apoptotic strategy to 

promote islet survival post-transplantation.  

1.9.6 Insulin-like growth factor binding proteins 

The insulin-like growth factor binding proteins (IGFBPs) are a family of six proteins that bind 

to IGF-I and IGF-II with high-affinity. The IGFBPs circulate in the blood complexed to IGF-I 

or IGF-II and in doing so, act to regulate their action, bioavailability and tissue distribution 

(216). Approximately 99% of IGF-I and IGF-II is bound to binding proteins, of which 

IGFBP-3 is the most abundant circulatory form (247). IGFBPs can either inhibit or potentiate 

IGF action, achieved by controlling the interactions of the IGFs with their cognate receptors 

(263). 
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1.10 Apoptosis 

Apoptosis, also called programmed cell death, refers to a set of events within multicellular 

organisms which leads to the breakdown of chromosomal DNA and the cessation of 

metabolic activity (264). Apoptosis can occur as a defence mechanism such as in immune 

reactions or when cells are damaged by disease or toxic agents (265). Apoptosis was first 

described by Karl Vogt in 1842 during normal development in toads and again in 1885 by 

Walther Flemming, however it was initially referred to as chromatolysis to describe dying 

cells whose chromatin had disintegrated. Today, DNA fragmentation is one of the hallmark 

characteristics of apoptosis (266). 

1.10.1 Necrosis 

Apoptosis and necrosis are two distinct forms of cell death, the latter begining only and 

exclusively when the cell dies and is an irreversible process (267). Necrosis is often called 

‘accidental’ cell death, as it usually occurs as a result of unintentional traumatic injury, which 

can include thermal, chemical or anoxic inducers (268). The injury sustained by the cell 

causes it to swell, rupture and release its intracellular contents, promoting inflammation and 

damage to surrounding tissue. 

Cell swelling is a defining feature of necrosis, in contrast to apoptosis which is associated 

with cell shrinkage (268). The underlying mechanism promoting cell swelling may result 

from ATP unavailability, which leads to sodium accumulation in the cell, creating an uneven 

osmotic gradient with concomitant cell swelling and rupture (269, 270).  As with apoptosis, 

phagocytosis of necrotic cells occurs by exposure of a phosphatidyl serine (PS) signal. 

However, unlike apoptotic cells who externalise PS to the outer leaflet of the cell membrane 

to signal their removal, necrotic cells display PS only after the cell membrane has ruptured 

(271).



 31 

1.10.2 Morphology of Apoptosis 

Early morphological studies described the visual changes of cells undergoing apoptosis both 

in vitro and in vivo. These changes together with the ‘disappearance’ of cells were historically 

the only indication of cell death (272). During apoptosis, a dying cell starts to sever its 

attachments to other cells and the extracellular matrix and the cell begins to round up and 

show protrusions from the plasma membrane, commonly referred to as ‘blebs’ (273). Cells 

dying by apoptosis in most situations undergo similar morphological changes, namely cell 

shrinkage and pyknosis. Following cell shrinkage, the cells are smaller in size, the cytoplasm 

is dense and the organelles are more tightly packed. Pyknosis is the result of chromatin 

condensation and this is the most characteristic feature of apoptosis (274). Once the chromatin 

condenses, the cell will break into small fragments called apoptotic bodies during a process 

called “budding” (275). These bodies are subsequently phagocytosed by macrophages, 

parenchymal cells or neoplastic cells and degraded within phagolysosomes (274) (Figure 

1.10.2).  

1.10.3 Mechanisms of Apoptosis 

Apoptosis is caused by caspases, also known as cysteine aspartyl-specific proteases, which 

reside within a cell as inactive procaspases (zymogens), but can be phosphorylated to assume 

an active state (276). Once activated, caspases activate other caspases leading to amplification 

of the apoptotic signaling pathway followed by cell death. There are fourteen members of the 

caspase family (caspase1 – 14), ten of which have been classified as initiator, effector or 

executioner caspases (274). Initiator caspases act upstream of executioner caspases and cleave 

other substrates within the cell to trigger apoptosis.  

Three pathways for activating caspases exist in mammalian cells. These pathways are 

described as the extrinsic or death receptor pathway, the intrinsic or mitochondrial pathway 

and the perforin/granzyme B pathway (Figure 1.9.3). The extrinsic, intrinsic and granzyme B 

pathways converge on the same execution pathway, which is activated by the cleavage of 

caspase-3 and results in the morphological consequences of apoptosis. 
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Figure 1.10.2. Morphological changes during apoptosis. Apoptosis is characterised by cell 

shrinkage and chromatin condensation. Apoptotic cells will undergo ‘budding’ whereby they 

divide into apoptotic bodies. The apoptotic bodies are phagocytosed by macrophages and 

neighbouring cells, and subsequently degraded within phagolysosomes. Figure was adapted 

from Van Cruchten et al (277). 
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Figure 1.10.3. Caspase activation pathways. Caspase activation by the extrinsic pathway (1) 

involves the binding of extracellular ligands to transmembrane death receptors. Engagement 

of death receptors with their cognate ligands provokes the recruitment of FADD, which in 

turn promotes the activation of caspase-8. Caspase-8 activates caspase-3 and caspase-7, which 

culminates in cell death. In some situations, extrinsic death signals can crosstalk with the 

intrinsic pathway to promote cytochrome c release and assembly of the apoptosome. In the 

intrinsic pathway (2) noxious stimuli provoke cell stress leading to activation of one or more 

members of the BH3-only protein family, which promotes the assembly of BAK–BAX 

oligomers. These oligomers permit the release of cytochrome c into the cytosol. The 

granzyme B/perforin apoptosis pathway (3) involves the delivery of granzyme B and perforin 

into the target cell through granules that are released from cytotoxic T lymphocytes or natural 

killer cells. Granzyme B can process BID as well as caspase-3 and -7 to initiate apoptosis. 

Figure adapted from Taylor et al (278). 

A 
NOTE:   

     This figure/table/image has been removed  
         to comply with copyright regulations.  
     It is included in the print copy of the thesis  
     held by the University of Adelaide Library. 
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1.10.3.1 Extrinsic (death receptor) pathway 

Initiation of apoptosis via the extrinsic signaling pathway has been described using two 

models: the tumour necrosis factor (TNF) model and the Fas-Fas ligand (FasL)-mediated 

model. Both involve stimulation of transmembrane death receptors that are members of the 

TNF receptor gene superfamily (279). 

TNF is a major mediator of apoptosis as well as inducer of inflammation and immunity. TNF 

signals through two cell surface receptors, TNF-R1 and TNF-R2 (280). When TNF binds to 

TNF-R1, this is recognized by the adaptor protein TNF receptor-associated death domain 

(TRADD), which recruits Fas-associated death domain (FADD), receptor-interacting protein 

(RIP) and TNF-R-associated factor 2 (TRAF2) (281). FADD recruits caspase-8 to the TNF-

R1 complex, where it becomes activated, triggering the execution phase of apoptosis (280).  

Within the Fas pathway, the Fas receptor binds FasL causing formation of the death-inducing 

signaling complex (DISC) which contains FADD, activated caspase-8 and caspase-10 (282). 

Active caspase-8 is an initiator caspases, which activates downstream caspases (3 and 7), 

committing the cell to apoptosis.  

1.10.3.2 Intrinsic (mitochondrial) pathway 

The intrinsic apoptosis pathway is triggered by cellular stress caused by growth factor 

withdrawal, ultraviolet radiation, DNA damage, toxins, viral infections and heat shock, 

among others (283). The mitochondrial pathway begins with the permeabilization of the 

mitochondrial outer membrane by pro-apoptotic molecules of the Bcl-2 family, resulting in 

release of cytochrome c which binds to apoptosis-protease activating factor-1 (Apaf-1) (284).  

Pro-apoptotic molecules BAX, BID and BAK promote the release of cytochrome c and the 

intramembrane contents from the mitochondria (285). Cytosolic cytochrome c forms an 

essential part of the apoptosome, which is composed of cytochrome c, Apaf-1 and caspase-9 

(286). The clustering of caspase-9 in this manner leads to caspase-9 activation and this in turn 

recruits and activates the executioner caspase-3 and other death effector caspases which 

ultimately culminates in apoptotic cell death.   
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1.10.3.3 Perforin/Granzyme Pathway 

Perforin/granzyme-induced apoptosis is the main pathway used by cytotoxic lymphocytes 

(CD8+ T cells) to eliminate virus-infected or tumour cells (287). CD8+ T cells kill target cells 

through granule-mediated cytotoxicity, a process in which cytolytic granules containing the 

pore-forming molecule perforin are released following target cell recognition (287, 288). 

Granzyme A and granzyme B are the most important components within this cascade (289). 

Granzyme B activates caspase-3 and the pro-apoptotic molecule Bid, which leads to 

cytochrome c release (290). In addition, activation of caspase-3 leads to initiation of the 

execution phase of apoptosis. This method of granzyme B-induced cytotoxicity serves as a 

control mechanism for T cell expansion of type 2 helper T cells (291). Granzyme A also plays 

a pivotal role in T cell induced apoptosis, its activity resulting in apoptotic DNA degradation 

(274).  

1.10.3.4 Execution Pathway 

The extrinsic, intrinsic and granzyme B signaling pathways converge to a final common 

execution pathway, to induce the activation of caspases. Caspase-3, caspase-6 and caspase-7 

function as executioner caspases which are responsible for the controlled destruction of the 

cell during apoptosis, whereas caspase-8, caspase-9 and caspase-10 function as initiator 

caspases to activate the executioner caspases, leading to the collapse and death of the cell 

(292).  

Caspase 3 is encoded by the CASP3 gene, the CASP3 protein is formed from a 32 kDa 

zymogen that is cleaved into 17 kDa and 12 kDa fragments. The caspase-3 zymogen is a 

necessary checkpoint in regulation of the apoptotic cascade, because if it became unregulated 

caspase would kill cells indiscriminately (293). Caspase-3 cleaves gelsolin, an actin binding 

protein, this results in disruption of the cytoskeleton, intracellular transport, cell division and 

signal transduction (294). 

Phagocytic uptake of apoptotic cells is the final component of apoptosis (274). The apoptotic 

cell presents a variety of intracellular molecules on the cell surface, one of the most important 

being PS, which acts a signal for removal of apoptotic cells. PS, is normally located on the 

internal leaflet of the lipid bilayer, however PS is externalised to the outer leaflet under 

certain physiological conditions such as during platelet activation and in cells undergoing 

apoptosis (295-297). 
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In apoptotic cells, macrophages recognise PS externalised on cells via a specific PS receptor, 

resulting in engulfment (298, 299). Macrophage mediated uptake of apoptotic cells is a very 

efficient process, with no release of their cellular contents into the extracellular space. These 

processes avoid unwanted immune responses such as inflammation that may be generated 

following membrane breakdown (264).  

1.10.4 Apoptosis in Type 1 Diabetes 

Apoptosis mediated by the engagement of death receptors with their respective ligands 

contributes to T1D development (264). A failure in the clearance of cellular contents during 

apoptosis is suggested to play a role in the pathogenesis of autoimmune diseases, such as 

systemic lupus erythematosus (300). To this end, a failure in the clearance of apoptotic β-cells 

may promote adverse immune responses during the process of β-cell destruction (264). 

Fas is not expressed on islets of normal subjects, but its expression is up-regulated in patients 

with recent onset T1D (301, 302) and in vitro following islet exposure to pro-inflammatory 

cytokines IL-1α and IFN-γ (301-303). Pro-inflammatory cytokines released by infiltrating 

macrophages and autoreactive  CD4+ and CD8+ T cells drive β-cells to produce increased 

levels of iNOS, which up-regulates their Fas expression (303). Other apoptotic stimuli are 

involved in the development of T1D, including perforin and granzymes secreted from CD8+ T 

cells (304). Perforin is required for the release of cytolytic granule contents from the cytotoxic 

T lymphocyte and subsequent target cell apoptosis (305).  

1.10.5 Apoptosis in islet transplantation 

The clinical applicability of human islet transplantation is currently limited to only a small 

sub-set of diabetic patients, specifically, those with severe or uncontrolled diabetes symptoms 

such as hypoglycemia unawareness. The success of islet transplantation is currently limited 

by technical, biological and immunological obstacles (306). In the immediate post-transplant 

period between 50 – 70% of islets are lost to apoptosis and necrosis (307). Before and during 

isolation, islets are exposed to a number of stresses that can lead to apoptosis and in the long 

term, graft failure. These include exposure to drugs and hypoxia in the donor before harvest 

of the pancreas and enzymatic and mechanical stress placed on the islets during their 

detachment from surrounding exocrine tissue (308). 

Islets experience IBMIR that involves activation of coagulation pathways and complement 

and infiltration of pro-inflammatory cytokines, such as Interleukin-1β (IL-1β) and interferon 

(IFN-γ) following their transplantation (81, 309). Allogeneic rejection of islet grafts involves 
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activation of the adaptive immune system, in addition perforin and granzyme are primary 

mediators of β-cell death following transplantation (310). Despite the use of ‘islet-friendly’ 

immunosuppressive drugs that include the glucocorticoid-free regimen of sirolimus 

(rapamycin), low-dose tacrolimus and anti-IL2 receptor monoclonal antibody dacluzimab (74) 

the long-term toxicity of these drugs to islets has been observed (311). 

1.11 Thesis summary  

Successful islet transplantation is currently limited by the loss of up to 70% of the 

transplanted islet cell mass due to apoptosis and necrosis in the immediate post-transplant 

period. Ex vivo gene therapy provides a promising anti-apoptotic strategy to promote islet 

survival post-transplantation, by over expression of an anti-apoptotic gene in islets prior to 

their transplantation. Isolated islets are ideal candidates for local gene therapy, where the 

tissue is treated ex vivo prior to transplantation.  

Gene therapy is a powerful therapeutic technique, allowing modulation of the processes that 

are occurring in the local islet micro environment, thus avoiding potential systemic side 

effects. With the expanding state of gene vector technology, including the development of 

AAV tyrosine mutant vectors with improved transduction and safety profiles, further research 

is required to determine the optimal vector type for use in an islet gene therapy setting. To 

date, Ad-based vectors have been the most commonly used vectors in preclinical studies 

however the increased tropism of AAV vectors, makes them another vector type worth 

investigating for islet transplantation. 

Once the appropriate gene therapy vector has been selected, it must be paired with the optimal 

gene to be delivered. The pro-survival molecule IGF-II represents a promising candidate gene 

for over expression in pancreatic islets. The ideal anti-apoptotic strategy would improve islet 

graft survival and thereby improve the long-term function of transplanted islets. Based on 

this, the work presented in this thesis aimed to investigate the utility of a novel IGF-II gene 

therapy strategy to promote islet graft survival following transplantation. 
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1.12 Thesis aims and hypothesis 

The specific aims and hypothesis of this thesis are: 

1. Aim: To compare the ability of Ad and AAV-based vectors expressing a green 

fluorescent protein (GFP) reporter gene to efficiently transduce isolated human and rat 

pancreatic islets (Chapter 3) 

Hypothesis: Ad and AAV-based vectors would display differing levels of transduction 

efficiency in isolated human and rat pancreatic islets, and due to this the optimal 

vector type for use in an islet gene therapy setting may be identified 

2. Aim: To evaluate the Ad-mediated transgenic expression of IGF-II in pancreatic islets 

and investigate the influence of local Ad human IGF-II over expression on pancreatic 

islet cell survival in vitro (Chapters 4 and 5) 

Hypothesis: Ad-IGF-II will efficiently transduce rat pancreatic islets without affecting 

islet viability or function. The induced expression of human IGF-II will inhibit pro-

inflammatory cytokine induced cell death in vitro, working via the IGF-1R to mediate 

its anti-apoptotic effects.  

3. Aim: To assess the ability of Ad-IGF-II transduced rat islets to improve islet 

transplant outcomes in an in vivo marginal mass model of islet transplantation 

(Chapter 6) 

Hypothesis: The transplantation of diabetic NOD-SCID mice with Ad-IGF-II 

transduced islets will lead to improved islet transplant outcomes in vivo 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 MATERIALS 
2.1.1 Replication deficient Adenoviral-based vectors 
Adenoviral-Green Fluorescent Protein (Ad-GFP) 

Adenoviral-Insulin like Growth Factor-II (Ad-IGF-II) 

A recombinant Ad construct containing GFP was produced previously in the laboratory and 

purified for use in Chapter 3 (Appendix A). A commercial biotechnology company 

(Welgen, Inc., USA) was employed to construct, amplify and purify a customized 

recombinant Ad construct expressing human IGF-II (Appendix B). A similarly generated Ad-

GFP construct was used as a control in all Ad-IGF-II transduction experiments (Chapter(s) 4, 

5 and 6). Ad-IGF-II and Ad-GFP vectors were supplied as 3 ml aliquots at a viral 

concentration of 2x1010 pfu/ml. Gene expression in both Ad vector types was driven by the 

cytomegalovirus (CMV) promoter. 

2.1.2 Adeno-Associated Viral (AAV)-based vectors 

AAV2, is a serotype AAV2  

AAV2/1, is a pseudtoype AAV2 with type 1 capsid 

AAV2/8, is a pseudotype AAV2 with type 8 capsid 

AAV8mutY733F, has a tyrosine to phenylalanine mutation in the type 8 capsid 

AAV2mutY444F, has a tyrosine to phenylalanine mutation in the type 2 capsid 

AAV2muttriple, has three tyrosine to phenylalanine mutations in the type 2 capsid  

Highly purified stocks of AAV vectors, containing the GFP gene driven by the chicken β 

actin promoter were generated and purified as previously described (312). Vectors were 

titered by quantitative real-time PCR and re-suspended in a balanced salt solution.  The AAV 

vectors were a kind gift from from Professor William Hauswirth, University of Florida, 

Gainesville, USA. 
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2.1.3 Animals 

Albino Wistar rats were housed in an approved animal house facility (Institute of Medical and 

Veterinary Services (IMVS), SA Pathology, Adelaide). NOD-SCID mice were housed in a 

pathogen-free environment. Animals were purchased from the Animal Resources Centre 

(Perth, Australia) and were used in accordance with and overseen by the animal ethics 

committees of the University of Adelaide and the IMVS (approval numbers M-2009-089 and 

64/10 respectively).  

2.1.4 Cytokines 

Rat Interleukin-1β (IL-1β) (ProSpec, Israel), 10 µg 

Rat Interferon-gamma (IFN-γ) (Sigma, USA), 1 mg 

Human IL-1β (ProSpec, Israel), 10 µg 

Human IFN-γ (Sigma, USA), 20 µg 

2.1.5 Antibodies 

2.1.5.1 Primary antibodies 

Insulin (polyclonal) (Millipore, USA) 

Rabbit polyclonal phospho-Akt (pAkt) (Ser 437) antibody (Cell Signaling Technology, Inc., 

USA) 

Rabbit polyclonal Akt antibody (Cell Signaling Technology, Inc., USA) 

Human/Mouse IGF-1R antibody, antigen affinity-purified Polyclonal Goat IgG (R&D 

Systems, Inc., USA) 

Anti-heparan sulphate proteoglycan (perlecan), clone AL76 (Human) (Millipore, USA) 

Anti-integrin αvβ5 antibody (Abcam, Australia) 

2.1.5.2 Secondary antibodies 

Anti-guinea pig rhodamine IgG (Jackson Laboratories, USA) 

Anti-rabbit IgG, HRP-linked secondary antibody (Cell Signaling Technology, Inc., USA) 

Anti rat IgG Alexa Fluor 488 (Invitrogen, USA) 
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Goat anti Mouse IgG PE (Millipore, USA) 

 

2.1.6 FACS reagents 

FACS lysing solution (BD Bioscience, USA) 

Annexin V (Invitrogen, USA) 

Annexin V Binding Buffer (Invitrogen, USA) 

7-AAD (Invitrogen, USA) 

Propidium Iodide (Invitrogen, USA) 

Alexa fluor 647 mouse anti-human ki67 (BD Pharmingen) 

 

2.1.7 Molecular biology reagents 

Agarose – DNA grade (Progen, Australia) 

Custom Oligo-nuceleotides (Geneworks, Australia) 

Oligo dT (Amersham, Australia) 

RNAsin (Promega, USA) 

GelRedTM Nucleic Acid Gel Stain (Biotium, USA) 

RNase-Free DNase set (Qiagen, USA) 

Nuclease-free Water (Qiagen, USA) 

Omniscript® Reverse Transcriptase ( Qiagen, USA) 

AmpliTaq Gold PCR Master Mix (Applied Biosystems, USA) 

DNA Marker: Ready-to-useTM 100 bp DNA Ladder (GenScript, USA) 

20X TaqMan® Gene Expression Assay Mix (Applied Biosystems, USA) 
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2.1.8 Tissue culture reagents 

Accutase (Sigma-Aldrich, USA) 

RPMI-1640 (Invitrogen, USA) 

RPMI-1640 (glucose-free) (Invitrogen, USA) 

DMEM + glutamax (Invitrogen, USA) 

Albumex 20 (Australian Red Cross, Australia) 

CMRL-1066 (Invitrogen, USA) 

Foetal Calf Serum (Gibbco, USA) 

Penicillin (Gibbco, USA) 

Gentamicin (Gibbco, USA) 

L-glutamine (Gibbco, USA) 

1 x Phosphate Buffered Saline (Gibbco, USA) 

1 x Phosphate Buffered Saline, without calcium chloride and magnesium chloride (Gibbco, 

USA) 

1x Hanks Buffered Salt Solution (Invitrogen, USA) 

HEPES (Invitrogen, USA) 

2.1.9 Kits 

Rat Insulin ELISA (Mercodia, Uppsala, Sweden) 

Human Insulin ELISA (Mercodia, Uppsala, Sweden) 

Rat C-peptide ELISA (Mercodia, Uppsala, Sweden) 

Human IGF-II ELISA kit (Life Research, USA) 

Viva Pure AdenoPACK 20 (Sartorius Stedim, USA) 

RNAspin mini kit (Qiagen, USA)
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Griess Reagent System (Promega, USA) 

In Situ Cell Death Detection Kit, fluorescein (Roche, USA) 

In Situ Cell Death Detection Kit, TMR red (Roche, USA) 

Novex® ECL Chemiluminescent Substrate Reagent Kit (Invitrogen, USA) 

QIAamp MinElute Virus Spin Kit (Qiagen, USA) 

2.1.10 Miscellaneous reagents 

Dimethyl sulphoxide (Ajax Chemicals, Australia) 

Trypan blue (BDH, Australia) 

Dithizone (Sigma-Aldrich, USA) 

Streptozotocin (Sigma-Aldrich, USA) 

Cryovial (NUNC, USA) 

Haemocytometer (Thermo Fisher Scientific, USA) 

25 ml polypropylene tube (Sarstedt, USA) 

25cm2 tissue culture flask (Sarstedt, USA) 

75cm2 tissue culture flask (Sarstedt, USA) 

175cm2 tissue culture flask (Sarstedt, USA) 

24-well non-adherent suspension plate (Sarstedt, USA) 

96-well flat bottom plate (Sarstedt, USA) 

Ultra-low attachment petri dish 100 mm (Corning, USA) 

Coverslip (Asis, China) 

β-mercaptoethanol (Sigma-Aldrich, USA) 

Cell scraper (Corning, USA) 

50 ml falcon (BD FalconTM, USA) 

FACS tubes (BD FalconTM, USA)
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FACS tubes filter top (BD FalconTM, USA) 

Microscope slide (Menzel Glaser, Holland) 

Isoflourane (VCA, Australia) 

Sterile tubing (Dural Plastics and Engineering, Australia) 

Sterile gauze (Multigate, Australia) 

Collagenase X1 (Sigma-Aldrich, USA) 

600 μm filter (Endecotts, England) 

Histopaque-1066 (Invitrogen, USA) 

Humilin® (Lilly, USA) 

Chloromycetin (Pfizer, USA) 

Scalpel, size 11 (Smith and Nephew, Australia)  

Insulin Syringe (BD Biosciences, USA) 

Ethanol AR grade (Sigma-Aldrich, USA) 

Pressure cooker (Nordic Ware, USA) 

Goat serum (Sigma-Aldrich, USA) 

Recombinant Human-IGF-II (R&D Systems, Inc., USA) 

Wortmannin (Sigma-Aldrich, USA) 

Tri-sodium Citrate (AnalaR®, Australia) 

Polyvinyl difluoride Membrane (Millipore, USA) 

Benzonase® Nuclease (Sigma-Aldrich, USA) 

ProLong® Gold Antifade Reagent with DAPI (Invitrogen, USA) 

0.45 µm filter (Sartorius Stedim, USA) 

5 µm filter (Sartorius Stedim, USA) 

1.2 µm filter (Sartorius Stedim, USA)
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5 ml polyehtylene tube (Sarstedt, USA) 

Ketamine Injection 100mg/ml (Parnell Laboratories, New Zealand) 

Temgesic (Reckitt Benckiser Healthcare, UK) 

Xylazil-20 20mg/ml (Troy Laboratories, Australia) 

0.1 ml PCR tubes (Corbett Life Science, USA) 

2.1.11 Equipment 

Cytospin II Shandon (Thermo scientific, USA) 

NanoDrop 1000 (Thermo scientific, USA) 

Perkin Elmer DNA thermal cycler (USA) 

FACS CANTO II (BD Bioscience, San Jose, California, USA) 

Bio-Rad Minigel Apparatus (Bio-Rad, USA) 

CoolCell (Biocision, USA) 

CO2 Incubator (Sanyo, Australia) 

Water bath (Julabo, USA) 

Cyberscan 1000 pH meter (AdeLab, Adelaide) 

Light microscope (Olympus, USA) 

Model 680 microplate reader (Bio-Rad, USA) 

Scales (Sartorius, USA) 

Heraeus 3S-R Centrifuge (Thermo Electron Corporation, USA)  

Heraeus Pico17 Centrifuge (Thermo Electron Corporation, USA)  

Centrifuge 5415 R (Eppendorf, USA) 

RotorGene 3000 thermocycler  (Corbett Life Science, USA)  

Nikon C1-Z Confocal Microscope (Nikon Instruments, USA) 

Typhoon FLA 9500 Scanner (GE Life Sciences, Australia) 

Orbital Mixer Incubator (Ratek, Australia) 
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2.2 CELLULAR TECHNIQUES 

2.2.1 Maintenance of cell lines 

Tissue culture foetal calf serum (FCS) was heat inactivated at 56°C for 30 minutes (min) and 

stored at -20 degrees celcius (°C) until required. Unless otherwise indicated, tissue culture 

media was supplemented with 10% FCS, penicillin (100 IU/millilitre (ml)), gentamicin (50 

microgram (μg)/ml) and L-glutamine (2 millimolar (mM)) and subsequently referred to as 

complete medium. L-glutamine was replenished every 14 days. 

 

2.2.2 Description of cell lines 

 

Human Embryonic Kidney (HEK) 293 cells were grown in complete DMEM + glutamax. 

HepG2 and Huh7 cells were grown in complete RPMI-1640. All cells were cultured to 70% – 

80% confluence in a humidified incubator at 37°C, 5% CO2 unless otherwise stated. See 

Table 2.2.2 for a description of the cell lines. 

2.2.3 Cell quantitation  

Cells were detached from their culture surface using Accutase and centrifuged at 400g for 10 

min. Pelleted cells were resuspended in 5 ml culture medium, of which 10 μl was removed 

and added to an equal volume of trypan blue. 10 μl of the cell suspension was added to both 

sides of a haemocytometer. The cell suspension was viewed under a light microscope using 

10 x magnification. The total number of cells was determined by counting the 1 mm2 centre 

square and the four corner squares of the haemocytometer. The cell concentration per ml and 

the total number of cells was determined using the following calculations: 

Cells per ml = the average number of cells per 5 squares counted x 5 x the dilution factor x 

104  

Total cell number = cells per ml x the original volume of growth medium from which cell 

sample was removed 
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Table 2.2.2. Description of cell lines 

 

Designation Source Characteristics Culture medium Source 

HEK 293 Human Embryonic Kidney 
Express E1-region of adenovirus 5, 

Adherent 

Complete DMEM + 

glutamax 
ATCC 

HepG2 Human Liver carcinoma cell line Complete RPMI-1640 ATCC 

Huh7 Human Hepatocyte derived cellular carcinoma Complete RPMI-1640 ATCC 

 

47 
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2.2.4 Cryopreservation and storage of cell lines 
 

Adherent cells were detached from their culture surface using Accutase (a cell detachment 

solution of proteolytic and collagenolytic enzymes) and the number of cells counted (see section 

2.2.3). The cells were pelleted by centrifugation at 400g for 10 min. The supernatant was then 

removed and the cells resuspended at a concentration of 2x106 – 4x106 cells per ml in freezing 

medium. Aliquots (1.8 ml) of the cells were transferred into cryovials and placed inside a cell 

freezing chamber (CoolCell) and frozen at -80°C overnight. Frozen cells were subsequently 

transferred to a liquid nitrogen storage vessel. 

 

2.2.5 Thawing frozen cell lines 

Frozen cells were placed in a 37C water bath until the contents were completely thawed. Cells 

were transferred to a 25 ml polypropylene tube containing 5 ml of appropriate growth medium. 

An additional 10 ml of growth medium was added drop-wise to the cells over a period of 10 min. 

The cells were centrifuged at 400g for 10 min. The cells were resuspended in appropriate growth 

medium. The volume of growth medium added to the cells was based on the size of the tissue 

culture flask required to culture the cells (Table 2.2.5). 

 

Table 2.2.5. Volume of growth medium to add to tissue culture flasks 

Size of Tissue Culture Flask Volume of Growth Medium 

T-25cm2 5 ml 

T-75cm2 10 ml 

T-175cm2 20 ml 

 

 

 



 49 

2.2.6 Subculture of cell lines 

Adherent cell lines were cultured until they had reached appropriate confluence at which point 

they were sub-cultured. Briefly, the medium was removed and the cell monolayer was washed 

twice with warm 1 x phosphate buffered saline (PBS) using a volume equivalent to half the 

volume of the culture medium. Accutase was added to the cell monolayer at a volume of 500 

microliters (μl) per 25cm2 of surface area. The flask was placed in a humidified incubator at 

37C, 5% CO2 for 5 min. The cells were examined using a light microscope to ensure that all the 

cells were detached and floating. The cells were resuspended in 5 ml of appropriate complete 

growth medium (containing FCS) to inactivate the enzymatic activity of accutase. The cells were 

counted (see section 2.2.3) and the required number of cells were subsequently transferred to 

new labelled flasks containing pre-warmed growth medium. 

2.2.7 Changing cell culture medium 

If cells had been in culture for 1 – 2 days, but were not yet confluent, then a media exchange was 

performed to replenish nutrients and maintain the appropriate pH for optimal cell growth. The 

growth medium in the flask was replaced with fresh pre-warmed culture medium and the flask 

was then returned to a humidified incubator at 37C, 5% CO2 for further culturing. 

2.3 MOLECULAR METHODS 

2.3.1 RNA extraction 

Purification of total RNA was performed using RNeasy Mini Kit according to the manufacturer’s 

instructions. Briefly, adherent cells were harvested and centrifuged at 400g for 10 min. To lyse 

the cells, an appropriate volume of lysis buffer RLT and β-mercaptoethanol was added (Table 

2.3.1). 

Table 2.3.1. Preparation of lysis buffer RLT and β-mercaptoethanol to lyse pelleted cells 

Number of pelleted cells Volume of buffer (RLT) Volume of β-mercaptoethanol 

>5 x 106 350 μl 3.5 μl 

5 x 106 – 1 x 107 600 μl 6.5 μl 
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Cell lysate was homogenized using a QIAshredder spin column and then 1 volume of 70% 

ethanol was added to the homogenised lysate. The membrane containing bound RNA was 

washed two times with buffer RW1 and once with buffer RPE. After the first RW1 wash, on-

column DNase digestion was performed by aliquoting 10 μl of DNase I stock solution to 70 μl of 

provided buffer RDD. The DNase I incubation mix (80 μl) was added directly to the RNeasy spin 

column membrane, which was then incubated at room temperature (RT) for 15 min. To elute the 

RNA, 35 μl of nuclease-free water was added directly to the spin column membrane. The purified 

RNA was quantified by absorbance at 260 nanometer (nm) using NanoDrop 1000 and stored at   

-80°C until required for further analysis. 

2.3.2 Reverse transcription using Oligo dT 

One μg of RNA was reverse transcribed using Omniscript® Reverse Transcriptase. Briefly, 

template RNA was thawed on ice. Oligo-dT’s, 10 x Buffer RT, dNTP Mix and RNase inhibitor 

was thawed at RT (15-25°C) then stored on ice. A fresh master mix was prepared (Table 2.3.2) 

and then mixed by vortexing for 5 seconds before being centrifuged. RNA was added to each 

sample tube. The sample was then incubated for 60 min at 37°C. The reaction volume was made 

up to 100 μl by adding 80 μl of nuclease-free water. The reaction was stored at -80°C until 

required. 

Table 2.3.2. Reverse-transcription reaction components 

Component Volume/reaction Final Concentration 

10 x Buffer RT 2 μl 1x 

dNTP Mix (5 mM each dNTP) 2 μl 0.5 mM each dNTP 

Oligo-dT primer (10 uM) 2 μl 1 μM 

RNase inhibitor (10 units/uL) 1 μl 10 units (per 20 μl reaction) 

Omniscript Reverse Transcriptase 1 μl 4 units (per 20 μl reaction) 

RNase-free water Variable  

Template RNA Variable 1 μg (per 20 μl reaction) 

Total Volume 20 μl - 



 51 

2.3.3 Polymerase Chain Reaction  

Polymerase Chain Reaction (PCR) master mix was prepared in a PCR restricted area as outlined 

below (Table 2.3.3A): 

Table 2.3.3A. PCR Reaction Components 

Component Vol (50 μl) 

Nuclease-free water 23 μl 

Amplitaq gold (2x) 25 μl 

Forward primer 0.5 μl 

Reverse primer 0.5 μl 

 

The PCR master mix was vortexed and pulse spun then 47.5 μl was aliquoted per PCR reaction 

into 0.2 ml PCR tubes on ice. Template cDNA (2.5 μl) was added to appropriate tubes. Negative 

controls with 2.5 μl of water instead of cDNA were included with each experiment. Details of the 

primers and their conditions used in these reactions are outlined in Table 2.3.3B. 
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Designation 
Sequence (5’-3’) 

Amplicon size 

(bp) 
Conditions 

Insulin-like Growth Factor-II 

(genomic) (Forward) 

TCG ATT AGC TAG CCT ACT TCC 

GAT T 
580 

1. Pre- denaturation hot start 94°C, 5 min 

2. Denaturation 94°C, 30 seconds 

3. Annealing 64°C, 60 seconds 

4. Elongation 72°C, 30 seconds 

5. Extension 72°C, 7 min 

Insulin-like Growth Factor-II 

(genomic) (Reverse) 
GCG GCC GCG AAT TCA CTA 580 

Insulin-like Growth Factor-II 

(mRNA) (Forward) 
AAG TCG ATG CTG GTG CTT CT 480 

6. Pre- denaturation hot start 94°C, 5 min 

7. Denaturation 94°C, 30 seconds 

8. Annealing 60°C, 60 seconds 

9. Elongation 72°C, 30 seconds 

10. Extension 72°C, 7 min 

Insulin-like Growth Factor-II 

(mRNA) (Reverse) 
GTC TTG GGT GGG TAG AGC AA 480 

 

Table 2.3.3B. PCR primers 

52 
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2.3.4 Agarose gel electrophoresis 

A 2% gel was prepared by weighing 2 grams of DNA grade agarose and mixing with 100 ml 1x 

TAE buffer. The mixture was dissolved by heating in a microwave. The gel was pre-stained by 

adding 10 μl of GelRed™ solution before being poured. The gel was subsequently covered 

with1x TAE buffer. DNA size markers (2 μl) were mixed with 2 μl of 6x loading buffer and 10 μl 

of water. For PCR products, 2 μl of 6 x loading buffer was mixed with 10 μl of the PCR product 

and 4 μl of water. 15 μl of each sample was loaded onto the gel and all samples were run at 120 

V for 18 min. Gels were visualised using a Typhoon scanner. 

2.3.5 Quantitative real-time PCR using TaqMan® primers 

Real-time PCR was carried out using a RotorGene 3000 thermocycler. 

Hypoxanthinephosphoribosyltransferase 1 (HPRT-1) was used as a house keeping gene based on 

its consistent and abundant expression in HEK 293 cells. HPRT-1 was used as a basis for 

normalization using the ΔΔCt method of quantitation, as per (313). Untransduced islets were 

compared with the Ad-IGF-II samples to evaluate fold change IGF-II gene expression. All real 

time runs had a negative control of water containing no cDNA template. All samples were run in 

triplicate.  

Reaction components were prepared for a single 15 μl reaction (Table 2.3.5A)  

Table 2.3.5A. Real-time PCR TaqMan® Reaction Components 

Components Volume/reaction 

TaqMan® Master Mix (20X) 5 μl 

TaqMan® Primers 0.5 μl 

Nuclease-free water 3.7 μl 

Total Volume 9.2 μl 

 

The master mix totaling 9.2 μl/reaction was aliquoted into 0.1 ml Corbett PCR Tubes. Following 

this, cDNA (0.8 μl/reaction) was added to appropriate sample tubes.  The samples were run per 

TaqMan® primer manufacturer instructions (Table 2.3.5B). 
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Table 2.3.5B. RotorGene 3000 thermocycler Reaction Conditions 

Times and Temperatures 

Initial Setup 
Each of 40 cycles 

Denature Anneal/Extend 

HOLD CYCLE 

10 min 95°C 15 s 95°C 1 min 60°C 

 

2.3.6 Viral DNA purification 

Purification of viral DNA was performed using QIAamp® MinElute® Virus Spin kit according 

to the manufacturer’s instructions. Briefly, 25 µl of protease was pipetted into a 1.5 ml eppendorf 

tube and mixed with 200 µl of the viral lysate sample and 200 µl buffer AL, before heating for 15 

min at 56°C. 250 µl of ethanol was added to the sample and incubated for 5 min at RT. The 

lysate was transferred to a QIAamp MinElute column. The membrane containing bound DNA 

was washed once with buffer AW1 and once with buffer AW2, then once with ethanol. To elute 

the DNA, 30 µl of nuclease-free water was added directly to the spin column membrane. The 

purified DNA was stored at -80°C until required for further analysis. 
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2.4 ADENOVIRAL METHODS 

2.4.1 Large-scale Adenoviral production 

First round of Adenoviral (Ad) production 

HEK 293 cells were plated in 25-cm2 tissue culture flasks (~3x106 cells/flask in 6 ml complete 

DMEM) to reach 80% - 90% confluence at 12 to 15 hours (h). Each tissue culture flask was 

infected with 100 μl of primary transfection viral supernantant (purified Ad-GFP) and 300 μl of 

serum free DMEM. The flasks were incubated for 4 h at 37°C, 5% CO2 in a humidified 

incubator. When 30 – 50% of the infected cells were detached (3 to 5 days post-infection) they 

were scraped using a cell scraper and transferred to a 50 ml falcon tube prior to being centrifuged 

at 400g for 10 min. the supernatant was removed and 5 ml of 1x PBS was added to the cells, 

which then underwent four cycles of freezing in a dry ice bath and thawing at 37°C to release the 

virus from the cells.  

Second round of Ad production 

HEK 293 cells were plated in 75-cm2 tissue culture flasks (~5–7 x 106 cells/flask in 16 ml 

complete DMEM) to reach 80% - 90% confluence at 12 to 15 h. Approximately 2 – 4 ml of the 

viral lysate prepared in round one was added to one 75-cm2 tissue culture flask of cells. When 

50% of the infected cells were detached, the cells were scraped and transferred to a 50 ml falcon 

tube and processed as outlined in the first round of Ad production 

Final round of Ad production 

HEK 293 cells were plated into five 175-cm2 tissue culture flasks (~1 x 107 cells/flask in 16 ml 

complete DMEM) to reach 100% confluence at 12 to 15 h. The cells were infected with viral 

supernatant at a multiplicity of infection (MOI) of 10 plaque forming units (pfu) per cell. Cells 

were infected for 4 h at 37°C, 5% CO2. After this incubation cells were supplemented with 

complete DMEM. When all cells were rounded up and detached, they were scraped and collected 

into 50 ml falcon tubes. The cells were centrifuged at 400 g for 10 min and then subjected to four 

rounds of freeze-thawing before freezing at -80°C until purification. 
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2.4.2 Virus purification 

Viral lysate (see section 2.4.1) was filtered through 5 micron (μm) and 1.2 μm filters prior to 

purification. Virus was purified using Viva Pure AdenoPACK 20 from Sartorius Stedim as per 

manufacturer’s instructions. Briefly, filtered lysate was treated with 12.5 U/ml of benzonase 

nuclease and incubated for 30 min at 37°C. The lysate was then loaded onto a VivaClear maxi 

column and centrifuged at 500g for 5 min. An appropriately calculated volume of 10 x loading 

buffer was added to the lysate. The AdenoPACK 20 Maxi spin column was equilibrated with 5 

ml of diluted 1 x washing buffer. The lysate was then transferred to the equilibrated column and 

centrifuged at 500g for 5 min to allow viral binding to the membrane. The column was washed 

twice with 18 ml of washing buffer and centrifuged after each wash at 500g for 5 min. The 

column was then transferred to a clean column holder. The Ad was eluted off the AdenoPACK 

maxi membrane by aliquoting 1 ml of elution buffer to the column membrane. The column was 

briefly centrifuged at 500g for 30 seconds and then incubated for 10 min. The column was then 

centrifuged at 500g for 5 min to collect the Ad-containing eluate. The eluate was transferred to a 

Vivaspin 20 centrifugal concentrator and storage (physiological) buffer was added to bring the 

total volume up to 20 ml. The column was centrifuged at 800g for 30 min and the concentrated 

virus was collected from the top chamber. The virus was stored at -80°C.  

2.4.3 Adenoviral titre determination by flow cytometry  

Serial dilutions of purified virus (10-2 to 10-6) (see section 2.4.2) were prepared in 500 μl of 

serum-free DMEM + glutamax medium. HEK 293 cells (80 – 90% confluent) in T-25cm2 tissue 

culture flasks were infected with the viral dilutions for 4 h in a humidified incubator at 37°C, 5% 

CO2. Cells were then supplemented with complete DMEM + glutamax and incubated for 24 h. 

Cells were then harvested and approximately 1x106 cells were transferred into FACS tubes and 

fixed with 1 ml FACS lysing solution. Samples were analysed on FACS canto II for GFP 

expression. Viral titre was determined according to the following calculation (314):  

Titre (pfu/ml) = % GFP positive cells x initial number of cells infected x dilution factor 

                                                                initial infection volume 
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2.5 ISLET METHODS 

2.5.1 Culture conditions 

Rat pancreatic islets were cultured in complete RPMI-1640 medium. Human islets were used 

when available and were procured as part of the laboratory’s involvement in the Australian 

Clinical Islet Transplant Consortium through the Juvenile Diabetes Research Foundation. Human 

islets were maintained in complete CMRL-1066 medium. Media exchange was performed daily, 

unless otherwise indicated. All use of human islet tissue was approved by the Royal Adelaide 

Human Ethics Committee and was kindly given research consent by the donor families. All 

human islets were sourced from isolating centres in Sydney and Melbourne that form the 

‘Australian Islet Consortium’. All cells were cultured in a humidified incubator at 37°C, 5% CO2. 

2.5.2 Islet dissociation 

Islets were washed with PBS to remove serum and centrifuged at 300g for 2 min. Islets were 

resuspended with 500 µl of Accutase and incubated in a water bath at 37°C for 10 min in order to 

dissociate the islet cell clusters to single cells. The islets were agitated every 3-4 min and then 

further dissociated with gentle pipetting. The Accutase was inactivated with the addition of 2 ml 

complete media and the islets were then centrifuged to remove the Accutase at 300g for 5 min, 

4°C. The cells were passed through filter top FACS tubes.   

2.5.3 Islet quantification  

Islets were resuspended in 10 ml of media and 200 µl of the islet preparation was transferred to a 

1.5 ml eppendorf tube. An equal volume of dithizone (200 µl) was mixed with the islets, which 

were then incubated at RT for 5 min. The eppendorf tube was mixed several times to ensure the 

islets were completely resuspended, then 200 µl was removed and transferred to a glass slide for 

counting. Islets (stained red from dithizone) were counted at 10 x magnification using a light 

microscope. Islet quantity is expressed as the number of islet equivalents (IEQ), which is based 

on the number and diameter of the islets present in the preparation, mathematically corrected for 

islet volume.  
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2.5.4 Viral transduction 

Islets were transduced in a minimal volume of serum free cell culture medium in a humidified 

incubator for 4 h at 37C, 5% CO2. After incubation islets were supplemented with an 

appropriate volume of cell culture media (Table 2.5.4). 

Culture vessels were infected with AAV constructs at various vector genome (vg) concentrations 

as indicated in Chapter 3. Culture vessels were infected with Ad viral constructs at various 

multiplicity of infection (MOI) according to the following calculation (unless otherwise stated): 

Multiplicity of infection = total number Ad particles / total number cells 

MOI was calculated based on the assumption that one IEQ contains on average 2000 cells (138, 

315). 

Table 2.5.4. Minimal and final volumes of culture medium for islet transduction 

Transduction culture vessel Minimal volume Final volume 

24-well suspension plate 250 µl 750 µl 

6-well suspension plate 500 µl 1 ml 

T-25cm2 flask 500 µl 3 ml 

T-75cm2 flask 700 µl 10 ml 

 

HEK 293 cells (~2x106) were plated in 25-cm2 tissue culture flasks and incubated at 37C, 5% 

CO2 for 12 to 15 hours prior to transduction. Residual cell culture medium was removed from the 

flask by washing twice with warm PBS. The cells were incubated in a minimal volume (250 µl) 

of serum free culture medium and viral dilution for 4 h at 37C, 5% CO2. An additional volume 

of 6 ml complete medium was added for the specified time point.  
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2.5.5 Cytokine treatment of islets 

Islets were aliquoted (50 IEQ/well) into 24-well suspension culture plates. Islets were treated 

with pro-inflammatory cytokines IL-1β and IFN-γ at various concentrations, as indicated, for 24 

h. Islets were cultured in a minimal volume of 500 µl cell culture medium unless otherwise 

specified.  

2.5.6 Glucose stimulated insulin release assay of islets 

Islets were transferred to 3 ml low glucose RPMI in a FACS tube. The islets were left to settle for 

10 min. Approximately 2.7 ml of RPMI was removed and either 1.2 ml low (2.8 mM) or high (25 

mM) glucose RPMI was added to the appropriate tubes. The islets were incubated at 37°C for 2 

h. Supernatant (1 ml) was carefully removed and stored at -80°C prior to analysis.  

2.5.7 Insulin-like growth factor-1 receptor blocking 

Rat islets (50 IEQ) were untransduced, transduced with Ad-GFP, Ad-IGF-II or pre-treated for 30 

min with Insulin-like Growth Factor-I Receptor (IGF-1R) blocking antibody (10 µg) then 

transduced with Ad-IGF-II for 48 h and treated for 30 min with IGF-1R blocking antibody before 

addition of rat pro-inflammatory cytokines IL-1β (35ng/ml) and interferon-γ (IFN-γ) (40ng/ml) 

for 24 h.  

2.5.8 Western blotting analysis 

Rat islets (50 IEQ) were untransduced, transduced with Ad-GFP, Ad-IGF-II or pre-treated for 1 h 

with 200 mM wortmannin prior to Ad-IGF-II transduction for 48 h. Following transduction, all 

experimental groups were treated with rat pro-inflammatory cytokines interleukin-1β (IL-1β) 

(35ng/ml) and interferon-γ (IFN-γ) (40ng/ml) for 24 h. Islets were harvested for western blotting 

analysis. The protein extracts were separated by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) and transferred to a polyvinyl difluoride (PVDF) membrane. The 

blots were incubated with rabbit polyclonal phospho-Akt (pAkt) (Ser473) antibody (1:1000) and 

rabbit polyclonal Akt antibody (1:1000). Blots were then incubated in anti-rabbit IgG, HRP-

linked secondary antibody (1:2000). The bands were detected using a Novex® ECL 

Chemiluminescent Substrate Reagent Kit. 
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2.6 FLOW CYTOMETRY 

2.6.1 Annexin V/Propidium Iodide staining 

Islets were harvested at their appropriate time points and transferred to a 25 ml polypropylene 

tube before centrifugation at 200g for 2 min, RT. The islets were dissociated using 500 μl 

Accutase and incubated at 37°C for 10 min (see section 2.5.2). Complete RPMI-1640 (5 ml) was 

added to inactivate the enzymatic activity of Accutase and then the islets were centrifuged at 

200g for 2 min, RT. The islets were resuspended in 2 ml Annexin V binding buffer and then 

transferred to filter top FACS tubes, before being centrifuged at 300g for 3 min, 4°C. The islets 

were stained with 5 μl of Annexin V for 15 min in the dark, RT. Following this, the islets were 

stained with 2 μl Propidium Iodide (PI) for 15 min on ice and then immediately analysed using a 

FACS CANTO II. 

2.6.2 GFP detection 

Islets were harvested at their appropriate time points and dissociated as per section 2.5.2. The 

islets were resuspended in 200 μl islet FACS wash and transferred to filter top FACS tubes 

before being immediately analysed using a FACS CANTO II.   

2.6.3 7-AAD staining  

Dissociated islets were resuspended in 200 μl islet FACS wash and transferred to filter top FACS 

tubes. The islets were then centrifuged at 200g for 2 min and then stained with 200 μl 7-AAD (5 

μg/ml) for 15 min on ice before being immediately analysed using a FACS CANTO II. 

2.6.4 Ki67 staining 

Islets were harvested at their appropriate time points and dissociated as per section 2.5.2 and then 

fixed with 1 ml of 70% ice-cold ethanol and then stored at -20°C for 2 h. The islets were washed 

twice in FACS wash and resuspended at 1x105 cells/50 µl FACS wash. The islets were stained 

with 2.5 µl ki67 for 20 min at RT, in the dark before being immediately analysed using a FACS 

CANTO II.  
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2.7 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) 

2.7.1 Rat insulin ELISA 

A rat insulin ELISA kit was used as per manufacturer’s instructions. Briefly, all reagents and 

samples were bought to room temperature before use. 10 µl of calibrators and samples (diluted 

1:10 with calibrator 0) were aliquoted into appropriate wells. Enzyme conjugate solution (100 µl) 

was added to each well. The plate was incubated on a plate shaker (700-900 rpm) for 2 h at RT. 

The plate was washed six times with prepared wash buffer. Substrate TMB (200 µl) was added 

into each well and the plate was then incubated for 15 min at RT. Stop solution (50 µl) was added 

to each well and the optical density was read at 450 nm within 30 min of adding the stop solution. 

The detection limit of the rat insulin ELISA kit was ≤0.15 µg/L.           

2.7.2 Human insulin ELISA 

A human insulin ELISA kit was used as per manufacturer’s instructions. Briefly, all reagents and 

samples were bought to room temperature before use. 25 µl of calibrators and samples (diluted 

1:10 with calibrator 0) were aliquoted into appropriate wells. Enzyme conjugate solution (100 µl) 

was added to each well. The plate was incubated on a plate shaker (700-900 rpm) for 1 h at RT. 

The plate was washed six times with prepared wash buffer. Substrate TMB (200 µl) was added 

into each well and the plate was then incubated for 15 min at RT. Stop solution (50 µl) was added 

to each well and the optical density was read at 450 nm within 30 min of adding the stop solution. 

The detection limit of the human insulin ELISA kit was 1 mU/L calculated as two standard 

deviations above the Calibrator 0.  

2.7.3 Human IGF-II ELISA  

A human IGF-II ELISA kit was used to detect human IGF-II in cell culture supernatants and cell 

lysates. The samples were diluted 1:10 using the provided diluent buffer. Human IGF-II standard 

was prepared by reconstitution of the IGF-II standard (10,000 picogram (pg)/ml) with 1 ml of 

sample diluent buffer. From the stock solution, dilutions of 4000, 2000, 1000, 500, 250, 125 and 

62.5 pg/ml were prepared for the standard curve. In triplicate, 100 µl of each of the standards 

were aliquoted into the precoated 96-well plate and 100 µl of the standard diluent buffer was 

aliquoted for the blank well. 100 µl of each properly diluted sample was added to each empty 

well. The plate was incubated at 37°C for 90 min.  
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The plate content was discarded, and 100 µl of biotinylated anti-human IGF-II antibody working 

solution was aliquoted into each well. The plate was incubated at 37°C for 60 min then washed 

three times with 0.01M PBS. Following this, 100 uL of prepared Avidin-Biotin-Complex 

working solution was aliquoted into each well and the plate was incubated at 37°C for 30 min. 

The plate was washed five times with 0.01M PBS and then 90 µl of prepared TMB colour 

developing agent was added into each well and the plate was incubated at 37°C for 30 min. Stop 

solution (100 µl) was added into each well and then the absorbance was read at 450 nm in a plate 

reader within 30 min after adding the stop solution. The detection limit of the human IGF-II 

ELISA kit was <2 pg/ml.           

2.8 GRIESS REACTION FOR NITRIC OXIDE DETERMINATION 
 
A 100 μM nitrite solution was prepared by diluting the provided 0.1 molar (M) nitrite standard 

1:1000 in the cell culture medium used for the experimental samples. 2-fold dilutions of the 100 

μM nitrite solution were prepared to generate the nitrite standard reference curve (100, 50, 25, 

12.5, 6.25, 3.13 and 1.56μM). The standards and experimental samples (50 µl) were added in 

triplicate to appropriate wells of a 96-well flat-bottom plate. Sulfanilamide Solution (50 µl) was 

added to all wells, which were then incubated 5-10 min at RT, protected from light. NED 

solution (50 ul) was added to all wells, followed by incubation for 5-10 min at RT, protected 

from light. The absorbance was measured within 30 min on a plate reader at 540 nm. 
 

2.9 ANIMAL METHODS 

2.9.1 Albino wistar rat islet isolation 

Albino Wistar rats weighing between 250 – 350 g were anaesthetized with appropriate levels of 

isofluorane and oxygen delivered via nose cone. The peritoneum was opened and the liver lobes 

were flipped above the sternum to expose the pancreatic duct. Once identified, a small nick was 

made in the duct followed by cannulation with 0.96 mm sterile tubing. With the cannula in place, 

a syringe was attached to deliver 20 ml of cold 1x Hank’s Buffered Salt Solution (HBSS) into the 

pancreas (Figure 2.9.1). The pancreas was dissected carefully from the stomach, intestine and 

spleen. The portal vein was clamped prior to removal of the pancreas to minimize bleeding.  
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Figure 2.9.1. Surgical rat islet isolation procedure. (A) The rat peritoneum was opened and the 

liver lobes were flipped above the sternum (held in place by sterile gauze) to expose the 

pancreatic duct. Iris scissors were used to nick the pancreatic duct. A cannula (0.96 mm sterile 

tubing) was attached to a syringe filled with cold 1x HBSS. (B) With the cannula in place, cold 

1x HBSS was infused into the pancreas via the pancreatic duct. Image shows an inflated pancreas 

(green). 

A 

B 



 64 

The pancreas was minced into small pieces using sterile scissors then transferred to a 50 ml 

falcon tube and placed on ice. Collagenase X1 was weighed into a 5 ml polyethylene tube based 

on 1 mg of collagenase per 25 g rat body weight. The collagenase was reconstituted with 1 ml of 

1x HBSS at RT before being transferred to the pancreas. The pancreas was digested at 37C for 

approximately 15 min. The pancreas was washed twice with ice-cold 1x HBSS. The contents 

were filtered using a metallic filter of pore size 600 µm and transferred to a 50 ml falcon tube 

which was centrifuged at 200g for 2 min. 

 

Ice-cold Histopaque-1066 (10 ml) was mixed gently with the cell pellet and 5 ml of 1x HBSS 

(pre-warmed to 37C) was overlaid onto the Histopaque-1066. The cell gradient was centrifuged 

at 800g, for 15 min, 12C. The islets were recovered at the interphase (middle) layer and the 

islets were transferred to a 100 mm low-attachment culture dish on ice. The islets were washed in 

the petri-dish three times using cold 1x HBSS to dilute the residual histopaque. The islets were 

placed in complete RPMI-1640 medium and cultured overnight in a humidified incubator at 

37C, 5% CO2 until required. This overnight incubation allowed the islets to ‘rest and recover’ 

from the isolation process.  

 

2.9.2 Streptozotocin diabetes induction 

 

The 50 mg streptozotocin (STZ) vial was weighed prior to reconstitution as the exact 

concentration was found to vary between vials. STZ was reconstituted by aliquoting 2.5 ml of tri-

sodium citrate buffer pH 4.5 to the STZ vial and mixing. The concentration of STZ was 

calculated by dividing the STZ weight (mg) by 2.5 ml (the volume used to reconstitute the STZ). 

STZ has a half life of 15 min in suspension and was used within 10 min after reconstitution. 

NOD-SCID mice of a minimum weight range (>20 grams) received an intra peritoneal (i.p) 

injection of STZ at 180 mg/kg, unless otherwise stated. Mice were monitored daily for diabetes 

diagnosis (blood glucose mmol/l, weight and clinical scored). Mice received hydration via 500 µl 

sub cutaneous injections of saline as required. Mice with two consecutive readings of high blood 

glucose level (BGL) (≥20 mmol/l) were treated with sub cutaneous human insulin injection 

(Humilin®) (1U). Mice were considered diabetic following 2 blood glucose readings ≥16.6 

mmol/l (316, 317).  
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2.9.3 NOD-SCID kidney capsule islet transplant 

 

Diabetic NOD-SCID mice were anaesthetised with ketamine (100 mg/kg) and xylazine (6 mg/kg) 

via i.p injection and kept on a heat mat for the procedure. Eye ointment (Chloromycetin) was 

applied to the eyes to prevent drying out of the cornea, while under anaesthesia. Under aseptic 

conditions and in a pathogen free environment, the left side of the cost vertebral angle was 

cleaned with sterile gauze. A 1 centimeter (cm) incision was made to expose the kidney. 

 

With a sterile scalpel, a small nick was made in the kidney capsule and a glass rod was used to 

create a pocket for the islets. The kidney was covered with wet gauze during islet pellet 

preparation. Islets were prepared by gently spinning in a microcentrifuge at 100g for 1 min at RT. 

Islets were then collected using a sterile glass pasteur pipette and transferred to a gel-foam tip and 

then centrifuged at 200g for 3 min at RT. Excess media was removed and the tip was unplugged 

prior to insertion under the kidney capsule. Using an insulin syringe plunger, the islets were 

gently transferred under the kidney capsule. Islets were spread by gently rubbing them with the 

glass rod and the kidney was returned to its natural position and the muscle and skin was sutured. 

Pain relief (temgesic) (100 μg/ml) was administered via sub cutaneous injection for three days 

post transplantation.  

 

2.10 IMMUNOHISTOCHEMISTRY 

 

2.10.1 Islet cytospins 

 

Islets were harvested and resuspended in cytospin wash buffer (50-100 IEQ) in 100-200 µl. Glass 

slides were fastened into cytospin clips and the cell suspension was transferred to each cytospin 

funnel, avoiding bubbles. The slides were centrifuged at 400 rpm in a Shandon cytospin 5 and 

then fixed with 4% paraformaldehyde for 20 min. Excess paraformaldehyde was removed by 

washing with PBS, the slides were left to air dry (in fume hood) and were then stored at -80C 

until staining.  
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2.10.2 Paraffin embedding of human islet cell suspensions 

 

Human islets were harvested, resuspended in 1 ml of 10% buffered formalin and incubated for 10 

min, RT. The islets were then resuspended in 55 µL RPMI-1640. 300 µl of 1% agarose in PBS 

was then mixed with the islet preparation. The agarose islet ‘plug’ was set at 4°C for 30 min prior 

to paraffin embedding and sectioning by histopathology at the IMVS, Adelaide.  

 

2.10.3 Terminal deoxynucleotidyl transferase dUTP nick end labeling 

(TUNEL) 

Islet cytospins were removed from -80C storage and left to air dry prior to staining (see section 

2.10.1). TUNEL staining was performed according to manufacturer’s instructions. Briefly, slides 

were incubated in freshly prepared permeabilisation solution for 2 min on ice and then washed 

twice with PBS. TUNEL reaction mixture was prepared by removing 100 µl from the label 

solution and adding 50 µl of enzyme solution to the remaining label solution to obtain 500 µl. 

TUNEL reaction mixture (50 µl) was aliquoted onto each slide and the slides were incubated in a 

humidified atmosphere for 60 min at 37C in the dark. The slides were washed three times with 

PBS and then stained with ProLong Gold Antifade reagent with DAPI nuclear stain. 

2.10.4 Antigen retrieval 

Paraffin slides were melted at 60C for 2 x 15 min. The slides were deparaffinised and rehydrated 

as followed (xylene 3 changes 5 min each, 100% ethanol 3 changes 5 min each, 95% ethanol 5 

min, 70% ethanol 5 min, 50% ethanol 5 min, PBS 5 min). Approximately 500 ml of MilliQ water 

was heated in a pressure cooker for 9 min on high. The slides were placed inside a staining pot 

filled with sodium citrate buffer and transferred to the pressure cooker and heated for 20 min. The 

slides were incubated at RT for a further 20 min. The slides were washed twice in PBS for 5 min.  

2.10.5 Insulin staining of islets  

Slides were blocked with 3% goat serum in PBS for 30 min at RT. Slides were incubated with 

primary guinea-pig anti insulin (1:100 dilution) for 2 h at RT prior to washing with PBS for 5 

min. Primary antibody was detected with goat anti-guinea pig rhodamine IgG (1:100 dilution). 

Slides were incubated with secondary antibody for 1 h at RT. Slides were washed with PBS for 5 

min and then stained with ProLong Gold Antifade reagent with DAPI nuclear stain. 
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2.10.6 Fluorescent confocal microscopy of transduced islets 

Transduced islets were washed twice in PBS and then incubated with DAPI (5μg/ml) for 30 min 

at 37C. Islets were washed with PBS for 5 min prior to mounting with DAKO mounting 

medium. The islets were mounted on superfrost plus slides with a coverslip.         

2.11 STATISTICAL ANALYSIS 

Values were given as data ± standard error of the mean (SEM) and compared using Student-t test 

or one-way analysis of variance (1way ANOVA), followed by Bonferroni’s multiple comparison 

test, with *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001, where appropriate. Log-rank (Mantel 

Cox) analysis was used in the marginal islet mass model. For all comparisons, P≤0.05 was 

considered to be statistically significant (GraphPad Prism software 5, Inc, San Diego, CA). 

Densitometry of western blots was performed using ImageJ software (Rasband, W.S., ImageJ, U. 

S. National Institutes of Health, Bethesda, Maryland, USA).  
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2.12 SOLUTIONS AND BUFFERS 

DMEM Complete Media (500 ml) 

DMEM (High Glucose) 

10% FCS (50 ml) 

1% Penicillin/Gentamicin (5 ml) 

1% Glutamine (5 ml) 

1% non-essential amino acids (5 ml) 

 

DMEM Serum-free Media (500 ml) 

DMEM (High Glucose) 

1% Glutamine (5 ml) 

1% Penicillin/Gentamicin (5 ml) 

1% non-essential amino acids (5 ml) 

 

RPMI Complete Media (500 ml) 

RPMI-1640 450 ml 

10% FCS (50 ml) 

1% Glutamine (5 ml) 

1% Penicillin/Gentamicin (5 ml) 
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RPMI Serum-free Media (500 ml) 

RPMI-1640 450 ml 

1% Glutamine (5 ml) 

1% Penicillin/Gentamicin (5 ml) 

 

CMRL-1066 Complete Media (500 ml) 

CMRL media 450 ml 

Albumex 20 (25 ml) 

1% Glutamine (5 ml) 

1% Penicillin/Gentamicin (5 ml) 

 

CMRL-1066 Serum-free Media (500 ml) 

CMRL media 450 ml 

1% Glutamine (5 ml) 

1% Penicillin/Gentamicin (5 ml) 

 

50x TAE (100 ml) 

Trizma base, 193.8 g (1.6M) 

Sodium acetate, 65.6 g (800 mM) 

EDTA, 14.9 g (40.27 mM) 

pH to 7.2 

Agarose gel (60 ml) 

2% gel = 1.2g agarose
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6x Loading buffer 

50x TAE, 600 µl 

Glycerol, 5 ml (50%) 

Bromophenol blue, 2.4 ml (24%) 

H2O, 2.4 ml 

 

Western blot lysis buffer 

HEPES, 50 mM (pH 7.4) 

NaCl, 150 mM 

Triton-X 100, 1% 

Na3VO4, 1 mM 

NaF, 30 mM 

Na4P2O7, 10 mM 

EDTA, 10 mM 

 

Western blot blocking buffer 

1x TBS 

Tween-20 

5% w/v nonfat dairy milk
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FACS washing buffer (100 ml) 

2% FCS, 5 ml 

0.1% Sodium azide, 100 µl 

1x PBS, to 100 ml 

 

FACS lysing buffer (100 ml) 

10% FACS lysing solution, 10 ml 

Distilled H2O, to 100 ml 

 

Dithizone 

Dithizone, 0.1 g 

DMSO, 10 ml 

Albumex 20, 10 ml 

HEPES, 2 ml 

1 x HBSS, 78 ml 

Filter using 0.45 µm filter 

 

Low glucose RPMI for rat insulin release assay (2.8 mM) 

10% glucose, 250 µl 

Complete RPMI (glucose free), to 50 ml 

 

High glucose RPMI for rat insulin release assay (25 mM) 

10% glucose, 2 ml 

Complete RPMI (glucose free), to 50 ml
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Freezing medium 

FCS, 9 ml 

DMSO, 1 ml 

 

Xylazine/Ketamine injectable anestehetic  

Xylazine, 250 µl 

Ketamine, 500 µl 

Sterile Saline, to 5 ml 

 

Humilin®/Saline Buffer 

Sterile saline, 9 ml 

Humilin®, 30 units 

 

Cytospin wash buffer (500 ml) 

0.5% FCS, 2.5 ml 

1 x PBS, to 500 ml 

 

20% paraformaldehyde (to prepare 4% paraformaldehyde) 

Paraformaldehyde, 4 g 

1 x PBS, 20 ml 

10 M NaOH, 10 µl 

To prepare 4% paraformaldehyde, 2 ml of 20% paraformaldehyde was added to 8 ml 1 x PBS 
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1.0 M Citric Acid Buffer 

Citric acid, 10.5 g 

Sterile Baxter H2O, to 50 ml 

 

0.1 M tri-Sodium Citrate Buffer pH 4.5 

Tri-Sodium Citrate, 1.47 g 

Sterile Baxter H2O, to 50 ml 

Adjust to pH 4.5 using 1.0 M citric acid buffer 

 

1 M Citrate Buffer pH 6 

Tri-Sodium Citrate, 2.94 g 

MilliQ H2O, to 1000 ml 

Adjust to pH 6 using 1 M HCL 

 

TUNEL permeabilisation solution 

Tri-Sodium Citrate, 0.2 g 

Triton-X, 200 µl 

MilliQ H2O, to 200 ml 

 

Islet FACS wash 

Albumex 20, 25 ml 

1 x PBS (- calcium chloride and magnesium chloride), to 500 ml 
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Annexin V binding buffer 

10X Annexin V Binding Buffer, 50 ml 

Sterile MilliQ H2O, to 200 ml 

 

Propidium Iodide (PI) working stock 

PI stock (1mg/ml), 2.5 ml 

1 x PBS sterile, 7.5 ml 

 

7-AAD (1mg/ml) 

7-AAD powder, 1 mg 

1 x PBS, 1ml 

Use at 250 µg/ml 

0.01M PBS 

1 x PBS, 500 ml 

MillQ H2O, 500 ml 
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CHAPTER 3 

COMPARISON OF ADENOVIRAL AND ADENO-
ASSOCIATED VIRAL TRANSDUCTION OF HUMAN 
AND RODENT PANCREATIC ISLETS 
 
3.1 Introduction  
There are major obstacles that need to be overcome before islet transplantation can be considered 

the ‘gold standard’ treatment for type 1 diabetic (T1D) patients. For example, islets isolated from 

the pancreas are removed from their native vasculature and become rapidly hypoxic (318). In 

addition, the islet isolation process severs interactions between islets and macromolecules of the 

extracellular matrix (319). Biomolecular cues from the extracellular matrix are important for islet 

survival, proliferation and function and without these signals, isolated islets undergo apoptosis 

(320).  

 

Currently, the vulnerability of pancreatic islets to peri-transplant cell death, requires 

transplantation of high numbers of islets and multiple infusions to achieve insulin independence 

(94). In this regard, there is a need for an anti-apoptotic strategy to prevent loss of functional islet 

mass in the early post-transplant period (321). Specifically, ex vivo delivery of an anti-apoptotic 

molecule to pancreatic islets prior to transplantation may promote islet cell survival and improve 

insulin independence rates. Viral vectors offer the most effective means of gene delivery, as they 

can efficiently infect multiple cell types and tissues to express the required therapeutic gene 

(322). Non-viral vectors are less immunogenic compared to their viral vector counterparts, 

however they have the major limitation of inefficient cell transduction in vitro and in vivo (323, 

324). 

 

Gene therapy studies performed in isolated islets utilize four common viral vector types, namely 

Adenovirus (Ad), Adeno-Associated Virus (AAV), Herpes Simplex Virus and Retrovirus 

(includes Lentivirus) based vectors (157, 202, 325-327). Retroviral transduction is restricted to 

dividing cells (50), however lentiviral vectors can transduce non-dividing cells, such as islets.  
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Despite a number of published anti-apoptotic strategies, the optimal viral vector type for use in an 

islet gene therapy setting is unknown. Therefore, this chapter aims to identify the most effective 

vector type for this purpose. The optimal vector for use against any clinical indication must be 

selected on the basis of a number of criteria, such as the duration of transgene expression, the 

immune response elicited by the vector, the ability of the vector to transduce quiescent/dividing 

cells, the ease of vector production and vector safety/toxicity (328). 

 

Ad is a medium sized, icosahedral, non-enveloped virus that carries a linear, double stranded 36-

kilo base (kb) DNA genome (329). Ad-based vectors can be efficiently generated to produce high 

titer viral stocks, stably stored and transduce both diving and non-dividing cells (330), an 

important property when considering the transduction of senescent islet cells. In some therapeutic 

applications, the Ad capsid and viral DNA elicit potent immune responses (157, 331). However, 

this would be limited within an ex vivo islet transplant setting as any remaining virus would be 

washed off prior to transplantation. Ex vivo gene therapy offers an advantage over systemic 

administration of viral vectors, as it circumvents the toxic side effects that the latter can confer 

(332).  

 

AAV is a small virus with a non-enveloped icosahedral capsid of approximately 22 nm and a 4.5-

kb genome of single stranded DNA (116). AAV-based vectors are generally considered a ‘safe’ 

vector type (333), as despite the high seroprevalence of AAV2 (80%) in the human population 

the virus has not been linked to any human illness (116, 334). In addition, AAV integrates into 

the host cell genome at a specific location on chromosome 19, significantly decreasing the 

likelihood of insertional mutagenesis (335). 

 

The viral genome of both Ad and AAV based vectors is packaged within a protein coat called the 

capsid. The capsid contains viral proteins that enable the virus to attach to host cells and aid entry 

into cells. Specific viral receptors on the cell surface are involved in defining the host range and 

tropism of a virus (132). Secondary interactions of the viral capsid with co-receptors dictate the 

intracellular trafficking pathway and biological fate of the virus. It is this stage of the infectious 

pathway (and eventually transduction efficiency) that is most significantly influenced by the 

choice of vector (336).
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Ad entry into host cells is mediated via attachment to Coxsackie Adenovirus Receptor (CAR) 

with the knob domain of the Ad viral fiber (337), followed by secondary interactions between 

viral capsid proteins and αv integrin internalization receptors (αvβ3, αvβ5 and αvβ1) (338). 

Various studies have shown the presence of CAR on human islets, porcine islets and islet 

endothelial cells (339-341). Regarding AAV, each serotype exhibits unique cell/tissue tropism 

and therefore unique transduction efficiency (342), determined by each serotypes preference for 

different receptors (343). This is made even more complex by the fact that not all AAV receptors 

are currently known for each serotype.  

 

AAV serotypes 4 and 5 utilize sialic acid with different linkage specificities (α-2,3-O-linked and 

α-2,3-N-linked, respectively) for cell surface binding and transduction (344, 345). The platelet 

derived growth factor receptor is a coreceptor for AAV5 (346). α-2,3 and α-2,6-N-linked sialic 

acid facilitates binding and transduction by AAV1 and AAV6 (347). As such, AAV6 effectively 

transduce airway epithelial cells (348). The 37/67-kDa laminin receptor (lamR) is a cellular 

receptor for AAV8 and AAV9 (349, 350). AAV3 uses hepatocyte growth factor receptor as a co-

receptor for viral entry (351). AAV2 utilize heparan sulphate proteoglycan (HSPG) as a primary 

receptor, in addition to subsequent interactions with αvβ5/α5β1 integrins and/or human fibroblast 

growth factor receptor 1 (132, 134, 352, 353).  

 

Several approaches have been trialed to target AAV vectors for transduction of specific cell types 

or to increase the range of cells that are amenable to transduction by AAV. Some strategies 

include utilizing natural serotypes that target a desired cell receptor, producing pseudotyped 

vectors, and engineering chimeric or mosaic AAV capsids (342). This chapter investigated the 

use of two pseudotype AAV vectors that accommodate capsid proteins from AAV1 and AAV8 

viral serotypes, termed AAV2/1 and AAV2/8, respectively. 

 

Tyrosine to phenylalanine mutations on the surface of AAV capsids has been reported to enhance 

transduction efficiency in vitro and in vivo (354). Phosphorylation of tyrosine residues on AAV2 

capsids following viral entry negatively affects viral intracellular trafficking and transduction 

efficiency in vivo. Tyrosine phosphorylation targets the cells for proteasomal mediated 

degradation (355), via a pathway likely to serve as an antiviral mechanism (356).  
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This chapter examines the ability of Ad and AAV based vectors expressing a green fluorescent 

protein (GFP) reporter gene to transduce isolated human and rat pancreatic islets with the primary 

aim to determine the optimal vector for islet transduction. The consequence of Ad or AAV 

transduction on islet viability and function was determined for each vector type and was 

subsequently shown to be unaffected by exposure to either virus type. Given the varied tropism 

reported with AAV, it was of interest to investigate the islet transduction efficiency of a panel of 

six AAV vector types, with specific interest placed on pseudotype AAV vectors and tyrosine 

mutant AAV-based vector types, which the latter, to our knowledge remain unexplored in human 

and rodent pancreatic islets. Ad and AAV transduced human and rat pancreatic islets with 

varying levels of efficiency. In this study, tyrosine mutation on the AAV capsid did not enhance 

AAV-mediated transduction of pancreactic islets. In addition, AAV failed to effectively 

transduce isolated human islets and showed a varied ability to transduce rat islets. The results in 

this chapter demonstrate that Ad vectors are more efficient at transducing isolated islets than 

AAV-based vector types.  
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3.2 Results 

3.2.1 Ad-GFP transduction induces GFP expression in rat islets 

The ability of Ad-GFP to transduce isolated rat islets was assessed using fluorescence 

microscopy and flow cytometry to detect GFP expression. Rat islets were transduced with Ad-

GFP at multiplicity of infection (MOI) 10, 100, 200, 1000, 2000, 5000 and 10000 for 48 h. Under 

a fluorescent microscope, untransduced islets were used to establish the specificity of 

transduction and any background fluorescence. Representative images showing the pattern of 

GFP positive (green) islet cells following transduction are shown in Figure 3.2.1(A). GFP 

expression was increased in islets transduced with increasing MOI. 

Using flow cytometry, untransduced islet cells were used to define background (negative) and 

transduced cells were gated corresponding to their expression of GFP (positive). Transduction of 

rat islets at MOI 10, led to 17.8 ± 3.3% of cells transduced. There was no difference in the 

transduction efficiency of Ad-GFP at MOI 100 or MOI 200 with 36.2 ± 6.7% and 36.2 ± 8.5% of 

rat islet cells transduced, respectively. Transduction with MOI 1000 or MOI 2000 resulted in 

47.3 ± 7.8% and 48.4 ± 10.7% rat islet cells transduced. Ad-GFP transduction with the two 

highest MOIs (5000 and 10000) led to 51.9 ± 4.3% and 50 ± 8.8% of rat islets transduced 

(Figure 3.2.1(B)).  

3.2.2 Ad-GFP transduction does not affect rat islet viability or function 

Rat pancreatic islets were transduced with Ad-GFP at MOI 10, 100, 200, 1000, 2000, 5000 and 

10000 or untransduced for 48 h to investigate the effects of Ad transduction on rat islet viability 

and function. Rat islet viability was not adversely affected compared to untransduced control 

islets following Ad-GFP transduction at all tested MOI (Figure 3.2.2(A)).  

Based on the above experiment, MOI 1000 was chosen as the optimal MOI for use in future Ad-

GFP characterisation experiments. Ad-GFP transduction of rat islets (MOI 1000) did not 

adversely affect the insulin secretory function of Ad-GFP transduced rat islets (5.2 ± 1.5) 

compared to untransduced control islets (4.3 ± 1.5), as measured by stimulation index (SI) 

(Figure 3.2.2(B)). The SI of islets was measured by dividing the islets insulin response to high 

glucose by the islets insulin response to low glucose. 
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Figure 3.2.1. Ad-GFP transduction of rat islets. Rat islets were transduced with Ad-GFP at MOI 

10, 100, 200, 1000, 2000, 5000 and 10000 or untransduced for 48 h. (A) Fluoresence microscopy 

was used to determine GFP positive (green) islet cells following Ad-GFP transduction. 

Representative images were taken at 10 x magnification, scale bar = 50 µm. (B) Transduced islets 

were dissociated and analysed for GFP expression using flow cytometry. Percent GFP expression 

was determined by three replicate experiments and expressed as mean ± SEM, p≤0.0001 (1way 

ANOVA). 
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Figure 3.2.2. Characterisation of transduced rat islets in vitro. Rat islets were transduced 

with Ad-GFP at MOI 10, 100, 200, 1000, 2000, 5000, 10000 or untransduced for 48 h. (A) 

Transduced islet cells were dissociated and islet viability was assessed by 7-AAD staining 

using flow cytometry. Data was determined by two independent experiments and 

expressed as the mean ± SEM. (B) Rat islets were transduced with Ad-GFP (MOI 1000) 

for 48 h and stimulated to release insulin by exposure to high (25 mM) or low (2.8 mM) 

concentrations of glucose. Insulin ELISA was used to determine the SI in experimental 

samples. SI was determined by four replicate experiments and expressed as mean ± SEM.  
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3.2.3 GFP expression is localized to the perimeter in Ad-GFP transduced islets 

To determine the pattern of GFP reporter gene expression in Ad-GFP transduced rat islets, 

isolated islets were transduced at MOI 1000 for 48 h. Using fluoresence confocal microscopy,  

positive GFP expression was localized to cells that were located at the islet periphery and no GFP 

positive cells were observed within the central core of the islet (Figure 3.2.3).  

3.2.4 Ad-GFP transduction induces GFP expression in human islets 

The ability of Ad-GFP to transduce isolated human islets was assessed by fluorescence 

microscopy. Human islets were transduced with Ad-GFP at MOI 10, 100, 200, 1000, 2000, 5000 

and 10000 for 48 h. Representative images showing the pattern of GFP positive (green) islet cells 

following transduction are shown in Figure 3.2.4(A). Transduction of human islets at MOI 10 

and MOI 100 led to 42.4 % ± 2.9 and 46.4 % ± 3.2 of human islet cells transduced, respectively. 

Transduction with either MOI 200 or MOI 1000 resulted in 52.4 ± 2.5 % and 71.5 ± 3.3 % human 

islet cells transduced, respectively. Ad-GFP transduction with MOI 5000 and 10000 reached a 

plateau of  72.2 ±  2.4 % and 70.3 ± 2.3 % human islet cells transduced, respectively (Figure 

3.2.4(B)). 

3.2.5 Ad-GFP transduction does not affect human islet viability  

Human pancreatic islets were transduced with Ad-GFP at MOI 10, 100, 200, 1000, 5000 and 

10000 or untransduced for 48 h to investigate the effects of Ad transduction on human islet 

viability. Human islet viability was not adversely affected following Ad-GFP transduction at any 

tested MOI (Figure 3.2.5). 
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Figure 3.2.3. Pattern of Ad-GFP expression in transduced rat pancreatic islets. Rat islets were 

transduced with Ad-GFP at MOI 1000 for 48 h. (A) Fluoresence confocal image taken at fixed 

intervals along the z-axis of a Ad-GFP transduced islet, (B) Z-stack fluoresence confocal image 

of a DAPI (blue) stained islet, (C) Z-stack fluoresence confocal image showing GFP positive 

expression and (D) Z-stack fluoresence confocal image showing merge DAPI and GFP 

expression (23 sections). Images were taken at 60 x magnification, Scale bar = 50µm.
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Figure 3.2.4. Ad-GFP transduction of human islets. Human islets were transduced with Ad-GFP 

at MOI 10, 100, 200, 1000, 2000, 5000 and 10000 or untransduced for 48 h. (A) Fluorescence 

microscopy was used to determine GFP positive (green) islet cells following Ad-GFP 

transduction. Representative images were taken at 4 x magnification, scale bar = 300 µm. (B) 

Transduced islets were dissociated and analysed for GFP expression using flow cytometry. 

Percent GFP expression was determined by two replicate experiments and expressed as mean ± 

SEM.
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Figure 3.2.5. Viability of transduced human islets in vitro. Human Islets were transduced with 

Ad-GFP at MOI 10, 100, 200, 1000, 2000, 5000 and 10000 or untransduced for 48 h. Transduced 

islet cells were dissociated and islet viability was assessed by 7-AAD staining using flow 

cytometry. Data was determined by two independent experiments and expressed as the mean ± 

SEM. 
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3.2.6 GFP expression profile of AAV-GFP transduced rat pancreatic islets 

Isolated rat islets were transduced with AAV2, AAV2/1, AAV2/8, AAV8mutY733F, 

AAV2muttriple or AAV2mutY444F vector types for five days. This preliminary experiment was 

performed to investigate the ability of AAV to transduce rat islets. Therefore, rat islets were 

transduced with the highest possible dose of each AAV vector (at varying titers). 

Each AAV vector transduced rat islets with varying efficiencies (Figure 3.2.6(A)). AAV2/1, 

AAV2/8 and AAV8mutY733F transduced islets displayed positive GFP reporter gene expression 

at the earliest time point of 48 h. Subsequently, this GFP expression increased in AAV2/1, 

AAV2/8 and AAV8mutY733F transduced islets at 72 and 96 h. There was no positive GFP 

expression observed in AAV2, AAV2muttriple or AAV2mutY444F transduced islets at 48 h and 

GFP expression did not substantially increase over the transduction period.  

At the conclusion of the experiment many of the islets in culture had become fragmented and 

possessed darkened, necrotic centres. This was particularly evident with AAV8mutY733F 

transduced islets (one of the highest titered vectors, 1.36 x 1013 vector genomes (vg)/ml) (Figure 

3.2.6(B)), suggesting that the vectors are toxic to rat islets when used at high dosages.
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Figure 3.2.6. GFP expression and viability of AAV transduced rat pancreatic islets. Rat Islets 

were transduced with AAV2, AAV2/1, AAV2/8, AAV8mutY733F, AAV2muttriple and 

AAV2mutY444F for 96 h. (A) The vector type and viral dose used in transduction experiments is 

included on the left hand side of the fluorescent images. Representative images were taken at 10 

x magnification. (B) Transduced islets were visualised under a light microscope to determine islet 

morphology following transduction. Representative image of AAV8mutY733F transduced islets 

was taken at 10 x magnification. 
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3.2.7 GFP expression profile of AAV-GFP transduced rat islets with vector 

dose 6.25x108, 1.25x109, 2.5x109 and 5x109 vg  

Due to the varied ability of AAV2, AAV2/1, AAV2/8, AAV8mutY733F, AAV2muttriple and 

AAV2mutY444F vectors to transduce isolated rat islets and the adverse toxic effects to the 

transduced islets as a result of the high vector dose used for transduction (see figure 3.2.6), rat 

islets were transduced with AAV vectors at four lower doses (6.25x108, 1.25x109, 2.5x109 and 

5x109 vg total/well). Vector genomes (vg) represent the total number of viral particles (live and 

dead combined) in a viral preparation. Therefore, the vg number does not represent the amount of 

active virus in the preparation. Based on this, viral dose is often described using particle forming 

units (pfu)/ml as it reflects the amount of working virus in the preparation. The vg:pfu ratio is 

often 50:1 (Vector Biolabs, www.vectorbiolabs.com/vbs/faq-product.htm) therefore based on this 

the four lower vector doses equate to MOI 1000, 500, 250 and 125, respectively.  

Fluoresence resulting from GFP reporter gene expression in transduced rat islets was evaluated 

by flow cytometry to determine transduction efficiency. Rat islet transduction with AAV vectors 

resulted in dose-dependent GFP expression (Figure 3.2.7). AAV2/1 was the most efficient vector 

at transducing rat islets as it led to 10.4 ± 1.3% of rat islet cells transduced at the highest vector 

dose of 5x109 vg. Furthermore, AAV2/1 provided 1.6- and 3.6-fold higher transduction of rat 

islet cells compared to AAV2 (4.5 ± 0.4%) and AAV2/8 (3.02 ± 0.9%) at the highest vector dose 

of 5x109 vg, respectively. Surprisingly, all AAV mutants (AAV8mutY733F, AAV2muttriple and 

AAV2mutY444F) displayed minimal transduction of islets (1 ± 0.4%, 0.7 ± 0.1% and 0.7 ± 

0.08%, respecitvely), with 5 – 15 fold lower transduction compared to AAV2/1 even at the 

highest vector dose of 5x109 vg. 
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Figure 3.2.7. GFP expression following AAV-GFP transduction of rat islets. Rat islets were 

transduced with AAV2, AAV2/1, AAV2/8, AAV8mutY733F, AAV2muttriple and 

AAV2mutY444F at 6.25x108, 1.25x109, 2.5x109 and 5x109 vg or untransduced for 48 h. Specific 

vector types are listed in the margin on the right hand side of the graph. Transduced islets were 

dissociated and analysed for GFP expression using flow cytometry. Percent GFP expression was 

determined by three replicate experiments and expressed as mean ± SEM, p≤0.0001 (1way 

ANOVA). Bonferroni Post-Test: *p≤0.05 or ***p≤0.001 compared to untransduced control 

islets.  
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3.2.8 AAV-GFP based vectors transduce rat islets with various levels of 

efficiency 

The ability of AAV-GFP based vectors to transduce isolated rat islets at 5x109 vg,  was 

determined by transducing rat islets with AAV2, AAV2/1, AAV2/8, AAV8mutY733F, 

AAV2muttriple or AAV2mutY444F and assessed by fluorescence microscopy. A vector dose of 

5x109 vg was chosen based on the fact that it correlates to a MOI of 1000 which allows it to be 

directly compared with the previous Ad-GFP characterisation experiments.  

Representative images showing the pattern of GFP positive (green) islet cells following 

transduction are shown in Figure 3.2.8. AAV2, AAV2/1 and AAV2/8 provided the best 

transduction of rat islets, as all islets within the culture were transduced (Figure 3.2.8(B-D)). 

AAV8mutY733F showed minimal transduction of isolated rat islets and AAV2muttriple and 

AAV2mutY444F showed a very modest ability to transduce rat islets (Figure 3.2.8(E-G)), as 

reflected by the flow cytometric data (See Figure 3.2.7) 

3.2.9 GFP expression is localized to the islet perimeter in AAV2/1 transduced 

rat islets 

To determine the pattern of GFP reporter gene expression in AAV2/1 transduced rat islets, 

isolated islets were transduced at 6.25x108, 1.25x109, 2.5x109 and 5x109 vg or untransduced for 

72 h. As found with Ad transduction (See Figure 3.2.2), positive GFP expression was localized 

only to the periphery cells of the islet and no GFP positive cells were observed within the central 

core of the islet (Figure 3.2.9).  

3.2.10 AAV-GFP transduction does not affect viability or glucose stimulated 

insulin secretion of rat islets  

Rat pancreatic islets were transduced with AAV2, AAV2/1, AAV2/8, AAV8mutY733F, 

AAV2muttriple and AAV2mutY444F or untransduced for 72 h to investigate the effect of AAV 

transduction on islet viability and function. Rat islet viability was not adversely affected 

following transduction with any of the AAV vector types, compared to untransduced islet 

controls (Figure 3.2.10). 
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Figure 3.2.8. GFP Expression in AAV-GFP transduced rat pancreatic islets. Rat islets were (A) 

untransduced or (B-G) transduced with AAV2, AAV2/1, AAV2/8, AAV8mutY733F, 

AAV2muttriple and AAV2mutY444F at 5x109 vg for 72 h. Fluorescence microscopy was used to 

determine GFP positive (green) islet cells following transduction. Representative images were 

taken at 4 x magnification.   

 

A: UNTRANSDUCED 

B: AAV2 C: AAV2/1 D: AAV2/8 

E: AAV8mutY733F F: AAV2muttriple G: AAV2mutY444F 
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3.2.9. Pattern of AAV2/1 GFP expression in transduced rat pancreatic islets. Rat islets were (A) 

untransduced or transduced with AAV2/1 at 6.25x108 (36 sections, 0-42 µm) 1.25x109 (34 

sections, 0-32 µm) 2.5x109 (26 sections, 0-28 µm) and 5x109 (32 sections 0-32 µm) vg total/well 

(B-E) for 72 h. Z-stack fluorescent confocal images show merge DAPI (blue) and GFP 

expression (green). Images were taken at 40 x magnification. 

 

A: UNTRANSDUCED 

B: AAV2/1 5x109 vg/ml C: AAV2/1 2.5x109 vg/ml 

D: AAV2/1 1.25x109 vg/ml E: AAV2/1 6.25x108 vg/ml 
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Figure 3.2.10. Characterisation of AAV transduced rat islets in vitro. A. Rat islets were 

transduced with AAV2, AAV2/1, AAV2/8, AAV8mutY733F, AAV2muttriple and 

AAV2mutY444F at 5x109 vg or untransduced for 72 h. Transduced cells were dissociated and 

islet viability by 7-AAD staining using flow cytometry. Data was determined by three 

independent experiments and expressed as the mean ± SEM. 
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3.2.11 AAV-GFP based vectors failed to transduce isolated human islets 

The ability of AAV-GFP based vectors to transduce isolated human islets at 5x109 vg,  was 

determined by transducing human islets with AAV2, AAV2/1, AAV2/8, AAV8mutY733F, 

AAV2muttriple and AAV2mutY444F. The transduction efficiency of each vector type was 

assessed by fluorescence microscopy. GFP expression was not observed in human islets 

transduced with any of the six AAV vector types, indicating that all vector types failed to 

effectively transduce human islets (Figure 3.2.11).   

3.2.12 GFP expression profile of AAV-GFP transduced human islets 

Human islets were transduced with AAV2, AAV2/1, AAV2/8, AAV8mutY733F, 

AAV2muttriple or AAV2mutY444F at 5x109 vg for 72 h. Fluoresence resulting from GFP 

reporter gene expression in transduced human islets was evaluated by flow cytometry to 

determine transduction efficiency (Figure 3.2.12). Transduction of human islets with all AAV 

vector types resulted in very weak GFP expression, which was only slightly increased compared 

to the background GFP expression in untransduced control islets (0.4 ± 0.2%). AAV2, AAV2/1 

and AAV2/8 transduction resulted in 3.3 ± 0.9%, 1.2 ± 0.2% and 0.9 ± 0.3% of GFP positive 

human islet cells, respectively. The three mutant vectors (AAV8mutY733F, AAV2muttriple and 

AAV2mutY444F) failed to transduce human pancreatic islets. 

3.2.13 GFP expression profile of AAV-GFP transduced HEK 293 cells 

To determine if the low transduction efficiency seen in rat and human islets with the three mutant 

vectors was specific to isolated islets, the transduction efficiency of AAV was investigated in 

another cell type. Human Embryonic Kidney (HEK) 293 cells were transduced with AAV2, 

AAV2mutY444F and AAV2muttriple vector types for 24 h. AAV2 transduced 10.2% of HEK 

293 cells. GFP expression was markedly increased in HEK 293 cells transduced with both 

AAV2muttriple and AAV2mutY444F (20.5% and 97%) positive GFP expressing cells, 

respectively (Figure 3.2.13).  
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3.2.11. GFP expression in AAV-GFP transduced human pancreatic islets. Human islets were (A) 

untransduced or transduced with AAV2, AAV2/1, AAV2/8, AAV8mutY733F, AAV2muttriple 

and AAV2mutY444F at 5x109 vg (B-G) 72 h. Fluorescence microscopy was used to determine 

GFP positive (green) islet cells following AAV transduction for 72 h. Representative images 

were taken at 4x magnification. 

 

 

A: UNTRANSDUCED AAV2/1 AAV2/8 

E: AAV8mutY733F F: AAV2muttriple G: AAV2mutY444F 

B: AAV2 C: AAV2/1 D: AAV2/8 
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3.2.12. GFP expression following AAV-GFP transduction of human islets. Human islets were 

transduced with AAV2, AAV2/1, AAV2/8, AAV8mutY733F, AAV2muttriple or 

AAV2mutY444F at 5x109 vg or untransduced for 72 h. Transduced islets were dissociated and 

analyzed for GFP expression using flow cytometry. Specific vector types are listed above the 

histograms. Histograms represent the number of cells plotted against the cellular GFP expression 

of transduced human islets. Data was determined by three replicate experiments and expressed as 

mean ± SEM.  

 

 

 

AAV2 (3.3 ± 0.9%) AAV2/1 (1.2 ± 0.3%) AAV2/8 (0.9 ± 0.3%) 

AAV8mutY733F (0.8 ± 0.4%) AAV2muttriple (0.4 ± 0.1%) AAV2mutY444F (0.6 ± 0.2%) 

UNTRANSDUCED (0.4 ± 0.2%) 
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3.2.13. GFP expression following AAV-GFP transduction of HEK 293 cells. HEK 293 cells were 

(A) untransduced or  transduced with AAV2, AAV2muttriple, AAV2mutY444F with 5x109 vg 

(B-D) for 24 h. HEK 293 cells were harvested and analysed for GFP expression using flow 

cytometry. Histograms represent the number of cells plotted against the cellular GFP expression. 

Specific vector types are listed above the histograms. Percent GFP expression is shown in 

brackets above the histogram. 
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A: Untransduced (0.4%) B: AAV2 (10.2%) 

C: AAV2muttriple (20.5%) D: AAV2mutY444F (97%) 
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3.2.14 Immunohistochemical staining for heparan sulphate proteoglycan and 

integrin αvβ5 in human pancreatic islets 

The stability of receptor compositions on human islets are not necessarily stable following the 

enzymatic isolation of islets. To investigate if the stripping of cellular receptors on human islets 

was responsible for the poor transduction efficiency of AAV, immunohistochemical staining for 

two AAV cellular receptors, Heparan Sulphate Proteoglycan (HSPG) and integrin αvβ5 was 

performed. HSPG and integrin αvβ5 were highly expressed within native pancreatic tissue. In 

comparison, the expression of the cellular receptors was reduced following islet isolation and did 

not increase during the remaining culture period (Figure 3.2.14). 
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Figure 3.2.14 Heparan sulfate proteoglycan and integrin αvβ5 staining of human pancreatic 

islets. Native human pancreatic tissue was fixed with 10% buffered formalin prior to 

histochemical processing. Human pancreatic islets were cultured one or three days following 

isolation and then paraffin embedded prior to histochemical processing. Representative 

fluorescence confocal images, showing herparan sulphate proteoglycan staining, and integrin 

αvβ5 staining. Images were taken at 40 or 60 x magnification as indicated, scale bar = 50 µm. 
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3.3 Discussion 

In this study, the efficiency and functional consequences of Ad- and AAV-based vector 

transduction of rat and human pancreatic islets was investigated in vitro. Firstly, Ad efficiently 

transduced both rat and human pancreatic islets without affecting islet viability or function, but 

there were slight differences in the transduction efficiency between species. For example, Ad 

transduced 50 ± 8.8% of rat islet cells and 70.3 ± 2.3% of human islet cells at the highest vector 

dose of multiplicity of infection (MOI 10000). It is also interesting to note that Ad transduction 

with high viral MOI (i.e. 5000 and 10000) appeared to reach a saturation threshold where all 

available islet cells were transduced, and there was an inability of both Ad and AAV viral vectors 

to transduce the inner β-cell rich core of rat islets. This finding is also supported by various other 

literature studies (113, 114, 117, 135, 357, 358). The three dimensional structure of intact islets 

(50-500 μm) in diameter and the islet basement membrane can make vector access to the islet 

core difficult (359). 

To improve transduction of the islet core, Lefebvre and colleagues (359) briefly distended the 

islet membrane with Accutase. Islet distension enhanced the siRNA transduction efficiency of 

human and mouse islets without compromising in vitro function. A potential issue that exists 

with this method is the use of Accutase which through its enzymatic activity can strip cell surface 

receptors (360), including those required for viral uptake and subsequent gene expression. 

Another approach to improve transduction efficiency is to increase the viral MOI per cell,  

however increased viral load can be toxic to the islets (361). Emamaullee and colleagues (209) 

have shown that transduction of islets less than 1 hour after isolation (while the microcapillary 

network is still intact) allows for improved Ad transduction efficiency (95%) at low MOI (MOI 

10).  

In this study, AAV transduction efficiency was reduced in rat and human pancreatic islets, 

compared to Ad, and AAV exhibited a slower onset of GFP gene expression (72 hours versus 48 

hours with Ad-GFP). Late onset gene expression is characteristic of single-stranded AAV vectors 

and is a result of the need to convert the single stranded DNA vector genome into double 

stranded DNA prior to transgene expression (362). Prolonged human islet culture leads to a 

decrease in islet function and induces islet cell death (363, 364), based on this, double stranded 

AAV vectors were used in this study as they provide significantly faster gene expression (3 days) 

versus the reported 5 – 7 days in single stranded DNA vectors (323, 365). 
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Zhang and colleagues (366) have shown that wild type AAV2 transduced human islets more 

efficiently than murine islets, while AAV2/1 transduced murine islets more efficiently than 

human islets. In this chapter, AAV2/1 transduced rat islets more efficiently then human islets. 

Others (367) have reported that rat islets can be efficiently transduced with AAV2/5 (9% 

transduction), but less efficiently with AAV2/2 and AAV2/8 at MOI 1500. While AAV5, which 

utilises α-2,3-N-linked sialic acid as a receptor was not tested in this study, it was shown that 

AAV2/2 did not transduce rat islets as efficiently as AAV2/1, and that AAV2/8 was even less 

efficient. When Rehman (368) compared AAV2 vectors pseudotyped with serotype capsids of 1, 

2, 5, 6, 7, 8 in human islets, AAV 2, 6 and 8 transduced human islets more efficiently than the 

other serotypes. AAV2 transduced both murine and human islets (>40% GFP), although a very 

high MOI of 10000 was required. However the consequence of a MOI this high would have to be 

thoroughly investigated prior to the implementation of AAV in a clinical islet transplant setting. 

 

An unexpected finding of this study was the limited transduction of human islets by AAV. This 

may be due to the loss or ‘stripping’ of viral receptors during the isolation process, which uses a 

more aggressive enzymatic digestion protocol than that required to dislodge rodent islets from 

their native environment. The 37/67-kDa lamR has been identified as a cellular receptor for 

AAV8 and AAV9 (349, 350). Laminin is present in the islet extracellular matrix (369-374), and 

although we did not stain for laminin, the enzyme mediated stripping of laminin during islet 

isolation may be a likely explanation why low transduction was seen in this study using an 

AAV2/8 vector. AAV2 utilize heparan sulfate proteoglycan (HSPG) as a primary receptor, in 

addition to subsequent interactions with αvβ5/α5β1 integrins. Summerford et al (132) have 

reported that the presence of HSPG on the cell surface directly correlates with the efficiency by 

which AAV can infect cells. The receptor composition of isolated islet cells is not necessarily 

stable, as integrin expression has been observed to decrease in culture (375), but integrin 

expression can be up regulated in the presence of certain extracellular matrix proteins (376). 

Human islet cells express integrins α3, α5, α6, αv, β1, β3 and β5 integrin components which co-

localize closely with insulin immunoreactivity within the islet (373, 375, 377, 378). However, the 

expression of these integrins on islets is reduced after isolation (373, 375). It may be possible to 

intervene to improve the transduction efficiency of AAV by a strategy that seeks to re-establish 

the islet-extracellular matrix relationship and enhance the turn over rate of the stripped viral 

receptors (375). 
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It is interesting to note that unlike AAV, the Ad vector efficiently transduced human islets. The 

Coxsackie and Adenovirus Receptor (CAR) is a cell adhesion molecule that acts as a cellular 

receptor for all Ad serotypes, in addition to integrin co-receptors which are required for Ad 

internalization. Thus, it is possible that the internalization of Ad may have occurred via a 

secondary pathway, the cellular machinery for which is not removed during the islet isolation 

process. This is supported by Bai and colleagues (379) who have demonstrated the existence of 

an integrin-independent pathway of Ad internalization. 

 

Currently, the need for large quantities of vector for clinical applications is the primary 

disadvantage to the utilisation of AAV. Therefore, selective mutation of AAV surface-exposed 

tyrosine residues is a novel strategy to enhance AAV infectivity and reduce the vector dose 

required (380). As discussed previously, phosphorylation of AAV capsid proteins at tyrosine 

residues targets the virus for ubiquitination and subsequent proteasomal-mediated degradation. 

This significantly affects the total amount of virus that can traffic to the nucleus and subsequently 

limits transgene expression. Several studies (381-385) have shown that proteasome inhibitors 

enhance transduction by AAV2, AAV5, AAV7, and AAV8 vectors. Higher transduction 

efficiency has been extensively reported in skeletal muscle, retina, lung and liver (320, 380, 386-

388) when transduced with tyrosine mutant AAV compared to a wild type AAV2 vector.  

Moreover, Markusic et al (389) have shown 3-fold higher in vitro gene transfer to murine 

hepatocytes using an AAVmuttriple vector, compared to single-mutant vectors and 30 – 80 fold 

higher transduction, compared to wild type AAV2 capsids. However, in this chapter the tyrosine 

mutant vectors AAV8mutY733F, AAV2muttriple and AAV2mutY444F failed to effectively 

transduce rat or human pancreatic islets. AAV2mutY444F transduction of HEK 293 cells led to 

2-fold increased transduction efficiency compared to AAV2 wild type vector. When HEK 293 

cells were transduced with AAV2muttriple the percentage of transduced cells increased 9.5 fold, 

indicating that the inability of AAV mutant vectors in this study to transduce islets is an islet 

specific phenonomen, as the HEK 293 cell line was not resistant to AAV transduction. 
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While the enhanced transduction efficiency reported to occur with tyrosine mutant vectors is a 

promising step forward in the generation of clinically relvant AAV vectors, the tyrosine mutant 

vectors have not demonstrated enhanced efficacy in all tissue and cell types. For example, 

proteasome inhibitors enhanced AAV2 mediated transduction of mouse lung and liver, but did 

not improve transduction efficiency in skeletal or cardiac muscle (381). A more recent study has 

shown that proteasome inhibitors can increase AAV7 and AAV8 transduction of vascular 

endothelial cells, but have no effect on smooth muscle cells. In similar in vitro studies, 

proteasome inhibitors increased the transduction efficiency of AAV2 and AAV5 in human 

polarized airway epithelia. However, transduction by these vectors was limited on the basolateral 

side (385). The varied transduction efficiency of AAV mutant vectors may be linked to the 

differences in the intracellular milieu or viral intracellular trafficking pathways that exist in 

different cell and tissue types, however further studies are required to delineate the precise 

mechanisms controlling this phenonomen.  

 

The results in this chapter demonstrate that Ad vectors are far more efficient at transducing rat 

and human pancreatic islets than AAV-based vectors. In addition, AAV vectors containing either 

single or triple tyrosine mutations were insufficient to enhance gene delivery to the islets. A 

recent study has shown that the mutation of three tyrosine residues on the AAV2 capsid to non-

phosphorylated phenylalanine residues (AAV2muttriple) enhances vector transduction efficiency 

in ganglion cells of the eye by >30-fold, however an increase in the number of tyrosine residues 

(up to six) did not further enhance transduction efficiency (387). Others (354) have described an 

inability of single tyrosine mutant AAV8 and AAV9 vectors to enhance gene delivery to skeletal 

muscle and heart. A potential reason for the low transduction efficiency of AAV mutant vectors 

may be due to an altered receptor affinity for viral binding. This is supported by Petrs-Silva et al 

(387) who have shown that tyrosine residues such as 700, 704 and 730 are located close to a 

positively charged patch of amino acids, which comprise the heparan sulphate-binding region on 

the AAV2 capsid surface, and subsequently alters the ability of AAV2 to interact with its primary 

receptor.  



 106 

The subsequent data in this chapter identified that AAV-based vectors display differing 

transduction efficiencies in different cell and tissue types, a finding which is in support of the 

previously published AAV literature. A major finding of this chapter is that the aggressive 

enzymation isolation of human islets may lead to stripping of the cell surface receptors required 

for efficient AAV vector uptake. However, this is speculative and warrants further investigation, 

utilizing an increased repertoire of AAV serotype and extracellular matrix markers. This 

information may provide clues regarding the optimal matrix proteins to re-establish the islet-

matrix relationship and thereby enhance AAV transduction efficiency. Until such studies are 

undertaken, Ad vectors currently represent the optimal vector choice for use in an islet gene 

therapy setting. Therefore, an Ad vector containing the anti-apoptotic gene, Insulin-like Growth 

Factor-II (IGF-II) was characterised in Chapter 4.  
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CHAPTER 4 

CHARACTERISATION OF AN ADENOVIRAL BASED 

VECTOR ENCODING HUMAN INSULIN-LIKE 

GROWTH FACTOR II 

4.1 Introduction 

The transition of islet transplantation from its experimental research beginning to current clinical 

practice for patients with brittle Type 1 Diabetes (T1D) and hypoglycaemia unawareness is 

gaining acceptance worldwide, with over 750 islet transplants performed to date. However, 

current limitations of islet transplantation include scarcity of donor tissue, partially effective islet 

isolation and purification protocols, the requirement for life-long immunosupression, inadequate 

transplantation sites and destruction of the transplanted islets by apoptosis. The final outcome of 

these processes is a reduction in the effective β-cell mass and early failure of the islet allograft 

(390). Therefore, inhibition of apoptosis is an imperative strategy to prevent the loss of islet mass 

in the immediate post-transplant period. To this end, gene transfer provides a promising approach 

to improve post-transplant islet survival and function for the treatment of T1D.   

Various anti-apoptotic strategies have shown promise in experimental models of islet 

transplantation, but not all strategies have led to significant improvement in islet transplant 

outcomes (391-393). Recently, investigation of the anti-apoptotic molecule Insulin-like Growth 

Factor-II (IGF-II) has demonstrated promise in an encapsulated rodent model of engraftment 

(232), however this study is disadvantaged by the fact that co-encapsulated islets are unable to 

revascularize following transplantation, exacerbating islet hypoxia and subsequent β-cell death 

(183, 184). In addition, transplanted islets remain vulnerable to highly toxic chemokines, 

cytokines and nitric oxide (NO), which are small enough to pass through the capsule membrane 

(185-187). 
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For gene transfer, replication-deficient Adenoviral (Ad) vectors are the most efficient vectors 

currently available for transducing non-dividing cells such as islets (394). Ad entry is initated by 

binding of the Ad capsid protein to the ubiquitous Coxsackie Adenovirus Receptor (CAR), which 

is expressed on islet cells. The Ad particle is internalized via receptor-mediated endocytosis prior 

to endosome acidification, triggered when the virus trafficks through a low pH region of the 

cytoplasm. The capsid proteins disassemble and the Ad DNA enters the nucleus where it is 

transcribed. In non-replication-deficient Ad vectors, the viral proteins translocate into the nucleus 

and assembly of new viral products occurs here (Figure 4.1). 

Transduction of human islets with Ad provides effective transgene expression without affecting 

islet viability or function (111, 112, 118, 119), a characteristic which was confirmed in Chapter 

3 of this thesis. Once the optimal vector has been identified for a specific gene transfer strategy, 

this must be paired with an appropriate transgene to confer the required therapeutic benefit.  

 IGF-II is a potent growth factor, recognised for its anti-apoptotic ability in a variety of cell types 

(395-397). IGF-II inhibits apoptosis via activation of the phosphoinositide-3-kinase (PI3K)/Akt 

signaling pathway (398), modulation of the anti-apoptotic Bcl-2 family of proteins (399) and 

suppression of caspase activity (400). IGF-II plays a pivotal role in mammalian cell growth, 

influencing fetal cell division and cell differentiation (260). Developmental β-cell apoptosis that 

occurs during foetal and early neonatal life is linked to IGF-II availability, whereby β-cell 

apoptosis is associated with a concomitant decline in islet IGF-II expression (250, 254, 397, 401). 

Transgenic mice over expressing IGF-II in the skin, gut and uterus suppress developmental islet 

apoptosis (402). These studies suggest that IGF-II is a promising candidate gene for use in islet 

gene therapy.  

This chapter aims to investigate the ability of an Ad vector over expressing human IGF-II (Ad-

IGF-II) to effectively transduce rat pancreatic islets. First, pairwise sequence alignment from a 

BLAST search confirmed the sequence identity of the cloned IGF-II transgene within the Ad 

vector. Next, Ad-IGF-II successfully transduced rat islets and IGF-II over expression did not 

affect islet viability or function. Moreover, IGF-II over expression did not induce uncontrolled 

proliferation in transduced islet cells, suggesting that Ad-IGF-II is an effective and safe vector for 

use in an islet gene therapy setting.  
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Figure 4.1. Life cycle of Ad. Ad entry into the host cell involves interaction between the  Ad 

fiber protein binding to the CAR cell surface receptor. This is followed by a secondary 

interaction of Ad with internalization co-receptors, namely integrin αvβ3 or αvβ5. Ad attachment 

induces actin polymerization and leads to entry of the virus into the host cell within an endosome. 

Viral gene expression occurs in the nucleus, at this stage replication-defective Ad vectors express 

the proteins encoded by their DNA. This figure was adapted from Vorburger et al (403). 

A 
NOTE:   

     This figure/table/image has been removed  
         to comply with copyright regulations.  
     It is included in the print copy of the thesis  
     held by the University of Adelaide Library. 
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4.2 Results 

4.2.1 Sequencing of human IGF-II from Ad based vector (Ad-IGF-II) 

The Ad-IGF-II vector was sequenced to confirm the integrity of the cloned human IGF-II. Using 

the NCBI BLAST search (http://www.blast.ncbi.nml.nih.gov), the sequence was aligned with all 

highly similar sequences on the NCBI database. The alignment score (bits) is a value calculated 

from the number of gaps and substitutions associated with the alignment (a high score represents 

a good alignment). The E-value (Expect-value) provides an estimate of the statistical significance 

of the alignment, whereby a low E-value represents a highly significant ‘hit’. This search found 

that the “Homo sapiens insulin-like growth factor 2 (somatomedin A) (IGF2) on chromosome 

11” was the most significant alignment as shown in Figure 4.2.1. Each “I” symbol between the 

sbjct and query indicates that the base pairs at that position are identical. The identity value 

provides the degree of similarity between the sbjct and query, taking into account the number of 

gaps. Therefore, the cloned human IGF-II gene sequence was 99% similar to that of Homo 

sapiens insulin-like growth factor 2 (somatomedin A) (IGF2) on chromosome 11. 

4.2.2 Microscopic evaluation of Ad-GFP and Ad-IGF-II transduced HEK 293 

cells 

Human Embryonic Kidney (HEK) 293 cells were transduced with three different vector doses 

(2x106 pfu/ml, 2x107 pfu/ml and 2x108 pfu/ml) of Ad-IGF-II or a similarly generated Ad-GFP 

control vector. Positive GFP reporter gene expression was detected in Ad-GFP transduced cells 

when viewed under the fluorescent microscope (Figure 4.2.2(A-C)). Morphological changes 

(cell rounding and detachment) were observed in Ad-GFP and Ad-IGF-II transduced HEK 293 

cells, a feature that is indicative of active Ad infection and replication (Figure 4.2.2(A-F)).  
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>gi|209977069|ref|NG_008849.1| Homo sapiens insulin-like growth factor 2 

(somatomedin A) (IGF2) on chromosome 11 

 

Length = 27487 

 

Score =  652 bits (329), E-value = 0.0 

Identities = 338/341 (99%) 

Strand = Plus / Minus  

                                                                                                                                            
Query: 1     agctttgtgactcacacacccacaacattctcaatagctttggggaatcactggggaaat 60 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11583 agctttgtgactcacacacccacaacattctcaatagctttggggaatcactggggaaat 11524                                                                          

Query: 61    ccctccattttatgaaactcaggcaatcacagggcaggtcgtttatgattcacaaaagga 120 

             ||||||||||||||||||||||||||||| |||||||||||||||||||||| ||||||| 

Sbjct: 11523 ccctccattttatgaaactcaggcaatcagagggcaggtcgtttatgattcagaaaagga 11464                                                                         

Query: 121   ttcaacatgctcggggtgtaatgaccgaatttgggggaaggtatgggaagcaattttcat 180 

             |||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11463 ttcaacatgctctgggtgtaatgaccgaatttgggggaaggtatgggaagcaattttcat 11404                                                                    

Query: 181   actctgagggttccaaccttccagccctgctgagtgtcatgagggacttgggattcaacg 240 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11403 actctgagggttccaaccttccagccctgctgagtgtcatgagggacttgggattcaacg 11344                                                                  

Query: 241   tgtaaagtttagggaacccaggttagtgtgaatagatttgcgggacccaacagcaaatgt 300 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11343 tgtaaagtttagggaacccaggttagtgtgaatagatttgcgggacccaacagcaaatgt 11284                                                  

Query: 301   cccatgctgaggtgaacgggaaggggcgcgggggtggggtg 341 

             ||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11283 cccatgctgaggtgaacgggaaggggcgcgggggtggggtg 11243 

Figure 4.2.1. Pairwise sequence alignment from a BLAST report. HEK 293 cells (2x106) were 

transduced with Ad-IGF-II at 2x108 pfu/ml for 48 h. Viral DNA was extracted from transduced 

cells and subject to PCR amplification. Using BLAST the IGF-II sequence (Query, purple text) 

was aligned with all highly similar sequences of human origin on the NCBI database (Sbjct, 

black text). The sequence was aligned with the sequence for Homo sapiens insulin-like growth 

factor 2 (somatomedin A) (IGF2) on chromosome 11 (grey shaded text). Gaps in the sequence 

alignment are highlighted in turquoise. 
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Figure 4.2.2. Fluorescent and light microscopy of Ad-GFP and Ad-IGF-II transduced HEK 293 

cells. HEK 293 cells (2x106) were transduced with Ad-GFP or Ad-IGF-II at 2x108, 2x107 or 

2x106 pfu/ml for 48 h. (A-C) Ad-GFP transduced cells visualized for GFP reporter gene 

expression (green) under fluorescence. (D-F) Ad-IGF-II visualized under bright field of a light 

microscope. Images were taken at 4x magnification, Scale bar = 100 μm.  
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4.2.3 Human IGF-II transgene expression in Ad-IGF-II transduced HEK 293 

cells 

HEK 293 cells (2x106) were transduced with Ad-GFP (2x108 pfu/ml), Ad-IGF-II (2x108 pfu/ml, 

2x107 pfu/ml, 2x106 pfu/ml or 2x105 pfu/ml) or untransduced. RNA was extracted using an 

RNeasy mini kit and reverse transcribed using Omniscript®. To examine the transcription of 

IGF-II mRNA, quantitative TaqMan® real-time PCR (RT-PCR) was performed on Ad-IGF-II 

transduced HEK 293 cells with human IGF-II specific primers. For every 10-fold increase in Ad-

IGF-II viral dose (i.e. 2x105 pfu/ml to 2x106 pfu/ml) there was an approximately 2-fold increase 

in IGF-II mRNA as shown in (Figure 4.2.3(A)). The messenger RNA (mRNA) increases were 

also apparent in PCR products separated by agarose gel electrophoresis (Figure 4.2.3(B)). 

4.2.4 Secretion of human IGF-II by Ad-IGF-II transduced HEK 293 cells to 

examine secretion of folded protein 

Ad-IGF-II transduced HEK 293 cells secreted 240 ng/ml and 300 ng/ml IGF-II within a 24 and 

36 h culture period, respectively (Figure 4.2.4(A)). There was no IGF-II secretion detected by 

untransduced or Ad-GFP transduced control cells. Ad-IGF-II transduced HEK 293 cells 

displayed a 40-fold increase in IGF-II intracellular protein compared to untransduced control 

cells at 36 h (Figure 4.2.4(B)).  

4.2.5 Transduction of isolated rat islets with Ad-GFP 

Ad-GFP was used to transduce isolated rat islets in vitro at MOI 10, 100, 200, 500 and 1000, to 

assess the transduction efficiency of the Ad vector in rat islets. GFP was included in the Ad-GFP 

vector to function as a transduction marker. At 48 h post-transduction, GFP expression was 

observed in transduced islets, although at different efficiencies depending on the MOI (Figure 

4.2.5). At MOI 10 Ad-GFP transduced 28.2% ± 3.9 of islet cells. Transduction efficiency was 

increased 1.7-fold at MOI 100 (47.8% ± 8), which was increased to 54.3% ± 7.4 at MOI 200. Ad-

GFP at MOI 500 and 1000 transduced a total of 59.6% ± 8 and 62.4% ± 6.3 of the islets 

respectively.
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Sample Fold-Change IGF-II Expression following 48 h 
Ad-IGF-II transduction 

Untransduced HEK-293 1.6 

Ad-GFP 2x108 pfu/ml 1.1 

Ad-IGF-II 2x105 pfu/ml 3.3 

Ad-IGF-II 2x106 pfu/ml 4.5 

Ad-IGF-II 2x107 pfu/ml 12.4 

Ad-IGF-II 2x108 pfu/ml 27 

 

 

 

 

 

 

                               

                                    

Figure 4.2.3. Determination of IGF-II expression in Ad-IGF-II transduced HEK 293 cells. (A) 

Fold-change in Human IGF-II expression was measured by real-time PCR. Untransduced islets 

were compared with the Ad-IGF-II samples to evaluate fold-change IGF-II gene expression. Data 

is representative of one experiment. (B) cDNA was subject to PCR amplification with human 

IGF-II primers (480 base pairs (bp) band size). PCR product was analysed using agarose gel 

electrophoresis. M= marker, Lane 1 = Nuclease free H2O, Lane 2 = Control reaction mixture (no 

template), Lane 3 = Positive control HuH-7 cell line, Lane 4 = Positive control HepG2 cell line, 

Lane 5 = Untransduced HEK 293 cells, Lane 6 = Ad-GFP transduced HEK 293 cells, Lanes 7 – 

10 = Ad-IGF-II transduced HEK 293 cells 2x108 pfu/ml, 2x107 pfu/ml, 2x106 pfu/ml or 2x105 

pfu/ml, respectively.  
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Figure 4.2.4. Human IGF-II secretion from Ad-IGF-II transduced HEK 293 cells. HEK 293 cells 

(2x106) were transduced with Ad-GFP, Ad-IGF-II (2x108 pfu/ml) or untransduced. (A) IGF-II 

levels in the medium or (B) intracellular protein at 36 h were measured using a human IGF-II 

ELISA. Samples were diluted 1:10. Data represents one experiment.  
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Figure 4.2.5. Evaluation of Ad Transduction on Rat Islets In Vitro. Rat islets were transduced 

with Ad-GFP at MOI 10, 100, 200, 500 and 1000 or left untransduced. Flow cytometry was used 

to determine percent GFP expression in dissociated islet cells. Data are the mean ± SEM of three 

independent experiments, ***p≤0.001 (1way ANOVA). **p<0.01 Untransduced CTRL vs. MOI 

100, 200, ***p<0.001 Untransduced CTRL vs. MOI 500, 1000 (Bonferroni Multiple Comparison 

Test). 

 

** ** *** *** 
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4.2.6 Rat islet viability following Ad-IGF-II transduction 

Isolated rat islets were transduced with Ad at MOI 100, based on the assumption that each islet 

cluster contains approximately 2000 cells (138, 315). Dispersed islets were examined for GFP by 

flow cytometry. The FACS analysis data summarises the calculated viability of islet cells 48 h 

post transduction (Figure 4.2.6). Islet viability was not adversely affected when transduced with 

Ad-IGF-II at MOI 100 (74.3% ± 8.2) compared to untransduced controls (69.2% ± 4.7). 

However, when rat islets were transduced with Ad-GFP alone there was some cytotoxicity and as 

a result of this the islet cell viability was reduced to 58.2% ± 1.8. 

4.2.7 Characterisation of rat islet function following Ad-IGF-II transduction 

To determine whether insulin secretion was adversely affected in Ad-IGF-II, Ad-GFP or 

untransduced islets, in vitro islet function was characterised by challenging islets with glucose. 

Transduction of islets with Ad-GFP or Ad-IGF-II (MOI 100) did not alter the glucose stimulated 

insulin secretory function of islets (1.8 ± 0.4 and 2 ± 0.5 stimulation index (SI)) respectively, 

compared to untransduced islets (2 ± 0.5 SI) (Figure 4.2.7). Based on these findings MOI 100 

was accepted as the viral MOI for further experiments. 

4.2.8 Evaluation of Ad-GFP β-cell transduction in isolated rat islets 

Due to the sequence homology between human and rat IGF-II, it is difficult to reliably detect 

human IGF-II expressing rat islets without detecting a low background of endogenous IGF-II 

expression. Therefore, the Ad-GFP vector was used to transduce rat islets and 

immunohistochemical analysis was performed to determine the extent of β-cell transduction. 

Insulin staining revealed co-localization of insulin, GFP and DAPI nuclear stain in Ad-GFP 

transduced islets, indicating that Ad-GFP effectively transduced β-cells of the islet (Figure 

4.2.8). 
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Figure 4.2.6. Evaluation of rat islet viability following Ad-IGF-II transduction. Rat islets were 

transduced with Ad-GFP, Ad-IGF-II or left untransduced. Flow cytometry 7-AAD staining was 

used to determine the viability in dissociated islet cells. Data are the mean ± SEM of three (Ad-

IGF-II) or two (Ad-GFP) independent experiments. 
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Figure 4.2.7. Evaluation of rat islet function following Ad-IGF-II transduction. Rat islets were 

transduced with Ad-GFP or Ad-IGF-II MOI 100 and then subject to a glucose stimulated insulin 

secretion assay. Insulin ELISA was used to determine the stimulation index in experimental 

samples. Samples were diluted 1:10. Data are the mean ± SEM of five independent experiments. 
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Figure. 4.2.8. Co-localisation of Ad-GFP with insulin in β-cells. Islets were transduced with Ad-

GFP at MOI 100. Confocal image of a single slice through an intact rat pancreatic islet showing 

immunostaining with an anti-insulin antibody (red) and co-localisation (yellow) with GFP in β-

cells (white arrows), DAPI nuclear stain (blue). Images taken at 20 x magnification, Scale bar = 

50µm.  
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4.2.9 Determination of human IGF-II secretion in Ad-IGF-II transduced rat 

islets 

Rat islets were transduced with Ad-IGF-II for five days and the medium was analysed each day 

using a human IGF-II ELISA. Ad-IGF-II transduced rat islets constitutively produced and 

secreted 8.9 ± 1.3 ng human IGF-II into the cell culture supernatant at 24 h, this increased to 14.3 

± 2.4 ng at 48 h.  The level of secreted IGF-II reached a maximum of 24.1 ± 1 ng on day five as 

shown in Figure 4.2.9. The secretion of human IGF-II was observed only in the IGF-II 

transduced cells demonstrating that Ad-IGF-II mediated effective transduction and specific 

expression of IGF-II in transduced islet cells.  

4.2.10 Determination of islet proliferation in Ad-IGF-II transduced rat islets 

Due to the growth promoting effects associated with IGF-II and the increased risk of malignancy 

as a result of uncontrolled cell growth, the proliferation of Ad-IGF-II islets was analysed by flow 

cytometric analysis. Approximately, 8.9% ± 2.4 of Ad-IGF-II transduced rat islets had actively 

proliferating cells as determined by positive ki67 expression. However, there was no significant 

difference in the proliferation of Ad-IGF-II transduced islets compared to untransduced or Ad-

GFP transduced islet controls (6.5% ± 3.3 and 6.1% ± 1.4, respectively) (Figure 4.2.10). 
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Figure. 4.2.9. Time course of human IGF-II secretion from Ad-IGF-II transduced rat islets in 

vitro. Rat islets were transduced with Ad-GFP MOI 100, Ad-IGF-II MOI 100 or untransduced. 

IGF-II levels in the medium were measured using a human IGF-II ELISA. Data expressed as 

mean ± SEM of 3 – 9 replicate experiments, ****p<0.0001 (1wayANOVA). **p<0.01 Ad-GFP 

transduced islets vs. Ad-IGF-II Day 1 transduced islets, ****p<0.0001 Ad-GFP transduced islets 

vs. Ad-IGF-II day 2-5 transduced islets (Bonferroni Multiple Comparison Test). 
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Figure 4.2.10. The effect of Ad-IGF-II transduction on islet cell proliferation. Rat pancreatic 

islets were (A) untransduced or transduced with (B) Ad-GFP or (C) Ad-IGF-II (MOI 100) for 48 

h. The monoclonal antibody ki67 was used to detect proliferating cells by flow cytometric 

analysis. A representative histogram is shown for each sample population. Values are the mean ± 

SEM for three replicate experiments. 
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4.3 Discussion 

Ex vivo gene transfer involves removing the cells of interest from the body, inserting the new 

DNA (that will correct the disease or provide therapeutic benefit) into the cells and then placing 

the cells back into the patient. The efficacy of ex vivo gene transfer has been demonstrated in the 

treatment of familial hypercholesterolaemia, the X chromosome-linked form of Alport syndrome 

and various types of cancer (404-406). Ad vectors possess several features that make them well 

suited for use in islet gene transfer. First, they infect a broad range of human cells (including 

islets) with very high efficiency. Second, Ad vectors can accommodate large DNA inserts (up to 

7.5 kilobase pairs (kb)) and transduce these transgenes in non-proliferating cells such as islets. 

Third, Ad vectors exhibit low pathogenicity in humans; they often cause mild symptoms of the 

common cold, conjunctivitis and tonsillitis. Finally, the inserted transgene(s) are maintained 

without change during viral amplification (403).   

Based on the promising results obtained in Chapter 3, regarding the ability of Ad to effectively 

transduce isolated human and rat pancreatic islets, Chapter 4 aimed to characterise an Ad-based 

vector encoding the anti-apoptotic molecule Insulin-Like Growth Factor-II (IGF-II) (Ad-IGF-II). 

Firstly, the gene of interest (IGF-II) was sequenced to confirm that the IGF-II sequence used to 

generate the Ad-IGF-II vector was homologus to the native sequence of human IGF-II. Next, 

preliminary experiments were performed to appropriately characterise the Ad-IGF-II vector. For 

this, the Human Embryonic Kidney (HEK) 293 cell line was used as HEK 293 cells are easy to 

culture and transduce readily, thereby providing an optimal model system to investigate vector 

efficacy.  

Following transduction, GFP reporter gene expression was observed in Ad-GFP transduced HEK 

293 cells. HEK 293 cells grow as attatched monolayer cultures, however following Ad 

transduction morphological changes appeared in the cells. These morphological changes are 

termed cytopathic effects (CPE), which result in microscopic appearance of detached cells that 

are rounded in culture. Although the Ad-IGF-II vector does not contain a reporter gene, light 

microscope images of transduced cells revealed the same morphological features of cells 

undergoing active infection and subsequent CPE. 
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Next, molecular studies demonstrated that Ad-IGF-II transduced HEK 293 were able to 

efficiently transcribe the IGF-II gene and translate the IGF-II mRNA to protein. Transduction of 

HEK 293 cells with Ad-IGF-II resulted in specific production and secretion of IGF-II. However, 

no such IGF-II secretion occured in HEK 293 cells transduced with Ad-GFP, demonstrating that 

the increased IGF-II was not due to a HEK 293 mediated up-regulation of IGF-II as a survival 

response following viral exposure.  

Once the functional characteristics of the Ad-IGF-II vector were confirmed in HEK 293 cells, 

similar experiments were performed in isolated rat pancreatic islets. Although human and rat 

islets were both utilised in Chapter 3, it was not logistically feasible to use human islets as the 

primary islet source in this thesis, as a consistent supply of isolated human islets are not always 

available for research and for this reason rat islets were chosen as the alternative primary cell 

type for experiments in this thesis. Another option could be the use of mouse islets however a 

benefit to using isolated rat islets over mouse islets is the increased islet yield per animal. For 

example, rat islet yields range from approximately 600 – 800 islets per animal (407) and 200 – 

400 islets per mouse, with average yields of 300 islets per mouse (408, 409). Therefore, by 

isolating rat islets, this meant that fewer animals were utilized and an increased number of islets 

were obtained for experimental studies.  

In the next set of experiments, Ad-IGF-II efficiently transduced rat pancreatic islets and IGF-II 

over expression did not affect islet viability or physiological function. The efficacy of Ad-based 

vectors has been demonstrated previously within islet transplant studies (197-200, 204). In this 

chapter, Ad-GFP transduced islets displayed decreased cell viability compared to untransduced 

control islets. This may be due to the potential cell toxicity associated with GFP (410-412). 

However, in the same set of experiments, Ad-IGF-II transduced islets displayed increased 

viability compared to Ad-GFP transduced and untransduced control cells. Isolated islets may be 

damaged during the isolation procedure leading to islet apoptosis (413, 414). Therefore, in this 

study the over expressed IGF-II may be exerting an anti-apoptotic effect against isolation induced 

apoptosis. This is supported by Ilieva and colleagues (415) who have shown that incubation of 

hamster islets with duct conditioned medium containing 34 ng/ml IGF-II can prevent in vitro 

apoptosis and necrosis that occur after the islet isolation procedure.  
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As previously discussed in Section 1.3 of this thesis, rat pancreatic islets possess a well-defined 

architecture, consisting of a central core of β-cells which represent 60 – 80% of the islet. This 

poses an issue when considering the poor transduction capability of Ad to reach the inner mass of 

the islets, however in this study immunofluoresence microscopy demonstrated that the Ad vector 

was able to effectively transduce the β-cells of the islet. While the number of Ad transduced β-

cells relative to the other endocrine islet cell types (i.e. glucagon-producing α-cells) was not 

quantified, there was 47.8% ± 8 total islet cells transduced at MOI 100, suggesting that the Ad 

vector does not specifically target β-cells. Despite this, the utility of Ad mediated IGF-II over 

expression is that IGF-II mediates its anti-apoptotic effect via autocrine and paracrine 

mechanisms, which negates the need for every islet cell to express the therapeutic gene. 

While the functional characterisation experiments demonstrated that the IGF-II gene can be both 

transcribed and translated into functional IGF-II protein, it would have been helpful to examine 

whether the secreted IGF-II is bio-active. Future studies could investigate this by performing an 

IGF-II bioactivity assay in MCF-7 human breast cancer cells. MCF-7 cells normally grow in a 

monolayer however they form multilayered cellular aggregates (foci) in the presence of bio-

active IGF-II. The foci retain red Rhodamine B stain better then the surrounding monolayer of 

cells, therefore appearing as dark red spots that can be subsequently quantified.  

A very important aspect of any anti-apoptotic strategy is to minimize any vector or transgene 

associated effects on cell proliferation. Failure to regulate cell proliferation, ultimately leads to 

malignant transformation. The ki67 nuclear antigen is expressed by proliferating cells which are 

in the active phases of the cell cycle (late G1, S, G2 and mitosis). For this reason, ki67 was used 

as a marker for proliferation in Ad-IGF-II transduced islets, and it was subsequently shown that 

IGF-II over expression did not induce cell proliferation. This is supported by Petrik and 

colleagues (230) who report a five-fold increase in mean islet size in IGF-II transgenic mice but 

no induction of islet proliferation. Various studies suggest that IGF-II alone is not directly 

transforming. However, the IGF-I and IGF-II receptors have been shown to be mutated or over 

expressed in tumour cells, contributing to tumour formation, maintenance and progression (217). 

IGF-II works through the IGF-I receptor (IGF-1R) to inhibit apoptosis, whereas, the IGF-II 

receptor (IGF-IIR) has no intrinsic signaling transduction capability and works only to modulate 

IGF-II availability (416). Despite this, regular screening would be an essential requirement of any 

islet gene therapy strategy employed clinically. 
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In conclusion, in this chapter the anti-apoptotic molecule IGF-II was successfully cloned into a 

replication-deficient Ad (serotype 5) vector. This data demonstrates the utility of Ad-IGF-II to 

maintain stable in vitro islet viability and function in transduced islet cells. Within this chapter an 

efficient vector system has been characterised that will be subsequently utilized within the 

remaining chapters of this thesis (Chapter(s) 5 and 6) to assess the in vitro and in vivo survival 

of pancreatic islets against pro-inflammatory cytokine induced islet cell death.  
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CHAPTER 5 

THE ANTI-APOPTOTIC ACTIVITY OF INSULIN-LIKE 

GROWTH FACTOR-II IN AN IN VITRO MODEL OF 

CYTOKINE INDUCED APOPTOSIS 

5.1 Introduction 

Islet primary non-function is defined as the loss of islet function after transplantation for reasons 

other than graft rejection (417). It is a major obstacle to successful and efficient islet 

transplantation, resulting in destruction of up to 70% of the transplanted islet mass in the early 

post-transplant period (77, 194, 418). Innate inflammatory responses at the transplant site, such 

as the instant blood mediated inflammatory reaction (IBMIR) (419) and local release of pro-

inflammatory cytokines, such as TNF-α, IL-1β and IFN-γ (420-424) contribute to islet apoptosis 

during both the peri-transplant and early post-transplant period (425). 

 

IL-1β alone or in combination with other pro-inflammatory cytokines such as IFN-γ, induces β-

cell death in mouse, rat and human islets in vitro and in vivo (426-429). The release of pro-

inflammatory cytokines by resident islet macrophages has been observed in rats following islet 

transplantation in vivo (430-432). Exposure of rat islets to IL-1β in vitro decreases islet insulin 

content, suppresses glucose stimulated insulin secretion (GSIS) and induces DNA damage in 

pancreatic islet cells (433, 434). Pro-inflammatory cytokines mediate their inflammatory effects 

largely under the control of the transcription factors nuclear factor kappa B (NF-κB) and signal 

transducer and activator of transcription-1 (STAT-1). Activation of these molecules, leads to the 

production of cytotoxic nitric oxide synthase (iNOS), and the subsequent generation of nitric 

oxide (NO) (29, 435) (Figure 5.1).  
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Figure 5.1. Cell signaling pathways activated in pancreatic islets following pro-inflammatory 

cytokine exposure. The reasons for the decline in insulin independence rates following islet 

transplantation are complex, beginning before pancreas procurement (436). Brain death is 

associated with the endogenous production of pro-inflammatory cytokines such as TNF-α, IL-1β 

and IL-6 (437, 438). Release of TNF-α is associated with inflammation and is toxic to pancreatic 

islets (439-441). In addition, physical isolation of human islets required for transplantation 

triggers activation of the NF-κB and mitogen-activated kinase (MAPK) stress response pathways 

(442) and deprives islets of oxygen and nutrients, leading to the formation of cytotoxic NO (443). 

As a result, islets experience subsequent stresses including, production of free radicals, decreased 

β-cell and insulin function, mononuclear cell infiltration and islet apoptosis, among others. Figure 

was adapted from: 

http://www.ucdenver.edu/academics/colleges/medicalschool/centers/BarbaraDavis/PublishingIm

ages/Books-type1/ch5fig3.gif 

 

A 
NOTE:   

     This figure/table/image has been removed  
         to comply with copyright regulations.  
     It is included in the print copy of the thesis  
     held by the University of Adelaide Library. 
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One potential solution to overcome the vulnerability of β-cells to post-transplant cell death is the 

use of gene therapy to over express an anti-apoptotic molecule in islets prior to their 

transplantation (444, 445). IGF-II is a promising therapeutic gene for this purpose. IGF-II is an 

anti-apoptotic peptide of 7.5 kDa and is highly expressed in fetal liver tissue. IGF-II exerts a 

robust anti-apoptotic effect in many cell and tissue types, including cerebella granule neurons, 

ovarian preovulatory cells and pancreatic islets (395-397).  IGF-II belongs to the insulin family 

of polypeptide growth factors, known for their sequence homology to insulin (219). IGF-II exerts 

its anti-apoptotic effects via the IGF-1 receptor (IGF-1R), while the IGF-II Receptor (IGF-IIR), 

also called the Mannose-6-Phosphate receptor can only bind IGF-II (219). The main role of the 

IGF-IIR is to clear IGF-II from the serum and target it for degradation within lysosomes. 

 

Therefore it was hypothesized that Ad mediated over expression of anti-apoptotic human IGF-II, 

may act directly on isolated islet cells, to improve islet survival. Within this chapter, the influence 

of local human IGF-II over expression on pancreatic islet cell survival against pro-inflammatory 

cytokines in vitro was investigated. In this chapter, the transduction of rat islets with Ad-IGF-II 

conferred significant protection against pro-inflammatory cytokine (Interleukin-1β (IL-1β) and 

Interferon-γ (IFN-γ)) induced cell death. Furthermore, Ad-IGF-II transduced rat islets retained 

their insulin secretory function following exposure to pro-inflammatory cytokines IL-1β and 

IFN-γ. This chapter confirmed that IGF-II mediates its anti-apoptotic effects through binding the 

IGF-1R and subsequently working via the phosphoinositide-3-kinase (PI3K)/Akt signaling 

pathway to inhibit apoptosis.  
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5.2 Results 

5.2.1 Pro-inflammatory cytokines Interleukin-1β and Interferon-γ induce cell 

death in human and rat pancreatic islets in vitro 

Isolated human and rat islets were untreated or treated for 24 h (hours) with human or rat pro-

inflammatory cytokines IL-1β and IFN-γ. A range of cytokine concentrations were tested to 

identify the optimal cytokine dose to induce islet cell death (Table 5.2.1;first column). 

Following cytokine exposure, cell death was induced in human and rat islets, although at 

differing levels depending on the concentration of cytokines used (Table 5.2.1;third column). 

The lowest concentration of cytokines tested (5 ng/ml IL-1β and 10 ng/ml IFN-γ) induced cell 

death in 4.7% ± 0.8 and 15.4% ± 8.7 of human and rat islets, respectively. The highest 

concentration of cytokines (35 ng/ml IL-1β and 40 ng/ml IFN-γ) induced cell death in 8.6% ± 1.7  

and 18.7% ± 1.7 of human and rat islets, respectively. 

The cytokine doses of 5 ng/ml IL-1β, 10 ng/ml IFN-γ and 35 ng/ml IL-1β, 40 ng/ml IFN-γ were 

chosen as the optimal concentrations for further apoptosis induction experiments in human and 

rat islets, respectively. Although other cytokine doses induced a slightly higher level of cell death 

in human islets, the majority of cells in the population were necrotic rather then a population 

consisting of both apoptotic and necrotic cells. This was an important consideration when 

identifying the optimal cytokine dose in this chapter, as a previous study has shown, that pro-

inflammatory cytokines induce β-cell death via a mechanism that involves both apoptosis and 

necrosis (426). 

5.2.2 Assessment of human and rat islet morphology following IL-1β and  

IFN-γ pro-inflammatory cytokine exposure 

Human and rat islets were untreated or treated for 24 h with 5 ng/ml IL-1β, 10 ng/ml IFN-γ and 

35 ng/ml IL-1β, 40 ng/ml IFN-γ, respectively. Following cytokine exposure, the islets were 

visualized using a basic light microscope. Untreated islets exhibited a smooth and rounded 

appearance, with the presence of a well defined islet membrane border (Figure 5.2.2(A) and 

Figure 5.2.2(C)). Islets cultured in the presence of IL-1β and IFN-γ exhibited a rough islet 

surface and darkened (hypoxic) centre (Figure 5.2.2(B) and Figure 5.2.2(D)).  
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Table 5.2.1. Investigation of the level of cell death induced in human and rat islets following 

exposure to pro-inflammatory cytokines IL-1β and IFN-γ. Isolated human (A) and rat (B) islets 

were cultured for 24 h in the presence of pro-inflammatory cytokines IL-1β and IFN-γ. 

Percentage of islet cell death following cytokine exposure was assessed in dispersed islets by 

Annexin V and Propidium Iodide (PI) flow cytometric analysis. The data is expressed as ± SEM 

of experiments. Concentrations of cytokines used to treat islets are listed in the ‘concentration’ 

column in A and B. 

 

Concentration  n Percent  Human Islet Cell Death 
Following Cytokine Exposure (24 h) 

5 ng/ml IL-1β 
10 ng/ml IFN-γ 4 4.7% ± 0.8  

15 ng/ml IL-1β 
25 ng/ml IFN-γ 1 6% 

35 ng/ml IL-1β 
40 ng/ml IFN-γ 4 8.6% ± 1.7  

 

Concentration n Percent  Rat Islet Cell Death Following 
Cytokine Exposure (24 h) 

5 ng/ml IL-1β 
10 ng/ml IFN-γ 4 15.4% ± 8.7  

15 ng/ml IL-1β 
25 ng/ml IFN-γ 1 19% 

35 ng/ml IL-1β 
40 ng/ml IFN-γ 2 18.7% ± 1.7  

 

 

 

 

 

 

A 
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Figure 5.2.2. Pro-inflammatory cytokines induce morphological changes in human and rat 

islets. Human islets were (A) untreated or (B) cultured for 24 h in the presence of pro-

inflammatory cytokines IL-1β (5ng/ml) and IFN-γ (10ng/ml).  Isolated rat islets were (C) 

untreated or (D) cultured for 24 h in the presence of pro-inflammatory cytokines IL-1β 

(35ng/ml) and IFN-γ (40ng/ml). Morphological characteristics of islets were visualized using 

a light microscope. (A – B) Images were taken at 10 x magnification, Scale bar = 300 µm. (C 

– D) Images were taken at 20 x magnification, Scale bar = 100 µm. 
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5.2.3 Pro-inflammatory cytokines IL-1β and IFN-γ induce DNA damage in 

isolated rat islets 

TUNEL staining was used to detect DNA fragmentation that occurs following activation of the 

apoptotic signaling cascade. Rat islets were treated for 24 h with 35 ng/ml IL-1β and 40 ng/ml 

IFN-γ. Untreated rat islets displayed a lower number of apoptotic (green) cells compared to rat 

islets exposed to pro-inflammatory cytokines (Figure 5.2.3). 

5.2.4 Pro-inflammatory cytokines IL-1β and IFN-γ impair the glucose 
stimulated insulin secretory ability of rat islets 

Cytokine exposure impaired the ability of rat islets to secrete insulin in response to high glucose 

(Stimulation index (SI); 1 ± 0.1), compared to untreated islets which exhibited a SI of 2.9 ± 0.6 

(Figure 5.2.4).  

5.2.5 Nitric oxide expression in rat islets following pro-inflammatory cytokine 

exposure 

As discussed in Section 5.1, pro-inflammatory cytokines lead to activation of the NF-κB stress 

response pathway and subsequent production of NO. Therefore, accumulation of nitrite (a 

breakdown product of NO) was measured in rat islets following pro-inflammatory cytokine 

treatment. Rat islets were untreated or treated with IL-1β (35 ng/ml) and IFN-γ (40 ng/ml) for 24 

h. Cytokine treated rat islets displayed an increased accumulation of nitrite (3.4 ± 0.4 µM) in 

assayed cell culture supernatants compared to untreated control islet cells (0.8 ± 0.08 µM) 

(Figure 5.2.5).  
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Figure 5.2.3. Pro-inflammatory cytokine treated rat islets examined for apoptosis by TUNEL 

staining. Isolated rat islets were (A) untreated or (B) cultured for 24 h in the presence of pro-

inflammatory cytokines IL-1β (35ng/ml) and IFN-γ (40ng/ml). TUNEL staining for apoptotic 

cells was performed on islet cytospin preparations. TUNEL positive cells (green; white arrows) 

in the fluorescent images correspond to apoptotic cells. Blue = DAPI nuclear stain. Images were 

taken at 20 x magnification. 
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Figure 5.2.4. Investigation of rat islet function following IL-1β and IFN-γ pro-inflammatory 

cytokine exposure. Isolated rat islets were untreated or cultured for 24 h in the presence of pro-

inflammatory cytokines IL-1β (35ng/ml) and IFN-γ (40ng/ml), and then stimulated to release 

insulin by exposure to high (25 mM) or low (2.8 mM) concentrations of glucose. Insulin ELISA 

was used to determine the stimulation index in experimental samples. Data are the mean ± SEM 

of five independent experiments, **p≤0.01 (student T-test). 

** 
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Figure 5.2.5. Detection of nitric oxide in rat islets following IL-1β and IFN-γ pro-inflammatory 

cytokine exposure. Isolated rat islets were untreated or cultured for 24 h in the presence of pro-

inflammatory cytokines IL-1β (35ng/ml) and IFN-γ (40ng/ml). Following treatment, cell culture 

supernatant was collected and assayed for the presence of nitrite (NO2
-), a breakdown product of 

NO using a commercial Griess reagent system. Cell culture supernatant was collected and 

analyzed. Data are the mean ± SEM of three replicate experiments, *p≤0.05 (Student T-test).  
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5.2.6 Ad-IGF-II transduction of rat islets protects against pro-inflammatory 

cytokine induced cell death in vitro 

The cytoprotective effect of Ad-IGF-II on islet cell death following cytokine exposure was 

investigated by Annexin V and PI staining. Following cytokine exposure, Ad-IGF-II transduced 

islets and rIGF-II treated islets displayed a decreased level of cytokine induced cell death (39.8% 

± 2.8 and 41.9% ± 3.3, respectively) when compared to control islets transduced with Ad-GFP 

(63.2% ± 2.5) or untransduced (53.6% ± 2.3) (Figure 5.2.6), clearly demonstrating the anti-

apoptotic effect of IGF-II in vitro.   

5.2.7 Ad-IGF-II transduction of human islets does not protect against IL-1β 

and IFN-γ pro-inflammatory cytokine induced cell death in vitro 

Following cytokine exposure, cell death was induced in 61.6% ± 4.1 of Ad-IGF-II transduced 

islets. This was not significantly different to control islets transduced with Ad-GFP (62.3% ± 2.4) 

or untransduced islets (59.8% ± 6.3) as shown in Figure 5.2.7. Human islets pre-treated with 

rIGF-II displayed slightly decreased cytokine induced cell death (59.8% ± 6.3) compared to Ad-

IGF-II, Ad-GFP and untransduced sample groups, but this was not statistically significant. 

Untreated human islets displayed 51.3% ± 6.2 islet cell death. 

5.2.8 Ad-IGF-II transduced rat islets display a decreased number of TUNEL 

positive apoptotic cells following pro-inflammatory cytokine exposure in vitro 

Following cytokine exposure, there was a marked reduction in the number of TUNEL positive 

cells (apoptotic) in the Ad-IGF-II transduced rat islets compared to Ad-GFP transduced islets 

(Figure 5.2.8). Specifically, 46.5% ± 6.2 and 41% ± 4.2 total islet cells in the untransduced and 

Ad-GFP transduced groups were TUNEL positive, respectively. However, when IGF-II was over 

expressed in islets during cytokine exposure a decrease in the number of TUNEL positive 

apoptotic cells was observed (8.3% ± 1.4) 
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Figure. 5.2.6. Anti-apoptotic investigation of Ad-IGF-II transduced islets following pro-

inflammatory cytokine exposure. Islets were left untreated or transduced at MOI 100 with Ad-

GFP, Ad-IGF-II or untransduced 48 h before addition of IL-1β (35ng/ml) and IFN-γ (40 ng/ml) 

for an additional 24 h, or islets were pre-treated for 2 h with rIGF-II (500 ng/ml) before addition 

of pro-inflammatory cytokines. Flow cytometry was used to determine percent islet cell death of 

dispersed islet cells using Annexin V and PI staining. The data is expressed as ± SEM of five 

independent experiments, ***p<0.001 (1wayANOVA). Bonferroni Multiple Comparison Test: 

***p<0.001 Untreated islets vs. Untransduced islets, ****p<0.0001 Untreated islets vs. Ad-GFP 

transduced islets, *p<0.05 Untransduced vs. Ad-IGF-II transduced islets, ***p<0.001 Ad-GFP 

transduced islets vs. 500 ng/ml rIGF-II islets, ***p<0.001 Ad-GFP transduced islets vs. Ad-IGF-

II transduced islets.  
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Figure. 5.2.7. Anti-apoptotic investigation of Ad-IGF-II transduced human islets following pro-

inflammatory cytokine exposure. Human islets were left untreated or transduced at MOI 100 with 

Ad-GFP, Ad-IGF-II or untransduced 48 h before addition of IL-1β (5ng/ml) and IFN-γ (10 

ng/ml) for an additional 24 h, or islets were pre-treated for 2 h with rIGF-II (500 ng/ml) before 

addition of pro-inflammatory cytokines. Flow cytometry was used to determine percent islet cell 

death of dispersed islet cells using Annexin V and PI staining. The data is expressed as ± SEM of 

two independent experiments.  
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Figure. 5.2.8 Pro-inflammatory cytokine treated Ad-IGF-II transduced rat islets examined for 

apoptosis by TUNEL staining. Islets were left untreated or transduced at MOI 100 with Ad-GFP, 

Ad-IGF-II or untransduced 48 h before addition of IL-1β (35ng/ml) and IFN-γ (40 ng/ml) for an 

additional 24 h. TUNEL staining was used to determine islet cell apoptosis.  Representative 

images of Ad-GFP and Ad-IGF-II TUNEL stained islets are depicted in (A) and (B) respectively. 

TUNEL positive cells (red) in the fluorescent images correspond to apoptotic cells. Blue = DAPI 

nuclear stain. Images were taken at 20 x magnification, Scale bar = 50µm. A total of 25 untreated 

islets, 22 untransduced islets, and 32 Ad-GFP or Ad-IGF-II transduced islets from six different 

rat islet preparations were counted to quantify the number of apoptotic cells (C). The percentage 

of apoptotic islets was calculated by dividing the number of TUNEL positive islets by total islet 
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cells. Data are mean ± SEM, ****P<0.0001 (1way ANOVA). Bonferroni Multiple Comparison 

Test: ****p<0.0001 Untreated islets vs. Untransduced islets, ****p<0.0001 Untreated islets vs. 

Ad-IGF-II transduced islets, ****p<0.0001 Untransduced vs. Ad-IGF-II transduced islets, 

****p<0.0001 Ad-GFP transduced islets vs. Ad-IGF-II transduced islets. 
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5.2.9 Characterisation of Ad-IGF-II transduced rat islet function following 

IL-1β and IFN-γ pro-inflammatory cytokine exposure 

A glucose stimulated insulin secretion assay (GSIS) assay was performed to determine the 

glucose responsiveness of Ad-IGF-II transduced islets following 24 h cytokine exposure. The 

ability of untransduced and Ad-GFP transduced rat islets to secrete insulin following cytokine 

treatment was reduced compared to Ad-IGF-II transduced islets (Figure 5.2.9). 

5.2.10 The anti-apoptotic effect of IGF-II is neutralized by blocking the IGF-

1R 

Having characterised the anti-apoptotic function of IGF-II in vitro, the next step was to 

investigate the contribution of the IGF-1R in this effect. Blocking of the IGF-1R using an IGF-1R 

neutralization antibody on rat islets inhibited the ability of IGF-II to protect against cytokine 

induced cell death (Figure 5.2.10). Specifically, following cytokine exposure Ad-IGF-II 

transduced islets treated with the IGF-1R antibody displayed 72.7% ± 6.5 total islet cell death, 

whereas Ad-IGF-II transduced islets displayed a 1.2-fold reduction in cell death (61.7% ± 4.3). 

Untransduced control islet cells displayed a high background of cell death (70.6% ± 4.3), as the 

blocking assay required the islets to be cultured in serum free culture conditions, for four days.  

5.2.11 IGF-II activates the PI3K/Akt pathway to inhibit islet apoptosis 

To investigate the pathway through which IGF-II works to inhibit apoptosis, rat islets were 

transduced with Ad-IGF-II or pre-treated with wortmannin, a potent and specific PI3K inhibitor 

prior to Ad-IGF-II transduction. Ad-IGF-II transduced islets demonstrated activation of both Akt 

and pAkt, whereas, wortmannin treatment led to a decrease in the phosphorylation of Akt 

(Figure 5.2.11). 
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 Figure 5.2.9. Evaluation of islet function of Ad-IGF-II transduced islets following cytokine 

exposure. Isolated rat islets were cultured for 24 h in the presence of pro-inflammatory 

cytokines IL-1β (35ng/ml) and IFN-γ (40ng/ml), and stimulated to release insulin by exposure 

to high (H) (25 mM) or low (L) (2.8 mM) concentrations of glucose. Insulin ELISA was used 

to determine the insulin released (µg/L) in experimental samples. Data are the mean ± SEM 

of three independent experiments. P= NS.  

 



 145 

 

                            

Pe
rc

en
t I

sl
et

 C
el

l D
ea

th

Untra
nsd

uce
d

Ad-G
FP

Ad-IG
F-II 

+ I
GF-1R

 A
b

Ad-IG
F-II

0

20

40

60

80

100

 

Figure. 5.2.10. Effect of IGF-1R blocking on pro-inflammatory cytokine induced Ad-IGF-II islet 

cell death. Islets were transduced at MOI 100 with Ad-GFP, Ad-IGF-II or untransduced 48 h 

before addition of IL-1β (35ng/ml) and IFN-γ (40 ng/ml) for an additional 24 h, or islets were 

pre-treated for 30 min with IGF-1R blocking antibody (10 µg) then transduced with Ad-IGF-II 48 

h and treated for 30 min with IGF-1R blocking antibody before addition of pro-inflammatory 

cytokines as described above. Flow cytometry was used to determine percent islet cell death of 

dispersed islet cells using Annexin V and PI staining. The data is expressed as ± SEM of three 

independent experiments, *p=0.03 Untransduced islets vs. Ad-GFP transduced islets, *p=0.01 

Untransduced islets vs. Ad-IGF-II transduced islets, *p=0.02 Ad-GFP transduced islets vs. Ad-

IGF-II transduced islets, *p=0.04 Ad-IGF-II + IGF-1R Ab vs. Ad-IGF-II transduced islets 

(Student t-test, one-tailed). 
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Figure. 5.2.11 IGF-II signals through the PI3K/Akt pathway to inhibit apoptosis. Western blot of 

islets untreated or transduced at MOI 100 with Ad-GFP, Ad-IGF-II or untransduced in serum-

free RPMI for 48 h, before addition of IL-1β (35 ng/ml) and IFN-γ (40 ng/ml) for an additional 

24 h. Islets were also treated with wortmannin (200 mM) for 1 h prior to Ad-IGF-II transduction 

and cytokine treatment. Relative phospho-Akt (pAKT) levels were determined by densitometry 

and corrected for total Akt levels relative to the untransduced islet control lane (above pAKT 

blot). Wortmannin treatment of Ad-IGF-II transduced islets reduced the phosphorylation of Akt, 

indicating that IGF-II activates the PI3K/Akt pathway to inhibit apoptosis. 
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Untreated           +        -      -       -       -       

Untransduced    -        +      -       -       -       

Ad-GFP               -         -      +       -       -       

Ad-IGF-II                -         -       -       +      +       

IL-1β                       -         +      +       +      +       

IFN-γ                   -         +      +       +      +       

Wortmannin        -         -       -        -       +       

 

Rel. pAKT Level:     1     1.1   1.1   2.3   1.2   
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5.3 Discussion 

Apoptosis is a primary cause of islet cell death in the early post-transplant period (446). 

Inhibition of islet apoptosis is a very attractive and potentially effective therapeutic strategy to 

prevent loss of functional islet mass post-transplantation and improve clinical islet transplant 

outcomes. In this chapter, the effect of IGF-II over expression on human and rat pancreatic islet 

cell survival was investigated via an ex vivo gene transfer approach.  

The efficacy and utility of any gene transfer strategy is influenced by the choice of transgene and 

by the method used to over express the chosen gene (447). When designing an anti-apoptotic 

strategy, there are a plethora of potential genes, drugs and growth factors that work by targeting 

specific intracellular molecules or cell signaling pathways to effectively inhibit apoptosis. The 

optimal gene must be paired with an appropriate vector type and gene promoter to firstly ensure 

efficient delivery of the transgene to the target cell and secondly to ensure sufficient gene 

expression without compromising target cell viability. The over expressed gene product can then 

exert its therapeutic effect in one of two ways, via a paracrine approach or by targeting specific 

intracellular molecules.  

The anti-apoptotic strategy presented in this thesis fulfills a number of the above requirements. 

For example, Insulin-like Growth Factor-II (IGF-II) exerts its anti-apoptotic function in an 

autocrine and paracrine manner and as shown in Chapter 4, Ad-IGF-II efficiently transduces rat 

pancreatic islets without affecting islet viability or function. The fact that IGF-II works to inhibit 

apoptosis by exerting a paracrine influence on neighbouring cells is particularly advantageous, as 

it means that not every cell within the islet needs to be transduced in order to achieve the 

maximal therapeutic benefit. This is further supported by Ishii et al (448) who suggests that 

molecules which work in an autocrine and paracrine manner display a more marked biological 

action then those targeting intracellular molecules.  

The preliminary aim of this chapter was to establish an in vitro model of apoptosis to mimic the 

in vivo stimulation of pro-inflammatory cytokine mediated insult occurring during the peri- and 

post-transplant period. A treatment time of 24 hours (h) was chosen to induce islet cell death, 

based on studies which have shown that β-cells have the ability to repair their metabolic and 

secretory function and damaged DNA following 24 h incubation with pro-inflammatory 

cytokines IL-1β and IFN-γ, but this damage can not be reversed following 36 h incubation (449, 

450). IL-1β alone is capable of inducing apoptosis in β-cells, but TNF-α and IFN-γ act 

synergistically to potentiate the effects of IL-1β (451). Based on this IL-1β and IFN-γ were the 
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two cytokines utilised in this model. In the presence of IL-1β and IFNγ, islet cell death was 

induced in both human and rat islets. A final dose of 5 ng/ml IL-1β and 10 ng/ml IFN-γ and 35 

ng/ml IL-1β and 40 ng/ml IFN-γ was chosen as the optimal dose to induce cell death in human 

and rat islets respectively. The concentrations were chosen based on their ability to induce both 

apoptosis and necrosis (see section 5.2.1) (426). 

During apoptosis, phosphatidyl serine (PS) which is normally restricted to the internal surface of 

the plasma membrane becomes exposed on the surface of the cell. Annexin V is a 36 kDa 

phospholipid-binding protein that has a high affinity to PS (452) and is therefore used in studies 

of cell death. In most apoptotic assays, cells are stained with both Annexin V and Propidium 

Iodide (PI) and then analysed using flow cytometry. PI is a nucleic acid stain that binds to DNA 

by intercalating between the bases with little or no sequence preference (453). PI is a membrane 

impermeant which is excluded from viable cells and is therefore commonly used for identifying 

dead cells.  

One caveat of anti-apoptotic studies is the transience and brevity of the apoptosis induced, which 

can sometimes be the culprit for the low sensitivity rate of apoptosis assays (454), this includes 

the Annexin V and PI assay which aims to capture specific cell populations undergoing early, 

mid and late stages of cell death. Therefore, this chapter utilised a combination of methods to 

rigorously evaluate, and confirm islet cell death following cytokine exposure. These methods 

include, microscopic evaluation, terminal deoxynucleotidyl-transferase mediated dUTP nick end-

labelling (TUNEL) staining, Annexin V and PI flow cytometric staining and cell culture 

supernatant sampling for the presence of nitric oxide (NO). In addition, islet function was 

assessed using a glucose stimulated insulin secretion assay (GSIS).   

In the mid 1950s, apoptosis was first observed in developing tissues using histological methods, 

and subsequently characterised via its unique morphology. For example, the morphological 

changes that are exhibited by apoptotic cells include cell blebbing, cell shrinkage, chromosomal 

condensation and chromosomal DNA fragmentation. In this chapter, changes in islet structure 

and morphology were evident following IL-1β and IFN-γ cytokine treatment. A similar finding 

has been reported by Yeung et al (455) who have described alterations in human islet 

morphology following pro-inflammatory cytokine exposure in vitro. Others (450) have shown 

that IL-1β induces islet cell sloughing following 48 h incubation, and within four days less than 

10% of intact islets remain as many have degenerated into single cells or clusters of cells. In this 
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study, cytokine treated islets displayed rough and sometimes broken membrane borders, 

darkened hypoxic centres and cell shrinkage, the presence of which are indicative of cell death. 

Hopcroft et al (456) have shown that disruption of the islet microanatomy leads to a reduction in 

the insulin secretory response of islets. In another study, isolated rat islets treated with IL-1β led 

to concentration and time dependent inhibition of insulin biosynthesis that was followed by islet 

destruction (457, 458). Mechanistically, In vitro exposure of β-cells to a combination of IL-1β 

and IFN-γ causes functional changes similar to those observed in pre-diabetic patients, namely a 

preferential loss of first-phase insulin secretion in response to glucose, caused by a decrease in 

the docking and fusion of insulin granules to the β-cell membrane (459). In this chapter, IL-1β 

and IFN-γ significantly impaired the ability of islets to secrete insulin when challenged with an 

exogenous glucose load. However, when islets were transduced with Ad-IGF-II prior to cytokine 

exposure they retained their insulin secretory capacity and fewer apoptotic cells were observed in 

TUNEL stained cytospin preparations. It is particularly interesting to note that Ad-IGF-II 

transduced islets secreted more insulin in response to an increased glucose load than relevant 

control islets. This is supported by Cohen et al (460) who have shown that mouse islets from 

transgenic animals over expressing IGF-II secrete more insulin than control mice islets, a 

phenomenon that may be linked to the growth promoting effects of the IGF-II peptide.  

As discussed previously, islet culture should not exceed 2 – 3 days as to ensure no substantial 

loss of viability prior to transplantation. Based on this, rat pancreatic islets were transduced for a 

maximum time of 48 h prior to treatment with pro-inflammatory cytokines IL-1β and IFN-γ. In 

this chapter, Ad-IGF-II transduced rat islets were protected from apoptosis and cell death induced 

by pro-inflammatory cytokine exposure in vitro, confirming the anti-apoptotic action of IGF-II. 

Furthermore, the anti-apoptotic effect mediated by IGF-II was effectively neutralised by a 

blocking antibody targeting the IGF-1R and western blot analysis confirmed that IGF-II inhibits 

islet apoptosis via activation of the PI3K/Akt intracellular signaling pathway. This result is 

further supported by the well-documented ability of IGF-II to prevent apoptosis in many cell 

types working via the IGF-1R to activate PI3K (461-463). In contrast to this, others (464, 465) 

have shown that the mitogen-activated protein kinase (MAPK) intracellular signaling pathway 

plays a primary role in potentiating the mitogenic and migratory actions of IGF-II.  
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Ilieva and colleagues (415) have shown that incubation of hamster islets with pancreatic duct 

conditioned medium containing 34 ng/ml IGF-II, successfully protects islets from apoptosis and 

necrosis that occurs following the islet isolation procedure. Furthermore, the supplementation of 

minimally nutritive (serum-free) medium with 500 ng/ml IGF-II improves in vitro islet viability 

(466). Our data confirms the ability of IGF-II to promote islet survival in vitro and this was 

achieved with a 40-fold lower concentration of IGF-II than that used by Robitaille (466). In 

addition, Ad mediated IGF-II over expression led to improved protection of islets against 

cytokine induced apoptosis, compared to rat islets pre-treated with 500 ng/ml recombinant  

IGF-II. These results suggest that there is an enhanced anti-apoptotic function when IGF-II is 

over expressed within the local islet microenvironment. 

 

This concept is supported by other investigators (436) who cultured islets with zVAD-fmk, a pan 

caspase inhibitor, prior to transplantation and showed no improvement in islet allograft function 

in vivo, suggesting a lack of sustained local caspase inhibition. To circumvent this issue, in the 

same study diabetic BALB/C mice were treated with exogenous zVAD-fmk by injection, in 

addition to receiving an islet transplant under the kidney capsule. The outcome was an 

improvement in marginal mass islet function. However, this anti-apoptotic approach is dependent 

on systemic administration, increasing the likelihood of toxic side-effects on non-target patient 

organs. The ex vivo anti-apoptotic strategy presented in this thesis avoids the need for systemic 

treatment of recipients. 

 

However, in this chapter Ad mediated IGF-II over expression did not adequately protect human 

islets against IL-1β and IFN-γ mediated cell death. This was likely due to the high background of 

apoptotic and necrotic islets in the islet preparations prior to performing the experiments. In this 

case, the two islet preparations utilized had less than 50% viable cells, and therefore a potential 

reason for the experimental result could be due to the fact that the islet cells were already necrotic 

or in the process of becoming necrotic prior to beginning the assay. Considering the experiment 

is run for a total of four days it would be expected that the already reduced islet viability would 

continue to decrease during the experimental culture period. This is supported by Robitaille (466) 

who have shown that islets with more than 50% dead cells usually do not recover and all cells 

eventually die. 
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Moreover, isolated human islet preparations are only allocated for research use when the donor 

family has consented and the preparation is considered unsuitable for clinical transplantation. 

Prior to transplantation, isolated islets must undergo viability and functionality testing. Therefore, 

research consent human islets have failed the strict requirements for clinical islet transplantation 

and may already exhibit reduced viability, making apoptosis assays difficult to perform. 

Subsequently, there is often a large batch to batch variability in the quality and purity of human 

islets, which complicates data analysis and correlation of results from one experiment to another 

(467). Based on this, it is suggested that future studies should adhere to a strict (>70%) viability 

cut off before being utilized in experiments. This would mean that a higher percentage of viable 

and functional islet cells would then be used, in order to obtain an accurate respresentation of the 

anti-apoptotic effects mediated by IGF-II. In future studies, it would be advantageous to 

investigate novel methods to maintain islet viability during extended islet culture. For example, 

in this thesis islets were maintained in culture at 37°C with 5% CO2, however others (468) have 

shown that culture of islets at 4°C improves the outcome of islet transplantation compared to 

islets cultured at either 22°C or 37°C. 

In conclusion, in this chapter an in vitro IL-1β and IFN-γ pro-inflammatory cytokine induced 

model of apoptosis was established in human and rodent pancreatic islets. The application of Ad-

IGF-II transduced islets within this model confirmed the in vitro anti-apoptotic effect of IGF-II in 

rodent islets. Although the ability of IGF-II to inhibit apoptosis has been shown previously (415, 

466), these studies required high doses of exogenous IGF-II (100 – 500 ng/ml) to achieve either 

the same anti-apoptotic effect, or a reduced effect than that conferred by Ad-IGF-II transduced 

islets. The major advantage of this anti-apoptotic strategy, compared to other published strategies, 

is the local and constitutive over expression of IGF-II, which cannot be adequately controlled or 

maintained in culture systems that employ only exogenous IGF-II islet treatment. 
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CHAPTER 6 

A MARGINAL MASS ISLET TRANSPLANT MODEL TO 
STUDY THE ABILITY OF AD-IGF-II TRANSDUCED 
RAT ISLETS TO IMPROVE ISLET SURVIVAL IN 
DIABETIC NOD-SCID MICE 
6.1 Introduction 

Type 1 Diabetes (T1D) is a disease of metabolic dysregulation, most notably abnormal glucose 

regulation (469). The worldwide incidence of T1D has increased rapidly in recent decades, 

particularly in young children (470). Insulin therapy is the current treatment of choice for T1D 

patients, however it is associated with long-term complications including retinopathy, 

neuropathy, impaired kidney function and cardiovascular disease (471). Transplantation of 

pancreatic islets is a promising alternative treatment for T1D patients. However, it is estimated 

that 50–70% of islets are destroyed in the immediate post transplant period by various intrinsic 

and extrinsic apoptotic stresses (418, 446). Therefore, protecting β-cells against early apoptotic 

death may ultimately improve β-cell function and reduce the number of islets required for 

successful transplantation. 

One way to achieve this is the use of gene transfer, to over express an anti-apoptotic molecule, 

such as Insulin-like Growth Factor-II (IGF-II) in pancreatic islets prior to their transplantation. 

IGF-II is highly expressed during early development, whilst IGF-I is characteristic of post-

weaning childhood and adult tissues (472-474). While Chapter 5 successfully demonstrated the 

in vitro anti-apoptotic function of IGF-II against pro-inflammatory cytokines IL-1β and IFN-γ, 

this chapter aimed to investigate the anti-apoptotic effect of Ad-IGF-II transduced islets in an in 

vivo islet transplant setting. Animal testing and clinical trials are two methods of in vivo testing. 

Animal models of T1D are often utilised to investigate the progression and genetics of T1D 

(475), or to test the efficacy of new therapeutic interventions, such as the over expression of  

IGF-II to improve islet survival post-transplantation. 
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The most complete way to induce diabetes in vivo is to remove the pancreas, either partially or 

totally (476). However, pancreatectomy is a major procedure, requires advanced surgical skills 

and it is almost impossible to restore normoglycemia in pancreatectomised animals (477). 

Chemically induced diabetes, using Streptozotocin (STZ) or Alloxan, offers the most rapid and 

cost effective alternative (478). STZ, also known as 2-deoxy-2-(3-(methyl-3-nitrosoureido)-D-

glucopyranose, is a glucose moiety which contains a very reactive nitrosurea group from the 

mould Streptomyces Griseus (479). STZ is transported into the cell via the glucose transporter 2 

(GLUT2) receptor, which is highly expressed on pancreatic β-cells (480). STZ is toxic to β-cells, 

it causes alkylation of DNA and results in the formation of cytotoxic superoxide, hydrogen 

peroxide and hydroxyl radicals (481) and subsequently leads to diminished insulin production 

(482) (Figure 6.1).  

There are a variety of animal models utilized in the field of diabetes research, one example is 

miniature swine which share similar anatomic and physiological characteristics to humans (483). 

The similarity of their β-cells and insulin to those of humans is well recognized, as insulin was 

derived from pig pancreata prior to transgenic human insulin production. The diabetic Rhesus 

monkey provides another useful model for pre clinical investigation of therapeutic islet 

transplantation strategies and new drug treatments for T1D (484). The Non-Obese Diabetic 

(NOD) mouse is a spontaneous mouse model of T1D, in which insulinitus presents at 4 – 5 weeks 

and diabetes between 12 – 30 weeks of age (476). NOD mice share many similarities to T1D in 

humans, including the presence of pancreas-specific autoantibodies and autoreactive CD4+ and 

CD8+ T cells (485).  

The NOD-SCID mouse is an immunodeficient mouse model with impaired T and B lymphocyte 

development, whereby the severe combined immunodeficiency (SCID) mutation has been 

transferred onto the NOD background. NOD-SCID mice are autosomal recessive and are 

characterised by a single nucleotide polymorphism with Prkdc gene on chromosome 16. NOD-

SCID mice provide an excellent model system for xenogeneic islet transplant studies, such as the 

transplantation of human or rat islets, due to the avoidance of immune-mediated rejection (486, 

487). The major benefit to using rodents for in vivo studies is convenience. For example rodents 

are small, easily handled and are relatively inexpensive. 
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Figure 6.1. Histology of NCr athymic nude mice pancreas. Insulin staining (brown) of murine 

pancreata two days after mice received either an injection of Hank's buffered salt solution 

(HBSS) (A) or streptozotocin (STZ) (B). Note the reduction in insulin staining intensity after 

STZ. Figure adapted from Deeds et al (478).  
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The preliminary aim of this chapter was to investigate how NOD-SCID mice respond to the 

administration of STZ and their subsequent tolerance to the induced diabetic state. Next, a 

marginal mass islet transplant model was developed in which transplantation of 50 islet 

equivalents (IEQ) was shown to reverse diabetes in a marginal number of diabetic NOD-SCID 

mice. The primary goal of the marginal mass model was to design a transplant model whereby 

euglycemia rates in control mice were sufficiently low as to ensure that any improvement in 

transplant outcomes could be clearly observed in mice receiving Ad-IGF-II transduced islets. 

Subsequently, diabetic NOD-SCID mice were transplanted with untransduced, Ad-GFP or Ad-

IGF-II transduced islets and followed for a return to euglycemia or ‘cure’. Mice receiving Ad-

IGF-II transduced islets experienced significantly improved transplant outcomes in vivo.  

 

 

 

 

 



 156 

6.2 Results 

6.2.1 Optimization of diabetes induction in NOD-SCID mice 

The ability of a single dose of Streptozotocin (STZ), delivered via intra peritoneal (i.p) injection, 

to induce diabetes in NOD-SCID mice was investigated using a dose range from 170 – 200 

mg/kg in female mice and 180 mg/kg in male mice as shown in Table 6.2.1. Mice were 

considered diabetic following two consecutive blood glucose (BGL) readings ≥16.6 mmol/l (316, 

317). NOD-SCID mice approximately 9 weeks of age and weighing at least 20 g were used for 

all animal studies described in this chapter. The STZ dose of 180 mg/kg was chosen for 

transplant experiments, as it stably induced diabetes in 54% (15/28) of NOD-SCID female mice 

and 77% (20/26) of male mice. In addition, 180 mg/kg resulted in a lower mortality and is a dose 

which has successfully been used by other researchers (488).  

6.2.2 Gender differences confer susceptibility to STZ-induced diabetes weight 

loss in NOD-SCID mice 

Weight loss is a well described symptom of T1D in humans and is an indicator of diabetes in 

animal models of T1D.  Excessive weight loss can be detrimental to an animal’s health and well 

being and therefore must be appropriately monitored. Based on this, fifteen female and twenty 

male mice received an i.p injection of 180 mg/kg STZ and the weight of each mouse was 

recorded daily. As shown in Table 6.2.2 the average weight loss of female diabetic mice was 

16% but this was significantly higher in male mice (25%). The extreme weight loss experienced 

by the diabetic male mice did not fall within the ethical guidelines of this project, that being 15% 

weight loss from the animals starting weight (SW), and due to this only female mice were 

subsequently dosed with STZ in this thesis.  

6.2.3 Generation of an in vivo marginal mass islet transplant model 

Diabetic NOD-SCID female mice were transplanted with 200, 100 or 50 IEQ to define the 

minimal mass of islets required to reverse or ‘cure’ diabetes in a marginal number of diabetic 

animals. Transplantation of either 100 or 200 IEQ led to a return to euglycemia, characterised by 

two consecutive blood glucose (BGL) readings ≤11.2mmol/l (316) in 100% of animals, however 

50 IEQ led to a 43% cure rate (Figure 6.2.3). Based on this, 50 IEQ was chosen as the marginal 

mass for further transplantation studies. 
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Table 6.2.1. STZ dose optimization in NOD-SCID mice to induce diabetes. Mice received an i.p 

injection of STZ between 160 – 200 mg/kg, and were followed for diabetes. Doses 190 – 200 

mg/kg were grouped together as they caused a high degree of STZ related toxicity. 

Sex STZ Concentration 
(mg/kg) 

n Diabetic (n) Not Diabetic (n) Mortality 
(n) 

Female 160 4 0 4 0/0 
(0%) 

Female 170 26 16 10 8/26 
(30%) 

Female 180 28 15 13 6/28 
(21%) 

Female 190 – 200 18 16 2 6/18 
(33%) 

Male 180 26 20 6 0/26 
(0%) 
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Table 6.2.2. Analysis of NOD-SCID mice weight following STZ injection. Female (A) and male 

(B) mice were weighed prior to STZ injection (180 mg/kg) and then daily for a maximum period 

of 28 days. The total percentage weight loss for each mouse from starting weight to end of study 

period day was calculated and recorded in the table as ‘percentage weight loss’.   

A. Female 
    

Mouse Number Start Weight (g) Percentage Weight Loss 

1 21.0 14% 
2 21.1 17% 
3 20.0 27% 
4 20.0 9% 
5 20.0 12% 
6 20.2 9% 
7 22.8 13% 
8 22.9 17% 
9 21.7 26% 

10 20.0 11% 
11 20.9 23% 
12 22.0 14% 
13 24.2 23% 
14 20.8 18% 
15 22.0 14% 

Average (±SEM) 21.3 ± 0.3 16% ± 1.5 
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Mouse Number Start Weight (g) Percentage Weight Loss 

1 27.6 15% 
2 29.1 13% 
3 25.1 25% 
4 31.6 17% 
5 28.7 14% 
6 25.2 27% 
7 24.8 30% 
8 26.5 30% 
9 29.1 24% 

10 26.6 28% 
11 27.4 23% 
12 23.7 29% 
13 23.8 27% 
14 28.4 24% 
15 26.5 24% 
16 28.0 29% 
17 24.8 30% 
18 25.8 33% 
19 29.6 27% 
20 27.1 29% 

Average (±SEM) 27.0 ± 0.5 25% ± 1.3 
 

 

B. Male 



 160 

 

  0

10

20

30
Mouse 1
Mouse 2
Mouse 3

m
m

ol
/l

 

   0

5

10

15

20
Mouse 1
Mouse 2

m
m

ol
/l

 

   0

10

20

30
Mouse 1
Mouse 2
Mouse 3
Mouse 4
Mouse 5
Mouse 6
Mouse 7

m
m

ol
/l

 
 

Number IEQ 
transplanted 

Total 
Mice Percent Euglycemia 

200 3 3/3 (100%) 

100 2 2/2 (100%) 

50 7 3/7 (43%) 

 

Figure 6.2.3. 50 IEQ defines the marginal mass required for diabetes reversal in an in vivo islet 

transplant model. Rat islets were isolated from Albino Wistar rats and used to transplant diabetic 

mice. Mice were transplanted with (A) 200 IEQ (n=3), (B) 100 IEQ (n=2) or (C) 50 IEQ (n=7) 

and were followed for a maximum of 28 days. Return to euglycemia post-transplantation was 

achieved in 100% of recipients receiving 200 or 100 IEQ and 43% in recipients transplanted with 

50 IEQ (D). Pre-tx = pre-transplant, Post-tx = Post-transplant. 
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6.2.4 NOD-SCID islet transplant procedure 

A marginal mass of islets (50 IEQ) were transduced with Ad-GFP, Ad-IGF-II or untransduced 

and visualized under a light microscope prior to their transplantation under the kidney capsule of 

NOD-SCID STZ-induced diabetic mice (Figure 6.2.4(A-G)).   

6.2.5 Effect of Ad-IGF-II transduced rodent islets in a marginal mass islet 
transplant model 

To investigate the effect of Ad-IGF-II transduction in an islet transplant setting, a marginal mass 

of islets (50 IEQ) were transduced with Ad-GFP, Ad-IGF-II or untransduced and transplanted 

under the kidney capsule of female NOD-SCID STZ-induced diabetic mice. Transplantation of 

Ad-IGF-II islets significantly increased the rate of euglycemia to 78% (n=9), compared to 18% 

and 46% of Ad-GFP and untransduced islet recipients, respectively (both n=11) (Figure 

6.2.5(A)). In addition, the mice were weighed daily following their transplant (Figure 6.2.5(B)). 

Mice receiving Ad-IGF-II transduced islets stabilized and slightly increased their weight 

following transplantation, while this was not the case for mice recieving untransduced or Ad-GFP 

transduced islet grafts. 

6.2.6 Confirmation of diabetes in NOD-SCID mice following transplantation 

Surgical removal of the graft bearing kidney was not performed due to ethical guidelines which 

prohibited a second surgical procedure to be performed on the mice following their islet 

transplant. Therefore, the diabetic state of NOD-SCID mice transplanted in section 6.2.5 was 

confirmed by staining the transplant mice pancreata for endogenous insulin. Mice pancreata were 

fixed in 10% buffered formalin and paraffin-embedded prior to sectioning. Each pancreas was cut 

at three depths or ‘levels’ throughout the tissue to allow for identification of endogenous islet 

cells. Each pancreas section was visualized using a fluorescent confocal microscope and the 

mean islet area µm2 was measured using image J software. There was no difference in the mean 

islet area between the transplant recipient mice and the non-diabetic control, 12108 ± 2737 and 

10958 ± 982 µm2 respectively. However, there was a 3.7-fold reduction in the number of islets 

per pancreas in transplant mice compared to the control (Table 6.2.6). Immunohistochemical 

analysis of pancreas tissue demonstrated a reduction in the insulin immunoreactivity of islets 

from transplant mice, compared to non-diabetic control islets, which displayed strong insulin 

positivite staining (Figure 6.2.6), thereby confirming that the transplant effect observed in 

Figure 6.2.5 was mediated via the anti-apoptotic function of IGF-II in islets.   
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Figure 6.2.4. Rat islet transplantation procedure in NOD-SCID mice. (A) The mouse is 

anaethetised and the kidney (transplant site) is exposed. (B) Image of an islet graft under the 

kidney capsule (white arrow). Representative microscope image of (C) Untransduced (D) Ad-

IGF-II and (E-F) Ad-GFP transduced islets in culture immediately prior to the transplant 

procedure. Images were taken at 4x magnification, Scale bar = 100 µm. (G) Immediately 

following the transplant procedure the animals would was sutured and antiseptic was applied to 

ensure sterility, the transplant site begins to heal within seven days post-transplant (H). 
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Figure. 6.2.5. STZ-induced diabetic recipients of a marginal mass islet graft. Diabetic mice were 

transplanted with Ad-IGF-II (n=9), Ad-GFP (n=11) or untransduced (n=11) marginal mass islet 

grafts and followed for a maximum of 28 days. (A) Return to euglycemia post-transplantation 

was achieved in 78% of recipients receiving Ad-IGF-II transduced islets (7/9) (solid line) 

compared with 18% (2/11) and 46% (5/11) of control animals receiving Ad-GFP (broken line) or 

untransduced islets (dotted line), respectively. p<0.05 (Log-rank (Mantel Cox) Test. (B) Mice 

were weighed prior to STZ injection (SW= starting weight) and then daily following their 

transplantation. ****P<0.0001 (1way ANOVA). Bonferroni Multiple Comparison Test: 

****P<0.0001 Control vs. Ad-IGF-II, ****P<0.0001 Ad-GFP vs. Ad-IGF-II. 
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Table 6.2.6. Confirming native islet destruction in NOD-SCID mice. Diabetes was confirmed in 

NOD-SCID transplant recipients by immunohistochemical analysis for insulin staining. Mean 

islet number and area µm2 ± SEM between islet transplant recipients and non-diabetic NOD-

SCID mice was determined using ImageJ software. 

Sample Type of islet graft recieved Total number of islets Mean islet area µm2 
± SEM 

I Nil, Non-Diabetic Control 35 10958 ± 982 
II Ad-GFP 8 12256 ± 3968 
III Ad-GFP 10 13896 ± 1675 
IV Ad-GFP 2 10220 ± 5893 
V Untransduced 4 8084 ± 1346 
VI Ad-IGF-II 14 15515 ± 3060 
VII Ad-IGF-II 7 14826 ± 2845 
VIII Ad-IGF-II 9 12118 ± 3778 
IX Ad-IGF-II 8 9996 ± 2325 
X Ad-IGF-II 18 14819 ± 3473 
XI Ad-IGF-II 15 13464 ± 2057 
XII Ad-IGF-II 9 8294 ± 623 
XIII Ad-IGF-II 10 11814 ± 1801 
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Figure 6.2.6. Confirming native islet destruction in NOD-SCID mice. Immunofluorescent 

staining of islet cells in mice pancreata, demonstrating a lack of endogenous insulin positivity in 

diabetic transplant recipients compared to control. Images were taken at 40 x magnification or 10 

x magnification (unstained control), Scale bar = 50 µm.  
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6.3 Discussion 

The ability of IGF-II to protect rat pancreatic islets against in vitro pro-inflammatory cytokine 

induced apoptosis was confirmed in Chapter 5 of this thesis. Therefore, this chapter aimed to 

extend these promising results by investigating the effect of Ad-IGF-II transduction, in an in vivo 

islet transplant setting. Previous anti-apoptotic strategies have aimed to enhance marginal mass 

islet graft survival by over expressing growth factors such as hepatocyte growth factor or insulin 

(489, 490). However these strategies only work to improve the growth or function of islets that 

escape the initial apoptosis following islet transplantation. Considering that 50 – 70% of islets die 

due to apoptosis and necrosis in the immediate post-transplant period (188), a potential major 

advantage of the anti-apoptotic approach investigated in this thesis is that islets are exposed to a 

constitutively produced supply of anti-apoptotic IGF-II prior to transplantation and during the 

immediate post-transplant period. In addition, IGF-II has a number of advantages over other anti-

apoptotic strategies, such as mediating cell survival by acting upstream of caspase activation. 

IGF-II blocks proteolytic processing of the major executioner caspases, caspase-3 and caspase-7 

(491), preventing initiation of the apoptotic cascade (492). 

In the human setting of T1D, β-cell destruction is ultimately induced by receptor (i.e. Fas/Fas 

Ligand) mediated mechanisms and/or secretion of cytotoxic molecules, such as granzymes and 

perforin (31). In animal models, a single high dose (180 mg/kg) of Streptozotocin (STZ) 

produces a diabetic state which is similar to human T1D. STZ works by inducing necrotic β-cell 

death so does not exactly mimic the pathogenesis of human T1D. However, STZ-induced 

diabetes provides a satisfactory experimental model for investigation of islet cell survival (493-

495) and is the gold standard for testing the function of clinical islet transplant preparations in 

vivo. 

Diabetes can be induced by STZ in one of three ways: multiple small doses over a period of 

several days, a single moderate sized dose or a single large dose (496, 497). A single large dose 

of STZ (180 mg/kg) was used for experiments in this thesis in order to rigorously evaluate 

improvements in islet transplant outcomes. Although a higher percentage of mice became 

diabetic when dosed with 190 – 200 mg/kg of STZ, the mortality rate of mice was also increased. 

A likely explanation for this result is due to off-target effects as STZ does not specifically target 

the insulin-producing β-cells for destruction (478). This is supported by Valentovic et al (498) 

who have shown that STZ treatment is associated with renal, cardiac and adipose tissue damage 
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and increased oxidative stress, inflammation and endothelial dysfunction. When considering the 

fact that STZ can enter any cell or tissue type expressing the glucose transporter 2 (GLUT2) 

receptor, such as the liver, pancreas, intestine, kidney and brain (499) it is not suprising that the 

reported off-target effects of STZ are numerous. 

The extreme weight loss experienced by the male mice in this chapter was likely due to the 

administration, and subsequent toxicity of STZ. Sudden weight loss following STZ 

administration has been described previously (500). Specifically, Deeds and colleagues (478) 

suggest that weight loss approaching 20% of an animal’s starting body weight within 10 days of 

STZ injection is not uncommon and Dekel et al (501) have reported weight loss of up to 40% 

within 14 days of STZ injection in a single large dose STZ model. A particularly interesting 

finding of this chapter, is that male NOD-SCID mice were more susceptible to STZ-induced 

diabetes (77% of male mice became diabetic versus 54% of female mice). This has been 

observed in other rodent studies (502-506) and has been subsequently attributed to the expression 

of oestradial, a female reproductive hormone, shown previously to protect β-cells from apoptosis 

(507). 

As discussed in Section 6.1 rodent models have been used to investigate both the pathogenesis of 

T1D and the utility of potential therapeutics for the treatment and cure of T1D (508). For 

example, in the NOD mouse, over 200 therapies have been shown to prevent, delay or cure 

diabetes (509). Despite this, these therapies have yet to be successfully translated to a clinical 

human setting. For experiments involving xenogeneic rat islet transplantation, the 

immunocompromised NOD-SCID mouse strain was used, in order to avoid immune-mediated 

graft rejection. As 50–70% of islets are destroyed in the immediate post transplant period by 

apoptosis and necrosis (188), the in vivo study was limited to 28 days post-transplantation to 

investigate the effect of Ad-IGF-II transduction on early graft survival. This study successfully 

highlighted the potent anti-apoptotic effects of Ad-IGF-II over expression in vivo as a major 

mechanism for enhancing islet survival post-transplantation. The improvement of islet graft 

survival, thus reducing the number of transplanted islets required to achieve insulin 

independence, is critical for improving clinical islet transplant outcomes. 
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The ability of IGF-II to improve in vivo islet transplant outcomes has been reported previously 

(415, 466). However, the major limitation of these studies is that islets were only subject to pre-

transplant culture with exogenous IGF-II. Robitaille et al (466) have shown that pre-transplant 

culture of islets with IGF-II, prior to islet encapsulation and subsequent transplantation, leads to 

improved transplant outcomes with a reduced islet cell mass. However this transplant effect is 

likely to be a result of improved islet survival following isolation, resulting in a larger mass of 

islets being transplanted in the IGF-II treatment group. Due to the short half life of growth factors 

(510), it is unlikely that the residual IGF-II transplanted with the encapsulated islets would have 

any significant effect in vivo. Therefore, IGF-II supplementation as a stand-alone anti-apoptotic 

strategy holds limited clinical applicability, as transplanted islets are particularly vulnerable to 

stress induced apoptosis prior to engraftment and revascularization (418, 446). A potential major 

advantage of the strategy presented in this thesis is that islets are exposed to a constitutively 

produced supply of local anti-apoptotic IGF-II prior to transplantation and also during the 

immediate post-transplant period. In another study, Jourdan and colleagues (232) co-encapsulated 

islets with bio-engineered TM4 cells, an adherent sertoli cell line, that produces IGF-II and found 

in vitro islet survival and post-transplant outcomes to be improved. However, encapsulated islets 

are unable to revascularize following transplantation, exacerbating islet hypoxia and subsequent 

β-cell death (183, 511). Moreover, unlike in our strategy, which provides transient transgene 

expression, the IGF-II produced by the transfected TM4 cells raises potential concern for 

malignancy as the cells permanently over express IGF-II (243, 512).  

 

In this chapter, the small number of transplanted islets (50 IEQ) prevented post-transplant 

examination of the islet grafts. While the transplantation of a higher IEQ number was explored 

within the optimization stage of the marginal mass islet model, both 200 and 100 IEQ reversed 

diabetes in 100% of diabetic transplant recipients, and therefore were not considered appropriate 

for use in a marginal mass setting. The potent euglycemic effects seen in mice receiving 200 and 

100 IEQ is likely due to the robust insulin secretory response of rat islets, which is characterised 

by a large, rising second-phase insulin response to stimulatory glucose not present in mouse islets 

(513). Post-transplant examination of the islet grafts would have been particularly advantageous 

as IGF-II is a potent growth factor, which may confer additional survival benefits to transplanted 

islets, such as up-regulation of angiogenic factors. Studies have shown that IGF-II may 

participate in angiogenesis through its ability to up regulate vascular endothelial growth factor 

(VEGF) (234, 514). VEGF is an endothelial cell-specific mitogen in vitro and an angiogenic 
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inducer in a variety of in vivo models (515). In the context of islet transplantation, local 

expression of VEGF may improve the clinical outcome of islet transplantation by enhancing islet 

re-vascularization. One way to assess this would be to utilize molecular methods such as a PCR 

array to profile the expression of key genes involved in regulating new blood vessel formation, 

however to achieve this a larger mass of transplanted islets would be required or the islet grafts 

from transplant mice could be pooled to ensure an adequate RNA yield for downstream 

applications. 

 

In conclusion, in this chapter an animal model of β-cell deficiency, not previously validated in 

our laboratory, was successfully optimized in NOD-SCID mice. While the finding that gender 

differences confer susceptibility to STZ-induced diabetes has been reported previously in 

published studies, our findings confirm this phenonomen. In addition, the transplantation of Ad-

IGF-II transduced islets within this model confirmed that IGF-II over expression leads to superior 

diabetes reversal and stabilization of weight in immunodeficient mice receiving a marginal mass 

of rat islets. A significantly lower number of Ad-GFP recipient mice reached euglycemia 

compared to Ad-IGF-II and untransduced islet recipients. While the promising results obtained 

with the Ad-IGF-II recipient mice provides clear evidence regarding the efficacy of Ad-mediated 

gene transfer in an immunocompromised islet transplant setting, the results seen with Ad-GFP 

recipient mice are likely due to the toxicity associated with GFP over expression (previously 

described in Section 4.3 of this thesis). When considering the results presented in this chapter, 

IGF-II over expression provides an effective anti-apoptotic strategy to improve islet survival 

post-transplantation. 
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CHAPTER 7 

CONCLUDING REMARKS AND FUTURE DIRECTIONS 

Type 1 Diabetes (T1D), formerly insulin dependent or juvenile diabetes, is a metabolic disease 

that results from the autoimmune destruction of β-cells in the pancreas. T1D is fatal unless 

treated with exogenous insulin injections, and good glycaemic control is difficult to attain with 

insulin therapy. As a result, life-threatening micro vascular complications such as retinopathy, 

nephropathy and neuropathy will present in time. Keeping blood glucose levels (BGL) within a 

narrow range using intensive insulin therapy, can reduce these diabetic complications (516), 

however patients have an increased risk of suffering severe hypoglycaemic episodes. 

 

Islet transplantation is a promising alternative therapy for T1D patients. A landmark study 

published in 2000 (74), achieved insulin independence in seven out of seven T1D patients, using 

a steroid-free immunosuppressive regimen called the Edmonton Protocol. Since this time, over 

750 transplants have been performed worldwide. However, despite this initial success, long-term 

follow up of islet transplant recipients reveals a marked reduction in islet graft function over time 

(194). As shown in the Collaborative Islet Transplant Registry (CITR) 2010 annual report, graft 

function can be as low as 40% at five years. The decline in islet graft function post-

transplantation can be attributed to failure of islets to effectively engraft, inflammatory responses 

at the transplant site, allo- or auto-immune responses and immunosuppressive drug-induced β-

cell toxicity (517). All of these processes result in β-cell cell death and contribute to early failure 

of the islet allograft (390). Thus, there is a need to develop novel therapies to adequately protect 

against β-cell apoptosis in the immediate post-transplant period. This need is acutely highlighted 

when considering that up to 70% of the transplanted β-cell mass may be destroyed following 

intraportal transplantation (77, 194, 418). 

 

To this end, the main aim of this thesis was to explore an anti-apoptotic gene transfer strategy to 

promote islet survival following transplantation. The strategy involved the use of an Adenoviral 

(Ad)-based vector to over express the anti-apoptotic molecule Insulin-like Growth Factor-II 

(IGF-II) in islets prior to their transplantation. The main advantage of such a gene transfer 

strategy is its ex vivo nature, whereby the isolated islets are transduced outside the body and any 

remaining viral particles are removed prior to transplantation. This considerably limits the 
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likelihood of any viral vector mediated systemic response, which can be potentially life-

threatening in vivo (123).  

 

IGF-II is a promising candidate molecule for use in islet gene therapy. IGF-II plays an important 

role in prenatal growth and development and activates the phosphatidylinositol-3-kinase 

(PI3K)/Akt pathway and the MAPK pathway via the IGF-I receptor (IGF-1R). IGF-II is a major 

growth factor that regulates differentiation of most mesodermal tissues, including β-cells during 

embryonic life (518). Human and rat pancreatic islets express IGF-II, while exogenous IGF-II 

promotes increased islet cell DNA synthesis and islet survival against apoptotic stimuli (236, 

415, 466, 519, 520). 

 

Islet gene transfer requires efficient entry of the vector into isolated islet cells so that the 

introduced gene or ‘transgene’ is expressed at sufficiently high levels as to confer the required 

therapeutic benefit. In clinical islet transplantation there is often a delay of 2 – 3 days from the 

initial notification of an islet donor to completion of the transplant procedure. During this time, 

the islets must be isolated and may then be subject to recovery in culture. Pre-transplant assays 

are performed on the isolated islets to determine the proportion of β-cells and the viability of the 

islet preparation, using inclusion and exclusion dyes to test the integrity of the plasma membrane. 

This provides an excellent ‘window of opportunity’ whereby the isolated islets can be transduced 

with an appropriate viral vector to over express the desired transgene(s).  

 

Currently the optimal vector for islet transduction is unknown. Four major viral vector types exist 

for use in gene transfer studies, namely Adenovirus (Ad), Adeno-Associated Virus (AAV), 

Herpes Simplex Virus (HSV) and Retrovirus (including Lentivirus). Regardless of the vector 

type utilised, the initial process of viral infection is the same, culminating with the docking and 

attachment of a viral particle to its cognate cell surface receptor. From this point onwards, viral 

transduction efficiency is influenced by the intracellular milieu and trafficking events that occur 

within the target cell. For example, interaction of Ad with its integrin co-receptor leads to viral 

internalization and packaging of Ad within an endosome (521). The internalized Ad particles will 

then traffic through the cell until they reach a low pH region, which causes endosomal rupture, 

escape and subsequently leads to trafficking of the virus to the nuclear pore (522). This is in 

contrast to AAV-based vectors that are internalized into the cell via clathrin coated pits, in a 
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process that is dependent on dynamin, a GTPase protein involved in clathrin-mediated 

internalization (523).  

 

Ad transgene expression is transient whereas AAV vectors provide stable, permanent transgene 

expression. In immune competent hosts, Ad-mediated transgene expression has been observed 

for approximately 3 weeks although this can vary from 1 – 8 weeks (524-526). While the 

transient nature of Ad renders it less optimal for interventions that require permanent expression, 

it may prove advantageous in an islet gene therapy setting, that would benefit most from 

apoptosis inhibition in the early post-transplant period. 

 

In Chapter 3, the ability of Ad- and AAV-based vectors expressing a green fluorescent protein 

(GFP) reporter gene to transduce isolated human and rodent pancreatic islets was investigated. 

The primary aim was to determine the optimal vector type for efficient islet transduction. The 

consequence of Ad or AAV transduction on islet viability and function was determined for each 

vector and found to be unaffected by exposure to either virus type. In this regard, Chapter 3 has 

provided evidence that Ad- and AAV-based vectors offer efficacious transduction of human and 

rodent pancreatic islets. 

 

A major limitation to the use of AAV is the high vector dose required to achieve therapeutic gene 

transfer in cells and tissues (including isolated islets), whereas an equivalent or lower dose of Ad 

leads to increased transduction efficiency and enhanced transgene expression. Recent advances in 

AAV vector technology and design have broadened the tropism and range of available AAV-

based vectors. Phosphorylation of surface exposed tyrosine residues on the capsid of AAV2 viral 

vectors leads to ubiqutination and degradation of AAV viral particles (355). However, site-

directed mutagenesis of tyrosine to phenylalanine capsid residues protects the viral particles from 

proteasome mediated degradation, and subsequently increases the transduction efficiency of 

AAV (388).  

 

Therefore, Chapter 3 aimed to provide a thorough side-by-side comparison of six AAV vector 

types to assess their transduction efficiency in human and rodent pancreatic islets. The AAV 

vector panel consisted of an AAV2 wild type vector, two pseudotype AAV vectors that 

accommodate capsid proteins from AAV1 and AAV8 viral serotypes (AAV2/1 and AAV2/8) and 

three tyrosine mutant vectors derived from the genome of AAV2 or AAV8 serotypes and contain 
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either single or triple tyrosine mutations on the viral capsid (AAV8mutY733F, AAV2muttriple 

and AAV2mutY444F). The results in Chapter 3 demonstrate that Ad is far more efficient at 

transducing human and rodent pancreatic islets compared to AAV-based vectors. In addition, 

single or triple tyrosine mutations on the protein capsids of AAV vectors were insufficient to 

enhance gene delivery to the islets. This is the first study which has investigated the transduction 

efficiency of tyrosine-mutant vectors in human and rodent pancreatic islets, and therefore the first 

report describing an inability of these vector types to effectively transduce human and rat 

pancreatic islets.  

 

Finally, Chapter 3 provided preliminary experimental evidence that the human islet isolation 

process, which utilizes an aggressive enzyme-mediated procedure to digest the endocrine islet 

cells, leads to loss of the cellular receptors required for efficient AAV-mediated islet cell 

transduction. The receptor composition of islet cells is not necessarily stable following isolation, 

as integrin expression has been observed to decrease in culture (375). However integrin 

expression can be up regulated in the presence of certain extracellular matrix elements (376). 

Considering that integrin αvβ5 is a necessary co-receptor for AAV internalization, it may be 

possible to improve AAV transduction efficiency by promoting enhanced receptor turn over. This 

may be achieved via the supplementation of islet culture medium with growth factors appropriate 

for this purpose.  

 

Based on the results obtained in Chapter 3 of this thesis, a replication-deficient Ad vector 

(serotype 5) was chosen as the optimal gene delivery vehicle to over express human IGF-II in 

pancreatic islet cells. In Chapter 4, Ad-IGF-II successfully transduced rodent islets and IGF-II 

over expression did not affect islet viability or function, suggesting that Ad-IGF-II is an effective, 

non-toxic vector for use in an islet gene therapy setting. Molecular studies demonstrated that the  

IGF-II mRNA was efficiently transcribed and translated to protein. The resultant IGF-II protein 

expression was detected in cell culture supernant of Ad-IGF-II transduced rat islets over a five 

day culture period.  

 

Pancreatic islets are subject to extensive oxidative stress during pancreas procurement and islet 

isolation, culture and transplantation. Multiple signaling pathways such as the nuclear factor 

kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) stress response pathways are 

triggered during these processes, which leads to pro-inflammatory cytokine mediated β-cell 
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injury and death (527). It is well established that IL-1β alone or in combination with other pro-

inflammatory cytokines, such as TNF-α and IFN-γ induce β-cell death in mouse, rat and human 

islets in vitro and in vivo (426-429). Therefore in Chapter 5 an in vitro model of apoptosis was 

established to mimic the in vivo stimulation of pro-inflammatory cytokine mediated insult 

occurring during the peri- and post-transplant period. 

 

The exposure of rat and human islets to pro-inflammatory cytokines IL-1β and IFN-γ severely 

diminished islet viability and function. Ad-IGF-II transduced rat islets were effectively protected 

against pro-inflammatory cytokine induced cell death. In other studies (232, 415, 466) it has been 

reported that between 34 – 500 ng/ml of IGF-II is required to effectively inhibit islet apoptosis in 

vitro. Therefore, this thesis provides the first report of rat islets expressing approximately 14.3 ± 

2.4 ng IGF-II to enhance islet survival in vitro. Moreover, the anti-apoptotic effect mediated by 

IGF-II in Chapter 5 was neutralised by a blocking antibody targeting the IGF-1R and Western 

blot analysis confirmed that IGF-II inhibits islet apoptosis via activation of the PI3K/Akt 

intracellular signaling pathway.  

 

In Chapter 6, the ability of transplanted islets to normalize blood glucose levels (BGL) in 

diabetic NOD-SCID mice was significantly enhanced by Ad-IGF-II transduction of the islet 

grafts, when compared to mice receiving untransduced or Ad-GFP transduced islets. Thus, Ad-

mediated over expression of anti-apoptotic IGF-II led to a significant improvement in in vivo 

transplant outcomes. Moreover, the normalization of glycemia in diabetic Ad-IGF-II recipient 

mice was associated with a stabilization and slight improvement, in the average weight of 

transplant mice.  
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A specific limitation of this anti-apoptotic strategy is that it targets only apoptosis as a cause of 

islet loss in the early post-transplant period. In addition to being protected against apoptotic 

insults, islets need to be able to resist alloimmunity, recurrent autoimmunity and effectively 

revascularize following transplantation. To this end, it is unlikely that a single gene will fulfill all 

the post-transplant requirements to effectively improve islet graft function post-transplantation. 

Advances in vector design have led to the development of multigene vectors that can successfully 

co-express two or three transgenes under the direction of a single promoter (528-530). Using an 

Ad-based vector, Narang and colleagues (467) have shown that co-expression of two genes 

targeting different post-transplant islet stresses, have an additive effect on islet cell survival post-

transplantation, when compared to either gene alone. Others (531) have shown that co-expression 

of human Vascular Endothelial Growth Factor (VEGF) and human Interleukin-1 Receptor 

Antagonist (hIL-1Ra) decreases pro-inflammatory cytokine induced apoptosis in vitro and 

improved the outcome of islet transplantation in vivo. In future studies, multigene vectors may 

provide an excellent system to evaluate other novel genes, in combination with IGF-II for 

therapeutic efficacy.  

 

The in vivo studies of this thesis were performed by transplanting the islets under the kidney 

capsule of diabetic NOD-SCID mice. However, this method does not parallel the intra portal 

transplantation procedure of clinical islet preparations. The kidney capsule method of 

transplantation was utilized in Chapter 6 as it is a practical and reliable technique that is widely 

used in experimental diabetes studies (532, 533). Moreover, the kidney capsule provides a 

convenient location to access the transplanted islets for post-transplant assessment of the islet 

graft and to perform surgical nephrectomy as a method to validate islet graft function. Studies 

have shown that the long-term function of islets transplanted under the kidney capsule is superior 

compared with islets transplanted via the portal vein (534, 535). Despite this, future transplant 

studies, such as those aiming to investigate the utility of mutigene vectors should attempt to 

perform intra portal islet transplantation as a means to ensure a parallel can be drawn against the 

current clinical application.     

 

After directly comparing the transduction efficiency of Ad- and AAV-based vector types, it 

would appear that Ad may be a more efficient vector for use in an islet transplant setting. Ad-

based vectors offer the advantage of high transduction efficiency in dividing and non-dividing 

cells and transient gene expression, as the viral DNA does not integrate into the host cell genome. 
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Although the lack of pathogenicity associated with AAV vectors also makes them an attractive 

vector choice, they are burdened with the major disadvantage of the size of the therapeutic genes 

that can be packaged, which excludes many potentially useful genes or multiple transgenes. In a 

preclinical setting, systemic administration of Ad treatment close to reproductive organs, such as 

treatment for prostate cancer has been shown to be safe and no offspring have shown germline 

transmission (536). Moreover, data presented in this thesis suggests that Ad-IGF-II is an effective 

and non-toxic viral vector type for islet transduction. The major novel aspect of this work is the 

finding that up to a 34-fold lower concentration of human IGF-II is required to prevent in vitro 

and in vivo islet cell apoptosis, compared to that of previous published studies. Furthermore, the 

use of a transient Ad-based vector to over express IGF-II negates the need for every islet cell to 

be transduced, as IGF-II works to inhibit apoptosis via autocrine and paracrine mechanisms.  

Thus, clinically, Ad-IGF-II represents a promising candidate vector to improve islet survival in 

the immediate post-transplant period. 

 

In conclusion, although the data regarding enzyme-mediated AAV receptor loss during the 

isolation period is preliminary, this finding may be enhanced by future studies aiming to identify 

the optimal molecules or extracellular matrix components that promote or enhance the rate of 

receptor turn over. Ad-IGF-II mediates local and specific over expression of IGF-II in transduced 

islet cells without affecting islet viability or function. Furthermore, IGF-II promotes islet survival 

against pro-inflammatory cytokine induced apoptosis in vitro and improves transplant outcomes 

in vivo, a process shown to be mediated via the interaction of anti-apoptotic IGF-II with the IGF-

1R on the islet cell surface. Thus, the data presented in this thesis suggests that Ad-mediated over 

expression of IGF-II may provide a promising anti-apoptotic strategy to improve islet survival in 

the peri- and post-transplant period.   
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APPENDIX 

Appendix A: Morphological analysis and titering of Ad-GFP utilized in Chapter 3. HEK 293 

cells (2x106) were transduced with Ad-GFP at various viral dilutions (10-1 to 10-6) for 48 hours 

and at 48 hours the cells were (A) visualized under basic transmission light, (B) visualized for 

GFP expression using a fluorescent microscope and (C) titered to 2x1011 pfu/ml based on percent 

GFP expression using flow cytometry. Images were taken at 2x magnification, dilution 10-1. 

Histograms are representative of duplicate samples. Ad-GFP transduced HEK-293 cells show 

positive expression of GFP reporter gene expression, indicating successful HEK 293 cell 

transduction.  
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Appendix B: pENTCMV is an Adenoviral shuttle vector. It uses the cytomegalovirus (CMV) 

promoter for IGF-II expression. Figure provided from Welgen, Inc., USA. 
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