Optimal Delivery of Therapeutic Genes to Pancreatic Islets

Amy Hughes

Thesis submitted in fulfilment for the degree of

Doctor of Philosophy

In

The Department of Medicine
Faculty of Health Sciences
The University of Adelaide

September 2012
Table of Contents

Thesis Abstract viii
Thesis Declaration x
Publications, Presentations and Awards xi
Acknowledgements xvii
Abbreviations xix

CHAPTER 1: LITERATURE REVIEW
 1.1 Introduction 1
 1.2 The pancreas 1
 1.3 Islet of Langerhans 2
 1.3.1 The β-cell and glucose homeostasis 2
 1.4 Diabetes Mellitus 2
 1.4.1 Type 1 Diabetes 4
 1.4.2 Immunology of Type 1 Diabetes 4
 1.4.3 Type 2 Diabetes 5
 1.4.4 Current treatments for Type 1 Diabetes 6
 1.4.5 Islet Transplantation 7
 1.5 Barriers to successful islet transplantation 9
 1.6 Concepts and methods of gene therapy 11
 1.6.1 Viral-mediated gene transfer to pancreatic islets 11
 1.6.1.1 Adenoviral Vectors 14
 1.6.1.2 Adeno-Associated Viral Vectors 15
 1.6.1.3 Herpes Simplex Viral Vectors 16
 1.6.1.4 Retroviral vectors 16
 1.6.2 Non-viral mediated gene transfer to pancreatic islets 17
 1.7 Alternative strategies towards islet survival 18
 1.8 Gene therapy towards islet survival 19
 1.9 Insulin-like growth factor-axis 24
 1.9.1 Insulin-like Growth Factor-I 26
 1.9.2 Insulin-like growth factor-II 26
1.9.3 Insulin-like growth factor-II expression 27
1.9.4 Insulin-like growth factor-II signalling 27
1.9.5 Insulin-like growth factor receptors 29
1.9.6 Insulin-like growth factor binding proteins 29

1.10 Apoptosis 30
 1.10.1 Necrosis 30
 1.10.2 Morphology of Apoptosis 31
 1.10.3 Mechanisms of Apoptosis 31
 1.10.3.1 Extrinsic (death receptor) pathway 34
 1.10.3.2 Intrinsic (mitochondrial) pathway 34
 1.10.3.3 Perforin/Granzyme Pathway 35
 1.10.3.4 Execution Pathway 35
 1.10.4 Apoptosis in Type 1 Diabetes 36
 1.10.5 Apoptosis in islet transplantation 36

1.11 Thesis summary 37
1.12 Thesis aims and hypothesis 38

CHAPTER 2: MATERIALS AND METHODS 39

2.1 MATERIALS 39
 2.1.1 Replication deficient Adenoviral-based vectors 39
 2.1.2 Adeno-Associated Viral (AAV)-based vectors 39
 2.1.3 Animals 40
 2.1.4 Cytokines 40
 2.1.5 Antibodies 40
 2.1.5.1 Primary antibodies 40
 2.1.5.2 Secondary antibodies 40
 2.1.6 FACS reagents 41
 2.1.7 Molecular biology reagents 41
 2.1.8 Tissue culture reagents 42
 2.1.9 Kits 42
 2.1.10 Miscellaneous reagents 43
 2.1.11 Equipment 45
2.6.4 Ki67 staining

2.7 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)
 2.7.1 Rat insulin ELISA
 2.7.2 Human insulin ELISA
 2.7.3 Human IGF-II ELISA

2.8 GRIESS REACTION FOR NITRIC OXIDE DETERMINATION

2.9 ANIMAL METHODS
 2.9.1 Albino wistar rat islet isolation
 2.9.2 Streptozotocin diabetes induction
 2.9.3 NOD-SCID kidney capsule islet transplant

2.10 IMMUNOHISTOCHEMISTRY
 2.10.1 Islet cytopsins
 2.10.2 Paraffin embedding of human islet cell suspensions
 2.10.3 Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
 2.10.4 Antigen retrieval
 2.10.5 Insulin staining of islets
 2.10.6 Fluorescent confocal microscopy of transduced islets

2.11 STATISTICAL ANALYSIS

2.12 SOLUTIONS AND BUFFERS

CHAPTER 3: COMPARISON OF ADENOVIRAL AND ADENO-ASSOCIATED VIRAL TRANSDUCTION OF HUMAN AND RODENT PANCREATIC ISLETS

3.1 Introduction

3.2 Results
 3.2.1 Ad-GFP transduction induces GFP expression in rat islets
 3.2.2 Ad-GFP transduction does not affect rat islet viability or function
 3.2.3 GFP expression is localized to the perimeter in Ad-GFP transduced islets
 3.2.4 Ad-GFP transduction induces GFP expression in human islets
 3.2.5 Ad-GFP transduction does not affect human islet viability
 3.2.6 GFP expression profile of AAV-GFP transduced rat pancreatic islets
 3.2.7 GFP expression profile of AAV-GFP transduced rat islets with vector dose
 6.25x10^8, 1.25x10^9, 2.5x10^9 and 5x10^9 vg
3.2.8 AAV-GFP based vectors transduce rat islets with various levels of efficiency

3.2.9 GFP expression is localized to the islet perimeter in AAV2/1 transduced rat islets

3.2.10 AAV-GFP transduction does not affect viability or glucose stimulated insulin secretion of rat islets

3.2.11 AAV-GFP based vectors failed to transduce isolated human islets

3.2.12 GFP expression profile of AAV-GFP transduced human islets

3.2.13 GFP expression profile of AAV-GFP transduced HEK 293 cells

3.2.14 Immunohistochemical staining for heparan sulphate proteoglycan and integrin αvβ5 in human pancreatic islets

3.3 Discussion

CHAPTER 4: CHARACTERISATION OF AN ADENOVIRAL-BASED VECTOR ENCODING HUMAN INSULIN-LIKE GROWTH FACTOR-II

4.1 Introduction

4.2 Results

4.2.1 Sequencing of human IGF-II from Ad based vector (Ad-IGF-II)

4.2.2 Microscopic evaluation of Ad-GFP and Ad-IGF-II transduced HEK 293 cells

4.2.3 Human IGF-II transgene expression in Ad-IGF-II transduced HEK 293 cells

4.2.4 Secretion of human IGF-II by Ad-IGF-II transduced HEK 293 cells to examine secretion of folded protein

4.2.5 Transduction of isolated rat islets with Ad-GFP

4.2.6 Rat islet viability following Ad-IGF-II transduction

4.2.7 Characterisation of rat islet function following Ad-IGF-II transduction

4.2.8 Evaluation of Ad-GFP β-cell transduction in isolated rat islets

4.2.9 Determination of human IGF-II secretion in Ad-IGF-II transduced rat islets

4.2.10 Determination of islet proliferation in Ad-IGF-II transduced rat islet

4.3 Discussion
CHAPTER 5: THE ANTI-APOPTOTIC ACTIVITY OF INSULIN-LIKE GROWTH FACTOR-II IN AN IN VITRO MODEL OF CYTOKINE INDUCED APOPTOSIS

5.1 Introduction 128

5.2 Results 131

5.2.1 Pro-inflammatory cytokines Interleukin-1β and Interferon-γ induce cell death in human and rat pancreatic islets in vitro 131

5.2.2 Assessment of human and rat islet morphology following IL-1β and IFN-γ pro-inflammatory cytokine exposure 131

5.2.3 Pro-inflammatory cytokines IL-1β and IFN-γ induce DNA damage in isolated rat islets 134

5.2.4 Pro-inflammatory cytokines IL-1β and IFN-γ impair the glucose stimulated insulin secretory ability of rat islets 134

5.2.5 Nitric oxide expression in rat islets following pro-inflammatory cytokine exposure 134

5.2.6 Ad-IGF-II transduction of rat islets protects against pro-inflammatory cytokine induced cell death in vitro 138

5.2.7 Ad-IGF-II transduction of human islets does not protect against IL-1β and IFN-γ pro-inflammatory cytokine induced cell death in vitro 138

5.2.8 Ad-IGF-II transduced rat islets display a decreased number of TUNEL positive apoptotic cells following pro-inflammatory cytokine exposure in vitro 138

5.2.9 Characterisation of Ad-IGF-II transduced rat islet function following IL-1β and IFN-γ pro-inflammatory cytokine exposure 143

5.2.10 The anti-apoptotic effect of IGF-II is neutralized by blocking the IGF-1R 143

5.2.11 IGF-II activates the PI3K/Akt pathway to inhibit islet apoptosis 143

5.3 Discussion 147

CHAPTER 6: A MARGINAL MASS ISLET TRANSPLANT MODEL TO STUDY THE ABILITY OF AD-IGF-II TRANSDUCED RAT ISLETS TO IMPROVE ISLET SURVIVAL IN DIABETIC NOD-SCID MICE

6.1 Introduction 152
6.2 Results

6.2.1 Optimization of diabetes induction in NOD-SCID mice
6.2.2 Gender differences confer susceptibility to STZ-induced diabetes weight loss in NOD-SCID mice
6.2.3 Generation of an in vivo marginal mass islet transplant model
6.2.4 NOD-SCID islet transplant procedure
6.2.5 Effect of Ad-IGF-II transduced rodent islets in a marginal mass islet transplant model
6.2.6 Confirmation of diabetes in NOD-SCID mice following transplantation

6.3 Discussion

CHAPTER 7: CONCLUDING REMARKS AND FUTURE DIRECTIONS

References
Appendix
Thesis Abstract

Islet transplantation is a promising therapeutic option for Type 1 Diabetic (T1D) patients, with the ability to improve glycometabolic control and in select cases achieve insulin independence. Intraportally transplanted islets must reside in the hostile environment of the liver, where they are exposed to the instant blood mediated inflammatory reaction (IBMIR), alloimmunity, recurrence of islet specific autoimmunity, a highly toxic pro-inflammatory cytokine storm (e.g. IL-1β, IFN-α, IFN-γ and TNF-α) and hypoxia due to inadequate revascularization post-transplantation. The early loss of functional islet mass (50-70%) due to apoptosis following clinical transplantation contributes to islet allograft failure. Strategies to prevent apoptosis are therefore highly desirable to enhance islet survival for transplantation.

In Chapter 3, the ability of Adenoviral (Ad) and Adeno-Associated Viral (AAV)-based vectors expressing a green fluorescent protein (GFP) reporter gene to transduce isolated human and rat pancreatic islets was investigated. Specific interest was placed on tyrosine mutant AAV-based vector types, which have not been previously explored in human and rodent pancreatic islets. Ad efficiently transduced isolated human and rat pancreatic islets while AAV failed to transduce human islets and showed a varied ability to transduce rat islets. The results in this chapter demonstrate that Ad vectors are more efficient at transducing isolated islets than AAV-based vector types.

Chapter 4 aimed to characterise an Ad-based vector encoding an anti-apoptotic molecule termed Insulin-like Growth Factor-II (Ad-IGF-II). Ad-IGF-II effectively transduced rat pancreatic islets without affecting islet viability or function and did not induce uncontrolled islet cell proliferation. The results in this chapter suggest that Ad-IGF-II is an effective and non-toxic vector type for use in an islet gene therapy setting.

In Chapter 5 and Chapter 6, the influence of local human IGF-II over expression on rat pancreatic islet cell survival in vitro and in vivo was examined, respectively. Over expression of IGF-II in islets resulted in enhanced islet survival in vitro and in an in vivo marginal mass islet transplant model. Transplantation of IGF-II over expressing islets under the kidney capsule of diabetic NOD-SCID mice restored euglycemia in 78% of recipients, compared to 46% and 18% of untransduced and Ad-GFP transduced control islet recipients, respectively.
In summary, this thesis demonstrated that compared to AAV, Ad is currently the optimal vector for use in an islet gene therapy setting. Moreover, over expression of IGF-II did not affect the viability or insulin secreting capacity of islets. Finally, the induced expression of anti-apoptotic IGF-II led to enhanced islet survival *in vitro* and improved transplant outcomes in an *in vivo* marginal mass islet transplant model, indicating that IGF-II gene transfer is a potentially powerful tool to improve islet survival post-transplantation.
Thesis Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Amy Hughes and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below*) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed Amy Hughes
Publications, Presentations and Awards

Publications

Invited Reviews

Published Manuscripts (1) and Manuscripts in Preparation (2)

2. **Hughes, A**, Jessup CF, Drogemuller, CJ, and Coates PTH, Tyrosine mutations in AAV2 and AAV8 Capsids is Insufficient to Enhance Gene Delivery to Isolated Human Pancreatic Islets

Published Abstracts

Presentations

Awards

2012 Pfizer Young Investigator Award, Transplantation Society of Australia and New Zealand, Annual Scientific Meeting, Canberra
2012 Medical Staff Society Research Prize, Medical Grand Round, Royal Adelaide Hospital
2012 Faculty of Health Sciences Postgraduate Travelling Fellowship, University of Adelaide
2010 International Travel Grant, The Transplantation Society of Australia and New Zealand
2009 Trevor Prescott Memorial Scholarship, The Freemasons Foundation, Adelaide
2009 Amgen Young Investigator Award, The Transplantation Society of Australia and New Zealand, Annual Scientific Meeting, Canberra
2009 Faculty of Health Sciences Postgraduate Divisional Scholarship, University of Adelaide
2008 The Queen Elizabeth Research Foundation Honours Scholarship, Adelaide
Acknowledgements

Firstly, I would like to thank my supervisors Associate Professor Toby Coates, Dr. Claire Jessup and Chris Drogemuller for their time, guidance and support. Thank you for reviewing all my abstracts, all my thesis drafts and all my manuscript drafts. In particular I would like to give my sincere gratitude to Dr. Coates. Toby I thank you for giving me the opportunity to complete my PhD in the laboratory. Three years ago my life became richer and more fulfilling, and then it became “amazing” simply because I was given the opportunity to work day in and day out in the field of islet transplantation, working with a remarkable endocrine cell that so elegantly exists within the pancreas to release different hormones in response to blood nutrient levels. Toby I also cannot forget Brunello di Montalcino as a wine first experienced in Venice, but to the end of time, it will remain in my heart as a reminder of your generosity.

Thank you to all the past and present members of the lab. Tim Searcy (LF), thank you for every minute I was blessed to be in your presence. Our friendship has been witness to laughter, happiness, adventures, tears and frustrations and for this I will be eternally grateful. Chris Hope, my dear friendly friend, thank you for being by my side as we hold on tight and ride the PhD roller coaster together. You are the epitome of what a good scientist represents and have never been anything but a truly exceptional friend to me. The beautiful Jodie Nitschke, from the moment I met you I have been mesmerized by your soul which at every given moment radiates nothing but pure “amazing-ness”. Thank you for all your help in the lab, thanks for - saturday morning ‘agarose gel master class’, for your guidance with all things sequencing and PCR, for your help with preparing buffers and reagents (the list could go on and on). Julie Johnston (Jules), there has never been a question that you cannot answer. Your scientific knowledge and understanding truly rivals that of a senior post-doc. I have never been anything but in awe of you, and thankful for our friendship. Dr. Darling Rojas-Canales, thank you for your friendship, for your mentorship, patience and advice. I hold close to my heart over four years of “TIL/ITF/RTIL/TQEH/RAH” memories. Darling, I am so excited to watch your post-doctoral career because you are destined for great things. Plinio Hurtado (Plin), your love of life is contagious and I thank you for allowing me to share that passion with you. Ernesto Hurtado (E), I have enjoyed our conversations (mainly about desert and wine bars). The field of science gained an exceptional advocate when you entered the realm of medical research and I wish you the best of luck in all your future endeavors.
I thank Dr. Daisy Mohanasundaram for her patience in teaching me how to perform rat islet isolations. Daisy, I thank you for your help with the islet transplants performed in this thesis, of which Chapter 6 would not have been possible without your help. Finally, I would like to give my special thanks to Svjetlana Kireta, Clyde Milner, Dr. Michael Collins, Matthew Stephenson, Dr. Natasha Rogers, Daniella Penko and Kisha Sivanathan for their friendship and help in the laboratory.

Thank you to the donors and donor families, whom without their generosity, this research would not have been possible. I am also greatly appreciative of the support given by The Australian Islet Consortium, The University of Adelaide, CNARTS and The Transplantation Society of Australia and New Zealand. I would like to extend my sincere gratitude to the Trevor Prescott/Freemasons foundation for their commitment to health, their community involvement and awarding me the prestigious Trevor Prescott Memorial Scholarship for my PhD studies in 2009.

I want to thank my parents, Lynn and Greg Hughes from the bottom of my heart for their endless love and support throughout my academic education. You will be in my heart forever and always. Thank you to my siblings Sarah, Michelle, Matt, Joe, Hannah and Finlay. There is no other love like the love I feel for all of you. Special thanks to my niece Isabella, you are still my angel sent from god to brighten all our lives, and my nephew Callum, you might not even realize it yet, but every day you remind me that life is “amazing”.

Lauren and Erin, I have had the honor of knowing you since our very first day in undergraduate biotechnology. Thank you for the unrelenting support, laughter and fun times. You have both witnessed my countdown, for three years now. Finally, the countdown is over. Dr. Helena Ward, thank you for your support, friendship and advice. I am looking forward to our purple-themed dinner to celebrate ‘the PhD’.

To my PhD, you have been my friend, my every day, my early mornings, and my weekend accomplice (eating far too much take away laksa from Rundle Street) while running ELISAs late into the evening. For the last three years you have been the first thing on my mind in the morning and the last thing on my mind in the evening. I will miss you, but without you I would not know the true meaning of dedication, the meaning of determination and the meaning of strength.
Abbreviations

°C - Degrees Celsius

1x PBS - 1 x Phosphate Buffered Saline

1xHBSS - 1x Hanks Buffered Salt Solution

4E-BP1 - Eukaryotic initiation factor binding protein

4E-eIF4E - Eukaryotic initiation factor

AAV - Adeno-associated viruses

Ad - Adenovirus

Ad-GFP - Adenoviral-Green Fluorescent Protein

Ad-IGF-II - Adenoviral-Insulin like Growth Factor-II

ALS - Acid-labile subunit

Apaf-1 - Apoptosis-protease activating factor-1

APC - Antigen presenting cell

BAD - Bcl-associated death promoter

Bcl-2 - B-cell lymphoma 2

BGL - Blood glucose levels

BLAST - Basic local alignment search tool

bp - Base pairs

CAR - Coxsackie Adenovirus Receptor

CITR - Collaborative Islet Transplant Registry

cm - Centimeter
CPE - Cytopathic effects

DAPI - 4',6-diamidino-2-phenylindole

DISC - death-inducing signaling complex

ELISA - Enzyme linked immunosorbent assay

Expect-value - E-value

FADD - Fas-associated death domain

FasL - Fas-Fas ligand

FCS - Foetal calf serum

FOXO - Forkhead transcription factor

GAD65 - Glutamic acid decarboxylase

GFP - Green fluorescent protein

GLUT2 - Glucose transporter 2

GSIS - Glucose stimulated insulin secretion

GSK-3β - Glycogen synthase kinase 3β

HEK - Human Embryonic Kidney

hIL-1Ra - Human Interleukin-1 Receptor Antagonist

h - Hour

HPRT-1 - Hypoxanthinephosphoribosyltransferase 1

HSPG - Heparan sulphate proteoglycan

HSV - Herpes Simplex Virus

i.p - Intra peritoneal
IBMIR - Instant blood mediated inflammatory reaction
IEQ - Islet equivalents
IFN-γ - Interferon-gamma
IGF - Insulin-like Growth Factor
IGF-1R - Insulin-like Growth Factor-I receptor
IGF-1R/IR - Insulin-like Growth Factor-I receptor/Insulin receptor
IGFBP - Insulin-like Growth Factor binding protein
IGF-I - Insulin-like Growth Factor-I
IGF-II - Insulin-like Growth Factor-II
IGF-IIIR - Insulin-like Growth Factor-II receptor
IL-10 - Interleukin-10
IL-1β - Interleukin-1β
IL-4 - Interleukin-4
iNOS - Inducible nitric oxide synthase
IR - Insulin receptor
IRS-2 - insulin receptor substrate 2
kbp - Kilo base pairs
kDa - kilo dalton
lamR - Laminin receptor
M - Molar
MAPK - Mitogen activated kinase
PS - Phosphatidyl serine
PVDF - Polyvinyl difluoride
rIGF-II - Recombinant IGF-II
RIP - Receptor-interacting protein
RT - Room temperature
RT-PCR - Real-time PCR
SCID - Severe combined immune deficiency
SDS-PAGE - Sulfate polyacrylamide gel electrophoresis
SEM - Standard error of the mean
SFA - Sulphation factor activity
SI - Stimulation index
STAT-1 - Signal transducer and activator of transcription-1
STZ - Streptozotocin
SW - Starting weight
T1D - Type 1 Diabetes
T2D - Type 2 diabetes
TNF - Tumour necrosis factor
TRADD - TNF receptor-associated death domain
TRAF2 - TNF-R-associated factor 2
TSC - Tuberous sclerosis gene product
TUNEL - Terminal deoxynucleotidyl transferase dUTP nick end labelling
VEGF - Vascular endothelial growth factor

vg - Vector genome

μg - Microgram

μl - Microliters