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Abstract  

The cost of water distribution system (WDS) design or rehabilitation is normally 

expensive. Over the past 40 years, a number of optimization1 techniques have therefore 

been developed to find optimal designs for WDSs in order to save costs, while satisfying 

the specified design criteria. Often there are a large number of decision variables 

involved. The majority of currently available optimization techniques exhibit limitations 

when dealing with large WDSs. Two limitations include (i) finding only local optimal 

solutions and/or (ii) exhibiting computational inefficiency. The research undertaken in 

this dissertation has focused on developing advanced optimization techniques that are 

able to find good quality solutions for real-world sized or large WDS design or 

rehabilitation strategies with great efficiency. There were three objectives for the 

research: (i) the modification and improvement of currently available optimization 

techniques; (ii) the development of advanced hybrid optimization techniques 

(evolutionary algorithms combined with traditional deterministic optimization 

techniques) and (iii) the proposal of novel optimization methods with the incorporation 

of graph decomposition techniques.  

The most novel feature of this research is that graph decomposition techniques have 

been successfully incorporated to facilitate the optimization for WDS design. A 

number of decomposition techniques have been developed to decompose WDSs by 

the use of graph theory in this research. Real-world sized or large WDSs are used to 

demonstrate the effectiveness of the proposed advanced optimization techniques 

described in this thesis. Results show that these advanced methods are capable of 

obtaining sound optimal solutions with significantly improved efficiency compared 

to currently available optimization techniques. The main contribution of this thesis is 

                                                 

1 American spelling has been used in this thesis as all the publications included in this thesis have been 
submitted to or published in American journals. 
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the provision of effective and efficient optimization techniques for real-world sized 

or large WDS designs or rehabilitation problems.   
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Chapter 1. Introduction 

A typical water distribution system (WDS) consists of pipes, reservoirs, pumps, valves 

and other hydraulic elements. WDSs are used to supply water to users within specific 

pressure levels under various demand conditions. For a completely new WDS, extensive 

planning is required to ensure that satisfactory delivery of water is provided to customers 

in the most reliable and economical way. For an existing WDS, as the water distribution 

system ages, an optimal rehabilitation strategy is normally needed to improve its service 

quality.  

In most cases, the design, construction and rehabilitation costs for WDSs can be very 

large; often on the order of millions of dollars. Thus, the optimization of WDSs has 

historically been investigated by many researchers in order to potentially save significant 

costs. Optimization of a WDS design normally involves the determination of the optimal 

network layout, the pipe diameter sizes and the sizes of other system components, such 

as valves and pumps, thereby providing the minimum total cost life cycle while 

satisfying all the design constraints. The nonlinear relationship between pipe head loss 

and discharge, plus the discrete nature of the availability of pipe sizes that can be used, 

result in many complexities when optimally designing WDSs. For looped WDSs, in 

which pipe flows and nodal heads are unknown quantities, optimization offers particular 

challenges. 

Traditionally, water engineers have designed WDSs using trial and error approach, and 

the final design is the result of a combination of engineering experience and judgment. 

However, the trial and error approach is time consuming and normally only an extremely 

limited number of WDS designs can be developed and assessed, indicating that a 

satisfactory solution is the outcome rather than an optimum solution. 

Linear programming (LP) and nonlinear programming (NLP) have since been introduced 

by researchers in order to optimize WDS designs. These methods, unfortunately, are only 

suitable for ‘tree’ networks design (no loops involved) and only provide local optimal 

solutions for looped WDSs. In addition, LP and NLP cannot deal directly with a discrete 

search space. The optimal solutions provided by LP contain split pipe solutions (usually 
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two adjacent pipe diameters are assigned for a single link) and the final solutions 

generated by NLP include continuous pipe diameters, which are both impractical from an 

engineering perspective.  

Subsequently, evolutionary algorithms (EAs) have been employed to optimize the design 

for WDSs. A number of EAs have been developed for water network optimization. The 

techniques have been successfully applied to a number of WDS optimization problems, 

and have proven to be more effective in finding optimal solutions compared with 

traditional deterministic optimization techniques (LP and NLP). However, EAs tend to 

locally converge when dealing with complex and large scale optimization problems, and 

can be inefficient for application in real-world sized WDSs, which normally involve 

large numbers of pipes and other hydraulic components.  

Recently, there has been interest in combining the EAs with traditional optimization 

techniques such as LP and NLP for WDS optimization. These hybrid optimization 

techniques are motivated by the fact that EAs are effective in exploring a broad search 

space while LP and NLP are efficient in exploiting small regions within the whole search 

space. However, although a few hybrid optimization models have been developed for 

designing WDSs, they are largely limited to the research domain.  

With growing populations and more complex social organisation, WDSs are becoming 

larger while the standards for the water supply are becoming stricter. More loops and 

other hydraulic facilities are now involved in WDSs. The increasing complexity and 

scale of water distribution systems have resulted in enormous challenges for current 

optimization techniques, and as a result, improved techniques are required. The 

development of novel methods of optimization to accommodate this demand was the 

purpose of the research described in this thesis.  
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1.1 Objectives of research 

The four main objectives of this research are: 

1. To improve the performance of evolutionary algorithms (EAs) in terms of optimizing 

the design of WDSs. The EAs investigated in this research include the genetic 

algorithm, which is the most frequently used EA, and the differential evolution 

algorithm, which is a relatively new EA that has recently received attention in terms 

of WDS optimization.  

2. To develop hybrid optimization methods that combine EAs with deterministic 

optimization techniques (such as linear programming (LP) or nonlinear 

programming (NLP)) for large water network optimization. These hybrid techniques 

are used to deal with real-world sized water networks in the current research. 

3. To extend elements of graph theory to enable water network decomposition and 

develop novel decomposition concepts for use with water networks. These 

decomposition techniques are used to partition the water networks in order to 

facilitate the design optimization. This is motivated by the fact that it is more 

effective and efficient for optimization techniques to find optimal solutions for 

relatively small-scale problems (sub-networks after the partitioning process has been 

carried out) compared to the original full problem (original entire water network). 

4. To develop advanced optimization techniques that incorporate elements of graph 

decomposition within the whole optimization process for WDSs. These advanced 

optimization techniques aim to achieve optimal designs for real-world sized water 

networks. 

1.2 Outline of the thesis 

This thesis is a collection of published, accepted or submitted papers from internationally 

recognised Journals, as shown in the section of List of Publications within the thesis. 

Chapter 2 reviews the formulation of the optimization problems for WDS design and 

the previously published algorithms for WDS optimization. The normal formulation of 

the optimization model for a WDS design is analyzed in Section 2.1. Deterministic 
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algorithms including LP, NLP and binary linear programming (BLP) that have been 

previously employed to optimize WDSs are presented in Section 2.2. Evolutionary 

algorithms (EAs) that have been applied to WDS optimization are reviewed in Section 

2.3. In Section 2.4, the hybrid optimization techniques that have been reported in the 

literature are presented and analyzed. Section 2.5 describes the application of graph 

theory in WDS. Water network decomposition is one of the focuses of this thesis. In 

Chapter 2, the limits of these currently available optimization techniques are elaborated 

upon.  

From Chapters 3 to 9, the titles of the chapters reflect the titles of the journal papers. At 

the beginning of each chapter, a synopsis of the research motivation and the novelties of 

the paper are described. The paper that has been submitted, accepted or published is then 

provided, followed by the short synopsis. 

Chapters 3 to 5 focus on the methods that have been developed to improve the 

effectiveness of the evolutionary algorithms (genetic algorithms and the differential 

evolution algorithm), which is the first objective of this research (see Section 1.1).  

Specifically, Chapters 3 and 4 introduce a dynamically expanding choice table genetic 

algorithm and a non-crossover dither creeping mutation genetic algorithm for WDS 

optimization. The details of the two new GA variants developed in this research are 

presented in Chapters 3 and 4. In Chapter 5, a self-adaptive differential evolution 

algorithm (SADE) is proposed to reduce the effort required to tune the control parameter 

values of the DE. In addition, a new convergence criterion is developed and used in the 

proposed SADE to eliminate the need for the pre-specification of the computational 

budget.  

Chapters 6 and 7 present two novel hybrid optimization techniques that combine EAs 

with deterministic optimization techniques, which is the second objective of this research 

(see Section 1.1). In Chapter 6, a combined NLP-DE method developed in this research 

is described, in which NLP is combined with DE to optimize the design of WDSs. The 

proposed NLP-DE is able to overcome the disadvantages of the currently available 
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hybrid optimization methods in terms of WDS optimization. A concept of the shortest-

distance tree is introduced to enable network decomposition and an algorithm is 

developed to efficiently identify the shortest-distance tree for a water network.  

In Chapter 7, a combined BLP-DE approach is presented. In the proposed BLP-DE 

method, a graph decomposition algorithm is first employed to identify trees and the core 

for the WDS that is being optimized. Then BLP is used to optimize the design for the 

trees while a DE algorithm is used to deal with the core optimization design. The 

proposed method takes advantage of both BLP and DE algorithms: BLP is capable of 

providing global optimal solution for the trees (no loops involved) with great efficiency, 

while DE is able to efficiently generate good quality solutions for the core (loops 

involved) with a reduced search space compared to the original full network. The 

algorithm details and the results of the BLP-DE applied to the WDS case studies are 

shown in Chapter 7.  

Chapters 8 and 9 outline two advanced optimization techniques that have been developed 

in this research, which are the third and fourth objectives given in Section 1.1. A 

decomposition and multi-stage optimization approach for a WDS with multiple water 

supply sources is presented in Chapter 8. In this method, a novel decomposition 

concept-optimal source partitioning cut-set is proposed and outlined, which is used to 

partition the water network based on the water supply sources. In addition, an algorithm 

for efficiently identifying the optimal source partitioning cut-set is developed and 

presented. The multi-stage optimization method is first developed for water network 

optimization in this research. The concept of multi-stage optimization is based on the 

decomposition of large-scale and complex systems into independent subsystems. Each 

subsystem is optimized independently, and the optimal solutions for each subsystem are 

then combined to derive the optimal solution for the system as a whole. 

Another advanced optimization method based on graph decomposition is proposed in 

Chapter 9 of this thesis. A definition of a sub-network based on the connectivity 

properties of the whole network is given in Chapter 9. In this proposed advanced 
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algorithm, graph theory is employed to identify the sub-networks for a water network 

that is being optimized. Rather than optimizing the original network as a whole, the sub-

networks are sequentially optimized by the DE algorithm, which is the most novel 

feature of the advanced optimization technique. The algorithm details are presented in 

Chapter 9. This is regarded as the most important outcome of this research work 

presented in this thesis. 

In Chapter 10, the conclusions of the research are presented in Section 10.1 and possible 

future extensions based on this research are discussed in Section 10.2. 

1.3 Main contributions of research 

The five main contributions and innovations delivered by the current research are: 

1. Improving the performance of the evolutionary algorithms (Chapters 3, 4 and 5): 

Two new genetic algorithm variants are introduced for optimizing the design for 

WDSs. These are dynamically expanding choice table genetic algorithm (Chapter 3) 

and the non-crossover dither creeping mutation genetic algorithm (Chapter 4). These 

two GA variants have been demonstrated to be effective for WDS optimization in 

this research. The non-crossover dither creeping mutation genetic algorithm shows 

clearly that the performance of a GA can be achieved without crossover and that 

mutation, used in the right way, is just as effective. This is the first known work to 

develop a non-crossover and mutation only based genetic algorithm for WDS design. 

A self-adaptive DE algorithm (SADE) for optimizing the design of WDSs is 

proposed in Chapter 5 in order to avoid the need to tune the control parameter values. 

In addition, a convergence criterion has been proposed in the SADE algorithm in 

order to avoid pre-specifying convergence conditions (such as the maximum number 

of allowable evaluations or maximum number of generations) for different 

optimization problems. Consequently, SADE significantly reduces the effort required 

for the trial-and–error process normally used to determine the effective parameters 

for use in the DE algorithm. The proposed SADE provides a robust tool for the 

optimization of the design of WDSs and rehabilitation of an existing WDS. This is 
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because (a) the proposed SADE algorithm does not require as much fine-tuning of 

parameter values nor does it require the pre-specification of a computational budget; 

and (b) the proposed SADE algorithm is able to find optimal solutions with good 

quality and great efficiency. 

2. Development of novel hybrid optimization algorithms that combine EAs with 

deterministic optimization techniques for WDS optimization (Chapters 6 and 7) 

A novel hybrid optimization technique that combines NLP and DE is proposed 

(Chapter 6). In this context, it is worth noting the comments given by the editorial 

panel of the journal Water Resources Research, which highlights the contribution of 

this work, saying:  

This paper provided a scope for improving the several already attempted 
algorithms for water distribution system optimization and for searching the 
new algorithm. It is possible to develop exclusive software for optimal design 
of water distribution system once the research in this field advances. The 
authors of the manuscript have put forward some new ideas, which may 
result in the development of various other developments in the optimal 
design of large scale water distribution system in future. 

Another new hybrid optimization approach that combines the DE with the BLP is 

introduced (Chapter 7). This proposed BLP-DE is able to find the current best known 

solutions for two benchmark WDS case studies with the best known efficiency and 

yield better quality solutions for a real-world case study compared to other EAs with 

greater efficiency. In the BLP-DE method, BLP is only used to optimize the design 

of the trees while a DE algorithm is utilized to deal with the optimization of the core 

portion of the network. The trees and core of the water network are identified using 

graph theory based on the connectivity properties of the original full water network. 

The research presented here is the first known work to employ different optimization 

techniques to optimize different parts of the water network while producing optimal 

solutions for the whole network.  

3. Development of decomposition techniques for water networks (Chapters 6, 8 and 9). 

A shortest-distance tree is proposed in this research as outlined Chapter 6, with which 

a looped water network is decomposed into a tree. The shortest-distance tree in the 

looped network is identified using the Dijkstra graph theory algorithm, for which an 
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extension in this research is proposed to find the shortest-distance tree for multi-

source WDSs. The concept of the shortest-distance tree from water network 

decomposition is the first time that this idea has been proposed. 

A novel concept of an optimal source partitioning cut-set is proposed in this research 

to decompose a complex water network with multiple supply sources (Chapter 8). 

The source partitioning cut-set concept is used in this research and an algorithm is 

developed in this research to efficiently identify the optimal source partitioning cut-

set. This is developed by this research for the first time. 

Identification of sub-networks of a complex water network using graph theory 

(Chapter 9) based on their connectivity properties. It is the first known work to use 

this sub-network identification method to enable water network design. 

4. Development of advanced optimization techniques for designing water networks 

(Chapters 8 and 9) 

A decomposition and multi-stage optimization technique is introduced to optimize 

the design of WDSs (Chapter 8). In the decomposition and multi-stage optimization 

method, graph decomposition technique is used to partition a complex water network 

into sub-networks. Then each sub-network is optimized independently, and the 

optimal solutions for each sub-network are then combined to derive the optimal 

solution for the whole original water network. This method has been demonstrated to 

be extremely effective for optimizing WDS with multiple supply sources. This 

research is the first known work to develop a decomposition and multi-stage 

optimization algorithm for WDS optimization.  

A completely novel optimization method based on graph decomposition is developed 

in this research (Chapter 9). In this proposed method, sub-networks for a water 

network that is being optimized are identified using graph theory. Rather than 

optimizing the original network as a whole, the sub-networks are sequentially 

optimized by the evolutionary algorithm. This approach has been demonstrated to be 

effective, especially when dealing with large water networks. This part of the 

research represents the most significant element of the research presented in this 

thesis. 
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Chapter 2. Literature review 

This Chapter provides a review of the relevant background regarding the optimization of 

water distribution system (WDS) design. The formulation of the optimization model for 

WDS design is first reviewed in Section 2.1. Then deterministic optimization methods 

that have previously been used to tackle WDS optimization problems are reviewed 

(Section 2.2), followed by a detailed review of evolutionary algorithms that have been 

applied to WDS optimization design (Section 2.3). Subsequently, the hybrid optimization 

techniques that have been proposed for optimizing WDS design are reviewed in Section 

2.4. Finally, the graph theory applications in WDS optimization design are reviewed 

(Section 2.5). In addition, this Chapter gives an assessment of each type of optimization 

algorithm in terms of its capacity to deal with WDS optimization problems.  

2.1 Optimization model for water distribution system design 

The optimal design for a water distribution system (WDS) normally involves 

determination of pipe diameters, location and the capacity of tanks, and location and 

sizes of other hydraulic elements. The objective of WDS optimization is the 

minimization of life cycle system costs (pipes, tanks and other components) while 

satisfying a set of constraints at each node. Typically, an optimization model for a WDS 

design is given by: 

Minimize ∑
=

=
np

i
i

b
i LDaF

1

 (2.1) 

Subject to:   

 maxmin HHH ≤≤  (2.2) 

 G(H, D)=0 (2.3) 

  }{  ADi ∈  (2.4) 

where F=network cost (to be minimized); Di=diameter of the pipe i (usually selected 

from a discrete set of commercially available choices); Li=length of the pipe i; a, 
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b=specified coefficients in the cost function; np=total number of pipes in the network; 

G(H, D)=nodal mass balance and loop (path) energy balance equations for the whole 

water network; H=head at the nodes; Hmin and Hmax are the minimum and maximum 

allowable heads at the nodes; A = a set of commercially available pipe diameters.  

Two features contribute to the nonsmoothness properties of WDS optimization 

problems. These include: (1) the pipe diameter choices being composed of discrete sizes 

rather than being continuous decision variables (Equation 2.4); and (2) the nonlinear term 

involving the discharge or velocity within the head loss equations (Equation 2.3). The 

nonsmooth nature of the landscape constituted by a WDS design problem results in 

many local optimal solutions, which poses a challenge when seeking good quality or 

global optimal solutions.  

Due to the complexity of the WDS optimization problem, a large body of research has 

been undertaken to develop techniques for WDS optimization design in the past 40 

years. Generally, these optimization techniques can be divided into three types, which are 

deterministic optimization approaches, evolutionary optimization techniques and the 

hybrid optimization methods. Each type is reviewed below.  

2.2 Deterministic optimization methods 

2.2.1 Linear programming (LP) 

Alperovits and Shamir (1977) presented a linear programming (LP) gradient method to 

find the least-cost design for WDSs. In their proposed LP for WDS design, each pipe 

was assumed to be composed of segments of different pipe diameters and the 

formulation of this proposed LP model is given by: 
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Minimize ij

np

i

m

j
j LDCF ∑∑

= =

=
1 1

)(  (2.5) 

Subject to:   

 
maxmin
kkk HHH ≤≤  (2.6) 

 ∑
=

−=
)(

1

kP

l
lsk hHH  (2.7) 

 ∑
=

=
m

j
l

jj

lj
l Q

DC

L
h

1

α
βαω  (2.8) 

 
0=∑

Loop
nlh  (2.9) 

 i

m

j
ij LL =∑

=1

 (2.10) 

  }{  AD∈  (2.11) 

where )( jDC = cost per unit length ($/m) for pipe diameter j; Lij=the segment length of 

pipe diameter j in link i; m= total number of available discrete pipe diameters; np= total 

number of links of the WDS to be optimized; n= total number of nodes of the WDS to be 

optimized; kH = head at node k=1,…,n; min
kH = minimum allowable head requirement at 

node k; max
kH = maximum allowable head requirement at node k; sH = head at supply 

source node (reservoir or pump); P(k)=water supply path from source node s to node k; 

lh = head loss in pipe l; ω =numerical conversion constant which depends on the units; 

α , β =coefficients corresponding to the Hazen-Williams head loss equation; Cj=Hazen-

Williams coefficient for pipe diameter j; Ql=pipe flow rates in pipe l (m3/s); Llj=the 
segment length of pipe diameter j in link l; nlh = head loss in pipe nl; ∑

Loop
nlh = the sum of 

the head loss for each primary loop; Li=the total length of link i; A= the set of 

commercially available pipe diameters. Note that the formulation given by Alperovits 

and Shamir (1977) is based on the Hazen-Williams head loss equation. An LP could also 

be formulated in terms of Darcy-Weisbach head loss equation.  
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As can be seen from the LP model given above, the unknown lengths of pipe segments 

were the decision variables rather than the discrete pipe diameter sizes. The original 

nonlinear WDS optimization problem was therefore converted to a linear optimization 

problem because the cost of the network is linearly proportional to the length of each 

pipe segment. Constraints (2.6) to (2.8) ensure the pressures at all nodes are within the 

specified range. Equation (2.9) is the energy balance at each primary loop (path) of the 

water network. Constraint (2.10) ensures that the total length of each segment equals to 

the original total length of each link i. It should be highlighted that this LP model allows 

split pipe diameter solutions, in which various pipe diameters are selected for a single 

link and each pipe diameter is associated with a particular segment.  

In the LP method proposed by Alperovits and Shamir (1977), the WDS optimization 

problem is decomposed into two stages, namely the inner and the outer stage. Initially, a 

set of pipe flows is selected for the water network that is being optimized to satisfy the 

continuity at each node in the outer stage. Then the LP model presented by Equations 

(2.5) to (2.11) is formulated and solved in the inner stage to find the combination of pipes 

that offers the least cost to the network based on the known flow distribution obtained in 

the outer stage. In addition, a vector of gradients of the cost against flow for each loop is 

obtained during the LP optimization. These gradients are, in turn, used to determine the 

magnitude and the direction of the loop-flow steps, thereby producing an updated flow 

distribution of the water network in the outer stage. The LP is rerun to find the least-cost 

design of the pipe network based on the updated flow distribution in the inner stage. This 

process is iteratively performed until no further improvement is achieved within the 

minimum step size allowed or the maximum number of iterations is exceeded.  

In the LP method reported by Alperovits and Shamir (1977), a gradient is obtained for 

each loop flow change using the values of the dual variables at each iteration. Then, to 

reduce the cost of the network, a fixed step length for the loop flow variation is taken 

along the direction specified by the gradient. This approach was criticized by Fujiwara 

et al. (1987) for its inefficiency when dealing with relatively large WDSs, since the 
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search direction was a negative gradient and the dimension of the gradient vector was 

actually the total loops in the network.  

The negative gradient direction is referred to as the direction of “steepest decent” in 

nonlinear programming terminology (Fujiwara et al. 1987). It is well known that the 

method of “steepest decent” normally requires a large number of iterations while making 

very slow progress toward a solution since the convergence rate of this algorithm is only 

linear (Fujiwara et al. 1987). Therefore, the LP method proposed by Alperovits and 

Shamir (1977) is subject to large computational overheads, resulting in inefficiency.  

In order to overcome this drawback, Fujiwara et al. (1987) proposed a quasi-Newton 

technique and backtracking line-search method to determine the directions and 

magnitudes of the loop flows, which improved both convergence rate and speed when 

compared to the LP method originally used by Alperovits and Shamir (1977).  

Quindry et al. (1981) presented another method to tackle the least-cost design for 

WDSs. In their method, a set of initial nodal pressures, rather than the flows as used by 

Alperovits and Shamir (1977), was assumed for the water network being optimized. 

Based on the known nodal heads, pipe diameters were then selected using LP to be the 

least-cost whilst satisfying the continuity equations at all nodes. A set of gradients of the 

cost against heads at all nodes was employed to ensure the iteration progressively moved 

towards the least-cost design. 

Calhoun (1981) applied an LP to optimize tree networks, in which a pump was included. 

Stephenson (1984) also developed an LP to deal with the optimization of the trunk main 

pipes (the tree network), in which, the simplex method was employed to solve the LP. In 

addition, the LP has been extended by Stephenson (1984) to optimize the looped 

network. An assumption was made in his work that the least-cost network was in fact 

invariably a tree-like network. Hence, the looped network was reduced to a tree-like 

network first and then the LP was formulated for the tree network.  



CHAPTER 2. LITERATURE REVIEW 

14 

Morgan and Goulter (1985) described a heuristic LP approach linked with a network 

solver to find the least-cost design for WDSs. Figure 2.1 illustrates this algorithm. As 

shown in Figure 2.1, for a given combination of pipes for the water network initially, a 

hydraulic solver is carried out to maintain the continuity at all nodes and energy 

conservation in all simple loops. In addition, the flow distribution of the water network is 

obtained. Once this process is complete, a new pipe combination for the known flows in 

the pipes is generated using LP while satisfying minimum and maximum head 

requirements at each node. If the new pipe combination is the same as the one evaluated 

by the network solver, the least-cost design has been obtained. Otherwise, the new pipe 

combination is evaluated by the network solver again to produce an updated flow 

distribution. The process is iterative, and stops if there is no difference between the 

resulting pipe combination and the previous combination, or the maximum number of 

iterations has been exceeded. 

 

Figure 2.1 The algorithm of heuristic linear programming 
(Morgan and Goulter 1985) 

2.2.2 Nonlinear programming (NLP) 

The objective function of the least-cost design of WDSs with a set of constraints is 

mathematically nonlinear. Nonlinear programming (NLP) can handle the nonlinear 

problem directly and was introduced by researchers to optimize the design of WDSs.  

Flows of the 
water network

A network solver runs for the current water network 
configuration (diameters)

LP is employed to seek the least cost design for the 
given flow distribution

New network 
configuration
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Lansey and Mays (1989) proposed a generalised reduced gradient (GRG) NLP 

technique for dealing with WDS optimization problems. In their work, the original whole 

optimization problem was decomposed into the simulation and optimization steps. In 

their proposed simulation-optimization model, a hydraulic simulator is used to solve for 

the pipe flows and nodal pressures that satisfy the constraints for any given pipe 

diameters, while GRG NLP is employed to iteratively update the pipe diameters. The 

advantage of this method is that the size of the optimization problem is reduced as the 

hydraulic constraints are handled by the simulator. 

Subsequently, Fujiwara and Khang (1990) proposed a two-stage decomposition NLP 

optimization technique for WDS design. In the first stage of the two-stage optimization 

method, a NLP gradient method was introduced to extend the LP gradient method 

proposed by Alperovits and Shamir (1977). A set of flows that satisfy the continuity at 

each node is first assumed, and then the NLP gradient method is employed to find a local 

optimal solution for the water network. In the second stage, the link head losses of the 

obtained local optimum in the first stage are fixed and the resulting concave problem is 

solved using NLP to obtain a new flow distribution. The resultant new flow distribution 

is used to restart the first phase, and the two stages are continued until no better local 

optimum can be found. The main advantage of the two-stage NLP optimization method 

proposed by Fujiwara and Khang (1990) is that it is able to generate a sequence of 

improving local optimal solutions. However, this method cannot guarantee the global 

optimal solution is found although it allows a move from one local optimal solution to 

another, better one.  

2.2.3 Binary l inear programming (BLP) 

Samani and Mottaghi (2006) proposed a binary linear programming (BLP) approach 

for WDS design optimization, in which the objective function and constraints are 

linearized using zero-one variables. The formulation of a BLP model proposed by 

Samani and Mottaghi (2006) in terms of Hazen-Williams head loss equation is given by: 
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Minimize    
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where N is the total number of pipes needs to be optimized; P is the total number of 

commercially discrete pipe diameters that can be used; Li is the length of pipe i; C(Dj) is 

unit length cost of the pipe diameter Dj and Xij is zero-one variable; RH  is the available 

head provided by the source node; min
kH  is the minimum allowable head requirement for 

node k; Wk-R is the water supply path from source node R to node k; ∑
R-kW

m
fmh  is total head 

loss involved in water supply path Wk-R fih  is the head loss for pipe i; iq =flows in pipe i; 

ω =numerical conversion constant which depends on the units of flows and diameters; 

α , β =coefficients and jC =Hazen-Williams coefficient of pipe diameter j.  

In Equation (2.12), Xij=1 indicates that the diameter Dj is selected for pipe i while Xij=0 

represents the diameter Dj is not selected for pipe i. It is noted that no nonlinear terms are 

involved in the objective function F. In Equation (2.14) Xij=1 implies that diameter Dj is 

used for pipe i and then the fih  based on the selected diameter Dj is obtained. While 

Xij=0 means that diameter Dj is not selected for pipe i and no head loss is involved for 

diameter Dj. As can be seen from Equation (2.14), by utilising zero-one variables, the 

nonlinear Hazen-Williams formula is converted to a linear formula if flows are known 

for each pipe.  

Four steps are involved in the BLP method proposed by Samani and Mottaghi (2006): 
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Step 1:  Each pipe in the water network to be optimized is initially assigned a 

commercially available pipe diameter. 

Step 2:  A hydraulic solver is performed for the known network configuration to obtain 

water flows for each pipe. 

Step 3:  A BLP model is formulated and solved for the water network based on the 

known flows at each pipe and solved while satisfying the head constraints at each 

node. 

Step 4:  The resulting pipe sizes obtained in step 3 are compared with the assumed 

quantities in step 1. If they are the same, the optimization process has converged 

and the resulting pipe sizes are the final solution; otherwise, the resulting pipes 

sizes are assigned to the water network and steps 2, 3 and 4 are repeatedly 

performed until the convergence (resulting pipe sizes in step 3 are the same with 

the those used in step 2) is achieved.  

Samani and Mottaghi (2006) used two relatively small looped WDS case studies to 

verify the effectiveness of their proposed BLP method, and reported that the performance 

of the BLP method was satisfactory in terms of accuracy and convergence based on 

results of two looped WDS case studies. 

2.2.4 Analysis  of deterministic optimization techniques  

The advantage of these deterministic methods including LP, NLP is that they are able to 

provide local optimal solutions with great efficiency for treed water networks. This is 

because the flow distribution in the treed water network can be pre-determined since no 

loops are involved. Although these deterministic optimization approaches have been 

extended to deal with the optimization of small looped water networks, the majority of 

the applications remain in the research domain. Limitations of these approaches are given 

as follows. 
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Linear programming. The disadvantages of LP include: 

� It is highly likely to become trapped by local optimal solutions due to its point by 

point movement (gradient based) in the search space; 

� The final solution allows split pipe diameters, in which a link is composed of 

several different (usually two adjacent) pipe diameters and each diameter is 

associated with a particular length. This is impractical from an engineering 

perspective since it normally uses one pipe diameter for a link. 

Nonlinear programming. For NLP, the drawbacks are that: 

� It is also highly likely to be trapped by local optimal solutions in the same way 

that occurs for LP; 

� It allows the continuous pipe diameters in the final solution, which is a severe 

disadvantage as only commercially discrete pipe diameters can be used in 

practice. Thus, a procedure is needed to round off the continuous pipe diameter 

to the nearest discrete one, which may lead to a sub-optimal solution or even an 

infeasible solution for the WDS design 

Binary linear programming. The advantage of the BLP developed by Samani and 

Mottaghi (2006) over LP and NLP is that it is able to provide discrete pipe diameter 

solutions over complete segment of pipe lengths. However, the BLP approach is 

compromised by extreme inefficiency when dealing with relatively large WDS case 

studies (Savic and Cunha 2006). In addition, the global optimum for a looped WDS 

cannot be guaranteed as the final solution reached by the BLP approach is dependent on 

the initially assumed pipe diameters (Martínez 2006). 

2.3 Evolutionary algorithms 

Within the past two decades, evolutionary algorithms (EAs) have frequently been used to 

optimize WDSs. EAs are able to handle discrete search spaces directly and are less likely 

to be trapped at local optima. The search strategy of EAs differs from deterministic 

optimization techniques (such as LP or NLP) in that EAs explore the search space in a 

manner broadly based on stochastic evolution rather than on gradient information. A 
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number of EAs have been developed for optimizing WDS design, and the first 

significant publication of each EA is provided in Table 2.1. These EAs have been 

successfully applied to a number of WDS design optimization problems, yielding better 

quality solutions than deterministic optimization techniques.  

Table 2.1 Types of previously used EAs applied to WDS optimization 

Algorithm1 First reference2 

Genetic algorithm (GA) Simpson et al. (1994) 

Simulated annealing (SA) Loganathan et al. (1995) 

Tabu search (TS) Lippai et al. (1999) 

Harmony search (HS) Geem et al. (2002) 

Shuffled frog leaping algorithm (SFLA) Eusuff and Lansey (2003) 

Ant colony optimization (ACO) Maier et al. (2003) 

ANN metamodels Broad et al. (2005) 

Particle swarm optimization (PSO) Suribabu and Neelakantan (2006) 

Scatter search (SS) Lin et al. (2007) 

Cross-entropy algorithm (CE) Perelman and Ostfeld (2007) 

Differential evolution (DE) Suribabu (2010) 

Honey-Bee Mating Optimization (HB) Mohan and Babu (2010) 

Genetic Heritage Evolution by Stochastic 
Transmission (GHEST) 

Bolognesi et al. (2010) 

1All mentioned algorithms in this table are referred to Evolutionary Algorithms for ease of reference, 
although the metaheuristics TS and SA are not strictly EAs. 2Only the first significant paper for each EA 
applied to WDS optimization is provided 

The EAs investigated in this research include the genetic algorithm (GA), which is the 

most frequently used EA, and the differential evolution algorithm (DE), which is a 

relatively new EA that has recently received attention in terms of WDS optimization. 

2.3.1 Genetic algorithms 

Amongst EAs presented in Table 2.1, GAs have gained popularity due to their ease of 

implementation and satisfactory search ability. Nicklow et al. (2010) presented a 

comprehensive review on the GA applications to various water resources planning and 

management problems during the last two decades. It was concluded by Nicklow et al. 

(2010) that the GA has been consistently proven to be flexible and powerful in solving 

complex water resources problems.  
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The GA is a stochastic search technique based on artificial evolution (Holland, 1975). 

Three operators including selection, crossover and mutation, are commonly used in the 

GA to constitute the evolution. Simpson et al. (1994) first used GA to solve the 

optimization problem of WDSs. In their work, a performance comparison was made 

between GAs and deterministic optimization techniques (LP and NLP) in terms of 

finding optimal solutions for WDSs. It was reported by Simpson et al. (1994) that GAs 

are far more effective for providing good quality solutions than deterministic 

optimization techniques. In addition, a standard GA implementation for WDS 

optimization design was elaborated on by Simpson et al. (1994). 

Subsequently, considerable research has been undertaken to improve the performance of 

GAs in terms of WDS optimization. Dandy et al. (1996) proposed an improved GA for 

WDS optimization. Compared to the standard GA, three modifications were made by 

Dandy et al. (1996) for the improved GA. These include  

� Introducing a variable scaling power of the fitness function into the GA, accentuating 

the small differences between string fitness in the later generations when the Roulette 

wheel selection method is used. This method is able to lead the GA to explore the 

best region of the solution space when highly fit strings are dominating in the later 

generations. 

� Using a Gray coding scheme rather than binary coding. Adjacent codes representing 

nearby designs in the solution space are guaranteed by the Gray coding method, 

thereby avoiding the Hamming cliff and making the GA perform better. 

� Implementing an adjacency mutation in addition to bitwise mutation to allow the GA 

to locally explore. The improved GA was demonstrated to be more effective in 

finding better quality solutions for the case study used by Dandy et al. (1996). 

Vairavamoorthy and Ali (2000) applied an integer coding method in the formulation of 

GA strings, thereby avoiding the redundant states often found when using binary or Gray 

coding. Deb (2000) introduced a constraint tournament selection algorithm to facilitate 

the GA to effectively handle the constraints. The basic algorithm when comparing two 

solutions in a constraint tournament selection is given as follows: 
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� A feasible solution is selected when compared with an infeasible solution. 

� The solution with a smaller value of the objective function value (if cost is being 

minimised) is preferred between two feasible solutions.  

� The solution with less constraint violation is preferred between two infeasible 

solutions. 

Using this method, the comparison between the solutions in a tournament never happens 

in terms of both objective function and penalty function. In the first case, the solution 

with no head violation is preferred to the one with a head violation and does not take the 

value of the objective function into account. In the second case, the two solutions are 

compared based on the objective values and the one with a smaller value is selected as 

both solutions satisfy the constraints. In the last case, the solution with less head violation 

is selected and the value of the objective function is not considered. Thus, unlike 

traditional tournament selection, there is no need to specify a penalty multiplier in the 

proposed method. 

Wu et al. (2001) introduced a fast messy genetic algorithm (mGA) to deal with the 

optimization of water networks, which showed a significant improvement in terms of 

efficiency and robustness compared to the standard GA. Vairavamoorthy and Ali (2005) 

proposed a pipe index vector based GA for WDS optimization design. In their work, a 

pipe index vector was established to assess the relative importance of the pipes in terms 

of their impact on the hydraulic performance of the pipe network. This pipe index 

reduced the search space for the GA and guided the GA search to promising regions 

where the optimal solutions were likely to be.  

2.3.2 Differential  evolution 

The differential evolution (DE) algorithm, introduced by Storn and Price (1995), has 

been found to be a relatively simple but powerful EA for global optimization. More 

recently, the DE algorithm has received much attention as a method of dealing with 

WDS optimization problems (Suribabu 2010). Three operators are involved in the DE 

during optimization including mutation, crossover and selection operators. The process 
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names are similar to those the commonly used when talking about GA. However, there 

are significant differences in the order of application and form of these operators.  

DE differs significantly from a GA in the mutation process due to the fact that the mutant 

solution is generated by adding the weighted difference between several random 

population members to another random member of the population. Three parameters 

need to be pre-specified for the use of DE including the population size (N), mutation 

weighting factor (F) and crossover rate (CR). In addition to these three parameters, a 

particular mutation strategy needs to be selected for the use of DE among a number of 

possibilities (Price et al. 2005). Since DE is a relatively new optimization algorithm in 

the water community, the basic process of standard DE is reviewed in the sub-sections 

that follow (Storn and Price 1995). 

2.3.2.1. Initialization 

DE is a population based stochastic search technique. Thus, a set of members of the 

initial population is required to initialise the DE search. Normally, each initial population 

0,iX ={ 1
0,ix , 2

0,ix ,……… D
ix 0, } is generated by randomising individuals from a uniform 

distribution within the search space, that is 

))(1 ,0( minmaxmin0,
jjjj

i xxrandxx −+=  i=1, 2,….N, j=1, 2, …, D                (2.17) 

where j
ix 0, =the initial value of the jth parameter for the ith individual in the initial 

population, jxmin and jxmax  = the minimum and maximum bounds of the jth parameter 

respectively, rand(0, 1) represents a uniform distributed random variable in the range [0, 

1], while N and D=population size and dimension of the vector respectively. The 

population size is not changed during the DE process.  

2.3.2.2. Mutation 

DE is mainly defined by its mutation approach, compared with GAs, in that a mutant 

vector Vi,G, with respect to each individual Xi,G, is produced by adding the weighted 

difference (with weight F) between several random population members to a third 

member from the current population. Each individual Xi,G associated with a mutant vector 

is denoted as a target vector. Five frequently used mutation strategies in DE are provided: 
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DE1-Rand1:  

 (2.18)                                )( ,3,2,1, GrGrGrGi XXFXV −+=  

where Vi,G is the mutant vector with respect to the target vector of Xi,G  at generation G. 

GrX ,1 , GrX ,2  and GrX ,3  are three vectors randomly selected from the current population 

G. As shown in Equation (2.18), DE1 generates a mutant vector Vi,G for each vector i by 

adding the weighted difference of two randomly selected vectors to a third vector. The 

random integers r1, r2 and r3 are different values from the population of size N. F is the 

weighted difference factor within the range [0, 1].  

DE2-Best1:  

 (2.19)                                 )( ,2,1,, GrGrGbestGi XXFXV −+=  

DE2 is similar to DE1 in terms of producing the mutant vector except that the third 

vector that is to be perturbed is the best individual of the current generation (GbestX , ). 

DE3-Best2:  

 )( ,2,1,, GrGrGbestGi XXFXV −+= + (2.20)       )( ,4,3 GrGr XXF −  

where GbestX ,  is the best individual of the current generation G. DE3 uses two weighted 

differences of four randomly selected individuals and the best individual to produce the 

mutant vector. The random integers r1, r2, r3 and r4 are different values chosen from the 

population of size N. 

DE4-CurrentToBest2: 

 )( ,2,,1, GrGbestGrGi XXFXV −+= + )21.2(      )( ,4,3 GrGr XXF −  

Like DE3, DE4 also employs two weighted difference individuals, but one is the 

weighted difference between the best individual and a random individual. In addition, for 

DE4, the individual to be perturbed is a random individual rather than the best individual 

that used in DE3. 
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DE5-rand2:  

 )( ,3,2,1, GrGrGrGi XXFXV −+= + (2.22)       )( ,5,4 GrGr XXF −  

DE5 is quite similar to DE3, only differing in that the individual to be perturbed is a 

random individual from the population of DE5, while the individual to be perturbed is 

the current best individual for DE3. The integers r1, r2, r3, r4 and r5 are different values 

randomly selected from the population of size N.  

2.3.2.3. Crossover 

After the application of the mutation operator, a trial vector Ui,G is generated though 

selecting solution component values of from either Xi,G or Vi,G. In the basic DE version 

(Storn and Price 1995), uniform crossover is employed as: 
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where j
Giu , , j

Giv , , j
Gix ,  =the jth parameter for the ith trial vector, mutant vector and target 

vector respectively, CR is the crossover rate within the range of [0, 1], j1) (0,rand is a 

random number between 0 and 1 generated for each parameter j. If j1) (0,rand  is 

smaller than CR, the parameter jGiv ,  in the mutant vector is copied to the trial vector, 

otherwise, the parameterjGix ,  in the target vector is copied to the trial vector.  

2.3.2.4. Selection 

After crossover, all the trial vectors are evaluated using the objective function f(Ui,G) and 

are compared with their corresponding trial vector objective function f(Xi,G). The vector 

with a lower objective function value (given a minimisation problem) survives for the 

next generation. That is 
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where  1, +GiX is the ith individual at the generation G+1. 
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Mutation, crossover and selection are repeatedly applied generation by generation until a 

stopping criterion (normally a maximum number of allowable evaluations) is satisfied.  

Suribabu (2010) first introduced DE algorithm to optimize the WDS design. A total of 

four WDS case studies were used in his study to assess the effectiveness of the DE 

algorithm for optimizing WDS design. The results obtained by Suribabu (2010) clearly 

showed that DE significantly outperformed other EAs such as GAs and ACOs in terms 

of efficiently finding optimal solutions. Vasan and Simonovic (2010) developed a 

DENET optimization model to tackle the WDS optimization problem, in which a DE 

algorithm was combined with the network simulation model EPANET2.0 (Rossman 

2000). The efficiency and robustness of the DENET was tested based on two benchmark 

WDS problems. It was reported by Vasan and Simonovic (2010) that DE was able to 

provide good quality optimal solutions with great efficiency based on results obtained for 

the two benchmark WDS problems.  

2.3.2.5. Parameter sensitivity analysis for differential evolution 

Research has been undertaken to systematically analyze the influence of the control 

parameters on the performance of DE applied to numerical optimization problems, and 

provide guidelines for selecting appropriate control parameters (Storn and price 1995; 

Price et al. 2005; Liu and Lampinen 2005). It is argued by these researchers that DE, 

with 1D ≤ N ≤ 10D (where D is the number of decision variables) 0.5 ≤ F ≤ 1.0, 0.8≤ CR 

≤ 1.0 shows generally good performance in convergence properties. In addition, DE with 

N=10D, F=0.5 and CR=0.9 are recommended as universally suited control parameters 

for different numerical optimization problems. However, as with most EAs, the optimal 

setting of these parameters is heavily reliant on the properties of the fitness landscape 

associated with the problems that are being optimized. The numerical optimization 

problems that have been used to verify the effectiveness of DE (Storn and price 1995; 

Vesterstrom and Thomsen 2004; Price et al. 2005; Liu and Lampinen 2005) all have 

continuous search spaces, while the WDS optimization problem is a discrete search 

space problem as only commercially available pipe diameters can be used for the WDS 
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design. The global optimal solutions for these numerical optimization problems lie at the 

centre of the search space or along the coordinate axes. In addition, there is no linkage 

among the different variables in a numerical optimization problem. Whereas, for the 

optimization of the WDS design, the global optimal solution for the WDS design 

normally lies at the boundary of the whole search space and different variables interact 

with one another. Thus, the WDS optimization problem has a by far more complex 

fitness landscape than the numerical optimization problem. Consequently, 

recommendations for parameter guidelines based on the numerical optimization 

problems cannot necessarily be directly transferred to the WDS optimization problem.  

Vasan and Simonovic (2010), and Suribabu (2010) concluded that the performance of a 

DE algorithm was at least as good as, if not better, than other EAs such as GAs and Ant 

Colony Optimization. However, Dandy et al. (2010) compared performance of GAs and 

DE in terms of optimizing WDSs and stated that GAs gave better results overall than 

DE. This contradiction can be explained by the fact that the different parameter values 

including N, F and CR may be used in these DE applications.  

Zheng et al. (2011e) undertook a systematic parameter analysis for the DE algorithm in 

terms of WDS optimization. The parameters involved in their work were the mutation 

weighting factor (F) and the crossover rate (CR), which are considered to be the most 

important parameters to influence the DE algorithm’s performance. The researchers 

concluded that the performance of DE is dependent on these two parameter values and 

that the appropriate DE parameter values are optimization problem dependent. Thus, a 

trial-and-error process is required to determine the preferable parameter values when DE 

is applied to a given WDS optimization problem. Zheng et al. (2011c) have also 

investigated the effectiveness of the five available mutation strategies (see Equations 

2.18 to 2.22) in terms of WDS optimization and concluded that the mutation strategy 

given in Equation (2.18) exhibited the overall best performance.  
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2.3.3 Analysis  of evolutionary algorithms 

Advantages of EAs compared to deterministic methods can be concluded as follows in 

the context of optimizing WDS design. 

� EAs are able to cover more regions of the search space than deterministic methods 

such as LP and NLP as they are stochastic optimization techniques. As a result, it is 

more likely that EAs will reach good optimal solutions for WDS optimization 

problems. 

� EAs are capable of handling the discrete search space of the WDS design problem 

directly. This is of great benefit as they are able to produce practical final solutions, 

with each pipe being assigned a commercially discrete diameter. While split pipe 

solutions or continuous pipe diameters are included in the final solutions generated 

by deterministic methods (LP and NLP), both are impractical in practice. 

� In contrast with deterministic methods, EAs can provide a set of solutions at the end 

of each run. These solutions are slightly different in cost but completely different in 

design. Thus the practitioner can select the more practical design from the options 

based on objectives which cannot be expressed explicitly during optimization.  

� EAs can be modified to deal with multi-objective WDS design problems, while 

deterministic approaches are only limited for single objective optimization problems.  

However, there are also limitations of EAs when applied to WDS optimization problems. 

The efficiency of EAs, for example, is frequently of concern, especially when dealing 

with relatively large and complex WDS optimization problems where simulation model 

run times are long. The majority of EAs are population based search algorithms and a 

hydraulic simulation model is normally required to evaluate each individual of the EA 

population, resulting in a large computational overhead. The inefficiency of EAs when 

dealing with large-scale problems has also been clearly stated by Nicklow et al. (2010).  

Another issue in the use of EAs is that a number of parameter values need to be tuned 

when EAs are applied to various optimization problems. Table 2.2 gives a summary of 
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number of parameters that need to be selected for different EAs that have been reported 

for WDS design optimization (Tolson et al. 2009). As can be seen in Table 2.2, the 

number of parameters varies from three to eight. The performance of these EAs has been 

demonstrated to be heavily dependent on the parameter values used and suitable 

parameter values are dependent on the optimization problem under consideration. Thus, 

it requires significant effort, normally by trial and error, for practitioners to determine the 

most appropriate parameter values for these EAs in order to apply them to different 

optimization problems. The resulting computational budget is unavoidably large.  

Table 2.2 Parameter statistics for various EAs (Tolson et al. 2009) 

Algorithm Reference Number of reported parameters 

GENOME Reca and Martinez (2006) 8 

PSO variant Montalvo et al. (2008) 8 

SFLANET Eusuff and Lansey (2003) 6 

GHEST Bolognesi et al. (2010) 6 

HS Geem (2006) 5 

MSATS Reca et al. (2007) 5 

GA Simpson et al (1994) 5 

MMAS-ACO Zecchin et al. (2007) 4 

PSHS Geem (2009) 4 

DE Suribabu (2010) 4 

CE Perelman and Ostfeld (2007) 3 

The solution quality cannot be guaranteed for EAs when dealing with large case studies. 

Zheng et al. (2011d) investigated the search ability of GAs applied to a number of case 

studies with the number of decision variables ranging from 21 to 1050 pipes. The 

performance assessment of the GAs was made by comparing the optimal solution found 

by GAs and the estimated global optimal solution for each case study. The results of this 

study are given in Table 2.3. 

The results recorded in Table 2.3 demonstrate that the GA was able to find the estimated 

global optimal solutions (current best known solutions) for case studies with 21 and 42 

decision variables. The GA exhibited reasonably good performance on the case study 

with 105 decision variables; the best solution it deviates only 0.53% from the estimated 

global optimal solution. 
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Table 2.3 Results of GA runs applied to a gradually increasing number of 
decision variables based on the New York Tunnels Problem (NYTP) 

network (Zheng et al. 2011d) 

Number of 
decision 
variables 

Current best 
known 
optimal 
solution 

($M) 

Best solution 
found based 

on 100 
different runs 

($M) 

Deviation of 
best solution 

found from the 
best known 

solution 

Average 
solution 

based on 100 
different runs 

($M) 

Deviation of 
average solution 
found with the 

best known 
solution 

As shown in Table 2.3, the best solution found by the GA deviated further from the 

estimated global optimal solution as the number of decision variables increased. This 

shows that the optimization problem becomes more and more intractable for GAs as the 

number of decision variables increases. When the number of decision variables increases 

to 1050, the best solution found by the GA was 16% higher than the estimated global 

optimal solution. Thus, it can be concluded that GAs are able to perform well on 

relatively small case studies (for a small number of decision variables) in terms of 

solution quality, whereas solution quality deteriorates for GAs when dealing with 

relatively larger networks. 

In a conclusion, factors including (i) the inefficiency, (ii) the large effort required to tune 

parameter values and (iii) the deterioration of the solution quality are major concerns for 

EAs when dealing with real-world sized water networks, for which a large number of 

pipes and other components are normally involved. Thus, it is desirable to develop 

advanced optimization techniques to overcome these limitations to enable a generic 

application of optimization techniques for WDS design.  
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2.4 Hybrid optimization techniques 

A number of hybrid optimization techniques have been developed in recent years to 

overcome disadvantages of EAs (inefficiency and solution deterioration) applied to 

relatively large WDS optimization problems. Typically, two approaches are used to 

enhance the search performance of EAs, including (1) refining an EA’s search 

performance by combining it with traditional optimization techniques (LP or NLP) or 

local search procedures and (2) guiding an EA’s search by providing it with initial near-

optimal seeding estimates.  

2.4.1 Combining EAs with deterministic optimization methods 

When EAs are combined with deterministic optimization methods, they are generally 

used first to locate the approximate regions of the optimal solutions for the problems that 

are being optimized. A traditional or local search method is then employed to find the 

minimum solution within the localized search space region identified by the EAs. A few 

hybrid optimization models combining the EAs and traditional methods have been 

developed and improvements have been reported in terms of WDS optimization.  

Tolson et al. (2009) developed a hybrid discrete dynamically dimensioned search (HD-

DDS) algorithm to optimize the design of WDSs. The HD-DDS combines an 

evolutionary search method with two local search approaches: a one-pipe search and a 

two-pipe search. In their work, the metaheuristic search method is first used to explore 

broadly in the whole search space specified by a WDS design problem. Then one-pipe 

and two-pipe search approaches are employed to further polish the final solutions 

produced by the evolutionary search method.  

Four WDS case studies with number of decision variables ranging from 21 to 454 were 

used to assess the performance of the HD-DDS, and it was reported by Tolson et al. 

(2009) that the HD-DDs exhibited a superior performance than GA and ACO methods in 

terms of efficiency and solution quality. In addition, it was found by Tolson et al. (2009) 
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that the local search methods were effective at improving the final solutions obtained by 

the evolutionary search method of the HD-DDS approach.  

Krapivka and Ostfeld (2009) proposed a coupled GA-LP scheme for the least-cost pipe 

sizing of water networks. In this method, the optimization problem is decomposed into 

an “inner” and an “outer” problem. The “inner” LP is formulated and solved for a fixed 

set of flows, while the flows are altered in the “outer” using a GA. In their proposed 

optimization approach, an enumeration technique is initially used to identify all possible 

spanning trees for a looped water network. Then an LP solver is employed to optimize 

the pipe diameter sizes for each spanning tree to allow the least-cost tree to be 

determined. Lastly, the spanning tree chords are locked into the minimum permissible 

pipe diameters and the least-cost spanning tree is further optimized using the proposed 

coupled GA-LP technique.  

The main advantage of this approach is that the search space handled by the GA-LP is 

reduced as the chords of the spanning tree are set to be the minimum allowable pipe sizes 

and removed as decision variables. However, this approach is computationally expensive 

for finding the least-cost spanning tree since all possible spanning trees need to be 

evaluated. The method is therefore limited in practical applications by the fact that it is 

impossible to evaluate all the spanning trees for a relatively large water network, and the 

global optimal solution for the original water network could be missed as the spanning 

tree chords are fixed by the minimum allowable pipe sizes in this method. An additional 

criticism is that a split-pipe approach is used in the proposed optimization technique. 

Cisty (2010) proposed another combined GA and LP (GA-LP) model for solving WDS 

design problems. In this proposed GA-LP method, a GA is used to generate branched 

networks for a complex looped network, and LP is used to optimize each branched 

network. The proposed GA-LP method utilizes the fact that the LP is suitable for solving 

branched networks and GA is effective in dealing with networks with a small number of 

decision variables. This GA-LP was tested on three WDS case studies and proven to be 
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robust and efficient. However, split pipe solutions are still included in the final optimal 

solution, which is a severe limitation for practical application. 

Haghighi et al. (2011) combined a simple GA with BLP for a WDS optimization 

design. In this GA-BLP method, a water network is first converted to a tree by removing 

one pipe from each primary loop and hence a total of NL pipes are removed, where NL is 

the number of loops in the water network. Then a set of N diameter combinations for the 

NL pipes is randomly generated using commercially available pipe diameters to form the 

initial population of the GA, where N is the population size of the GA. For each 

individual in the GA with different diameter combinations for the NL pipes, an iterative 

procedure using BLP combined with a hydraulic solver (EAPNET) is used to optimize 

the remaining tree (the NL pipes are not included in the BLP optimization).  

The optimum pipe diameters obtained from the iterative BLP optimization for the tree 

are returned to the GA along with the corresponding cost. This cost in combination with 

the cost of the NL pipes handled by the GA provides the total cost of the original water 

network. This total cost is used to calculate the fitness of the GA individual. 

Subsequently, the GA operators (selection, crossover and mutation) are performed to 

evolve the initial solutions to achieve the final optimal solutions.  

In the GA-BLP method (Haghighi et al. 2011), the GA is only used to deal with the NL 

pipes, while BLP is employed to tackle the optimization of the tree that was obtained by 

removing NL pipes. Thus, efficiency of the GA optimization is expected to be improved 

as the GA only handles NL pipes rather than the total number pipes in the original whole 

network (NL is normally significantly smaller than the total number pipes). However, the 

computational effort required for iterative BLP optimization in this GA-BLP approach is 

massive when dealing with large water networks since BLP has previously been found to 

be extremely inefficient when tackling large optimization problems (Savic and Cunha 

2006; Martínez 2006). 
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2.4.2 Providing EAs with good estimates  

The efficiency of an EA is improved if its search is initialised with good starting points 

since it requires less time to find optimal solutions. This approach allows the EA to focus 

on exploring the neighboring region that is specified by the good initial estimates, 

thereby speeding up the convergence speed. In this approach, an EA or traditional 

optimization technique is first used to explore the search space in an approximate way in 

order to identify an approximate optimal solution. The resulting solution is then used to 

seed another EA in order to attempt to locate better solutions. Since the EA is seeded 

with good initial estimates, better solutions can be generated at a low computational cost. 

This has been demonstrated in a number of studies (Grefenstette 1987, Harik and 

Goldberg 2000).  

Keedwell and Khu (2006) proposed an optimization approach that combined a local 

representative cellular automata (CA) and a GA (CANDA-GA) for optimizing the design 

of WDSs. In CANDA-GA, the CA is used to find the approximate optimal solutions and 

the GA is seeded with these approximate optimal solutions in order to reach better 

solutions. It was reported by Keedwell and Khu (2006) that the CANDA-GA showed 

significant improvement in efficiency compared to a GA without any estimates based on 

two real-world WDS case studies with 632 and 1277 decision variables. However, 

premature convergence was observed by Keedwell and Khu (2006) for the CANDA-GA 

method.  

2.4.3 Analysis  of hybrid optimization techniques  

The majority of currently available hybrid optimization techniques remain in the research 

domain due to their limitations. For the GA-LP method proposed by Krapivka and 

Ostfeld (2009), it is extremely inefficient to find the least-cost spanning tree for the 

looped water network. For the GA-LP method developed by Cisty (2010), split pipe 

solutions are generated, which is not practical. For the GA-BLP method proposed by 

Haghighi et al. (2011), it is extremely inefficient to deal with the large tree network with 

BLP algorithm. For the HD-DDS method (Tolson et al. 2009), although its performance 
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is superior to that of GAs and ACO, it requires considerable computational resources 

when dealing with relatively large case studies. For example, HD-DDS used 30 million 

evaluations budget to find an optimal solution for a WDS case study with 454 pipes as 

shown in Tolson et al. (2009). For the CANDA-GA (Keedwell and Khu 2006), 

premature convergence is a concern and the efficiency needs to be further improved. 

In a conclusion, the majority of currently available hybrid optimization techniques have 

disadvantages in terms of WDS optimization. This results in their application being 

limited in terms of their capacity to deal with real-world sized WDS design problems.  

2.5 Graph theory applications in water network design 

Normally, a WDS can be viewed as a connected graph G(V,E), where V is a set of links 

and E is a set of nodes in the water distribution network. Thus, it is natural to introduce 

graph theory algorithms to enable the WDN analysis. Traditionally, graph theory has 

been used for water network connectivity and reliability analysis. Gupta and Prasad 

(2000) used the linear graph theory for analysis of pipe networks. Deuerlein (2008) 

proposed a graph theory algorithm to decompose the WDN into forest, bridges and 

blocks. This method provides a tool to simplify complex WDNs and provides a better 

understanding of the interactions between their different parts.  

In terms of WDS design optimization, Kessler et al. (1990) developed a graph theory 

based algorithm to optimize the design of WDSs. In their work, the design process 

consists of three distinct stages. In the first stage alternative paths are allocated using 

graph theory algorithms. In the second stage the minimum hydraulic capacity (diameters) 

of each path is determined using a LP model. In the third stage the obtained solution 

from the second stage is tested by a network solver for various demand patterns.  

Sonak and Bhave (1993) introduced a combined graph decomposition-LP algorithm for 

WDN design. In this combined algorithm, all the trees of the looped WDS are first 

identified by a graph theory algorithm and optimized by a LP, allowing the global 

optimum tree solution to be located. The final optimal solution for the original WDS is 
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then determined by assigning the chords of the global optimum tree the minimum 

allowable pipe diameters. Savic et al. (1995) used graph theory to partition the water 

network into ‘tree’ and ‘co-tree’ to enable an optimization problem that involved 

minimising the heads by setting regular valves.  

Kadu et al. (2008) proposed a genetic algorithm (GA) combined with a graph theory 

algorithm to optimize water distribution systems. In their method, graph theory is used to 

identify the critical path for each node in order to reduce the search space for the genetic 

algorithm. Krapivka and Ostfeld (2009) proposed a coupled GA-LP scheme for the 

least-cost pipe sizing of water networks. A spanning tree identification algorithm is 

introduced in their work.  

Improvements in terms of efficiency and solution quality have been consistently reported 

by the researchers when these optimization techniques are combined with graph theory 

algorithms and applied to WDS case studies. Graph theory is normally used to identify 

the critical path or the spanning tree for the WDN in the majority of graph theory based 

optimization techniques.  

2.6 Research gaps 

Based on the literature review, areas in the field of the WDS optimization that would 

benefit from further investigation are as follows. 

� Although a number of optimization techniques have been successfully applied to 

optimize the design of WDSs, limitations exist for each of them when dealing with 

real-world water networks. Traditional optimization techniques (LP, NLP and BLP) 

often converge at local optimal solutions due to the nonsmoothness of the search 

space of the WDS optimization problem. EAs require a large number of network 

evaluations to find optimal solutions, resulting in an expensive computational 

overhead, especially for relatively large case studies. In addition, the solution quality 

found by EAs is inferior when dealing with relatively larger WDSs.  
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� The majority of currently available hybrid optimization techniques (combine EAs 

with deterministic methods) remain in the research domain due to their limitations. 

This makes it is difficult, if not impossible, for these hybrid optimization techniques 

to tackle the optimization problems of real-world WDSs.  

� Although graph theory has been used in work with water networks, the majority of 

the studies involving graphs and WDSs are concerned with network connectivity 

analysis. A few attempts have been undertaken to conduct the optimization of WDSs 

with the incorporation of graph decomposition techniques. However, these methods 

still remain in the research domain and cannot be used to deal with the real-world 

WDS optimization due to their severe limitations.  

� The majority of optimization techniques have been evaluated using small benchmark 

WDS case studies. It is desirable to assess the performance of these and new 

techniques using relatively large or real-world sized water networks. There is no 

clear definition yet on the typical number of pipes for a real-world sized water 

network. In this research, we made the assumption that WDSs that have 100 pipes or 

more are considered to be real-sized water networks.  

The research outlined in this thesis has been undertaken to address these current 

shortcomings in WDS design, as explained in the Section 1.1 of Chapter 1.  

 



CHAPTER 3. JOURNAL PAPER 1-DYNAMICALLY EXPANDING CHOICE TABLE GA 

37 

Chapter 3. Journal Paper 1-Dynamically Expanding Choice Table 
GA 

3.1 Synopsis 
A dynamically expanding choice table approach to genetic algorithm optimization 

of water distribution systems 

Genetic algorithms (GAs) have been frequently used to find optimal solutions for the 

water distribution system (WDS) design. A significant issue within the use of the GA 

when dealing with the WDS optimization problem is the intensive computational 

overhead. This has been addressed in Section 2.3.4 of Chapter 2. Thus, it is desirable to 

improve the efficiency of the GAs, especially when dealing with real-world water 

networks, for which a large number of pipes are involved. A dynamically expanding 

choice table GA is developed in this research in order to enhance the search efficiency of 

the GAs.  

Typically, all available diameters in the complete choice table for a decision variable are 

considered as potential choices for each pipe of the network when a GA is applied to 

optimize a WDS design. An example of a typical choice table is given in Table 3.1. 

Binary coding and integer coding for each pipe size are shown in the second and third 

columns respectively. If there are a total of eight different diameters in a choice table for 

a pipe, the GA will generally have a random selection of the eight different diameters in 

the population of GA strings. The GA starts by exploring the entire solution space in 

order to reach the lowest cost solution. All regions within the solution space are 

considered to be equally important in the conventional GA, and hence, much 

computational effort is wasted on investigating infeasible or unnecessarily high cost 

regions within the search space. 

In this Chapter, a dynamically expanding choice table method is proposed to reduce the 

search space so that the GA can concentrate on promising regions of the search space. 

Initially, all the diameters in the full choice table are sorted from the smallest to largest 

and each pipe is given a diameter choice table.  
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Table 3.1 A typical choice table 

Nominal Diameter (mm) Binary Coding Integer Coding Unit Cost ($/m) 

150 000 1 49 

200 001 2 63 

250 010 3 95 

300 011 4 133 

375 100 5 171 

450 101 6 220 

500 110 7 270 

600 111 8 330 

In this newly proposed method, only a small portion of pipe sizes in the full choice table 

for each pipe are used to generate solutions randomly in the initial population of the GA. 

During the run of the GA, if most of the members of the population in a generation select 

the smallest diameter for a particular pipe from its corresponding reduced size choice 

table, a smaller diameter is added to the pipe’s choice table and the choice table has been 

dynamically expanded.  

To the contrary, if most of the members of the GA population prefer the largest diameter 

for a pipe from its reduced size choice table, a larger diameter is added to expand the 

current choice table for this pipe. As a result, each pipe selects its own tailored choice 

table in the later generations of the GA. If the majority of members in the population 

select the smallest or largest diameter for a particular pipe at the extremity of the full 

choice table, this pipe is locked in to be the smallest or largest pipe size and is then 

removed as a decision variable.  

This work has been published on Journal of Water Resources Planning and 

Management and the paper is provided here.  

Citation of Paper 

Zheng, F., A. R. Simpson, and A. C. Zecchin (2011b). “Dynamically expanding choice-

table approach to genetic algorithm optimization of water distribution systems.” Journal 

of Water Resources Planning and Management, 137(6), 547-551 
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3.2 Journal Paper 1: A dynamically expanding choice table 
approach to genetic algorithm optimization of water distribution 
systems (Published in the Journal of Water Resources Planning and 
Management) 

Feifei Zheng, Angus R. Simpson and Aaron C. Zecchin 

ABSTRACT 

This paper proposes a modified genetic algorithm (GA) for optimization of water 

distribution systems. A method of dynamically expanding pipe choice table selections 

and reducing the number of decision variables is introduced that occurs during a GA run. 

Based on the progressive selection, an initially reduced size choice table for each 

decision variable is allowed to dynamically expand and then the number of decision 

variables is gradually reduced. This process enables the GA search to concentrate on 

promising regions of the search space. The dynamically expanding choice table genetic 

algorithm (GADECT) has been applied to a benchmark case study, the New York Tunnels 

Problem. The results obtained show that the GADECT yields a superior performance in 

terms of solution quality and computational efficiency. 

CE Database subject headings: Optimization; Water distribution systems; Algorithms. 

INTRODUCTION 

Evolutionary algorithms have been introduced over the last 15 years to seek the least-cost 

design of water distribution systems. Among them, genetic algorithm (GA) optimization 

has gained popularity in terms of optimal design of water distribution systems because of 

its robustness and search performance (Simpson et al. 1994; Savic and Walters 1997). 
Many methods have been developed by researchers to improve the performance of GAs. 

A creeping mutation operator, variable power scaling of the fitness function and Gray 

coding (Dandy et al. 1996) were incorporated into the GA and were shown to be more 

effective. Vairavamoorthy and Ali (2000) applied integer coding in GAs to avoid the 

problem of redundant states often found when using binary or Gray codings. Wu et al. 

(2001) introduced a fast messy genetic algorithm to deal with optimization of water 
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networks, showing significant improvement in terms of efficiency and robustness. 

Vairavamoorthy and Ali (2005) used a pipe index method to modify GA-based pipe 

optimization. Other evolutionary optimization approaches have also been developed. 

Eusuff and Lansey (2003) proposed a shuffled frog leaping algorithm (SFLA) which 

showed improvement on the convergence speed in the context of optimal design of water 

distribution systems. Maier et al. (2003) applied ant colony optimization approach to 

optimize water distribution systems. Zecchin et al. (2006) proposed a Max-Min Ant 

System optimization (MMAS) and compared results obtained by GAs. 

THE MODIFIED GENETIC ALGORITHM 

Dynamically expanding choice tables  

Typically all available diameters in the complete choice table for a decision variable are 

considered as potential choices for each pipe of the network when a GA is applied to 

optimize a WDS design. All regions within the solution space are considered to be 

equally important in the conventional GA, and hence, much computational effort is 

wasted on investigating infeasible or unnecessarily high cost regions within the search 

space. 

In this research, a dynamically expanding choice table method is proposed to reduce the 

search space so that the GA can concentrate on promising regions of the search space. 

Initially, all the diameters in the full choice table are sorted from the smallest to largest 

and each pipe is given a diameter choice table. In the new method, only a subset of pipe 

sizes in the full choice table for each pipe (say the 3 successive middle sizes) are used to 

generate solutions randomly in the GA’s initial population. During the GA run, if most of 

the members of the population in a generation have taken on the smallest diameter for a 

particular pipe from its corresponding reduced size choice table, this implies that this 

pipe diameter potentially can be further reduced in size to further reduce the cost of the 

whole network. Consequently, a smaller diameter is added to the pipe’s current choice 

table and the choice table has been dynamically expanded. The same principle can be 
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applied to the larger diameter options in a choice table. As a result, each decision variable 

in terms of pipe diameter size selects its own tailored choice table in the later generations.  

Reduction of  the number of  decision variables 

If the majority of members in a population select the diameter size for a particular pipe at 

the extremity of the full choice table, this pipe is locked to be the selected pipe size and 

then removed as a decision variable (whether it is either the smallest or largest diameter 

options). This process is used to dynamically remove such decision variables that cannot 

be further evolved as they have already converged at one extremity of the choice table. 

Therefore, the GA is able to more effectively and efficiently search the reduced search 

space, and focus on regions that show promise.  

In summary, there are five cases that may occur for a choice table as shown in Fig. 1. 

Assume that the full choice table is made up of pipe diameters D1 to D10 ranked from 

the smallest to the largest diameter. An initial reduced size choice table including D5, D6 

and D7 (middle column in Fig. 1) is used to randomly generate the initial population of 

GA. 

 

The following threshold percentages are defined: (1) for expanding the choice table (Pe) 

(2) for removing decision variables (Pr) and (3) for when the majority of population 

Figure 1 An example of expanding of a choice table and reduction of decision variables
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members select the middle size of the current choice table during the GA run (Ps). Five 

cases are given as follows. 

Case 1:  For a particular pipe, if more than Pe percent of the members in a population 

select the smallest size (D5) of the current choice table (middle column of Fig. 

1), a smaller pipe size D4 is added to the choice table (the second column from 

left in Fig. 1). Diameters of D4 and D5 are then randomly reselected for this 

pipe for all the members in the GA population. 

Case 2:  If more than Pe percent of the members in a population select the largest size 

(D7) of the current choice table (middle column of Fig. 1), a larger pipe size D8 

is added to the choice table (the second column from right in Fig. 1). Diameters 

of D7 and D8 are then randomly reselected for this pipe for all the members in 

the GA population. 

Now consider the situation where the choice table has been eventually expanded to 

include either the smallest or largest pipe: 

Case 3:  If more than Pr percent of the members in a population select the smallest size 

(D1) of the choice table (the first column from left in Fig. 1), this pipe is 

removed as a decision variable and the diameter for this pipe is locked at the 

minimum pipe size (D1). 

Case 4:  If more than Pr percent of the members in a population select the largest size 

(D10) of the choice table (the last column on the far right in Fig. 1), this pipe is 

removed as a decision variable and the diameter for this pipe is locked at the 

maximum pipe size (D10). 

Now consider the situation where the majority of the pipes are the pipe size from the 

middle of the current choice table for that pipe: 

Case 5:  If more than Ps percent of population members select the middle size (D6) of 

the current choice table for a particular pipe during the GA run, all the pipe 

sizes in the current choice table are randomly reselected for this pipe in all 

members of the whole population. This process is used to maintain the 
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population diversity, as occurs with the common mutation operator. However, 

case 5 is quite different from the normal mutation operator in that it only occurs 

when most of the population members select the middle pipe size diameter from 

its corresponding choice table.  

CASE STUDY 

The dynamically expanding choice table genetic algorithm (GADECT) was developed in 

C++ and combined with the EPANET2 hydraulic network solver. A total of 1000 

independent optimization runs based on different random number seeds have been 

performed for New York Tunnel Problem (NYTP). The parameters settings used in 

GADECT are given in Table 1. Constraint tournament selection was used in GADECT (Deb 

2000).  

Table 1 GADECT parameter values for the NYTP case study 

Parameter  Value  

Population size (N) 100 

Maximum number of evaluations 100,000 

Probability of crossover (Pc) 0.9 

Probability of bitwise mutation (Pm) 0.0 

Threshold percentage for expanding the choice table (Pe) 65% 

Threshold percentage for removing decision variables (Pr) 95% 

Threshold percentage for reselection (Ps) 70% 

Case Study: New York Tunnels Problem 

The New York Tunnels Problem (NYTP) has 21 existing tunnels and 20 nodes fed by 

the fixed-head reservoir. Details of this network, including the layout, the head 

constraints, pipe choices and costs, and water demands can be found in Dandy et al. 

(1996). The objective is to determine which pipes should be installed in parallel with the 

existing pipes to minimize the cost while satisfying the minimum head requirement at all 

nodes. The entire choice table for the NYTP case study involved 16 choices of pipe 

diameters consisting of {0, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 

and 204} inches.  
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An initial choice table with the diameters of {48, 60, 72} inches for each pipe was used 

to seed the initial population in the GADECT for the NYTP case study. One requirement of 

the proposed GADECT is that the threshold percentages (Pe, Pr and Ps) need to be 

specified. As given in Table 1, the parameter settings for the NYTP case study were as 

follows: Pe=65% (that is, expansion of the choice table occurred if more than 65% of the 

members selected the largest or smallest pipe size for a pipe from its choice table); 

Pr=95% (that is, if more than 95% of the members for a particular pipe have selected the 

smallest or the largest diameter size, this pipe is locked in to be the smallest or largest 

diameter and then removed as a decision variable); Ps=70% (that is, if more than 70% of 

the members selected a particular middle size for a pipe from its choice table, all the sizes 

in the current choice table are randomly reselected for this pipe for the whole 

population). An example of the initial choice table and the final choice table for a typical 

GADECT run applied to the NYTP, after dynamic expansion plus the decision variable 

removal, are shown in Table 2.  

As can be seen from Table 2, the second column is the initial choice table of {48, 60, 72} 

inches for diameters for each pipe and the third column is the final choice table for each 

pipe at the end of GA run. The final column is the least-cost solution found by the 

GADECT with a cost of $38.64 million (the current best known-least-cost solution). It is 

observed from Table 2 that choice tables for individual pipes were expanded differently 

during the GA run, despite the fact that they all started with the same initially reduced 

size choice table. The pipes labeled with a hash were removed as decision variables, as a 

pipe size of zero was selected during the GA run. From column 3 of Table 2, the total 

search space covered by the GADECT is given by 11975 299 ××× ≈7.0224×1016, which is 

only a small fraction (3.62×10-9%) of the size of the original solution space. 

As can be seen from Table 2, some pipes (such as pipe 4, 6, 10, 11, 12, 13, 14, 15 and 

20) moved towards the smaller pipe sizes during the GA run and finally were dropped as 

decision variables with a pipe size of zero, indicating that it was not economic for these 

pipes to be duplicated. However, several pipes (such as pipe 7, 16, 17, 18, 19, 21) were 
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assigned larger sizes within the GA process, implying that these pipes were the potential 

candidates for duplication. It is noted that choice tables of some pipes (such as pipe 1, 2, 

3, 5, 8, 9) expanded to larger diameters at the beginning and then to smaller diameters 

afterwards, showing that these pipes were indentified to be potential duplicates initially, 

but were eliminated from consideration in the later generations of the GA.  

Table 2  An example of the expansion of choice tables and removing decision 
variables during the GADECT process applied to the NYTP 

Links 
Choice table for pipe diameters (inches) Final solution 

(inches) Initial choice End 

1# 48, 60, 72 0, 36, 48, 60, 72, 84, 96 0 

2# 48, 60, 72 0, 36, 48, 60, 72, 84, 96 0 

3# 48, 60, 72 0, 36, 48, 60, 72, 84, 96 0 

4# 48, 60, 72 0, 36, 48, 60, 72 0 

5# 48, 60, 72 0, 36, 48, 60, 72, 84, 96 0 

6# 48, 60, 72 0, 36, 48, 60, 72 0 

7 48, 60, 72           48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168 144 

8# 48, 60, 72 0, 36, 48, 60, 72, 84, 96 0 

9# 48, 60, 72 0, 36, 48, 60, 72, 84, 96 0 

10# 48, 60, 72 0, 36, 48, 60, 72 0 

11# 48, 60, 72 0, 36, 48, 60, 72 0 

12# 48, 60, 72 0, 36, 48, 60, 72 0 

13# 48, 60, 72 0, 36, 48, 60, 72 0 

14# 48, 60, 72 0, 36, 48, 60, 72 0 

15# 48, 60, 72 0, 36, 48, 60, 72 0 

16 48, 60, 72           48, 60, 72, 84, 96, 108, 120, 132, 144 96 

17 48, 60, 72           48, 60, 72, 84, 96, 108, 120, 132, 144 96 

18 48, 60, 72           48, 60, 72, 84, 96, 108, 120 84 

19 48, 60, 72           48, 60, 72, 84, 96, 108, 120 72 

20# 48, 60, 72 0, 36, 48, 60, 72 0 

21 48, 60, 72           48, 60, 72, 84, 96, 108, 120 72 

Cost ($M)   38.64 

# Pipe was locked in at zero size and eliminated as a decision variable during the GADECT process.  

The dynamic reduction of the number of the decision variables for a typical GADECT run 

is shown in Fig. 2. At stage A in Fig. 2, there were 21 decision variables. After 16 

generations (at stage B), pipe 11 was the first pipe dropped out as a decision variable 

with a size of zero. The following sequence of pipes involving 4, 10, 12, 13, 14, 15 and 

20 were consecutively eliminated. Thus, only 13 decision variables were left at stage C 
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after 44 generations. Subsequently, pipes 2, 3, 5, 6 and 8 were removed as decision 

variables from stage C to D. After 176 generations (at stage E), only six decision 

variables were left, which were pipes 7, 16, 17, 18, 19 and 21. In the final stage, GADECT 

dealt with a reduced search space size and hence worked more efficiently. 

 

Figure 2 Example of dynamical reduction of number of decision variables 

RESULTS AND DISCUSSION 

For the NYTP cases study, the current best known solution with a value of $38.64 

million was first found by Maier et al. (2003) and this solution has been also found by the 

proposed GADECT. Fig. 3 gives a summary of a range of different sets of threshold values 

for GADECT applied to the NYTP case study. The GADECT program with each set of 

threshold values was performed for 1000 runs using different random number seeds. As 

can be seen from Fig. 3, GADECT with relatively high threshold percentages is able to find 

the best known solution with higher frequency, but at the expense of increased 

computational overhead. It was found that GADECT with Pe=65%, Pr=95% and Ps=70% 

exhibited overall well with an appropriate balance between performance in terms of 

frequency that the best solution was found and computational efficiency based on 1000 

different runs.  
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The results for GADECT (Pe=65%, Pr=95% and Ps=70%) runs are given in Table 3. In 

order to enable a comparison of performance, the results of other optimization techniques 

that have previously applied to the NYTP case study are also included in Table 3. 

 

Figure 3 Results of GADECT with different set of parameter values applied to the 
NYTP case study 

Table 3 Comparison of algorithmic performance applied to the NYTP case 
study 

Algorithm 
No. of 
runs 

Best 
solution 

($M) 

Average 
cost 
($M) 

No. of 
average 

evaluations 

No. of best 
solution found 

GADECT (Pe=65%, 
Pr=95% and Ps=70%) 

1000 38.64 39.06 29,101 479 

Improved GA1 5 38.80 38.98 143,790 NA 

MMAS2 20 38.64 38.84 30,711 NA 

ACO3 3 38.64 NA 13,928 NA 

Messy GA4 5 38.80 39.09 48,427 NA 

PSO5 30 38.64 38.93 NA 10 

DE5 30 38.64 40.33 NA 22 
1Dandy et al. (1996). 2Zecchin et al. (2006). 3Maier et al. (2003). 4Wu and Simpson (2001).  
5Dandy et al. (2010). NA means “not available”  

The best solution found by Improved GA (Dandy et al. 1996) and Messy GA (Wu and 

Simpson 2001) was $38.80 million, which deviates 0.414% from the best known 

solution. In terms of efficiency, the proposed GADECT outperformed the other 

optimization techniques, but had slightly more average evaluations than the ACO (Maier 
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et al. 2003). However, it is highlighted that there were only three different ACO runs 

used, whilst a total of 1000 different GADECT runs were performed in this study. The 

average cost solution produced by GADECT, based on 1000 different runs, is $39.06 

million, which only deviates 1.087% from the known-least-cost solution. Even though 

the average cost solution provided by MMAS (Zecchin et al. 2006) and particle swarm 

optimization (PSO) (Dandy et al. 2010) are slightly lower than that of GADECT, the 

number of random number seeds are only 20 and 30 respectively, The GADECT was able 

to locate the current best solution 479 times out of a total of 1000 different runs, a higher 

frequency in finding optimal solutions than the PSO but slightly lower than that found by 

DE (Dandy et al. 2010). 

CONCLUSION 

A dynamically expanding choice table approach has been developed to enhance the 

performance of GA optimization for water distribution systems. The proposed approach 

provides a guide for the GA search to focus within regions of good fitness values. Thus, 

the search time is reduced and the optimal solution is more likely to be found. It is noted 

that, from the results of NYTP case study, the GADECT performed better than, or at least 

as good as, other optimization techniques presented in this paper such as other GA 

variants, ACO, MMAS and PSO methods.  
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Chapter 4. Journal Paper 2-A Dither Creeping Mutation GA for 
WDS Optimization 

4.1 Synopsis 

A non-crossover dither creeping mutation genetic algorithm for water distribution 

system optimization 

In Chapter 3, a dynamically expanding choice table genetic algorithm (GADECT) was 

proposed to optimize the design for water distribution systems (WDSs). It was 

demonstrated in Chapter 3 that the efficiency of the GADECT is improved compared to the 

standard GA. However, a number of parameter values need to be calibrated for the 

GADECT, which causes difficulties for the practicing water engineers wanting to 

implement the GADECT to tackle real-world sized WDS. This is because it is time 

consuming to tune the parameter values for evolutionary algorithms and specific 

knowledge is required to determine the appropriate parameter values (see discussion in 

Section 2.3.4 of Chapter 2)  

In this current research, a non-crossover dither creeping mutation-based genetic 

algorithm (CMBGA) for water distribution system (WDS) optimization is developed and 

analyzed. This CMBGA differs from the classic GA optimization in that it does not 

utilize the crossover operator, but instead only uses selection and a proposed dither 

creeping mutation operator. The creeping mutation rate in the proposed dither creeping 

mutation operator is randomly generated in a range rather than being set to a fixed value. 

In addition, the dither mutation rate is applied at an individual chromosome level rather 

than the generation level. The dither creeping mutation probability is set to take values 

from a small range that is centered about 1/ND (ND=number of decision variables of the 

optimization problem being considered). The reason for adopting this range is that a 

mutation probability of 1/ND has been demonstrated to be an effective value and is 

normally used for the GA.  

Genetic algorithms have usually been previously thought to be highly dependent on 

crossover. The research reported in this paper shows clearly that the performance of the 
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GA can be achieved without crossover and that mutation, used in the right way, is just as 

effective. This is the first known work to develop a non-crossover and mutation only 

based genetic algorithm for WDS design.  

An important objective of this research is to compare the performance of the proposed 

CMBGA to other standard GA variants. This systematic comparison amongst GA 

variants has proven important, and it serves to highlight the relative importance of the 

GA mechanisms of mutation and crossover in yielding an effective search. The proposed 

GA has shown significant improvements compared to four other GA variants in terms of 

the quality of the optimal solutions based on four WDS case studies used in this research. 

Thus the non-crossover dither creeping mutation based GA is a preferred tool for water 

distribution system optimization in contrast to standard GA variants. Additionally, 

another advantage of the proposed CMBGA over other GA variants is that it does not 

involve as much elaborate tuning of the parameter values. 

This work has been published on Journal of Water Resources Planning and 

Management and the paper is provided here. 

Citation of Paper 

Zheng, F., A. R. Simpson, A. C. Zecchin, M. F. Lambert (2013). “A non-crossover 

dither creeping mutation genetic algorithm for pipe network optimization.” Journal of 
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5452.0000351. 
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4.2 Journal Paper 2: A non-crossover dither creeping mutation 
genetic algorithm for pipe network optimization (Published in the 
Journal of Water Resources Planning and Management) 

Feifei Zheng, Aaron C. Zecchin, Angus R. Simpson and Martin F. Lambert 

Abstract 

A non-crossover dither creeping mutation-based genetic algorithm (CMBGA) for water 

distribution system optimization has been developed and is analyzed. CMBGA differs 

from classic GA optimization as it does not utilize crossover, but instead only uses 

selection and dither creeping mutation. The creeping mutation rate is randomly generated 

in a range rather than being set to a fixed value for each individual. An objective of this 

paper is to compare the performance of the CMBGA with four other GA variants. The 

results based on four case studies show that the CMBGA exhibits considerable 

improvement over the considered GA variants. The CMBGA shows a very significant 

improvement in optimization for the Hanoi Problem and the Go Yang network compared 

to all previously published results. A main advantage of the proposed CMBGA over the 

majority of the other evolutionary algorithms is that it avoids the need for an extensive 

parameter calibration phase. 

Keywords: Optimization; water distribution systems; genetic algorithms; creeping 

mutation; dither mutation. 

1. Introduction 

The non-linear constraints and the discrete combinatorial decision space of water 

distribution systems (WDSs) bring a significant challenge when optimizing their design. 

A number of optimization techniques have been previously applied to optimal water 

network design, such as complete enumeration (Gessler 1985), linear programming 

(Alperovits and Shamir 1977, Morgan and Goulter 1985, Fujiwara et al. 1987) and non-

linear programming (Lansey and Mays 1989, Fujiwara and Khang 1990). The complete 

enumeration approach is able to guarantee that the global optimal solution is reached. 
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However, the computational overhead is huge since all possible solutions need to be 

evaluated. Other optimization techniques, such as linear or non-linear programming are 

often trapped at local optimal solutions. 

Evolutionary algorithms (EAs) have been used to optimize WDSs since the early 1990s. 

Examples of these studies include the following: Murphy and Simpson (1992) 

introduced genetic algorithms (GAs) to the water community, specifically for water 

network optimization; Cunha and Sousa (2001) used simulated annealing to optimize 

WDSs; Geem et al. (2002) developed a harmony search model for optimizing WDSs; 

Eusuff and Lansey (2003) proposed a shuffled frog leaping algorithm (SFLA) for 

network optimization; Maier et al. (2003) applied an ant colony optimization approach to 

optimize WDSs; Tolson et al. (2009) developed a hybrid discrete dynamically 

dimensioned search (HD-DDS) approach to optimize the WDSs; and Suribabu (2010) 

employed the differential evolution (DE) to the optimization of WDSs. These techniques 

have been successfully applied to a number of optimization problems and have been 

demonstrated to be more effective in finding optimal solutions compared with traditional 

optimization techniques.  

Amongst these EAs, GAs have gained popularity due to their ease of implementation and 

search ability (Simpson et al. 1994, Savic and Walters 1997)). Much research has been 

undertaken to enhance the performance of GAs. A creeping mutation operator, variable 

power scaling of the fitness function and Gray coding were incorporated into the GA and 

were shown to be more efficient (Dandy et al. 1996). Vairavamoorthy and Ali (2000) 

applied integer coding in GAs to avoid the problem of redundant states often found when 

using binary or Gray codings. Wu and Simpson (2001) introduced a fast messy genetic 

algorithm (fmGA) to deal with the optimization of water networks, showing significant 

improvement in terms of efficiency and robustness. A pipe index method proposed by 

Vairavamoorthy and Ali (2005) was able to guide the GA search into the promising 

regions, thus enabling the GA to provide optimal solutions in less search time. Zheng et 

al. (2011a) developed a modified GA for water distribution system design. In their work, 



CHAPTER 4. JOURNAL PAPER 2-A DITHER CREEPING MUTATION GA FOR WDS OPTIMIZATION  

56 

a method of dynamically expanding pipe choice table selections and reducing the 

number of decision variables was introduced to improve GA’s performance.  

The GAs used by the water community are derived from Holland (1975), with the 

crossover operator being considered to be the dominant operator while mutation has been 

considered to be a second order operator. Thus high crossover probabilities and low 

mutation probabilities have been suggested for a better performance of GAs for the 

optimization of WDSs (Simpson et al. 1994, Savic and Walters 1997, Deb 2001). A 

typical parameter combination for GA optimization WDS is a crossover probability of 

0.9 and a mutation probability of 0.01 (Simpson et al. 1994, Dandy et al. 1996, 

Vairavamoorthy and Ali 2000). 

In contrast, some other EAs such as Evolutionary Strategy (ES) (Rechenberg 1965) and 

Evolutionary Programming (EP) (Fogel et al. 1966) have concentrated on mutation as the 

main driving evolution operator. ES algorithms with adaptive mutation rates have been 

found to be effective when dealing with some optimization tasks (Rechenberg 1965). 

Fogel and Atmar (1990) strongly suggested that crossover has no general advantage over 

mutation. As a result, mutation-based GAs have been proposed to solve some 

optimization problems (Falco et al. 2002, Dai et al. 2002). Although there exists a large 

body of conventional wisdom concerning the relative importance of crossover and 

mutation, no explicit conclusion has been made on this issue to date. In addition, it is 

reported in Spears (1993) that the relative importance of crossover and mutation is 

heavily dependent on the properties of the fitness landscape associated with the 

optimization problem. Consequently, conclusions that have been made based on other 

optimization problems cannot necessary be easily transferred to WDS optimization 

directly. 

This paper aims to develop and investigate a non-crossover dither creeping mutation-

based GA (CMBGA) to optimize the design of WDSs. The term dither comes from 

differential evolution algorithm as its use will be explained later on (Das et al. 2005). In 

the proposed CMBGA, only the selection and dither creeping mutation operators are 
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applied. The performance of the proposed CMBGA is assessed in this paper using a large 

range of different random number seeds.  

2. Background analysis 

The most commonly used GA in the water community is a crossover-based GA. A 

typical parameter combination for a GA optimization WDS is a crossover probability of 

0.9 and a mutation probability of 0.01 (Simpson et al. 1994; Dandy et al. 1996; 

Vairavamoorthy and Ali 2000). This version of the GA is based on Holland (1975) and 

uses bitwise mutation of strings while crossover is used as the primary search 

mechanism. Mutation has traditionally been viewed as secondary operator while being 

considered only useful in maintaining diversity of the population. Holland formalized his 

GA using the Schema Theorem (the theory of building blocks) to provide a theoretical 

background justification of crossover. The building block hypothesis has often been used 

as a basis for theoretical and experimental work on GAs (Goldberg 1989, Deb 2001). 

Goldberg (1989) suggested that crossover was the dominant operator in GAs as it was 

able to efficiently assemble the short, low-order and high performance schemata or 

building blocks. Syswerda (1989) has argued that the building block hypothesis lacks 

theoretical justification. Fogel (2000) and Zheng et al. (2010) found that uniform 

crossover outperformed two-point crossover, which in turn outperformed one-point 

crossover on many of the optimization case studies. Those results contradict the building 

blocks hypothesis that one-point and two-point crossover should perform better than 

uniform crossover because they are much less disruptive of the short and low schemata. 

The critical issue that exists when comparing the crossover- and mutation-based GAs is 

as to which operator is the dominant operator for driving evolution. Much work has been 

done previously to identify the dominant operator in GAs (Vose 1994, Palmes et al. 

2005). Proponents of Holland’s version of GAs have claimed that crossover is a more 

powerful operator compared with mutation based on a number of experimental results 

(Schaffer and Eshelman 1991). In contrast, others have asserted that mutation is the 

dominant operator for driving evolution (Vose 1994, Palmes et al 2005). However, the 
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empirical comparisons made by one group of researchers have often been disputed by 

other groups, and no theoretical justification has been universally claimed on this issue. 

Spears (1993) asserted that there were some important individual characteristics of each 

of these two operators that were not captured by the other operator. Spears (1993) 

conducted his analysis based on hyperplanes (building blocks) and defined two potential 

roles of a genetic operator: disruption (exploration) and construction (exploitation). He 

provided a theoretical justification that crossover was more effective for constructing 

high order building blocks from lower building blocks in comparison to mutation, 

indicating that crossover was more powerful in terms of construction; while mutation 

was more powerful in terms of disruption. Crossover emphasizes the evolutionary 

information exchange between individuals, thus it is able to maximize accumulated 

payoff and exhibits high simultaneous levels of preservation, indicating more 

exploitation. In contrast, mutation emphasizes preservation of the behavior links between 

parent and offspring, thus it provides higher levels of exploration. Therefore the mean 

behaviour of a GA with crossover outperformed the mean behaviour with a GA without 

crossover while a GA without crossover outperformed a GA with crossover in terms of 

seeking optimal solutions (Fogel and Atmar 1990). Thibert-Plante and Charbonneau 

(2007) found that crossover was not particularly helpful in producing better solutions, 

while it markedly improved the overall evolutionary stability. Zheng et al. (2010) 

demonstrated that a GA without mutation or an extremely low mutation rate tended to 

converge prematurely. 

The mutation operator used in the Holland’s GA has been viewed to be oversimplified 

by some researchers (Vose 1994) and can be greatly modified to enhance its performance 

(Spears 1993). Falco et al. (2002) employed a modified-mutation-based GA to deal with 

several test functions and a comparison was made between the modified-mutation-based 

GA and the traditional crossover–based GAs. The results achieved showed that the 

modified-mutation-based GA outperformed the traditional crossover-based GA. Dai 

(2002) developed a non-crossover GA and applied it to the travelling salesman problem 
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(TSP) and showed that the non-crossover GA outperformed the crossover-based GA in 

terms of solution quality and efficiency.  

As the non-crossover GA shows potential merits in other field, it is desirable to provide 

an analysis for the non-crossover GA applied to WDS optimization problems. This is the 

first known work in terms of applying the non-crossover GA to WDS design.  

3. The proposed non-crossover dither creeping mutation-based GA 

The non-crossover dither creeping mutation genetic algorithm (CMBGA) proposed in 

this paper is characterized by the fact that crossover is not used. Additionally, a dither 

creeping mutation operator is introduced into the CMBGA to replace the commonly used 

bitwise mutation operator. A flowchart of the proposed CMBGA applied to WDS 

optimization is illustrated in Figure 1 and the details of the proposed CMBGA are 

discussed in the following sections. The CMBGA run is stopped when the criterion is 

satisfied. In the proposed CMBGA, a maximum number of allowable evaluations is used 

as the stopping criterion.  

 

Figure 1 Flowchart of the proposed CMBGA 
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3.1 Initialization 

An initial random population of N solutions is generated by uniformly randomizing 

individuals within the search space as: 

)1,0(0, −= KUx j
i

j
i      j=1, 2, ….ND, i=1, 2,…., N                                (1) 

where j
ix 0, represents the initial value of the jth parameter in the ith individual at the initial 

population, where an individual is given by T
0,

2
0,

1
0,0, ]..,......... ,[ D

iiii xxxX = . j
iU  represents a 

randomly generated integer variable within the range of 0 to K-1 for the jth parameter in 

the ith individual. The symbols N, ND and K are population size, number of decision 

variables and number of pipe diameter choices respectively. 

3.2 Hydraulic analysis 

For each network design, a steady state hydraulic solver is used to compute the heads at 

each node for the given water demands. The actual head for each node is compared with 

its corresponding minimum allowable head, thereby computing the head deficit (if any). 

The head deficits for every node are cumulated and this value Pi,G is recorded for its 

corresponding network design to be used in the selection phase. 

3.3 Objective function calculation 

The integer strings are decoded into the corresponding pipe diameters and hence N 

network designs are produced. The total material and construction cost for each network 

design is computed as: 

∑
=

=
ND

j

j
jCLf

1

 (2) 

 where f is the objective function value for the individual i at the generation G, Lj 

represents the length of the pipe j and jC is the cost per unit for the pipe diameter of pipe 

j in the individual i. 
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3.4 Selection 

Constraint tournament selection (Deb 2000, Prasad and Park 2004,Tolson et al. 2009) is 

used to determine the individuals that survive to the next generation (a noted advantage 

of this method is that it does not require a penalty multiplier parameter). For two 

candidate solutions GAX ,  and GBX , , the selection algorithm is given as: 

)3(
 otherwise.     , argmin

 solutions. feasibleboth  are  and  if      , argmin

 

) ,(

,,
) ,(

1

,,

,,





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∈

∈

+ P(X)

XXf(X)

X

GBGA

GBGA

XXX

GBGA
XXX'

G  

where '
GX 1+ is the individual at generation G+1 which is either GAX , or GBX , , f(X) is the 

objective function value for string X, and P(X) is the cumulative head deficit for string X. 

If a vector X is a feasible solution, P(X)=0. As can be seen from Equation (3), the 

solution with a smaller value of objective function is selected between two feasible 

solutions. A feasible solution is selected (P(X)=0) when compared with an infeasible 

solution (P(X)>0); The solution with less head constraint violation is chosen between 

two infeasible solutions. 

3.5 Dither creeping mutation 

Creeping mutation 

Davis and Coombs (1987) first introduced a creeping mutation operator into their GAs 

for designing communication networks. A creeping mutation operator, in addition to 

bitwise mutation, was subsequently employed by Dandy et al. (1996) for WDS 

optimization. The basic idea of creeping mutation for WDS optimization is as follows: 

the creeping mutation operator mutates a selected substring to an adjacent pipe size, 

where conditional probabilities of downward (Pd) and upward (Pu) movement are 

employed. For example, Pd=0.6 means that there is a 60% probability of the creeping 

mutation operator will change the selected pipe size to the next adjacent smaller size, 

thus implying a 40% probability of creeping mutation moving the current pipe size to the 
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next larger size (as Pu=1-Pd). This creeping mutation approach (Dandy et al. 1996) is 

termed the traditional creeping mutation in this paper. 

Dither mutation 

The dither mutation strategy was used in differential evolution algorithm by Das et al. 

(2005). In their work, rather than providing a fixed value, a randomly generated value of 

the mutation weighting factor (F) was used in the mutation operator (the mutation 

weighting factor (F) used in differential evolution algorithm plays the same role as the 

mutation probability used in the GA). The dither differential evolution algorithm was 

applied to a number of mathematic optimization test functions (Das et al. 2005). The 

results of their study showed that the dither mutation strategy improved the convergence 

properties of differential evolution algorithm.  

Dither creeping mutation 

The dither creeping mutation is proposed in this paper to combine the creeping mutation 

and the dither mutation strategy. Within the proposed dither creeping mutation 

mechanism, each string, i=1,…., N, is first assigned a probability (idcmP ), where ∈i
dcmP [

min
dcmP , max

dcmP ] is a uniform random variable. Each bit of each string i is selected with a 

probability of i
dcmP  to be mutated. Then the selected bit has a probability Pd of being 

mutated to the adjacent bit value below and a probability 1-Pd of being mutated to the 

adjacent bit value above. For a bit that is already set to the smallest (largest) value, 

upward (or downward) mutation is allowed only. The dither creeping mutation algorithm 

used in the proposed CMBGA is given in Figure 2. For K pipe diameter choices, the 

integer numbers from 0 to K-1 are associated with each pipe diameter, order from the 

smallest to the largest. 

The proposed dither creeping mutation used in this paper is novel in that the mutation 

probability used for each string is uniformly randomly generated rather than being set to 

a fixed value. Thus different strings in the proposed CMBGA will be subject to different 

creeping mutation probabilities at the same generation and the same string will be also 
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subject to varied mutation probabilities at different stages. This differs significantly to the 

creeping mutation GA used by Dandy et al. (1996), for which, a fixed mutation 

probability was used throughout all the optimization and all the strings were subject to an 

identical mutation probability. 

 

Figure 2 Dither creeping mutation algorithm 

In Figure 2, i
dcmP  is the dither creeping mutation probability; max

dcmP and max
dcmP  are the 

maximum and minimum allowable dither creeping mutation probabilities;
 

j
Gix ,  is the 

ith bit of the string in the proposed GA, i=1,….,N; randi, Randj and Randp are 

uniformly distributed random variables between 0 and 1; and dP  is conditional 

probability of downward mutation. 

It is noted that the ES (Rechenberg 1965) and the proposed creeping mutation-based GA 

(CMBGA) proposed here have the same feature in that both of them do not utilize 

crossover operator. However, there exist some important differences between these two 

optimization algorithms. ES (such as (µ+λ) ES) normally selects the best µ individuals 

from the total (µ+λ) individuals to become parents for the next generation (Rechenberg 

1965), where µ is the population size (parents) and λ is the number of offspring produced 

by the µ parents. In contrast all N individuals of the next generation are selected from the 

FOR i=1, 2 ........., N 

i
dcmP = min

dcmP +randi×( max
dcmP - min

dcmP ) 

FOR j=1, 2 ........., ND 

IF Randj <
i

dcmP   

            IF Randp<= dP  

      
j
Gix , = ]1,0max[ , −j

Gix
 

       
ELSE 

 
        j

Gix , = ]1,1min[ , +− j
GixK  

                 END IF 

END FOR 
END FOR 
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N parents utilizing constraint tournament selection strategy (Deb 2001) for the proposed 

CMBGA. Real values are typically used to represent the strings in ES, while integer 

coding is utilized in the proposed CMBGA. A self-adaptive mutation strategy is 

normally used for ES (such as 1/5 success rule proposed by Rechenberg (1965)), while a 

dither creeping mutation strategy is adopted in the proposed CMBGA. 

4. Case studies 

Four case studies from the literature are used to investigate the effectiveness of the 

proposed CMBGA. These include the New York Tunnels Problem (NYTP) (Dandy et al. 

1996), the Go Yang water network (GYN) (Kim et al. 1994), the Hanoi Problem (HP) 

(Fujiwara and Khang 1990) and the Balerma network (BN) (Reca and Martínez 2006). 

The CMBGA has been coded in C++ and combined with the EPANET2 hydraulic 

network solver.  

In this study, the dither creeping mutation rate takes values from a small range that is 

centered about 1/ND, where ND is number of decision variables for the WDS that is 

being optimized. This is motivated by the fact that a mutation probability of 1/ND has 

been demonstrated to be an effective value and is normally used for the GA (Goldberg 

1989). A small interval of size O(1/ND) is used to form the lower and upper bounds of 

the range. For example, for a WDS optimization problem with the 1/ND≈0.05, the range 

of ∈dcmP [0.03, 0.07] is used for the proposed CMBGA. The number of decision 

variables, the range for the dither creeping mutation probability (dcmP ), the population 

size and the maximum number of allowable evaluations for each case study are given in 

Table 1. 

Table 1 Summary of case study characteristics and parameters of the CMBGA 

WDS case 
study 

Number of 
decision variables 
(ND) 

1/ND 
Range for 
Pdcm

(1) 
Population 
size (N) 

Maximum number of 
allowable evaluations 

NYTP 21 ≈0.05 [0.03, 0.07] 100 50,000 

GYN 30 ≈0.03 [0.01, 0.05] 100 20,000 

HP 34 ≈0.03 [0.01, 0.05] 100 100,000 

BN 454 ≈0.002 [0.001, 0.004] 500 10,000,000 
(1)Dither creeping mutation probability. 
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5. Preliminary sensitivity analysis 

5.1 Sensitivity analysis of the probability of downward mutation  

A sensitivity analysis of the conditional probability of downward mutation (Pd) is 

conducted. Values of Pd=0.4, 0.5 and 0.6 were used for the CMBGA applied to each case 

study, with all other parameter values being held constant. In order to present a reliable 

comparison, 1000 trial runs with different random number seeds were performed for the 

NYTP, GYN and HP case studies, and 100 runs for the BN case study. The properties of 

the best solution found versus the evaluation number for the CMBGA with different Pd 

values applied to the NYTP case study is shown in Figure 3.  

 

Figure 3 Example trial results for the best solution found versus evaluation number 
for the CMBGA with different Pd applied to the NYTP case study 

From Figure 3, it is seen that the CMBGA with Pd=0.6 converged fastest, whereas for a 

value of Pd=0.4, it tended to converge the slowest. The CMBGA with Pd=0.6 and Pd=0.5 

found the same final best solution with a cost of $38.64 million, the current best known 

solution for the NYTP (Maier et al. 2003). The CMBGA with Pd=0.4 found a final best 

solution with a cost of $38.80 million. The results for the trial runs are provided in Table 
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It is observed from Table 2 that the CMBGA exhibited a similar performance for each 

value of Pd on each case study in terms of solution quality. The current best known 

solutions for the GYN and HP case studies, with costs of $1.770 million (Tolson et al. 

2009) and $6.081 million (Reca and Martínez 2006) respectively, were found by the 

proposed CMBGA with different Pd values. In comparing efficiency (average number of 

evaluations to find the optimum), the Pd=0.5 runs performed the most efficiently for the 

HP case study. For the NYTP, GYN and BN case studies, the CMBGA with Pd=0.6 

outperformed that for Pd=0.4 and 0.5. This can be explained by the fact that the final best 

solutions for the NYTP, GYN and BN case studies contain many minimum pipe 

diameters, and hence a conditional probability of downward mutation of Pd=0.6 is able to 

speed up the convergence.  

Table 2 Results of CMBGA with different probabilities of downward mutation 

WDS 
case 
study 

Conditional 
probabilities of 

downward 
mutation (Pd) 

Best 
solution 

found (M) 

Number of 
best solutions 

found in R 
runs 

Average 
cost of 

solutions 
(M) 

Average 
evaluations to 

find best solutions 
for R runs 

NYTP 
(N=100 
R=1000) 

0.4 $38.64 565 $39.61 52,345 

0.5 $38.64 623 $38.82 42,385 

0.6 $38.64 673 $38.81 26,512 

GYN 
(N=100 
R=1000) 

0.4 $1.770 845 $1.774 14,357 

0.5 $1.770 1000 $1.770 12,453 

0.6 $1.770 867 $1.772 9,847 

HP 
(N=100 
R=1000) 

0.4 $6.081 640 $6.198 94,371 

0.5 $6.081 820 $6.112 70,423 

0.6 $6.081 814 $6.117 89,056 

BN 
(N=500 
R=100) 

0.4 €1.971 1 €2.065 8.7×106 

0.5 €1.963 1 €2.060 7.6×106 

0.6 €1.969 1 €2.001 6.3×106 

R=number of runs using different random number seeds. N=population size. 

It is concluded from this sensitivity study that Pd is a relatively robust parameter as a 

slight change of this parameter does not significantly affect the search performance of the 

CMBGA. As a result, in this paper, a probability of downward mutation (Pd) of 0.5 is 

adopted. 
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6. CMBGA performance discussion and comparison 

The performance of the CMBGA for each case study is now discussed, and compared 

with other GA variants considered in this paper and also previously published results. 

6.1 Performance of CMBGA compared with other GA variants 

A total of four other GA variants with fine-tuned calibrated parameters have been studied 

in this paper in order to enable the comparison with the proposed CMBGA. These 

include a non-crossover traditional creeping mutation based GA (GA1), a crossover-

based GA with bitwise mutation (GA2), a non-crossover bitwise-mutation based GA 

(GA3) and a crossover-based GA with creeping mutation (GA4). GA2 and GA4 are two 

normally used standard GA variants, whereas GA1 and GA3 were included in this work 

in order to investigate the performance of the GA variants for which only the traditional 

creeping mutation and only bitwise mutation were employed (compared to the proposed 

CMBGA where the dither creeping mutation operator is used). 

For each case study, each GA variant used the same population size and the same 

maximum allowable number of evaluations (outlined in Table 1). Integer coding, 

constraint tournament selection (tournament size=2) and an elite count of 2 were used for 

all the GA variants. The elite count is the number of individuals with the best fitness 

values in the current generation that are guaranteed to survive to the next generation 

(Gibbs et al. 2008). The other parameter values for the four GA variants applied to each 

case study are given in Table 3. These parameter values have been fine-tuned by a 

calibration process for each case study to give the best performance. A typical run for 

both CMBGA and GA2 (normally used GA) for the HP case study is presented in Figure 

4. 

As can be seen from Figure 4, the proposed CMBGA tends to converge faster than the 

GA2 with tuned parameter values. In addition, the final solution found by the CMBGA 

for the HP case study is significantly lower than that generated by the GA2. Similar 

results were obtained for other case studies and hence are not given.  
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Table 3 Fine-tuned calibrated parameter values for the four GA variants 
applied to each case study 

Case study GA1 GA2 GA3 GA4 

NYTP 
Pcm=0.05, 

Non-
crossover 

Pc=0.5, Pm=0.03, two-point 
crossover 

Pm=0.03, 
Non-crossover 

Pc=0.9, Pcm=0.04, 
two-point 
crossover 

GYN 
Pcm=0.02, 

Non-
crossover 

Pc=0.8, Pm=0.02, two-point 
crossover 

Pm=0.03, 
Non-crossover 

Pc=0.8, Pcm=0.03, 
two-point 
crossover 

HP 
Pcm=0.02, 

Non-
crossover 

Pc=0.6, Pm=0.02, two-point 
crossover 

Pm=0.01 
Non-crossover 

Pc=0.6, Pcm=0.02, 
two-point 
crossover 

BN 
Pcm=0.003, 

Non-
crossover 

Pc=0.6, Pm=0.002, two-point 
crossover 

Pm=0.002 
Non-crossover 

Pc=0.7, Pcm=0.002, 
two-point 
crossover 

Pc: crossover probability. Pm: bitwise mutation probability. Pcm: traditional creeping mutation probability. 

 

Figure 4 Example trial results for the best solution found versus evaluation number 
for the CMBGA and GA2 applied to the HP case study 

For each GA variant, a total of 1000 trial runs with different starting random number 

seeds were performed for the NYTP, GYN and HP case studies, and 100 runs were used 

for the BN case study. The results of CMBGA and the four other GA variants with the 

calibrated parameter values are given in Table 4. 

From the results, it is clearly seen that the proposed CMBGA consistently outperformed 

all the other GA variants in terms of solution quality and efficiency. In particular, the 
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proposed CMBGA found the best known solution for the HP case study with 82% based 

on 1000 different runs, while the GA1 and GA4 located the best known solution with 

only 39% and 2% respectively, and GA2 and GA3 were unable to find this best solution. 

For the GYN case study, the proposed CMBGA found the current best known solution 

with a 100% success rate based on 1000 different runs, which is higher than all the other 

GA variants presented in this paper. For the large BN case study, the proposed CMBGA 

was able to find better solutions than the other GA variants as shown in Table 4, while 

requiring fewer evaluations.  

Table 4 The performance comparison of four GA variants against the proposed 
CMBGA 

Case studies1 Algorithm 
Best 

solution 
found (M) 

Percent of best 
solutions found 

in R runs 

Average 
cost (M) 

No. of average 
evaluations for R 

runs 

NYTP 
(R=1000, 
N=100) 

CMBGAa $38.64 62% $38.82 42,385 

GA1b $38.64 61% $38.82 46,850 

GA4c $38.64 50% $39.04 44,324 

GA2d $38.64 45% $39.16 49,950 

GA3e $38.64 7% $40.07 57,469 

GYN 
(R=1000, 
N=100) 

CMBGAa $1.770 100% $1.770 12,453 

GA1b $1.770 94% $1.770 15,661 

GA4c $1.770 80% $1.775 16,987 

GA2d $1.770 42% $1.825 19,387 

GA3e $1.770 15% $1.997 19,657 

HP 
(R=1000, 
N=100) 

CMBGAa $6.081 82% $6.112 70,423 

GA1b $6.081 39% $6.136 68,492 

GA4c $6.081 2% $6.264 70,164 

GA2d $6.099 0% $6.329 68,568 

GA3e $6.113 0% $6.259 73,695 

BN 
(R=100, 
N=500) 

CMBGAa €1.963 1% €2.060 7.6×106 

GA1b €1.967 0% €2.060 8.4×106 

GA4c €2.057 0% €2.111 8.7×106 

GA2d €2.069 0% €2.113 8.6×106 

GA3e €2.105 0% €2.234 8.9×106 
1Ranked based on Column 4 for the NYTP, GYN and HP case studies, while Column 3 for the BN case 
study. R=number of runs using different random number seeds. N=population size.  
aNon-crossover dither creeping mutation based GA (CMBGA); bNon-crossover and traditional creeping 
mutation based GA; cCrossover and traditional creeping mutation GA; dCrossover and bitwise mutation 
GA. eNon-crossover and bitwise mutation GA  
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It was noted that the only difference between the CMBGA and the GA1 was that the 

dither creeping mutation was used for the CMBGA, while the traditional creeping 

mutation approach was implemented for GA1. This shows that the dither creeping 

mutation strategy is more effective than the traditional creeping mutation method as the 

CMBGA consistently yielded a better performance than GA1 with the best calibrated 

parameter value for each case study in terms of solution quality and efficiency.  

The GA1 was found to perform the second best (only worse than the proposed CMBGA) 

for each case study. The only difference between GA1 and GA4 was that the crossover 

was not used for GA1, while the crossover was utilized for GA4. This shows that, for the 

four WDS case studies considered, the non-crossover GA with the traditional creeping 

mutation is more effective than the crossover based GA with traditional creeping 

mutation. 

It is observed that the crossover-based GA with creeping mutation (GA4) consistently 

performed better than the crossover-based GA with bitwise mutation (GA2) for all the 

case studies. This suggests that creeping mutation is more effective than the bitwise 

mutation. This is also evidenced by the fact of that the bitwise mutation-based GA (GA3) 

was found to perform the worst as can be seen from Table 4. Both the proposed CMBGA 

and GA3 utilized only the mutation operator (both are non-crossover based GA variants). 

However, the proposed CMBGA significantly outperformed GA3 for each case study. 

This can be attributed to the fact that the dither creeping mutation was used in the 

proposed CMBGA, while only simple bitwise mutation was used in GA3. 

In concluding the comparison, a final note on parameter calibration effort for each 

algorithm is required. For the proposed CMBGA, the dither creeping mutation rate (Pdcm) 

is set to be a range around the inverse value of the number of decision variables for the 

optimization problem, and hence no calibration is required. Although Pd =0.6 was found 

to be able to speed up the convergence of the CMBGA applied to some case studies, the 

CMBGA with Pd =0.5 showed a consistently reasonably good performance for each case 

study. Therefore, Pd=0.5 is recommended for application of the proposed CMBGA. For 
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the traditional GA or the GA with traditional creeping mutation, the crossover rate and 

mutation rate (bitwise or creeping mutation rate) require tuning. Thus, the proposed 

CMBGA removes the need of the users to utilize a trial-and–error process to determine 

the effective parameters of the GA in order to tackle different WDS optimization 

problems. 

6.2 Performance of CMBGA compared with previously published results 

The performance of the proposed CMBGA for each case study is now compared with 

other previously reported optimization techniques in terms of search ability and 

efficiency. The results obtained by some evolutionary optimization algorithms 

mentioned in this section are based on the algorithm parameters that have been tuned by 

the authors based on an extensive calibration process. These include the Improved GA 

(Dandy et al. 1996), Messy GA (Wu and Simpson 2001), GENOME (Reca and Martínez 

2006), harmony seach (HS) (Geem 2006b), Max-Min Ant System (MMAS) (Zecchin et 

al. 2007), particle-swarm harmony search (PSHS) (Geem 2009), genetic heritage 

evolution by stochastic transmission (GHEST) (Bolognesi et al. 2010) and differential 

evolution (DE) (Suribabu 2010). In contrast, the results from the hybrid discrete 

dynamically dimensioned (HD-DDS) method (Tolson et al. 2009) were based on a 

default parameter value and hence no parameter tuning was undertaken. From the 

particle swarm optimization (PSO) variant algorithm (Montalvo et al. 2008), however, it 

is unclear that whether the parameters were tuned or not. For each case study, the results 

of GA1, GA2, GA3 and GA4 with calibrated parameter values are also presented to 

enable a comparison with other published results.  

New York Tunnels Problem (NYTP) 

A comparison of algorithmic performance for the NYTP case study is given in Table 5. 

In terms of percent of trials with different random number seeds of finding the best 

solution, the HD-DDS (Tolson et al. 2009) and DE (Suribabu 2010) performed better 

than the proposed CMBGA, however, the average cost over all runs was only negligibly 

different. In terms of search efficiency, as measured by the average number of 
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evaluations, the proposed CMBGA performed worse than the DE, HD-DDS and 

MMAS, while better than other EAs given in Table 5. 

Table 5 The performance comparison of the proposed CMBGA with previously 
published results for the NYTP case study 

Algorithm1 

No. 
of 

runs 
(R) 

Best 
solution 

($M) 

Percent of 
best solutions 

found in R 
runs 

Average 
cost 
($M) 

Maximum 
allowable 

evaluations 

Average 
evaluations to 

find best solutions 
for R runs 

HD-DDS2 50 38.64 86% 38.64 50,000 13,000 

DE3 300 38.64 71% NA 10,000 5,494 

CMBGA 1000 38.64 62% 38.82 100,000 42,385 

GA1 1000 38.64 61% 38.82 100,000 46,850 

MMAS4 20 38.64 60% 38.84 50,000 30,700 

GA4 1000 38.64 50% 39.04 100,000 44,324 

GA2 1000 38.64 45% 39.16 100,000 49,950 

PSO variant5 2000 38.64 30% NA 80,000 NA 

GA3 1000 38.64 7% 40.07 100,000 57,469 

Messy GA6 5 38.80 0 39.09 NA 48,427 

Improved 
GA7 

5 38.80 0 38.98 200,000 143,790 

1Ranked based on Column 4.2Tolson et al. (2009). 3Suribabu (2010).  4Zecchin et al. (2007). 5Montalvo et al. 
(2008). 6Wu and Simpson (2001). 7Dandy et al. (1996). NA means “not available”.  

Go Yang Network (GYN) 

Table 6 shows the performance comparison of different optimization techniques applied 

to the GYN case study. The current best known solution ($1.770 million) was first 

located by HD-DDS and proposed CMBGA found this best solution 100% compared 

with 32% found by the HD-DDS. It is noted that the computational budget used by HD-

DDS was 10,000, while 100,000 was used for the proposed CMBGA method. 

Table 6 The performance comparison of the proposed CMBGA with previously 
published results for the GYN case study 

Algorithm1 
No. of 
runs 
(R) 

Best 
solution 

($M) 

Percent of 
trials with best 
solution found 

in R runs 

Average 
cost 
($M) 

Maximum 
allowable 

evaluations 

Average 
evaluations to 

find best 
solutions for R 

runs 

CMBGA 1000 1.770 100% 1.770 100,000 12,453 

HD-DDS2 50 1.770 32% 1.775 10,000 NA 

NLP3 NA 1.791 0 NA NA NA 
1Ranked based on Column 4. 2Tolson et al. (2009). 3Kim et al. (1994). NA means “not available”. 
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Hanoi Problem (HP) 

The HP network has been investigated in many studies and is of particular interest as the 

region of the search space that contains feasible solutions is extremely small. The 

performance of different optimization techniques previously applied to the HP, including 

the results of the proposed CMBGA, are given in Table 7.  

In comparing the algorithmic performance, it can be seen that the CMBGA achieved the 

highest percentage of best solutions found with a value of 82%, which is significantly 

higher than the other previously published algorithms. As the computational budget used 

by the DE (Suribabu 2010) was 10,000 while 100,000 used by the proposed CMBGA, 

we cannot conclude the proposed CMBGA performs better than the DE algorithm in 

terms of percentage of the best solutions found. The proposed CMBGA produced the 

lowest average solution with a value of $6.112 million, which deviates only 0.51% from 

the best known solution. This illustrates that the CMBGA has a robust search strategy 

that is relatively effective in exploring the search space for highly constrained problems. 

Table 7 The performance comparison of the proposed CMBGA with previously 
published results for the HP case study 

Algorithm1 
No. of 
runs 
(R) 

Best 
solution 

($M) 

Percent of 
best solutions 

found in R 
runs 

Average 
cost 
($M) 

Maximum 
allowable 

evaluations 

Average 
evaluations to 

find best 
solutions for R 

runs 

CMBGA 1000 6.081 82% 6.112 100,000 70,423 

GA1 1000 6.081 39% 6.136 100,000 68,492 

DE2 300 6.081 21% NA 10,000 6,244 

GENOME3 10 6.081 10% 6.248 100,000 NA 

HD-DDS4 50 6.081 8% 6.252 100,000 ≤100,000 

PSO variant5 2000 6.081 5% 6.310 80,000 NA 

GA4 1000 6.081 2% 6.264 100,000 70,164 

HS6 18 6.081 NA 6.139 NA NA 

PSHS7 81 6.081 NA 6.340 NA NA 

GA2 1000 6.099 0% 6.329 100,000 68,568 

GA3 1000 6.113 0% 6.259 100,000 73,659 

MMAS8 20 6.134 0% 6.386 100,000 85,600 
1Ranked based on Column 4. 2Suribabu (2010). 3 Reca and Martinez (2006). 4Tolson et al. (2009). 

5Montalvo et al. (2008). 6Geem (2006b). 
7Geem (2009). 8Zecchin et al. (2007). NA means “not available”.  
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Balerma network (BN) 

Table 8 give performance comparisons among different optimization techniques applied 

to the BN case study. As shown in Table 8, the current best known solution for the BN 

case study was found by Zheng et al. (2011b) using a coupled NLP and DE algorithm 

with a cost of €1.923 million using 1,427,850 evaluations. Tolson et al. (2009) proposed 

the HD-DDS to find a best solution of €1.940 million using 30 million evaluations 

budget. The CMBGA located a best solution with value of €1.963 million for the BN 

case study, which is lower than the GHEST (Bolognesi et al. 2010), HS (Geem 2009) 

and GENOME (Reca and Martinez 2006). The average cost solution produced by the 

proposed CMBGA was lower than that obtained by GENOME. 

In comparing the quality of the best solution for the BN case study, the proposed 

CMBGA was not as efficient as the NLP-DE (Zheng et al. 2011b) or HD-DDS (Tolson 

et al. 2009). However, both the NLP-DE and HD-DDS are hybrid optimization 

techniques. For the HD-DDS method, an EA was combined with two local search 

techniques (one pipe and two pipes search methods), while for the NLP-DE approach, 

the DE was combined with a NLP. 

Table 8 The performance comparison of the proposed CMBGA with previously 
published results for the BN case study 

Algorithm1 

No. 
of 

runs 
(R) 

Best 
solution 
(€M) 

Percent of 
best solutions 

found in R 
runs 

Average 
cost 

(€M) 

Maximum 
allowable 

evaluations 

Average 
evaluations to find 
best solutions for 

R runs 

NLP-DE2 10 1.923 10% 1.927 107 1.4×106 

HD-DDS3 1 1.940 10% 2.014 3×107 NA 

CMBGA 100 1.963 1% 2.060 107 7.6×106 

GA1 100 1.967 1% 2.060 107 8.4×106 

GHEST4 10 2.002 10% 2.055 NA 2.54×105 

HS5 NA 2.018 NA NA 107 NA 

GA4 100 2.057 1% 2.111 107 8.7×106 

GA2 100 2.069 1% 2.113 107 8.6×106 

GA3 100 2.105 1% 2.234 107 8.9×106 

GENOME6 10 2.302 NA 2.334 107 NA 
1Ranked based on Column 3.2Zheng et al. (2011b).  3Tolson et al (2009). 4Bolognesi et al. (2010).  5Geem 
(2009). 6Reca and Martinez (2006). NA means “not available”.  
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7. Conclusions  

Within this paper, a dither creeping mutation based GA with no crossover (CMBGA) has 

been proposed. It differs significantly from the commonly used GA approach as no 

crossover operator is used. A big advantage of CMBGA is its simplicity and that it 

requires the tuning of fewer parameters compared with the traditional GA. It should be 

noted that the proposed CMBGA is a variant of the GA with constraint tournament 

selection (but with the crossover probability set to be zero) and its effectiveness has been 

demonstrated for pipe network optimization in this paper. 

The proposed CMBGA has been compared with the other four GA variants based on 

four case studies. The results obtained show that the proposed CMBGA exhibits 

improvements in efficiently finding optimal solutions for the four case studies compared 

with the other GA variants studied in this paper. In addition, it has been concluded from 

this study that the dither creeping mutation approach is more effective than the traditional 

creeping method, which in turn, is better than the bitwise mutation method. 

The proposed CMBGA has also been compared with other EAs that have been 

previously applied to the four case studies. The proposed CMBGA shows a comparable 

performance to the other EAs, but it is not as efficient as the DE (Suribabu 2010) and 

HD-DDS (Tolson et al. 2009) for the NYTP case study. For the GYN case study, the 

proposed CMBGA was able to find the current best known solution with a success rate 

of 100% based on 1000 different runs, which is significantly higher than other algorithms 

(the other GA variants and all previously published results for this problem). For the HP 

case study, the CMBGA significantly outperformed the other EAs as it found the current 

best known solution for this case study with the highest success rate (82%). For the large 

case study (BN case study), the proposed CMBGA was able to find satisfactory results.  
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Chapter 5. Journal Paper 3-A Self-adaptive DE for WDS 
Optimization 

5.1 Synopsis 

A self-adaptive differential evolution algorithm applied to water distribution system 
optimization  

Chapters 3 and 4 focus on improving the performance of genetic algorithms (GAs) in 

terms of water distribution system (WDS) optimization. Another type of evolutionary 

algorithm that has been investigated in this research is the differential evolution (DE) 

algorithm. DE is a relatively new optimization algorithm that has been recently 

introduced for dealing with the WDS optimal design problems. A review of DE was 

elaborated upon in Section 2.3.2 of Chapter 2.  

DE has been viewed as a promising optimization technique due to its excellent 

performance when applied to WDS optimization problems. A performance comparison 

between the standard DE and the standard GA applied to two benchmark WDS case 

studies is presented in Figure 5.1 and 5.2 respectively. These two case studies are the 

New York Tunnels Problem (NYTP) and the Hanoi Problem (HP). The details of these 

two case studies are included in the paper of this Chapter (Chapter 5).  

The control parameters for each algorithm have been tuned by a trial-and-error approach 

and the selected parameter values are presented in Table 5.1. The starting random 

number seeds for the DE and GA run were identical for each case study in order to 

enable a fair comparison. 

Table 5.1 Parameter values for each algorithm applied to two case studies 

Algorithms NYTP HP 

DE N=100, F=0.5, CR=0.6 N=100, F=0.7, CR=0.8 

GA N=100, Pc=0.6, Pm=0.03 N=100, Pc=0.5, Pm=0.02 
N=population size; F=mutation weighting factor used for DE; CR=crossover rate used for DE; 
Pc=crossover probability used for the GA and Pm=bitwise mutation rate used for the GA. 
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Figure 5.1 A convergence comparison between DE and GA applied to  
the NYTP case study 

 

Figure 5.2 A convergence comparison between DE and GA applied to  
the HP case study 

As clearly shown in Figures 5.1 and 5.2, DE significantly outperformed the GA for both 

case studies in terms of the convergence speed of the whole search process. It is observed 

from Figure 5.1 that DE and the GA have a similar convergence speed during early 

generations for the NYTP case study. For the HP case study, the GA exhibits a slightly 

faster convergence speed than the DE algorithm at the early stages. However, the GA 

tends to be stagnate at the later generations for both case studies as shown in Figures 5.1 
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and 5.2, while the DE algorithm still maintains a high convergence speed. This implies 

that DE is more robust than the GA at the later generations. All solutions for the SDE 

and SGA applied to the HP case study are presented in Figure 5.3. 

 

Figure 5.3 Solutions of the DE and SGA applied to the HP case study 

As shown in Figure 5.3, the solutions generated by the GA are scattered while the 

solutions yielded by DE (denoted as SDE in Figure 5.3) tend to converge one final 

solution. This illustrates the significant difference between the GA and the DE algorithm. 

All the GA solutions are significantly higher in cost than the best known solution for the 

HP case study ($6.081 million), while all DE solutions finally converged to the current 

best known solution. 

It has been widely recognized that a GA is able to converge quickly at the early stages of 

an optimization process, while tending to be stagnate at the later stage of the whole 



CHAPTER 5. JOURNAL PAPER 3-A SELF-ADAPTIVE DE FOR WDS OPTIMIZATION  

83 

search process. This agrees with observations made in the current research (see Figures 

5.1, 5.2 and 5.3). In contrast, DE exhibits consistently good convergence speed 

throughout the whole search process as shown in Figures 5.1, 5.2 and 5.3. Thus, DE can 

be viewed as a more suitable optimization technique for use when designing water 

networks. However, the performance of DE is extremely sensitive to the control 

parameters (especially the F and CR) used, which has been clearly stated in Section 

2.3.2.5 of Chapter 2. These parameters need to be fine-tuned for different optimization 

problems as they are generally problem-dependent. This causes difficulties in 

implementing the DE algorithm to deal with real-world sized optimization problems, 

because tuning the parameter values is computationally expensive, especially when 

dealing with relatively large water networks.  

In order to reduce the effort required to tune the parameter values of the DE algorithm, a 

self-adaptive DE algorithm is proposed in this research. Three new contributions in this 

thesis are included in the proposed SADE algorithm:  

� Instead of pre-specification, the control parameters of F and CR are encoded into 

the chromosome of the SADE algorithm and hence are adapted by means of 

evolution.  

� The F and CR values of the SADE algorithm apply at the individual level rather 

than at the generational level normally used by the traditional DE algorithm.  

� A new convergence criterion is proposed for the SADE algorithm as the 

termination condition, thereby avoiding pre-specifying a fixed number of 

generations or computational budget to terminate the evolution. The only 

parameter value that needs to be provided for the proposed SADE, therefore, is the 

population size (N). The population size is a relatively easy parameter to adjust 

since a slight variation of its value does not appear to significantly impact the 

performance of the SADE. In addition, it was proven in the current research that a 

population size within [1D, 6D] is an approximate heuristic for the proposed 

SADE applied to WDS case studies.  
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The proposed SADE provides a robust tool for the optimization of the WDS design (or 

rehabilitation of an existing WDS). This is because that (i) the proposed SADE algorithm 

does not require as much fine-tuning of parameter values nor pre-specification of a 

computational budget; and (2) the proposed SADE algorithm is able to find optimal 

solutions with good quality and great efficiency.  

The proposed SADE algorithm differs from the self-adaptive DE algorithm (denoted as 

jDE) developed by Brest et al. (2006) in that: (i) the F and CR parameters that are able to 

generate better solutions are directly passed onto the next generation in the proposed 

SADE, in contrast they survive in the next generation with a probability of 1-1τ  and 1- 

2τ  (0 < 1τ , 2τ  <1) respectively in the jDE; (ii) the jDE has two more parameters, than 

the proposed SADE, that need to be specified (1τ  and 2τ ); and (iii) the convergence 

criterion developed for the proposed SADE removes the need to pre-specify the 

computational budget, while a computational budget needs to be pre-set for the jDE 

(Brest et al. 2006).  

It is necessary to define the traditional DE here in order to enable the comparison with 

the proposed SADE. The traditional DE is the DE algorithm uses the mutation rate (F) 

and crossover rate (CR) at the generational level, both of which need to be tuned. In 

addition, the computational budget for the traditional DE needs to be pre-specified. The 

previous DE applications including Vasan and Simonvonic (2010), Suribabu (2010) and 

Dandy et al. (2012) are traditional DE algorithms. 

This work has been published on Journal of Computing in Civil Engineering and the 

paper is provided here. 
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evolution algorithm applied to water distribution system optimization.” Journal of 

Computing in Civil Engineering, doi:10.1061/(ASCE)CP.1943-5487.0000208. 
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5.2 Journal Paper 3: A self-adaptive differential evolution 
algorithm applied to water distribution system optimization 
(Published in the Journal of Computing in Civil Engineering) 

Feifei Zheng, Aaron C. Zecchin and Angus R. Simpson  

ABSTRACT 

Differential evolution (DE) is a relatively new technique that has recently been used to 

optimize the design for water distribution systems (WDSs). Several parameters need to 

be determined in the use of DE, including: population size, N; mutation weighting factor, 

F; crossover rate, CR and a particular mutation strategy. It has been demonstrated that the 

search behavior of DE is especially sensitive to the F and CR values. These parameters 

need to be fine-tuned for different optimization problems as they are generally problem-

dependent. A self-adaptive differential evolution (SADE) algorithm is proposed to 

optimize the design of WDSs. Three new contributions are included in the proposed 

SADE algorithm: (i) instead of pre-specification, the control parameters of F and CR are 

encoded into the chromosome of the SADE algorithm and hence are adapted by means 

of evolution; (ii) F and CR values of the SADE algorithm apply at the individual level 

rather than the generational level normally used by the traditional DE algorithm; and (iii) 

a new convergence criterion is proposed for the SADE algorithm as the termination 

condition, thereby avoiding pre-specifying a fixed number of generations or 

computational budget to terminate the evolution. Four WDS case studies have been used 

to demonstrate the effectiveness of the proposed SADE algorithm. The results obtained 

show that the proposed algorithm exhibits good performance in terms of solution quality 

and efficiency. The advantage of the proposed SADE algorithm is that it reduces the 

effort required to fine-tune algorithm parameter values.  

CE Database subject headings: optimization; water distribution systems; differential 

evolution. 

Author Keywords: optimization; differential evolution; water distribution systems. 
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INTRODUCTION 

Water distribution systems (WDSs) are one of the most expensive public infrastructure 

works as they require a high level of capital investment for construction and a continuing 

investment for maintenance. Research into the optimal design of WDSs is motivated, 

therefore, by the possibility of substantial cost savings. The optimal design of a WDS 

involves identifying the lowest cost pipe network that is able to provide the required 

demand and head pressure for each individual supply node. The design of WDSs poses 

challenges for optimization tools for two main reasons: (i) the nonlinear relationships 

between pipe discharges and head losses introduce complex nonlinear constraints into 

the optimization problem, and (ii) the discrete pipe diameters lead to a combinatorial 

optimization problem. 

Historically, a number of traditional optimization techniques have been applied to water 

network optimal design, such as linear programming (Alperovits and Shamir 1977; 

Quindry et al. 1981; Fujiwara et al. 1987) and non-linear programming (Lansey and 

Mays 1989; Fujiwara and Khang 1990). However, due to the multi-modal nature of the 

fitness landscape for the optimization of water distribution system problem, these 

methods are more likely to converge on local optimal solutions, where the final solutions 

are highly sensitive to the initial starting point (Eiger et al. 1994). In addition, the final 

solutions may include continuous pipe sizes or split pipes, which is a significant practical 

limitation. 

Evolutionary algorithms (EAs) have been popular alternatives for optimizing WDS 

designs as they are able to handle a discrete search space directly, and are less likely to be 

trapped by local optimal solutions. The search strategy of EAs differs from the traditional 

optimization techniques, such as linear programming or non-linear programming, in that 

they explore broadly across the search space using a population-based stochastic 

evolution algorithm, where no gradient information is required.  
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Over the last two decades, a number of EAs have been employed to optimize the design 

of WDSs, such as genetic algorithms (Murphy and Simpson 1992; Simpson et al. 1994; 

Dandy et al. 1996; Savic and Walters 1997); simulated annealing (Cunha and Sousa 

2001); harmony search (Geem et al. 2002); shuffled frog leaping algorithm (Eusuff and 

Lansey 2003); Ant Colony Optimization (Maier et al. 2003); particle swarm optimization 

(Suribabu and Neelakantan 2006); cross entropy (Perelman and Ostfeld, 2007); and 

scatter search (Lin et al. 2007). These techniques have been successfully applied to a 

number of WDS optimization problems and have been demonstrated to be more 

effective in finding optimal solutions compared to traditional optimization techniques. It 

has been noticed that the performance of all these EAs, in terms of robustness and 

efficiency, are significantly affected by the algorithm parameter settings, which need to 

be adjusted for different optimization problems. It has been reported by Tolson et al. 

(2009) that the number of parameters that need to be fine-tuned for different optimization 

problems for these EAs varies from 3 to 8. These do not include a termination criterion 

parameter that also needs to be pre-specified to end the EA run (i.e. normally the 

maximum number of allowable evaluations or generations). The appropriate parameters 

of EAs are varied for different optimization problems and normally are adjusted by trial 

and error. Thus, it is extremely computationally expensive to determine the proper 

parameter values for a newly given WDS case study.  

Differential evolution (DE), proposed by Storn and Price (1995), has recently been used 

to optimize WDSs (Suribabu 2010; Dandy et al. 2010). There are three important 

operators involved in the application of the DE algorithm: a mutation operator, a 

crossover operator and a selection operator. These operators are similar to a genetic 

algorithm (GA), but DE algorithms differ significantly from a GA in the mutation 

process, in that the mutant solution is generated by adding the weighted difference 

between two random population members to a third member.  

A total of four parameters need to be pre-determined in the use of DE, including: 

population size, N; mutation weighting factor, F; crossover rate, CR; and a particular 
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mutation strategy. It has been demonstrated that the performance of DE is governed by 

these parameters (especially the F and CR) based on a number of numerical optimization 

case studies (Storn and Price 1995; Vesterstrom and Thomsen 2004). In terms of 

optimizing WDSs, Suribabu (2010) and Vasan and Simonovic (2010) concluded that the 

performance of DE algorithms was at least as good as, if not better, than other EAs such 

as GAs and Ant Colony Optimization. While Dandy et al. (2010) has stated that GAs 

give better results overall than DE algorithms in terms of solution quality and efficiency. 

The contradiction of results reported by Suribabu (2010) and Dandy et al. (2010) can be 

explained by the fact that the different parameter values including N, F and CR are used 

in these DE applications. In addition, Suribabu (2010) investigated the effectiveness of 

the DE using a number of different F and CR combinations (N is constant) applied to 

WDS optimization problems. His results show that the performance of the DE algorithm 

applied to the WDS optimization is highly dependent on the parameter values selected. 

As these control parameters are problem dependent, using the DE algorithm effectively 

is time consuming since appropriate parameter values have to be established for each 

new WDS case study.  

Investigations have been undertaken to avoid pre-specifying parameter values in EAs. 

Bäck et al. (1991) introduced a self-adaptive algorithm to dynamically adjust the 

mutation probability in the evolution strategy. Eiben et al. (1999) gave a systematic 

analysis of a self-adaptation strategy for the parameters of EAs. Wu and Simpson (2002) 

and Wu and Walski (2005) proposed a self-adaptive penalty approach GA for pipeline 

optimization. The penalty multiplier was encoded onto each member of the population, 

thereby allowing the penalty multiplier to evolve over the course of the GA optimization. 

Thus, there is no need to pre-specify a penalty multiplier before running the GA run. 

Gibbs et al. (2010) provided an estimate of population size for GA applications based on 

the genetic drift. Tolson et al (2009) developed a hybrid discrete dynamically 

dimensioned search (HD-DDS) algorithm for WDS optimization and proposed the HD-

DDS as a parameter-setting-free algorithm. Geem and Sim (2010) proposed a parameter-

setting-free harmony search algorithm to optimize the design of WDSs. 
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Brest at al. (2006) proposed a self-adaptive strategy to evolve the F and CR values of the 

DE algorithm, which is called jDE. In the jDE algorithm, the F and CR values were 

adjusted by introducing two new parameters 1τ  and 2τ . They concluded that the self-

adaptive DE algorithm performed better than the traditional DE algorithm in terms of 

convergence speed and final solution quality based on testing a number of numerical 

benchmark optimization problems. 

In this paper, a new self-adaptive differential evolution (SADE) algorithm is proposed. A 

total of three novel aspects are involved in the proposed SADE algorithm, which are (i) 

control parameters of F and CR are encoded into the chromosome of the SADE 

algorithm rather than pre-specification and hence are adapted by means of evolution; (ii) 

F and CR values of the SADE algorithm apply at the individual level, which differs to 

the traditional DE algorithm that F and CR values applied at the generational level; and 

(iii) a new convergence criterion is proposed for the SADE algorithm as the termination 

condition in order to avoid pre-specifying a fixed number of generations or evaluations to 

terminate the evolution. 

The F and CR are encoded onto the solution string and hence are subject to evolution in 

the proposed SADE algorithm. Each individual in the initial population is assigned with 

randomly generated F and CR values within a given range. The better values of F and 

CR that produce fitter offspring are directly passed onto the next generation. If the F and 

CR values are unable to yield better offspring, these two values are randomly regenerated 

within the given range for the next generation. This newly proposed SADE differs with 

the jDE algorithm (Brest et al. 2006). For the jDE algorithm used in Brest et al. (2006), 

the F and CR values survive to the next generation with a particular probability 1τ  and 

2τ  (0 < 1τ , 2τ  <1) respectively. With a probability of 1-1τ  and 1- 2τ , the F and CR 

values are randomly re-initialized to new values within the given range for the next 

generation respectively. The 1τ  and 2τ values need to be pre-specified and hence two 

new parameters were introduced in the jDE algorithm proposed by Brest at al. (2006). 

The self-adaptive strategy proposed in this paper allows the F and CR values that are able 
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to yield fitter offspring are more likely to survive longer over generations during the 

running of the algorithm, which in turn, generates further better offspring. The details of 

the proposed SADE algorithm are presented later in this paper.  

The F and CR values in traditional DE algorithms (Storn and Price 1995) and the DE 

algorithms applied to the WDS optimization (Suribabu 2010; Dandy et al. 2010; Zheng 

et al. 2011) are typically applied at the generation level during optimization. This implies 

all the individuals are therefore subject to identical mutation weighting and crossover 

strength. As with Brest et al. (2006), the F and CR values in the proposed SADE 

algorithm are applied at the individual level and hence different individuals within a 

population may have different mutation weightings and crossover rates applied. This 

approach was motivated by the fact that different individuals in a generation will be at 

varying distances from the optimal solutions and therefore require different mutation and 

crossover strength. For the individuals at greater distances from the optimal solutions, a 

relatively large F and CR is probably appropriate, while in contrast, for the individuals at 

relatively short distances from the optimal solutions, a relatively smaller F and CR may 

be suitable. Thus, the search performance of the proposed SADE algorithm is expected 

to improve as different individuals are associated with different F and CR values by 

means of evolution.  

For EAs, the convergence condition is usually a fixed number of generations reached 

(limit of computational budget) or a predefined small value reached between two 

consecutive generations in terms of objective function values (Deb 2001). In the case of 

WDS optimization problems, the maximum number of allowable evaluations or 

generations is normally used as the termination condition (Savic and Walters 1997; 

Tolson et al. 2009; Suribabu 2010; Dandy et al. 2010). However, the appropriate number 

of allowable evaluations or generations is optimization problem-dependent and hence 

generally determined by trial and error. Moreover, the evolution time to reach the same 

final solutions of EAs applied to the same optimization problem with different starting 

points is also different. This unavoidably results in computational waste when the budget 
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is greater than required or computational insufficiency when the budget is smaller than 

required. In addition to the self-adaptive strategy, a new convergence criterion is 

proposed in this paper for the SADE algorithm to eliminate the need to preset the 

computational budget and thereby avoid computational excess and insufficiency. The 

details of the proposed convergence criterion are given in the next section. 

SELF-ADAPTIVE DIFFERENTIAL EVOLUTION 

Figure 1 illustrates the flowchart of the proposed SADE algorithm to be discussed in the 

following sections. 

 

Figure 1 Flowchart of the proposed SADE algorithm 
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Initialization 

The SADE algorithm is a population based stochastic search technique. Thus, an initial 

population is required to start the DE algorithm search. Normally, each initial population 

0,iX ={ 1
0,ix , 2

0,ix ,……… D
ix 0, } is generated by uniformly randomizing individuals within 

the search space. In addition, initial values of the mutation factor F and crossover rate CR 

are randomly generated within a given range for each initial individual real-valued string. 

The initialization rule is given by: 

)( minmax1min0,
jjjj

i xxRandxx −+=  i=1, 2,….N, j=1, 2, ….D 

)(20, luli FFRandFF −+=  

)(30, luli CRCRRandCRCR −+=  

(1) 

where j
ix 0, represents the initial value of the jth parameter in the ith individual at the initial 

population; jxmin and jxmax  are the minimum and maximum bounds of the jth parameter; 

0,iF  and 0,iCR are the initial values for the ith individual; lF  and uF  are the minimum 

and maximum lower and upper bounds of the mutation weighting factor; lCR  and uCR  

are the minimum and maximum lower and upper bounds of the crossover rate; 1Rand , 

2Rand  and 3Rand  represent three independently uniformly distributed random 

variables in the range [0, 1]; N and D are population size and dimension of the vector 

(number of decision variables) respectively. The population size N is not changed during 

the SADE evolution process.  

In the proposed SADE algorithm, the F and CR values are appended to the actual 

solution strings as shown in Figure 2.  

GX ,1  GF ,1  GCR,1  

GX ,2  GF ,2  GCR ,3  

… … … 

GNX ,  GNF ,  GNCR ,  

Figure 2 Encoding for the proposed SADE algorithm 
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where G is the generation number and G=0 is the initial generation. These F and CR 

values will evolve along with their corresponding actual solutions.  

Mutation 

Before the mutation operator is applied, each vector GiX ,  in the current population is 

treated as the target vector. Corresponding to each target vector, a mutant vector Vi,G = {
1
,Giv , 2

,Giv ,……… D
Giv , } is generated by adding the weighted difference between two 

random vectors to a third vector (the base vector) from the current population (D is the 

number of decision variables). The GiF ,  value of each target vector GiX ,  is used to 

generate the mutant vector, which is given by:  

)( ,,,,, GcGbGiGaGi XXFXV −+=  (2) 

where GaX , , GbX , , GcX ,  are three vectors randomly selected from the current population 

( cba ≠≠ ). These three indices are randomly generated for each mutant vector Vi,G. A 

total of N mutant vectors, one for each target vector in the population, are produced using 

Equation (2).  

Crossover 

A trial vector Ui,G ={ 1
,Giu , 2

,Giu ,……… D
Giu , } is produced by selecting solution component 

values from either mutant vector (Vi,G) or its corresponding target vector (Xi,G) using a 

crossover process that is similar to uniform crossover. Thus, each component within the 

trial vector Ui,G becomes: 





 ≤

=
otherwise  ,

 if  ,

,

,2,

, j
Gi

Gi
j
Gij

Gi
x

CRRandv
u  (3) 

where j
Giu , , j

Giv , , j
Gix ,  are the jth parameters in the ith trial vector, mutant vector and target 

vector respectively. If 2Rand  is smaller than GiCR,  (0≤ GiCR, ≤1), the value j
Giv ,  in the 

mutant vector is copied to the trial vector. Otherwise, the value j
Gix ,  in the target vector is 

copied to the trial vector. A total of N mutant vectors Vi,G and their corresponding target 

vectors Xi,G are crossed over to generate N trial vectors using Equation (3). 
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Selection  

After crossover, the objective function f(Ui,G) for each trial vector is evaluated. Then each 

trial vector Ui,G is compared with the corresponding target vector Xi,G in terms of 

objective function values. The vector with a smaller objective function value (given that 

a minimization problem is being considered) survives into the next generation (1, +GiX ). 

That is 



 ≤

=+ otherwise  ,

)()( if  ,
 

,

,,,

1,
Gi

GiGiGi

Gi X

XfUfU
X  (4) 

Thus, N solutions are selected utilizing Equation (4) to form the next generation.  

The F and CR values in this proposed SADE algorithm are subject to the selection 

operator. If a combination of GiF ,  and GiCR ,  is able to generate a better solution GiU ,  

compared to GiX , , these two values are given to 1, +GiX  and survive to the next 

generation; in contrast, if GiF ,  and GiCR ,  generate a worse solution GiU ,  than GiX , , 

then new randomly generated F and CR values are given to 1, +GiX . The F and CR 

selections for the next generation are given by: 





>−+
≤

=+   )()( if ,)(

)()( if  ,
 

,,3

,,,

1,
GiGilul

GiGiGi

Gi XfUfFFRandF

XfUfF
F  





>−+
≤

=+  )()( if ,)(

)()( if  ,
 

,,4

,,,

1,
GiGilul

GiGiGi

Gi XfUfCRCRRandCR

XfUfCR
CR  

(5) 

where 3Rand and 4Rand  are independently generated random numbers in the range of 

[0, 1].  

As can be seen from Equations (1) to (5), the F and CR values are applied at the 

individual level and adjusted by means of evolution in the proposed SADE algorithm. It 

should be noted that neither the population size (N) and mutation strategy have not been 

included in the self-adaptation of the proposed SADE algorithm. For the population size 

(N), a sensitivity study has been undertaken to investigate its impact on the proposed 

SADE’s performance in terms of WDS optimization. For the mutation strategy, it has 
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been demonstrated that the mutation strategy given in Equation (2) is most effective 

among a number of various mutation strategies introduced by Storn and Price 1995 

(Zheng et al. 2011). Thus, the mutation strategy given in Equation (2) is used for the 

proposed SADE algorithm. 

Convergence criterion 

In the proposed SADE algorithm, the coefficient of variation (GvC , ) of the objective 

function values for the current DE population of solutions is used as the convergence 

criterion. The coefficient of variation is a concept commonly used in hydrology (Haan 

1977). That is: 

∑
∑

=

=

−
−==

N

i G

G

N

i
Gi

G

G
Gv

OBJ

OBJOBJ
N

OBJ

s
C

1

2

1
,

, )

)(
1

1

(  (6) 

where GvC ,  is the coefficient of variation of the objective function value based on all 

individuals at generation G; Gs  is the standard deviation for the N (population size) 

objective function values at population G. GOBJ  is the average objective function value 

at generation of G; The GvC ,  value reflects the convergence property of the SADE 

algorithm that has been run as when Gs  approaches zero then all individuals of the 

population are similar in objective function values. The coefficient of variation is used to 

effectively non-dimensionalize the standard deviation with respect to the mean so that 

values are comparable across different case studies. This is an important advantage of the 

proposed new convergence criterion.  

If GvC , <Tol (where Tol is an appropriately small value, say 10-6), it indicates that all the 

individuals in the current population at generation G have already located final solutions 

(usually they will all be identical) and no further improvement can be made. If GvC , >Tol, 

it is likely that not all individuals have converged on the same final solution and that 

better solutions may be able to be found as the SADE algorithm continues to explore the 

search space.  
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This proposed convergence criterion is new and motivated by the fact that all individuals 

in the DE tend to converge at the same final solution (Price et al. 2005). This 

convergence criterion significantly differs to the method of using the objective function 

values between two consecutive generations to terminate the EA evolution (Deb 2001). 

In the proposed convergence criterion approach, the search of SADE is terminated when 

all the individuals in the DE locate the same or extremely close final solutions, rather 

than using the differences of objective function values between two consecutive 

generations.  

Self-adaptive differential  evolution applied to the WDS 

optimization 

The basic SADE algorithm is a continuous global optimization search algorithm. 

Therefore, the algorithm must be modified to solve the discrete WDS optimization 

problem. In this study, the decision variables included in the proposed SADE are the 

integers that represent the set of discrete pipe diameters. However, real continuous values 

are created in the mutation process in the proposed SADE algorithm. In the proposed 

method, these real values are truncated to the nearest integer number and hence mapped 

to the corresponding pipe diameters for the hydraulic analysis. 

A network solver is used to compute the hydraulic balance in the proposed SADE 

method. For each individual, the network solver is called to perform the hydraulic 

simulation based on the pipe diameters decoded from integer string of this individual. As 

such, the head at each node of the WDS that is being optimized is obtained for each 

individual of the SADE, which, in turn, is used to assess the feasibility of each individual 

solution (a minimum allowable head requirement at each node usually needs to be 

satisfied when designing a WDS). 

Constraint tournament selection is used in the proposed SADE to handle the constraints 

and determine the individuals survived in the next generation (Deb 2000). The algorithm 

when comparing two solutions (one is the trial vector solution and the other is the target 
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vector solution in the proposed SADE) in constraint tournament selection is given as 

follows: 

1 The feasible solution is selected when compared with an infeasible solution; 

2 The solution with a smaller value of objective function value (if cost is being 

minimized) is preferred between two feasible solutions; 

3 The solution with less constraint violation is preferred between two infeasible 

solutions. 

With this method, the comparison between the solutions in a tournament never happens 

in terms of both objective function and penalty function. In the first case, the solution 

with no head violation is preferred to the one with head violation and does not take the 

value of objective function into account. In the second case, the two solutions are 

compared based on the objective values and the one with a smaller value is selected as 

both solutions satisfy the constraints. In the last case, the solution with less head violation 

is selected and the value of the objective function is not considered. Thus, unlike 

traditional tournament selection, there is no need to specify a penalty multiplier in this 

proposed method. 

CASE STUDIES 

The SADE algorithm was developed in C++ and combined with the EPANET2 network 

solver (Rossman 2000). Four WDS case studies have been used to investigate the 

effectiveness of the proposed algorithm. These include the New York Tunnels Problem 

(NYTP) (Dandy et al. 1996), the Hanoi Problem (HP) (Fujiwara and Khang 1990), the 

Double New York Tunnels Problem (NYTP2) (Zecchin et al. 2005) and the Balerma 

network (BN) (Reca and Martínez 2006). The number of decision variables and the 

search space size for each case study is given in Table 1. 

The ranges for the F and CR are generally between 0 and 1 (Storn and Price 1995). The 

recommended range for F is [0.5, 1.0] and for CR is [0.8, 1.0] (Price et al. 2005; Liu and 
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Lampinen 2005) based on testing on numerical optimization problems. In order to 

demonstrate the effectiveness of the self-adaptive algorithm, relatively larger ranges for 

the F and CR values were used in the proposed SADE algorithm. Both F and CR values 

in the range of [0.1, 0.9] were utilized for each case study. For the SADE algorithm 

applied to the WDS optimization, convergence is taken to have occurred for GvC , <Tol. 

For the computer runs presented in this research the Tol was set to be 10-6. 

Table 1 Summary of case study characteristics 

WDS case 
study 

Number of decision 
variables 

Number of total available tunnel or pipe 
diameters that can be used 

Search space 
size 

NYTP 21 16 1.934×1025 

HP 34 6 2.865×1026 

NYTP2 42 16 3.741×1050 

BN 454 10 10454 

CONVERGENCE CRITERION ANALYSIS 

The GvC ,  values at each generation for three SADE algorithm runs with different starting 

random number seeds applied to the NYTP case study is illustrated in Figure 3. 

 

Figure 3 The GvC ,  values in each generation for three different SADE algorithm 
runs applied to the NYTP case study. Points A, B, and C reflect the points at which 

the best solution was found within each run. 
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When the SADE algorithm is run, as can be seen from Figure 3, the value of GvC ,  overall 

reduces as the number of generations increases. This shows that individuals in the SADE 

algorithm tend to be converging by means of evolution. The current best solution for the 

NYTP case study was first reported by Maier et al. (2003) with a cost of $38.64 million. 

This best solution was initially found by SADE-2 run when GvC , =0.023 at generation 

152 (at 4,557 evaluations). Then all the individuals converged at this current best 

solution at generation 179 (GvC , <Tol). The SADE-1 run first arrived at the current best 

solution when GvC , =0.004 at generation 216 (at 6,478 evaluations) and finally converged 

at GvC , <Tol at generation 244. The SADE-3 run initially reached an optimal solution 

with a cost of $39.06 million when GvC , =0.034 at generation 154 (at 4,618 evaluations) 

and finally converged at this solution at generation 196. The SADE-3 was unable to 

reach the current best solution by the time the search was terminated at GvC , <Tol.  

From Figure 3, it can be seen that the SADE algorithm runs with different starting 

random number seeds consistently converged at GvC , <Tol, although they require a 

different computational overhead. The search process varies for SADE runs starting with 

different random number seeds and hence each run may require different computational 

overheads to reach the same final solution. This is reflected by the fact that SADE-1 

needed 244 generations for all individuals converge to the solution with a cost of $38.64 

million, while SADE-2 required 152 generations for all individuals to finally locate this 

solution. In this case, if a fixed computational budget is used to terminate the evolutions 

of EA runs, it is impossible to avoid the computational excess or insufficiency since each 

EA run with different starting random number seed requires different computational 

overhead. The proposed convergence criterion is able to overcome this disadvantage as 

convergence occurs based on the evolution feedback for each SADE run rather than 

specifying a fixed computational budget in advance. This allows SADE runs starting 

with different random number seeds to terminate their exploration at different numbers 

of generations purely based on the convergence criterion being satisfied.  
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It is also difficult to guarantee that each EA run with various starting random number 

seeds will find the same final solution. For the three different SADE runs given in Figure 

3, SADE-1 and SADE-2 found the current best known solution ($38.64 million) for the 

NYTP case study, while the best solution found by SADE-3 was $39.06 million. The 

proposed convergence approach is able to indicate that no further improvement on the 

solution quality can be expected for the SADE-3 run although it has not arrived the 

current best known solution. This is because that all the individuals for the SADE-3 have 

converged at the identical final solution with a cost of $39.06 million when GvC , <Tol. 

Thus, providing a larger computational budget for the SADE-3 run for this particular 

random number seed would make no difference. Starting another SADE run with other 

starting random number seeds should be carried out if better solutions are required. 

The convergence properties of the SADE algorithm in terms of GvC ,  applied to the other 

three case studies produced results similar to those exhibited by the NYTP case study 

and are therefore not given. From this study, it can be concluded that the proposed 

termination criterion with GvC , <Tol (see Equation (6)) for WDS optimization 

successfully avoids computation excess and insufficiency. 

POPULATION SIZE STUDY 

Table 2 gives the results of the proposed SADE applied to the four case studies with 

different population sizes. Multiple SADE runs with different random number seeds 

were performed for each case study in order to enable a reliable comparison. 

The current best known solutions for the NYTP, HP and NYTP2 case studies were first 

reported by Maier et al. (2003), Reca and Martínez (2006) and Zecchin et al. (2005) with 

costs of $38.64 million, $6.081 million and $77.28 million respectively. These current 

best known solutions were also found by the proposed SADE with different population 

sizes. The best solution found by the proposed SADE for BN case study was €1.983 

million.  
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As shown in Table 2, in terms of percent with the best solution found and the average 

cost solution based on R runs with different starting random number seeds, the SADE 

algorithm with a larger population size performed better for each case study. However, 

the evaluations required to find optimal solutions and to converge using the proposed 

criterion ( GvC , <Tol: see Equation (6)) for the SADE with a larger population size are 

increased significantly as can be seen from Table 2. In considering both the solution 

quality and efficiency, population sizes of 50, 200, 100 and 500 were selected for the 

NYTP, HP, NYTP2 and BN case studies respectively. Note that for these population 

sizes selected that (i) the SADE algorithms exhibited good performance in solution 

quality and require a reasonably small computational overhead; and (ii) a further increase 

in population size for each case study only slightly improves the solution quality at the 

expense of a significantly increased computational overhead.  

Table 2 Results of the SADE with different population sizes 

Case 
study 

Population 
size (N) 

Best 
solution 
founda 

Percent 
with the 

best 
solution 

found (%) 

Average 
cost 

solutiona 

Average 
number of 

evaluations to 
find the final 

solutions 

Average number 
of evaluations to 

converge  

NYTP 
(R=50) 

30 38.64 64 38.94 4,069 5,375 

50 38.64 92 38.64 6,584 9,227 

100 38.64 98 38.64 12,874 19,270 

HP 
(R=50) 

100 6.081 56 6.145 38,210 45,848 

200 6.081 84 6.090 60,532 74,876 

300 6.081 84 6.090 125,454 170,724 

NYTP2 
(R=50) 

100 77.28 90 77.28 33,810 40,812 

200 77.28 98 77.28 70,196 87,592 

300 77.28 100 77.28 109,446 167,472 

BN 
(R=10) 

500 1.983 10 1.995 1.2×106 1.3×106 

1000 1.983 10 1.986 4.1×106 4.2×106 

2000 1.983 10 1.985 8.5×106 8.7×106 
R=number of runs using different starting random number seeds. athe cost unit for the NYTP and HP case 
studies is $ million and the cost unit for the BN case study is € million. 

By comparing the number of decision variables (given in Table 1) and the selected 

population sizes for each case study (50 for the NYTP, 200 for the HP, 100 for the 

NYTP2: and 500 for the BN), an approximate heuristic guideline for the population size 

of the SADE algorithm applied to a WDS case study is within [1D 6D], where D is the 
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number of decision variables for the WDS. This differs with the rule of thumb for the 

GAs in that the population size should be within [5D 10D]. The results of the SADE 

algorithm with population sizes of 50, 200, 100 and 500 for the NYTP, HP, NYTP2 and 

BN respectively are now used to compare results with other optimization techniques that 

have been previously applied to these four case studies.  

SADE ALGORITHM PERFORMANCE COMPARISON AND 

DISCUSSION 

Case study 1: New York Tunnels Problem (NYTP: 21 decision 

variables)  

Table 3 gives the results of the proposed SADE and other previously published results 

for the NYTP case study. The results including the best solution found, the percentage of 

different runs with the best known solution found, the average cost solution and the 

average number of evaluations. The results in Table 3 are ranked based on the percent of 

trials with best solution found (the column 4). 

Table 3 Summary of SADE and other EAs applied to the NYTP case study 

(1) (2) (3) (4) (5) (6) (7) 

Algorithm9 
 

No. 
of 

runs 

Best 
solution 

($M) 

Percent of 
trials with 

best 
solution 
found 

Average 
cost 
($M) 

Average 
evaluations to 

find first 
occurrence of the 

best solution 

Maximum 
allowable 

evaluations or 
evaluations for 
convergence8 

SADE1 50 38.64 92% 38.64 6,598 9,227 

GHEST2 60 38.64 92% 38.64 11,464 - 

HD-DDS3 50 38.64 86% 38.64 47,000 50,000 

Suribabu DE4 300 38.64 71% NA 5,492 10,000 

Scatter 
Search5 

100 38.64 65% NA 57,583 - 

MMAS6 20 38.64 60% 38.84 30,700 50,000 

PSO variant7 2000 38.64 30% NA NA 80,000 
1Results from this study. 2Bolognesi et al. (2010). 3Tolson et al. (2009). 4Suribabu (2010). 5Lin et al. (2007). 
6Zecchin et al. (2007). 7Montalvo et al. (2008). 8Average evaluations to final convergence. 9Results are 
ranked based on column (4). 

As can be seen from Table 3, the proposed SADE algorithm was able to locate the 

current best solution with a frequency of 92%, which is the same or higher than other 
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EAs reported in Table 3. It should be highlighted that the proposed SADE algorithm is 

significantly more efficient than the majority of other EAs to find the optimal solutions in 

terms of average number of evaluations. As clearly shown in Table 3, the average 

number of evaluations required to find the first occurrence of optimal solutions based on 

50 different SADE algorithm runs was 6,598, which is less than those required by the 

majority of other EAs given in Table 3. More importantly, the average number of 

evaluations required for final convergence of the SADE algorithm (when GvC , <Tol) was 

9,227, which is significantly less than the maximum number of allowable evaluations 

used for other EAs given in the last column of Table 3. 

Case study 2:  Hanoi Problem (HP: 34 decision variables)  

Table 4 gives a performance summary of the proposed SADE algorithm and other 

optimization techniques applied to the HP case study. The proposed SADE algorithm 

found the current best solution for the HP case study with a success rate of 84%, which is 

an improvement compared to other EAs given in Table 4. The SADE algorithm also 

produced the lowest average cost solution over the 50 different runs as shown in Table 4 

with a cost of $6.090 million, which deviates only 0.15% from the known best solution.  

Table 4 Summary of SADE and other EAs applied to the HP case study 

(1) (2) (3) (4) (5) (6) (7) 

Algorithm10 
 

No. 
of 

runs 

Best 
solution 

($M) 

Percent of 
trials with 

best 
solution 
found 

Average 
cost 
($M) 

Average 
evaluations to 

find first 
occurrence of the 

best solution 

Maximum 
allowable 

evaluations or 
evaluations for 
convergence9 

SADE1 50 6.081 84% 6.090 60,532 74,8769 

Suribabu 
DE2 

300 6.081 80% NA 48,724 100,000 

Scatter 
Search3 

100 6.081 64% NA 43,149 - 

GHEST4 60 6.081 38% 6.175 50,134 - 

GENOME5 10 6.081 10% 6.248 NA 150,000 

HD-DDS6 50 6.081 8% 6.252 100,000 100,000 

PSO variant7 2000 6.081 5% 6.310 NA 500,000 

MMAS8 20 6.134 0% 6.386 85,600 100,000 
1Results from this study. 2Suribabu (2010). 3Lin et al. (2007). 4Bolognesi et al. (2010). 5Reca and Martínez 
(2006). 6Tolson et al. (2009). 7Montalvo et al. (2008). 8Zecchin et al. (2007). 9Average evaluations to final 
convergence. 10Results are ranked based on column (4). 
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In terms of efficiency, the proposed SADE algorithm with an average number of 

evaluations of 60,532 did not perform as well as the DE (Suribabu 2010), Scatter Search 

algorithm (Lin et al. 2007) and GHEST (Bolognesi 2010). However, in terms of 

comparing the total computational overhead for each run, the average number of 

evaluations required for convergence (when GvC , <Tol) of the proposed SADE algorithm 

was 74,876, which is less than the maximum number of evaluations used of the other 

EAs.  

It should be highlighted that the results of other EAs in Table 4 were based on fine-

tuning parameter values and only the final results with the calibrated parameter values 

are reported. In reality, adjusting the parameter values for these EAs by trial-and-error 

method required a large computational overhead. In contrast, for the proposed SADE, 

ranges of the F [0.1, 0.9] and CR [0.1, 0.9] were used for the HP case study and no 

tuning was conducted for these two parameters. 

Case study 3: Double New York Tunnels Problem (NYTP2: 42  

decision variables)  

In order to enable a comparison with the proposed SADE, the traditional DE algorithm 

was also applied to the NYTP2 case study. The population size of 100 was also used in 

the traditional DE algorithm. Values of F=0.5 and CR=0.6 were found to be appropriate 

for the NYTP2 case study based on trials of different parameter values. The newly 

proposed convergence criteria was also used for the traditional DE. The results of the 

proposed SADE algorithm, the traditional DE algorithm and other optimization 

techniques that have been previously applied to the NYTP2 are given in Table 5.  

The proposed SADE algorithm outperformed the traditional DE algorithm, the HD-DDS 

(Tolson et al. 2009) and MMAS (Zecchin et al. 2007) in terms of the percentage of trials 

with the best solution found. This is reflected from Table 5 that the proposed SADE 

found the current best solution for the NYTP2 case study with a frequency of 90%, 

which is higher than all the other EAs given in Table 5.  
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For the NYTP2 case study, the proposed SADE exhibited a notably better performance 

in terms of efficiency than other EAs presented in Table 5, as it required a significantly 

lesser average number of evaluations (33,810) to find the first occurrence of optimal 

solutions. The average evaluations required for convergence of 50 different SADE runs 

applied to the NYTP case study was 40,812. This shows the computational overhead for 

each proposed SADE run was significantly reduced compared with other EAs that 

terminated the run using a maximum number of allowable evaluations. A convergence 

comparison between the proposed SADE algorithm run and a traditional DE algorithm 

run with the same starting number seeds is illustrated in Figure 4.  

Table 5 Summary of SADE and other EAs applied to the NYTP2 case study 

(1) (2) (3) (4) (5) (6) (7) 

Algorithm5 
 

No. 
of 

runs 

Best 
solution 

($M) 

Percent of 
trials with 

best 
solution 
found 

Average 
cost 
($M) 

Average 
evaluations to 

find first 
occurrence of 

the best solution 

Maximum 
allowable 

evaluations or 
evaluations for 
convergence4 

SADE1 50 77.28 90% 77.28 33,810 408,124 

Traditional 
DE1 (F=0.5, 

CR=0.6)1 
50 77.28 86% 77.28 70,104 874,574 

HD-DDS2 20 77.28 85% 77.28 310,000 300,000 

MMAS3 20 77.28 5% 78.20 238,300 300,000 
1Results from this study. 2Tolson et al. 2009. 3Zecchin et al. 2007. 4Average evaluations to final 
convergence. 5Results are ranked based on column (4). 

 

Figure 4 Convergence properties of the SADE and the traditional DE for the 
NYTP2 case study with the same random number seed of 100. 
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As can be seen from Figure 4, at evaluation numbers smaller than 30,000, the traditional 

DE algorithm found the best solution slightly faster than the proposed SADE algorithm 

when starting with the same random number seeds. In terms of comparing the average 

cost solution obtained at each generation, the traditional DE algorithm performed better 

than the proposed SADE algorithm at evaluation numbers smaller than 30,000 as it 

generated a lower average cost solution than the SADE algorithm. This is due to the fact 

that the F and CR values for the traditional DE algorithm have been fine-tuned, while the 

F and CR values in the SADE algorithm are initially randomly generated and in the early 

stages of generation have not yet self-adapted.  

As clearly shown in Figure 4, the SADE algorithm was able to converge faster than the 

traditional DE algorithm in later generations (that is after 35,000 evaluations) in terms of 

finding the best solution as well as the best average cost solution. This is because the F 

and CR parameter values have been maturely evolved. Thus, the proposed SADE 

algorithm exhibits an improved performance for later generations. The proposed SADE 

algorithm found the current best solution at evaluation number 46,131 and converged at 

54,100 evaluations based on the convergence criterion in Equation 6 (GvC , <Tol), while 

the traditional DE algorithm found the current best solution for the NYTP2 case study 

with 81,525 evaluations and finally converged at 94,382 evaluations. 

Case study 4:  Balerma Network (BN: 454 decision variables)  

In comparison, a traditional DE algorithm with a population size of 500, F=0.3 and 

CR=0.5 (these two values were selected after a number of fine-tuning trials) was 

performed for the BN case study. The newly proposed convergence criteria was used for 

the traditional DE applied to the BN case study. Table 6 outlines the performance 

comparison of the SADE algorithm with different CR ranges, the traditional DE 

algorithm with tuned parameter values and other optimization techniques that have been 

previously applied to the BN case study.  

As shown in Table 6, the best solution found by the proposed SADE algorithm for the 

BN case study was €1.983 million, which is higher than the best known solution (€1.940 
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million) reported by Tolson et al. (2009) using HD-DDS method, but lower than 

solutions reported by other EAs given in Table 6. However, the HD-DDS (Tolson et al. 

2009) yielded the best solution of €1.940 million requiring 30 million evaluations, while 

the SADE algorithm used only 1.3 million average evaluations to finally converge.  

The average number of evaluation required for the SADE algorithm to first reach the 

optimal solutions was 1.2 million, which is less than those required by most of the EAs 

given in Table 6. While GHEST (Bolognesi et al. 2009) converged more quickly, the 

quality of the final solution was worse than that produced by the proposed SADE.  

Table 6 Summary of SADE and other EAs applied to the BN case study 

(1) (2) (3) (4) (4) (5) (6) 

Algorithm6 
 

No. 
of 

runs 

Best 
solution 

(€M) 

Percent 
with the 

best 
solution 
found 
(%) 

Average 
cost 
(€M) 

Average 
evaluations to 

find first 
occurrence of 

the best 
solution 

Maximum 
allowable 

evaluations or 
evaluations for 
convergencea 

HD-DDS2 1 1.940 - NA NA 30×106 

SADE1 10 1.983 10 1.995 1.2×106 1.3×106 

Traditional 
DE(F=0.3,CR=0.5)1 

10 1.998 10 2.031 2.3×106 2.4×106a 

GHEST3 10 2.002 10 2.055 2.5×105 NA 

HS4 NA 2.018 NA NA 107 10×106 

GENOME5 10 2.302 10 2.334 NA 10×106 
1Results from this study. 2Tolson et al. 2009. 3Bolognesi et al. (2010). 4Geem (2009). 5Reca and Martínez 
(2006). 6Results are ranked based on column (3). NA means not available. aAverage evaluations to final 
convergence.  

Table 7 Summary of computational effort of the SADE for each case study 

WDS 
case 
study 

Number of 
different 

runs 

Average number of 
evaluations required 

to find the best 
solution (AE1) 

Average number of evaluations 
required to terminate the SADE 

runs based on the proposed 
convergence criterion (AE2) 

Percent 
(AE1/AE2) 

NYTP 50 6,584 9,227 71.4% 

HP 50 60,532 74,876 80.8% 

NYTP2 50 33,810 40,812 82.8% 

BN 10 1.2×106 1.3×106 92.3% 

Table 7 gives an analysis of the computational effort required to find the best solutions 

and the computational effort used to terminate the SADE run (when GvC , <Tol) based on 

the proposed convergence criterion (see Equation (6)). It was found that the average 
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number of evaluations required to find the first occurrence of the best solution was 

around 80% of that required for final convergence (GvC , <Tol ) of the SADE runs.  

CONCLUSION 

The performance of all EAs is sensitive to the parameters used. Determining effective 

parameter values for each WDS optimization problem, therefore, requires a number of 

trials with different parameter values. This results in a significant increase in 

computational overhead and hence reduces the attractiveness of EAs being used in 

engineering practice.  

The proposed self-adaptive DE algorithm (SADE) method overcomes the challenge 

mentioned above. A total of five contributions are presented in this paper in terms of 

novelty and the computational advantage of the proposed SADE algorithm, which are 

given as follows: 

(1) The proposed SADE encodes the parameters (F and CR) onto the strings to be 

automatically adjusted by means of evolution. Consequently, it reduces the effort 

required for the trial-and–error process normally used to determine the effective 

parameters for use in the DE algorithm.  

(2) The F and CR values of the proposed SADE algorithm are applied at the individual 

level rather than the generation level, which differs with the traditional DE algorithm 

applied to the WDS optimization design.  

(3) A new convergence criterion has been proposed in the SADE algorithm to avoid pre-

specifying convergence conditions. This convergence criterion is based on the coefficient 

of variation such that GvC , <Tol. It has been successfully implemented as the termination 

condition for the SADE algorithm applied to the WDS optimization. This represents a 

significant advantage compared to other EAs, where the maximum number of allowable 

evaluations is required to be pre-specified.  
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(4) The only parameter value that needs to be provided for the proposed SADE is the 

population size. The population size is a relatively easy parameter to adjust since a slight 

variation of its value does not significantly impact the performance of the SADE. In 

addition, it has been derived in this study that a population size within [1D, 6D] is an 

approximate heuristic for the proposed SADE applied to WDS case studies, which 

differs to the rule of thumb for the GAs in that the population size should be within [5D, 

10D] (Deb 2001), where D is the number of decision variables for the WDS that is being 

optimized.  

(5) A total of four WDS case studies with the number of decision variable ranging from 

21 to 454 have been used to verify the effectiveness of the proposed SADE algorithm. 

For the NYTP, HP and NYTP2 case studies, the SADE performed the best in terms of 

the percent of the best solution found and exhibited improved performance in 

convergence speed compared to the majority of other reported EAs. For the large BN 

case study, the proposed SADE also exhibited a comparable performance to other EAs. It 

should be highlighted that the results of other EAs (excluding the new SADE algorithm 

as proposed in this paper) in Table 3 to 6 were based on fine-tuning parameter values and 

only the final results with the calibrated parameter values are reported. In reality, 

adjusting the parameter values for these EAs by trial-and-error required a large 

computational overhead. In contrast, for the proposed SADE, ranges of the F [0.1, 0.9] 

and CR [0.1, 0.9] were used for each case study and no tuning was needed to be 

conducted for these two parameters. Given this fact, it may be fair to draw a conclusion 

that the proposed SADE was able to yield optimal solutions with greater efficiency than 

other EAs.  

The proposed SADE provides a robust optimization tool for the optimization of the 

design of WDSs (or rehabilitation of an existing WDS). This is because (i) the proposed 

SADE algorithm does not require as much fine-tuning of parameter values nor pre-

specification of a computational budget; and (2) the proposed SADE algorithm is able to 

find optimal solutions with good quality and great efficiency. In addition, the proposed 
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SADE algorithm can also be used to tackle other water network management problems 

such as leakage hotpot detection (Wu and Sage 2000), optimal valve operation (Kang 

and Lansey 2010) and contaminant detection (Weickgenannt et al. 2010). The potential 

benefit of the proposed SADE algorithm compared to other EAs that have been used to 

deal with these water network management optimization problems is that it would need 

significantly less effort to adjust the parameter values. This is a huge advantage 

especially dealing with the real-time optimization problems for WDSs (Kang and Lansey 

2010), in which decisions have to be made in extremely limited time.  

The utility of the proposed SADE algorithm has been demonstrated using the least-cost 

single objective WDS optimization problems in this paper. A natural extension of this 

proposed self-adaptation algorithm is to extend it to deal with the multi-objective WDS 

optimization problems, for which in addition to the cost, other objectives such as the 

reliability or greenhouse gases are considered in order to provide more practical solutions 

for WDS design. This extension is the focus of future work.  
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Chapter 6. Journal Paper 4-Combined NLP-DE Method for WDS 
Optimization 

6.1 Synopsis 

A combined NLP-differential evolution algorithm approach for the optimization of 
looped water distribution systems 

In Chapters 3, 4 and 5, improving the performance of the evolutionary algorithms (EAs) 

(genetic algorithms and differential evolution) in terms of optimizing the design for water 

distribution systems (WDSs) is the main focus, which is the first aim of the research 

presented in this thesis (see Section 1.1 of Chapter 1). Another promising approach to 

enhance the effectiveness of the EAs is combining them with traditional deterministic 

optimization methods, such as linear programming (LP) and nonlinear programming 

(NLP). This idea is not new and a few hybrid optimization approaches that couple EAs 

with deterministic optimization methods have been proposed to tackle the optimal design 

problems for WDSs. The review of these hybrid optimization methods was presented in 

Section 2.4 of Chapter 2. However, the majority of currently available hybrid 

optimization techniques remain in the research domain due to their limitations. These 

limitations include the inclusion of impractical pipe solutions (split pipe solutions or 

continuous diameter pipe solutions), unacceptable computational budgets and the high 

likelihood of premature convergence. These therefore lead to a limited application for 

these hybrid algorithms to deal with real-world sized WDS design problems (see the 

discussion in Section 2.4.3 of Chapter 2). 

This research aims to develop more sophisticated hybrid optimization techniques 

compared to the existing hybrid optimization approaches for WDS design. The hybrid 

optimization methods developed in this research aim to optimally design real-world sized 

water networks, which is the second objective of this study (see Section 1.1 of Chapter 

1). 

During this research, two advanced hybrid optimization techniques have been developed 

to deal with the WDS optimization problems, which are presented in Chapters 6 and 7 
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respectively. In Chapter 6 (this Chapter), a combined NLP-differential evolution 

optimization method is introduced. Three distinct steps are involved in the proposed 

optimization approach. In the first step, the shortest-distance tree within the looped water 

network is identified using the Dijkstra graph theory algorithm. In the second step, an 

NLP solver is employed to optimize the pipe diameters for the shortest-distance tree 

(chords of the shortest-distance tree are allocated the minimum allowable pipe sizes). 

Finally, in the third step, the original looped water network is optimized using a 

differential evolution (DE) algorithm seeded with diameters in the proximity of the 

continuous pipe sizes obtained in step two. As such, the proposed optimization approach 

combines the traditional deterministic optimization technique of NLP and with the 

emerging evolutionary algorithm DE via the proposed network decomposition. 

Traditionally, in hybrid optimization methods, EAs have been normally used to 

determine the regions of optimal solutions, whereas deterministic optimization methods 

(such as LP or NLP) have been used to further explore the interior of these regions 

identified by EAs. In contrast, the new proposed NLP-DE combination model here 

differs from the traditional combination models in that an NLP is used first to identify the 

approximate region of the optimal solution, while an EA is employed to further search 

the interior of the region.  

A total of four WDS case studies with the number of decision variables ranging from 21 

to 454 are used to verify the effectiveness of the proposed NLP-DE method, in which 

two of them are real-world sized water networks. This work has been published on Water 

Resources Research and the paper is provided here. 

It should be noted that the standard differential evolution (SDE), rather than the self-

adaptive differential evolution (SADE) algorithm described in Chapter 5, was used in 

Chapters 6 to 9. This is because that the experimental runs for Chapters 6 to 9 were 

completed before the publication of the SADE algorithm (Zheng et al. (2012a) in the 

Journal of Computing in Civil Engineering). It also should be highlighted that the 

optimization methods described in Chapters 6 to 9 are new optimization frameworks, by 
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which evolutionary algorithms, deterministic optimization approaches and graph 

decomposition techniques are combined. The SDE algorithm was used in this research in 

order to demonstrate the effectiveness of the proposed optimization frameworks, 

although other evolutionary algorithms also can be used in these developed optimization 

frameworks given in Chapters 6 to 9. The excellent performance of these optimization 

methods is predominately due to the decomposition the full optimization problem to sub-

problems by using the graph decomposition techniques. Thus, it is believed that the 

performance of these developed methods will not be significantly affected by the 

underlying evolutionary algorithms that are adopted. 

The parameter values for the SDE algorithm applied to case studies in Chapters 6 to 9 

have been tuned based on trying a number of different combinations. The SADE 

algorithm developed in this thesis (Chapter 5) has been demonstrated to exhibit a similar 

performance, if not better, than the SDE with tuned parameter values. Thus, the authors 

recommend that the SDE algorithm used in the developed optimization frameworks can 

be replaced by the SADE algorithm for future applications. This will remove the need to 

tune the parameter values of the DE algorithms and can further improve the 

attractiveness of the optimization approaches proposed in this thesis.  

It is noted that the results from Tolson et al. (2009) in the thesis were obtained from Dr 

Tolson based on personal communication, which are slightly different with what has 

been published in Tolson et al. (2009). However, this does not affect the conclusion of 

this work.  
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6.2 Journal Paper 4: A combined NLP-differential evolution 
algorithm approach for the optimization of looped water distribution 
systems (Published in Water Resources Research) 

Feifei Zheng, Angus R. Simpson and Aaron C. Zecchin 

Abstract 

This paper proposes a novel optimization approach for the least cost design of looped 

water distribution systems (WDSs). Three distinct steps are involved in the proposed 

optimization approach. In the first step, the shortest-distance tree within the looped 

network is identified using the Dijkstra graph theory algorithm, for which an extension is 

proposed to find the shortest-distance tree for multi-source WDSs. In the second step, a 

non-linear programming (NLP) solver is employed to optimize the pipe diameters for the 

shortest-distance tree (chords of the shortest-distance tree are allocated the minimum 

allowable pipe sizes). Finally, in the third step, the original looped water network is 

optimized using a differential evolution (DE) algorithm seeded with diameters in the 

proximity of the continuous pipe sizes obtained in step two. As such, the proposed 

optimization approach combines the traditional deterministic optimization technique of 

NLP and with the emerging evolutionary algorithm DE via the proposed network 

decomposition. The proposed methodology has been tested on four looped WDSs with 

the number of decision variables ranging from 21 to 454. Results obtained show the 

proposed approach is able to find optimal solutions with significantly less computational 

effort than other optimization techniques.  

1. Introduction  

In most cases, the design and construction of water distribution systems (WDSs) is 

costly, often in the order of millions of dollars for larger capital works. Thus, the 

optimization of WDSs has historically been investigated by many researchers in order to 

potentially save significant costs. The nonlinear relationship between pipe head loss and 

discharge, plus the discrete nature of pipe sizes that can be used, bring about many 

complexities for optimally designing WDSs. This is increasingly difficult for looped 
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WDSs, in which pipe flows and nodal heads are unknown quantities. Two aspects 

contribute to the nonsmoothness properties of the WDS optimization problems. These 

include: (1) the pipe diameter choices being composed of discrete sizes rather than being 

continuous decision variables; and (2) the nonlinear value term involving the velocity 

within the head loss equations. Generally, there are two different types of WDS 

optimization problems. One is the completely new WDS design problem, while the other 

one is the expansion of the existing WDSs (such as the optimal rehabilitation of WDSs 

where there are some already existing pipes). 

Historically, a number of traditional optimization techniques have previously been 

applied to water network optimal design, including linear programming (LP) [Alperovits 

and Shamir 1977; Fujiwara et al. 1987; Bhave and Sonak 1992; Sonak and Bhave 1993] 

and non-linear programming (NLP) [Lansey and Mays 1989; Fujiwara and Khang 

1990]. These methods are deterministic and exhibit fast convergence. Often convergence 

to local optimal solutions occurs due to the nonsmoothness properties of the WDS 

optimization problem. In addition, the final solution is usually given in terms of 

continuous pipe sizes or split pipe sizes, which represents a significant practical 

limitation. 

In the last two decades, considerable research has been undertaken into the optimization 

of WDSs using evolutionary algorithms (EAs). EAs are able to handle discrete search 

spaces directly and are less likely to be trapped at local optima. The search strategy of 

EAs differs compared with traditional optimization techniques (such as LP or NLP) in 

that they explore the search space broadly based on stochastic evolution rather than on 

gradient information. Genetic algorithms (GAs) were one of the first EAs applied to the 

optimal design of WDSs [Murphy and Simpson 1992; Simpson et al. 1994, Savic and 

Walters 1997; Montesinos et al. 1999]. Other applications have included: Cunha and 

Sousa [2001] who employed simulated annealing; Geem et al. [2002] who developed a 

harmony search model; Eusuff and Lansey [2003] who proposed a shuffled frog leaping 

algorithm (SFLA); Maier et al. [2003] who applied an Ant Colony Optimization 
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approach; and Suribabu and Neelakantan [2006] who introduced particle swarm 

optimization (PSO). These techniques have been successfully applied to a number of 

WDS optimization problems, and have been demonstrated to be more effective in 

finding optimal solutions compared with traditional optimization techniques.  

More recently, Tolson et al. [2009] developed a hybrid discrete dynamically 

dimensioned search (HD-DDS) algorithm for WDS optimization and concluded that 

HD-DDS was as good as, if not better, than other EAs in terms of search ability, while 

being significantly more computationally efficient. The differential evolution (DE) 

algorithm is a relatively new optimization technique that has received attention recently 

within WDS optimization research. Vasan and Simonovic [2010] and Suribabu [2010] 

applied DE to the optimization of WDSs and concluded that the search ability of DE was 

found to be better than other EAs, such as GAs and Ant Colony Optimization. Generally, 

EAs have been demonstrated to be robust in finding optimal design solutions for WDSs. 

However, they are computationally expensive, especially when dealing with large scale 

WDSs.  

In order to overcome the limitations of each optimization method (the deterministic and 

the EA approaches), a new optimization approach that incorporates both types of 

optimization techniques has been previously proposed by researchers. Reis et al. [2006] 

proposed a GA-LP model to obtain the optimized operation of reservoir systems. Afshar 

et al. [2009] developed a hybrid two stage GA-LP algorithm to optimize the design and 

operation of a nonlinear, nonconvex and large-scale cycle storage system. In terms of 

WDS design optimization, Krapivka and Ostfeld [2009] proposed a coupled GA-LP 

scheme for the least-cost pipe sizing of water networks. In this method, the optimization 

problem was decomposed into an “inner” and an “outer” problem. The “inner” LP was 

formulated and solved for a fixed set of flows, while the flows were altered in the “outer” 

using a GA. In their proposed optimization approach, an enumeration approach was 

initially used to identify all possible spanning trees for a looped water network. Then a 

LP solver was employed to optimize the pipe diameter sizes for each spanning tree to 
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allow the least-cost spanning tree to be determined. Lastly, the spanning tree chords were 

locked into the minimum permissible pipe diameters and the least-cost spanning tree was 

further optimized using the proposed coupled GA-LP technique. The main advantage of 

this approach is that the search space handled by the GA-LP is reduced as the chords of 

the spanning tree are set to be the minimum allowable pipe sizes and removed as 

decision variables. However, this approach is computationally expensive for finding the 

least-cost spanning tree since all the possible spanning trees need to be evaluated. This 

method is therefore limited in practical applications by the fact that it is impossible to 

evaluate all the spanning trees for a relatively large water network, and the global 

optimal solution for the original water network could be missed as the spanning tree 

chords are fixed by the minimum allowable pipe sizes in this method. An additional 

criticism is that a split-pipe approach is used in their proposed optimization technique. 

The new coupled optimization approach proposed in this paper overcomes the problems 

associated with earlier approaches. 

The research presented in this paper employs a graph theory decomposition method to 

effectively combine the EA (DE) and NLP. Typically, graph theory has been frequently 

used to analyze network connectivity properties and reliabilities [Yang et al. 1996; 

Shinstine et al. 2002; Davidson et al. 2005, Deuerlein 2006], whilst little effort has been 

made to use graph decomposition in the optimization of WDSs. 

The objective of this paper is to introduce a novel approach for dealing with two different 

types of WDS optimization problems (either a completely new design or the expansion 

of the existing WDS). Features of this new methodology include the use of an efficient 

graph theory algorithm in determining the shortest-distance tree for a looped water 

network, and the combination of a deterministic optimization technique (NLP) and an 

evolutionary optimization algorithm (DE). It is observed that, in most of the traditional 

combinations of optimization models [Reis et al. 2006; Afshar et al. 2009; Krapivka and 

Ostfeld 2009], EAs have been used to determine the regions of optimal solutions, 

whereas deterministic methods (such as LP) have been used to further explore the 



CHAPTER 6. JOURNAL PAPER 4-COMBINED NLP-DE METHOD FOR WDS OPTIMIZATION  

124 

interior of these regions identified by EAs. The new proposed combination model here 

differs with the traditional combination models in that an NLP is used to identify the 

approximate region of the optimal solution, while an EA is employed to further search 

the interior of the region. In this proposed approach, an NLP solver is used to optimize 

the pipe diameters for the shortest-distance tree within a continuous pipe diameter search 

space (as opposed to a discrete diameter search space). This continuous solution, 

complemented by the chords of the shortest-distance tree with minimum allowable pipe 

sizes, forms an approximately optimal solution for the original water network. A DE is 

then seeded in the vicinity of this approximately optimal solution, thereby allowing the 

DE search to concentrate only on promising regions of the search space. As a result, 

better quality solutions are expected to be reached more efficiently, and with a higher 

likelihood. A total of four WDS case studies, including an expansion of an existing WDS 

and three new designs where they are no existing pipes, have been used to verify the 

effectiveness of the proposed optimization approach. 

2. Methodology 

The three steps involved within the proposed methodology are outlined below. 

2.1. Step 1-Shortest-distance tree 

A WDS can be described as a graph G, in which, vertices of the graph represent the 

nodes of the WDS, and edges of the graph represent links between nodes. In graph 

theory, a connected graph without any loops is referred as a tree [Deo 1974]. 

For a looped WDS, a demand node i may have a number of alternative paths to receive 

water from the source node s. Of these paths between s and node i, the path with the 

shortest total length of edges is denoted as the shortest path for node i. If we take the 

shortest path from the source node s to each of the other demand nodes, then the union of 

these paths will be a tree T rooted at source node s. Every path in T from s is the shortest 

path in the original graph G. Such a tree is called the shortest-distance tree [Deo 1974]. 
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The remaining edges of G that are not traversed by any shortest paths are termed as 

chords. 

For a looped WDS, when a demand node has two or more alternative paths receiving 

flow from a source node, the assumption is that an effective way of delivering demand 

(for the optimal design) is along the shortest path [Kadu et al. 2008]. Thus, the shortest-

distance tree is considered to be an optimal tree of the looped WDS, in that each demand 

node has one and only one shortest path to the source node. An example of shortest-

distance tree and chord for a looped water network is given in Fig. 1. 

 

Figure 1 An example of shortest-distance tree and chord for a looped water 
network ((a) A looped water network (G), (b) Shortest-distance tree and chord) 

The looped water network in Fig. 1(a) consists of five demand nodes labeled from 1 to 5, 

six links (with lengths in meters) and one source node s. Each node has one, or more than 

one, path to the source node s. Identification of the shortest-distance tree for such a 

simple looped water network can be carried out by visual inspection. All the paths from 

each demand node back to the source node s in this simple looped network are given in 

the third column of Table 1.  

Table 1 Determination of shortest-distance tree (bold indicates shortest path) 

Source node Node number Paths Lengths (meters) Shortest path 

S 

1 1-s 500 1-s 

2 
2-1-s 
2-4-3-s 

900 
1030 

2-1-s 

3 
3-1-s 
3-4-2-1-s 

650 
1280 

3-1-s 

4 
4-2-1-s 
4-3-1-s 

1080 
850 

4-3-1-s 

5 
5-4-2-1-s 
5-4-3-1-s 

1380 
1150 

5-4-3-1-s 
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As can be seen from Table 1, node 1 to s has only one path, and hence this is the shortest 

path from node 1 to s. For node 2, there are two alternative paths including path 2-1-s 

and 2-4-3-s to s. The path 2-1-s has the shorter length with value of 900 meters. Thus, the 

path of 2-1-s is the shortest path from node 2 to s. The shortest path for each node is 

identified as shown in the fifth column of Table 1. As a result, the shortest-distance tree 

is formed with these shortest paths as shown in Fig. 1(b). The remaining link 5 is the 

chord of the shortest-distance tree. 

For this looped water network with limited alternative paths, a complete enumeration 

approach can be used to compute the sum of lengths of each alternative path for a node, 

thereby directly identifying the shortest path. However, the complete enumeration 

approach becomes intractable for larger water networks. 

2.1.1. The Dijkstra algorithm 

An efficient graph theory algorithm, called the Dijkstra algorithm [Deo 1974], is 

employed to identify the shortest-distance tree for complex water networks. The Dijkstra 

algorithm works by iteratively assigning and updating labels for each node indicating to 

the shortest path found so far for that particular node. For the source, a permanent label 0 

is assigned. A permanent label is given to a vertex once the shortest path from this vertex 

to source vertex has been determined. The value of the permanent label is made equal to 

the sum of lengths of the shortest path. In contrast, a temporary label is given to a vertex 

for which the shortest path has not yet been identified. The value of this temporary label 

is set to be equal to the sum of lengths of the shortest path in the current iteration and this 

value is to be updated in later iterations. The Dijkstra algorithm is efficient in finding the 

shortest-distance tree for a looped network, especially for large and complex networks 

[Deo 1974]. The computational complexity (a proxy for execution time for the 

algorithm) for the Dijkstra algorithm implementation on a general graph with V vertices 

and E edges, is O(V2+E). The graph representing a WDS is sparse, thus the Dijkstra 

algorithm can be implemented more efficiently by storing the graph in the form of linked 

lists. In this case, the computational complexity time is O((E+V)log(V)) [Deo 1974].  
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2.1.2. An extension of the Di jkstra algor i thm 

The Dijkstra algorithm is formulated for a single source node graph. In this paper, a 

supersource approach is used to extend the Dijkstra algorithm to handle systems with 

multi-source nodes. Variants of the supersource approach have been previously used to 

generate a treed network based on a looped network [Walters and Lohbeck 1993; 

Walters and Smith 1995]. The details on extension of the Dijkstra algorithm to deal with 

the multi-source WDS are given below. 

For a multi-source WDS of k sources (reservoirs), an artificial supersource node is 

created to connect all the source nodes. Note that the lengths of the artificial links are set 

to be zero. The Dijkstra algorithm starts the search from the supersource node which is 

given a permanent label of zero (0). In the following step, each source of the WDS is also 

given a permanent label of zero. In the third step, all successors of the k sources are 

labeled as temporary with a value equal to the length between the successor and its 

corresponding source node. For each successor connected to more than one source, all 

the distances between this successor and its connecting sources are evaluated and the 

smallest value is given to this successor as the temporary label. Then, the Dijkstra 

algorithm is implemented to determine only one permanent label in the third step and the 

subsequent iterations. With this method, a complex WDS with k sources is decomposed 

into k different sub-networks connected via an artificial supersource node and k artificial 

links.  

2.2. Step 2-Non-linear programming optimization 

In Step 2, the objective is to find the lowest cost design for the shortest-distance tree 

network determined in Step 1, while satisfying the nodal head constraints. The objective 

function F is given by 

∑
=

=
n

i
i

b
i LDaF

1

 (1) 

where Di=diameter of pipe i, Li=length of pipe i, a, b=specified coefficients and n=total 

number of pipes in the network. 
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Typically, the constraints for optimization of water networks include flow continuity at 

each node, energy conservation in each primary loop and the minimum allowable head 

requirement at each node. Since a tree network is optimized in this step, the discharges 

for each pipe of the tree network can be determined to satisfy continuity at each node. 

Two alternative methods are proposed in this study to determine the discharges of the 

shortest-distance tree for a WDS. The application of these two methods is dependent on 

the types of WDSs being optimized. The description of these two methods is given as 

follows: 

Method 1: For the shortest-distance tree of the optimization problem of a completely new 

WDS, the flows in the chords of this WDS are assumed to be zero. Thus, the discharges 

for the pipes in the shortest-distance tree network are determined accordingly. 

Method 2: For the shortest-distance tree of an expansion WDS optimization problem, an 

alternative method is proposed where flows in the chords are taken to be equal to that 

from the hydraulic analysis for the original WDS. The flows in the treed network pipes 

are then determined as the flows in the chords have assumed values.  

In this study, for the expansion WDS optimization problem, the two methods mentioned 

above are tested to determine the most effective one. For the shortest-distance tree, 

energy conservation does not need to be considered in the formulation of the NLP as 

there are no loops involved in a treed network. Thus, the number of constraints for NLP 

in Step 2 is reduced significantly for the optimization of the shortest-distance tree 

produced in Step 1. 

For the formulation of the NLP for optimizing the shortest-distance tree, the remaining 

constraints are the head constraint at each node and the diameter sizes that can be used. 

Since each node has a path to the source node, the head loss along this path should be 

less than a specified value that is equal to the head provided at source node minus the 

head required at this node. Two of the most frequently used formulas for head loss 

calculation in pipes are the Hazen-Williams (H-W) and Darcy-Weisbach (D-W) 
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equations [Walski 1984]. The constraint for each node (i) and these two formulas are 

given by  

min

1
is

m

k
fk HHh −≤∑

=
 (2) 

α
βαω Q

DC

L
hf = :Williams-Hazen  (3) 

Darcy-Weisbach : 
g

V

D

L
fhf 2

2

=  (4) 

where, fkh =head loss in pipe k, sH =head at source node, min
iH =head requirement at 

node i, m=total pipes involved from node i to source node, ω =numerical conversion 

constant which depends on the units, α , β =coefficients, L= length of pipe (m), 

C=Hazen-Williams coefficient, D=diameter of pipe (m) and Q=pipe flow rates (m3/s). In 

this study, α =1.852 and β =4.871 are used. For SI units, i.e. the units of L, D, in meters, 

and Q in m3/s,ω =10.667 is used. In Equation (4), f=D-W friction factor for the pipe 

(dimensionless) and V=water velocity (m/s). 

For the NLP formulated in this study, the diameters of pipes are treated as continuous 

variables, and the constraint for the diameters are given by  

maxmin DDD ≤≤  (5) 

Where minD  and maxD  are the minimum and maximum allowable pipe sizes respectively. 

The continuous solution for the shortest-distance tree network, complemented by the 

chords of the shortest-distance tree set to the minimum allowable pipe diameters, is an 

approximately optimal solution for the original looped water network. For the final step, 

this approximately optimal solution needs to be replaced using commercially available 

discrete pipe sizes, and cannot be guaranteed to be the global optimal solution based on 

the assumption that was made in Step 1. To obtain the global optimal solution using 

commercially available pipe diameters based on the current solution achieved in Step 2, a 

DE algorithm is applied and the optimization is moved to Step 3. 
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2.3. Step 3-The differential evolution algorithm 

The differential evolution (DE) algorithm, introduced by Storn and Price [1995], is 

found to be a relatively simple but powerful EA for global optimization. There are three 

important operators involved in the DE algorithm including the mutation operator, 

crossover operator and selection operator, which is quite similar to GAs. Several 

parameters that need to be determined in the use of the DE include population size (N), 

mutation weighting factor (F) and crossover rate (CR). A DE differs significantly 

compared to a GA in the mutation process such that the mutant solution is generated by 

adding the weighted difference (F) between two random population members to third 

member. The process of DE is given as follows. 

2.3.1. Initialization  

The DE is a population based stochastic search technique. Thus, a set of members of the 

initial population is required to initialize the DE search. Normally, each initial population 

0,iX ={ 1
0,ix , 2

0,ix ,……… D
ix 0, } is generated by randomizing individuals from a uniform 

distribution within the search space, that is 

))(1 ,0( minmaxmin0,
jjjj

i xxrandxx −+=  i=1, 2,….N, j=1, 2, …, D (6) 

where j
ix 0, =the initial value of the j th parameter for the ith individual in the initial 

population, jxmin and jxmax  = the minimum and maximum bounds of the jth parameter 

respectively, rand(0, 1) represents a uniform distributed random variable in the range [0, 

1], while N and D =population size and dimension of the vector respectively. The 

population size is not changed during the DE evolution process.  

2.3.2. Mutation 

The DE is mainly driven by its mutation strategy compared with GAs. A mutant vector 

Vi,G with respect to each individual Xi,G is produced by adding the weighted difference 

(F) between two random population members to a third member from the current 

population. Each individual Xi,G  associated with a mutant vector is denoted as the target 

vector. A frequently used mutation strategy in DE is given as follows: 
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)(
,,,,

321 GrGrGrGi iii XXFXV −+=  (7) 

where Vi,G = the mutant vector with respect to the target vector of Xi,G at generation G, 

Gr iX
,1

, 
Gr iX
,2

, 
Gr iX
,3

 are three vectors randomly selected from the current population (

iii rrr 321 ≠≠ ). These three indexes are randomly generated for each mutant vector. F is 

the mutation weighting factor.  

2.3.3. Crossover 

After the mutation, a trial vector Ui,G is generated though selecting solution component 

values of either from Xi,G or Vi,G. In the basic DE version (Storn and Price 1995), uniform 

crossover is employed as: 





 ≤

=
e  otherwisx

CRrandifv
u

j
Gi

j
Gij

Gi
,

1) (0,   ,

,

j,

,  (8) 

where j
Giu , , j

Giv , , j
Gix ,  =the jth parameter for the i th trial vector, mutant vector and target 

vector respectively, CR is the crossover rate within the range of [0, 1], j1) (0,rand is a 

random number between 0 and 1 generated for each parameter j. If j1) (0,rand  is 

smaller than CR, the parameter jGiv ,  in the mutant vector is copied to the trial vector, 

otherwise, the parameterjGix ,  in the target vector is copied to the trial vector.  

2.3.4. Selection 

After crossover, all the trial vectors are evaluated using the objective function f(Ui,G) and 

are compared with their corresponding trial vector objective function f(Xi,G). The vector 

with a lower objective function value (given a minimization problem) survives for the 

next generation. That is 



 ≤

=+ otherwise  ,

)()( if  ,
 

,

,,,

1,
Gi

GiGiGi

Gi X

XfUfU
X  (9) 

Where  1, +GiX is the ith individual at the generation G+1. 

Mutation, crossover and selection are repeatedly applied generation by generation until 

the stopping criterion is satisfied. It is observed that the basic DE is a continuous global 

optimization search algorithm. As a result, DE should be modified to solve discrete WDS 
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optimization problems. A new approach to deal with the truncation of the continuous 

variables to the available discrete pipe sizes is proposed. The continuous pipe sizes are 

rounded to the nearest commercially available pipe diameter after application of the 

mutation operator given in Equation (7). Each vector element is checked after application 

of the mutation operator. If its value is smaller or larger than the minimum or maximum 

allowable pipe size, then the minimum or maximum allowable pipe size is assigned. If its 

value is between two sequentially discrete pipe diameters, the discrete pipe diameter that 

is closest is assigned. In addition, constraint tournament selection is used in the DE to 

handle head constraints [Deb 2000].  

The NLP continuous pipe diameter solution obtained in Step 2 is used to initialize or 

seed the population for DE optimization. In this study, the initial population of the DE 

was generated by randomly selecting pipe diameters for each decision variable from a set 

of limited options based on the NLP optimal solution instead of all available pipe 

diameters. The set of limited pipe diameter options is referred to as a seeding table for its 

corresponding pipe. Two different initial seeding tables are created for the continuous 

pipe size solution of the shortest-distance tree network. One seeding table consists of two 

adjacent pipe diameters, one having a discrete diameter that is immediately larger than 

the NLP continuous pipe size and the other having a discrete diameter that is 

immediately smaller. The other seeding table is composed of four adjacent pipe 

diameters, two having discrete diameters that are larger than the NLP continuous pipe 

size and the other two having discrete diameters that are smaller. The DE that is seeded 

with two pipe diameters is denoted as NLP-DE1, while the DE that is seeded with four 

pipe diameters is denoted as NLP-DE2. These two DEs that are seeded with different 

sizes from initial tables are applied to the four case studies. For the initial DE population, 

pipe diameters in the range of initial seeding tables are randomly selected. For each 

chord of the shortest-distance tree, the two and four adjacent minimum permissible pipe 

sizes are randomly selected for the NLP-DE1 and NLP-DE2 initial population 

respectively. It is noted that, with this approach, each decision variable has only two or 

four tailored optional pipe sizes to be randomly selected for starting the DE exploration. 
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Thus the initial solutions that need to be evolved are scattered in the region around the 

approximate-optimal solution produced in Step 2, rather than randomly distributed 

throughout the entire search space. It should be highlighted that the tailored seeding table 

obtained in Step 2 is used only to initialize the DE’s search, and it does not necessarily 

specify a limited search space for the DE exploration. That is, in Step 3 the DE is not 

limited to only explore the interior region of the search space defined by the initial 

seeding table, but the search can expand to the region that is outside the initial seeding 

table. Hence the finally selected pipe diameters for some pipes may be outside those 

contained in the initial seeding table. 

3. Case study results and discussion 

The Dijkstra algorithm that is used in Step 1 and the DE that is used in Step 3 has been 

coded in C++. The NLP formulated in Step 2 is solved by software Lingo12 [LINDO 

Systems Inc., 2009]. The DE application in Step 3 combines the EPANET2.0 solver 

[Rossman 2000]. Four case studies are used to verify the effectiveness of the proposed 

optimization approach including New York Tunnels Problem (NYTP), Hanoi Problem 

(HP), ZJ network (ZJ) and Balerma network (BN). The Hazen-Williams formula is used 

to calculate the head loss for the NYTP, HP and ZJ case studies and the Darcy-Weisbach 

formula is used for the BN case study. Storn and Price [1995] recommended the 

parameter ranges for the DE of 1D ≤ N ≤ 10D, 0.3≤F≤0.9, 0.5≤CR≤1.0 as the DE with 

these parameter ranges showed generally favorable performance in terms of convergence 

properties. For each case study in this paper, a preliminary sensitivity analysis was 

performed to determine the effective N, F and CR values based on the range given by 

Storn and Price [1995] for each parameter. 

3.1. Case study 1: New York Tunnels Problem (NYTP) 

A schematic of the NYTP system is given as Fig. 2. The network has 21 existing tunnels 

and 20 nodes fed by a fixed-head reservoir. The details of this network, including the 

head constraints, pipe costs and water demands are given by Dandy et al. [1996]. The 
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objective is to determine which pipe should be installed in parallel with the existing pipes 

such that the cost is minimized while satisfying the minimum head requirement at all 

nodes. There are 15 pipe diameters that can be selected for the NYTP. In addition, a zero 

pipe size provides a total of 16 options (15 actual pipe diameters plus a zero pipe size) for 

each link. Thus the total search space is 1621 (approximately 1.934×1025). 

 

Figure 2 The layout of the New York Tunnels 

In Step 1, the Dijkstra algorithm is applied for the NYTP network to identify the shortest-

distance tree. The identified shortest-distance tree is given in Fig. 3. As shown in Fig. 3, 

pipes 10 and 20 are identified as the chords and all the other pipes form the shortest-

distance tree. Since the NYTP is an existing water network and the diameters of chords 

(pipes 10 and 20) are known, the two proposed methods (see section 2.2) are used to 

determine the flow distribution for the shortest-distance tree. The flow results for the 
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shortest-distance tree determined by methods 1 and 2 described in section 2.2 are given 

in the second and third columns of Table 2. 

 

Figure 3 The layout of the shortest-distance tree of the NYTP network 

In Step 2, two separate NLPs are formulated for the shortest-distance tree with two sets 

of different flow distributions and solved. The two NLP continuous solutions as shown in 

the fourth and fifth columns of Table 2 complemented by chords of the shortest-distance 

tree with minimum pipe sizes (0 inch for the NYTP case study) produced optimal 

solutions with a cost of $55.12 million and $34.78 million respectively. Thus, the optimal 

solution produced by the assumption that flows in the chords are taken to be equal to that 

from the hydraulic analysis for the original water network (Method 2 in section 2.2), is 

better than that produced based on the assumption that no flows exist in these chords 
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(Method 1 in section 2.2). This indicates that Method 2 is more effective for a WDS 

optimization that includes existing pipes. The NLP solution based on the Method 2 

(mentioned in section 2.2) is adopted for further analysis in this study. The final best 

solution obtained by the combined NLP-DE approach for the NYTP case study is given 

in the last column of Table 2. It is observed that the design of the solution obtained in 

Step 2 (in the fifth column) is close to the final best solution as it has 15 pipes with the 

same diameter of zero. 

Table 2 Initial seeding tables for the NYTP case study and the combined NLP-
DE results 

Links 

Flows[1] 
in the 

shortest-
distance 

tree 
(m3/s) 

Flows[2] 
in the 

shortest-
distance 

tree 
(m3/s) 

Pipe diameters ( inches) 

The NLP 
solution[1] 
produced 

in 
Step 2 

The NLP 
solution[2] 
produced 

in 
Step 2 

Initial 
seeding 
table for 

NLP-
DE1 

Initial seeding 
table for NLP-

DE2 

Combined 
NLP-DE 

final 
solution 
(inches) 

1 29.00 24.48 157.16 0.00 0, 36 0, 36, 48, 60 0 

2 26.39 21.86 138.78 0.00 0, 36 0, 36, 48, 60 0 

3 23.77 19.24 0.00 0.00 0, 36 0, 36, 48, 60 0 

4 21.27 16.75 0.00 0.00 0, 36 0, 36, 48, 60 0 

5 18.77 14.25 0.00 0.00 0, 36 0, 36, 48, 60 0 

6 16.28 11.75 0.00 0.00 0, 36 0, 36, 48, 60 0 

7 13.78 9.25 144.93 111.31 108, 120 96, 108, 120, 144 144 

8 11.28 6.76 124.58 0.00 0, 36 0, 36, 48, 60 0 

9 1.65 1.66 0.00 0.00 0, 36 0, 36, 48, 60 0 

10# 0.00 4.86 0.00 0.00 0, 36 0, 36, 48, 60 0 

11 9.63 14.16 0.00 0.00 0, 36 0, 36, 48, 60 0 

12 19.58 24.10 0.00 0.00 0, 36 0, 36, 48, 60 0 

13 22.89 27.42 0.00 0.00 0, 36 0, 36, 48, 60 0 

14 25.51 30.04 0.00 0.00 0, 36 0, 36, 48, 60 0 

15 28.12 32.65 0.00 0.00 0, 36 0, 36, 48, 60 0 

16 1.63 1.63 67.13 72.94 72, 84 60, 72, 84,96 96 

17 6.63 6.63 91.50 100.39 96, 108 84, 96, 108,120 96 

18 3.31 3.32 72.53 80.01 72, 84 60, 72, 84, 96 84 

19 4.81 4.48 53.68 59.31 48, 60 36, 48, 60, 72 72 

20# 0.00 0.33 0.00 0.00 0, 36 0, 36, 48, 60 0 

21 4.81 5.15 71.55 76.03 72, 84 60, 72, 84, 96 72 

Cost 
($M) 

- - 55.12 34.78 - - 38.64 

#=chords of the NYTP network. [1] Flows and NLP solution are determined based on the assumption that 
there are no flows in chords (pipes 10 and 20). [2] Flows and NLP solution are determined based on the 
assumption that flows in chords (pipes 10 and 20) are the same with that of performing the hydraulic 
analysis for the original water network. 
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Based on the continuous pipe diameter solution obtained in Step 2, two different initial 

seeding tables are created including seeding tables for NLP-DE1 and seeding tables for 

NLP-DE2 as shown in Table 2 (column 6 and 7). 

Both DE applications were assumed to have identical parameters including population 

size (N), maximum allowable number of evaluations (MAE), mutation weighting factor 

(F) and crossover rate (CR), while seeded with different initial pipe diameters. For the 

NYTP case study, N=50, MAE=20,000, F=0.7 and CR=0.8 were used. A total of 100 

different DE runs using different starting random number seeds were performed for each 

of these two DE applications. 

The statistics of the results for the NYTP case study are given in Table 3. These include 

the best solution found, percentage of trials for which the current best solution was 

found, the average cost solution, the worst solution found and the average number of 

evaluations to find the best cost solution based on the different runs. For comparison, 

Table 3 also lists the results of other optimization techniques that have previously been 

used to optimize the NYTP case study. 

Table 3 Algorithm performance for the NYTP case study 

Algorithm 
Number of 
different 

runs 

Best 
solution 
found 
($M) 

Percentage 
of trials 
with best 
solution 

found (%) 

Averag
e cost 

solution 
($M) 

Worst 
solution 

($M) 

Maximum 
number of 
allowable 
evaluation

s 

Average 
number of 
evaluation
s to find 

best 
solutions 

NLP-DE1 100 38.64 99 38.64 38.80 20,000 8,277 

NLP-DE2 100 38.64 99 38.64 38.80 20,000 10,631 

HD-DDS1 50 38.64 86 38.65 38.77 50,000 13,000 

DE-Dandy2 30 38.64 70 40.33 51.16 100,000 - 

MMAS-
ACO3 

20 38.64 60 - - 50,000 30,711 

Standard 
GA4 

1000 38.64 45 39.00 - 100,000 49,950 

PSO2 30 38.64 33 38.93 - 100,000 - 

PSO variant1 2000 38.64 30 38.83 - 80,000 - 
1Tolson et al. [2009]. 2Dandy et al. [2010]. 3Zecchin et al. [2006]. 4Zheng et al. [2010].  
NLP-DE1: DE seeded with 2 tailored pipe diameters based on NLP solution obtained in Step 2. 
NLP-DE2: DE seeded with 4 tailored pipe diameters based on NLP solution obtained in Step2. 
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The best known solution for the NYTP case study is $38.64 million first found by Maier 

et al. (2003) with the Ant Colony Optimization technique. This best known solution was 

also found by the proposed combined NLP-DE optimization technique. As shown in 

Table 3, NLP-DE1 and NLP-DE2 exhibited similar performance in terms of percentage 

of the best known solutions found. NLP-DE1 was only slightly better than NLP-DE2 in 

terms of convergence speed. For the NYTP case study, the proposed optimization 

algorithm variants located the current best solution with a frequency of 99%, which is 

higher than that of other optimization techniques including HD-DDS [Tolson et al. 

2009], DE [Dandy et al. 2010), MMAS-ACO [Zecchin et al. 2006], GA [Zheng et al. 

2010], PSO [Dandy et al. 2010] and PSO variant [Tolson et al. 2009] as shown in Table 

3. 

In terms of efficiency, the proposed new algorithm exhibited the best performance on the 

NYTP case study as it was able to locate the best known solution faster than other 

algorithms as shown in Table 3. The maximum allowable evaluations for the NYTP case 

study was 20,000 and the average number of evaluations required to find the best 

solution for NYTP case study were 8,277 for NLP-DE1 and 10,631 for NLP-DE2. Both 

values are far less than those of other optimization techniques. 

3.2. Case study 2: Hanoi Problem (HP) 

The Hanoi Problem (HP) is a network design where all new pipes are to be selected. The 

layout of HP network is given in Fig. 4. The network is comprised of 34 pipes and 32 

nodes which are fed by a single reservoir with a head of 100 meters. The minimum head 

requirement of the other nodes is 30 meters. A total of six pipe diameters of {12, 16, 20, 

24, 30, 40} inches can be selected for each new pipe. The total search space is 

634
≈2.8651×1026. The Hazen-Williams coefficient for each new pipe is 130. Details of 

this network and the formulation of the cost for pipes are given in Fujiwara and Khang 

[1990]. 
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Figure 4 The layout of the Hanoi Problem network 

In Step 1, the shortest-distance tree for the HP network is shown in Fig. 5 based on the 

Dijkstra algorithm. As can be seen from Fig. 5, pipes 13, 26 and 31 are identified to be 

the chords. All the discharges in links can be determined based on Method 2 described in 

section 2.2 for this shortest-distance tree as shown in the second column of Table 4.  

An NLP is formulated for the shortest-distance tree of the HP network and solved in Step 

2. The continuous pipe diameters solution is given in the third column of Table 4. This 

solution, complemented by chords with minimum pipe sizes (12 inches for the HP case 

study), produced an approximately optimal solution with a cost of $5.924 million. . The 

final best solution produced by the combined NLP-DE approach, for the HP case study 

applied in Step 3, is given in the last column of Table 4. 
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Figure 5 The layout of the shortest-distance tree of the HP network 

It is observed from Table 4 that the NLP continuous pipe diameters solution is close to 
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pipe diameters of the final best solution. Based on the continuous pipe diameters solution 
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Table 4 Initial seeding tables for the HP case study and the combined NLP-DE 
results 

Links 
Flows in the 

shortest-distance 
tree (m3/s) 

Pipe diameters (inches) 

The NLP 
solution 

produced in 
Step 2 

Initial seeding 
table for NLP-

DE1 

Initial seeding 
table for NLP-

DE2 

Combined NLP-
DE final 
solution 
(inches) 

1 5.54 40.00 30, 40 20, 24, 30, 40 40 

2 5.29 40.00 30, 40 20, 24, 30, 40 40 

3 1.89 39.81 30, 40 20, 24, 30, 40 40 

4 1.86 39.59 30, 40 20, 24, 30, 40 40 

5 1.65 38.29 30, 40 20, 24, 30, 40 40 

6 1.38 36.29 30, 40 20, 24, 30, 40 40 

7 1.00 33.08 30, 40 20, 24, 30, 40 40 

8 0.85 31.52 30, 40 20, 24, 30, 40 40 

9 0.70 29.84 24, 30 20, 24, 30, 40 40 

10 0.56 27.88 24, 30 20, 24, 30, 40 30 

11 0.42 25.65 24, 30 20, 24, 30, 40 24 

12 0.26 19.28 16, 20 12, 16, 20, 24 24 

13# 0.00 12.00 12, 16 12, 16, 20, 24 20 

14 0.17 15.70 12, 16 12, 16, 20, 24 16 

15 0.25 17.51 16, 20 12, 16, 20, 24 12 

16 0.69 26.79 24, 30 20, 24, 30, 40 12 

17 0.93 29.22 24, 30 20, 24, 30, 40 16 

18 1.30 32.24 30, 40 20, 24, 30, 40 24 

19 1.32 32.36 30, 40 20, 24, 30, 40 20 

20 1.85 39.11 30, 40 20, 24, 30, 40 40 

21 0.39 17.37 16, 20 12, 16, 20, 30 20 

22 0.13 12.72 12, 16 12, 16, 20, 30 12 

23 1.10 33.08 30, 40 20, 24, 30, 40 40 

24 0.63 26.66 24, 30 20, 24, 30, 40 30 

25 0.40 23.38 20, 24 16, 20, 24, 30 30 

26# 0.00 12.00 12, 16 12, 16, 20, 24 20 

27 0.25 18.23 16, 20 12, 16, 20, 24 12 

28 0.35 20.15 20, 24 16, 20, 24, 30 12 

29 0.18 16.10 16, 20 12, 16, 20, 24 16 

30 0.10 13.56 12, 16 12, 16, 20, 24 12 

31# 0.00 12.00 12, 16 12, 16, 20, 24 12 

32 0.10 15.63 12, 16 12, 16, 20, 24 16 

33 0.13 16.84 16, 20 12, 16, 20, 24 16 

34 0.35 22.54 20, 24 16, 20, 24, 30 24 

Cost 
($M) 

 5.924 - - 6.081 

#=chords of the HP network.  
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The current best known solution for the HP case study with value of $6.081 million was 

first found by Reca and Martínez [2006] using a GA variant (GENOME). This solution 

has been also found by the proposed optimization approach. 

Table 5 Algorithm performance for the HP case study 

Algorithm 

Number 
of 

different 
runs 

Best 
solution 
found 
($M) 

Percentage 
of trials 

with best 
solution 

found (%) 

Average 
cost 

solution 
($M) 

Worst 
solution 

($M) 

Maximum 
number of 
allowable 

evaluations 

Average 
number of 
evaluations 
to find best 
solutions 

NLP-DE1 100 6.081 97 6.082 6.108 80,000 34,609 

NLP-DE2 100 6.081 98 6.081 6.100 80,000 42,782 

DE-
Surbabu1 

50 6.081 80 - - 100,000 48,724 

GENOME2 10 6.081 10 6.248 6.450 150,000 - 

HD-DDS3 50 6.081 8 6.252 6.408 100,000 ≤100,000 

PSO 
variant3 

2000 6.081 5 6.310 6.550 80,000 - 

Standard 
GA4 

30 6.126 0 6.214 6.368 500,000 - 

MMAS-
ACO5 

20 6.134 0 6.394 6.635 100,000 85,571 

PSO4 30 6.373 0 6.483 6.801 500,000 - 
1Suribabu [2010]. 2Reca and Martínez [2006]. 3Tolson et al. [2009]. 4Dandy et al. [2010]. 5Zecchin et al. 
[2006]. 

As can be seen from Table 5, NLP-DE1 and NLP-DE2 show a similar performance in 

finding the best known solution, while NLP-DE1 was found to show slightly better 

performance than NLP-DE2 in terms of convergence speed. The proposed new 

optimization models achieved the best performance in terms of percentage of trials with 

which the best solution was found amongst all the algorithms mentioned in Table 5. As 

shown in Table 5, NLP-DE1 and NLP-DE2 located the best known solution for the HP 

case study in 97% and 98% of the optimization trials compared to 80% of DE used in 

Suribabu [2010], 10% of GENOME GA proposed by Reca and Martínez [2006], 8% of 

HD-DDS proposed by Tolson et al. [2009] and 5% of PSO variant used in Tolson et al. 

[2009]. The worst solutions produced NLP-DE1 and NLP-DE2 in the 100 different 

optimization trials were $6.108 million and $6.100 million respectively, which deviates 

only 0.444% and 0.312% from the current best known solution. The standard GA 
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[Dandy et al. 2010], MMAS-ACO [Zecchin et al. 2006] and PSO [Dandy et al. 2010] 

were unable to locate the current best solution for the HP case study. The average 

number of evaluations required by NLP-DE1 and NLP-DE2 were 34,609 and 42,782 

respectively, which are less than those reported for any other algorithm. 

3.3. Case study 3: ZJ network 

The ZJ network, taken from eastern province of China, is an actual water network with a 

single reservoir. The reservoir has a fixed head of 45 meters. There are 164 pipes, 113 

demand nodes and 50 primary loops (as shown in Fig. 6). At each demand node, a 

minimum pressure of 22 meters is required for the design of this water network. All the 

pipes are assumed to have an identical Hazen-Williams coefficient of 130. The objective 

is to determine the least-cost design of this water network, while satisfying the pressure 

constraints. A total of 14 commercial available pipe diameters ranging from 150 mm up 

to 1000 mm can be selected for each pipe. Thus, the total search space is 14164
≈9.2257×

10187. 

The shortest-distance tree of the ZJ network determined in Step 1 is shown in Fig. 7. The 

NLP continuous pipe diameters solution obtained in Step 2, plus the chords with 

minimum allowable pipe sizes (150 mm for the ZJ network case study) provide an 

approximately optimal solution with a cost of $6.970 million. Since this is a new case 

study that has not been investigated previously, a DE algorithm is applied to optimize 

this water network directly in order to enable comparison of results.  

A total of three DE applications have been performed for the ZJ network optimization 

including a DE seeded with two tailored pipe diameters for each pipe (NLP-DE1), a DE 

seeded with four tailored pipe diameters for each pipe (NLP-DE2) and a DE seeded with 

all 14 available pipe diameters. For each DE application, the parameters including, 

N=500, MAE=2,000,000, F=0.3 and CR=0.8 were used based on a few trials. A total of 

10 DE runs with different starting random number seeds have been implemented for 

each DE application. 
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Figure 6 The layout of the ZJ network 

 

Figure 7 The layout of the shortest-distance tree of the ZJ network 
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The solutions obtained by the three DE variants and statistics of the results are given in 

Fig. 8 and Table 6 respectively. It is clearly seen from Fig. 8 that NLP-DE1 converged 

the fastest and the DE3 converged the slowest. Although NLP-DE2 converged slower 

than NLP-DE1, NLP-DE2 was able to produce lower cost solutions. It is noted that the 

solutions obtained by NLP-DE1 and NLP-DE2 are less scattered by those found by DE3. 

This shows that the solutions of NLP-DE1 and NLP-DE2 are less dependent on the 

starting random number seeds. 

 

Figure 8 Solution distributions for the ZJ case study 

Table 6 Algorithm performance for the ZJ case study 

Algorithm 

Number 
of 

different 
runs 

Best 
solution 
found 
($M) 

Percentage 
of trials 
with best 
solution 

found (%) 

Average 
cost 

solution 
($M) 

Worst 
solution 
found 
($M) 

Maximum 
number of 
allowable 

evaluations 

Average 
number of 
evaluations 
to find best 
solutions 

NLP-DE1 10 7.167 0 7.170 7.175 2,000,000 69,300 

NLPDE2 10 7.0821 10 7.093 7.105 2,000,000 400,853 

DE3 10 7.112 0 7.136 7.220 2,000,000 820,657 
1The current best solution for the ZJ case study. 

As observed from Table 6, different NLP-DE1 runs are significantly more 

computationally efficient than DE3. This is evidenced by the fact that NLP-DE1 only 
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required a total of 8.44% of the computation overhead required by that of DE3. This 

shows that the DE seeded with 2 tailored pipe diameters derived from the approximately 

optimal solution obtained from NLP in Step 2 is able to find optimal solutions with 

significantly enhanced computational efficiency.  

As can be seen from Table 6, the NLP-DE2 found the current best solution for this case 

study with a cost of $7.082 million, 0.42% cheaper than the best solution found by DE3. 

Additionally, the worst solution found by the 10 NLP-DE2 runs was lower than the best 

solution found by DE3. It is noted that NLP-DE2 converged quicker than DE3 as the 

average number of evaluations required to converge by 10 different NLP-DE2 runs is 

only 48.84% of that required by DE3. 

3.4. Case study 4: Balerma network (BN) 

The Balerma network (BN), an irrigation water distribution network located in the 

province of Almeria (Spain), was first investigated by Reca and Martínez [2006]. It 

consists of 4 reservoirs, 8 loops, 454 pipes and 443 demand nodes as shown in Fig. 9. A 

total of 10 PVC commercial pipes with nominal diameters from 125 mm to 600 mm are 

to be selected for this network. Thus, the search space is 10454, which is significantly 

larger than the previous three case studies in this paper. All the pipes are assumed to have 

an absolute roughness height k=0.0025 mm and the minimum required pressure at each 

node is 20 meters. Pipe costs are given in Reca and Martínez [2006]. 

Since there are four reservoirs involved in the Balerma network, the proposed extension 

to the Dijkstra algorithm described in section 2.1.2 is employed to find the shortest-

distance tree for this multi-source WDS. The shortest-distance tree for the Balerma 

network identified, based on the proposed extension of the Dijkstra algorithm, is given in 

Fig. 10. It is seen from Fig. 10, the original Balerma network has been decomposed into 

four sub-networks connected via an artificial node and four artificial links. An NLP is 

formulated for this tree network and solved in Step 2, producing an approximately 

optimal solution with a cost of €2.114 million (all the chords are assumed to be the 
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smallest pipe size). Note that the artificial node and artificial links are not included in the 

NLP. 

For the BN case study, like the ZJ case study, a total of three DE applications are carried 

out. These include a DE seeded with two tailored pipe diameters for each pipe (NLP-

DE1), a DE seeded with four tailored pipe diameters for each pipe (NLP-DE2) and a DE 

seeded with all 10 available pipe diameters. For each DE application, the parameters 

used were N=500, MAE=10,000,000, F=0.3 and CR=0.8. A total of 10 DE runs with 

different starting random number seeds have been implemented for each DE application. 

The solution distribution and a summary of results are given in Fig. 11 and Table 7 

respectively.  

 

Figure 9 The layout of the Balerma network 
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Figure 10 The layout of the shortest-distance tree of the Balerma network 

As can be seen from Fig. 11, the NLP-DE1 and NLP-DE2 runs located overall lower 

cost solutions for the BN case study compared to the DE3 runs with significantly less 

computational effort. NLP-DE2 converged slightly slower than NLP-DE1, while being 

able to find better quality solutions as shown in Fig. 11. It is seen from Table 7, the 

average number of evaluations required to find the better quality solutions for NLP-DE1 

and NLP-DE2 are only 4.47% and 15.50% of that required by DE3. This shows that a 

DE with initial estimates provided by an NLP run in the proposed optimization approach 

is able to locate better quality solutions with a significantly faster convergence speed than 

a DE without initial estimates. In addition, the solutions produced by NLP-DE1 and 

NLP-DE2 are less scattered than those of DE3 for the BN case study. The NLP-DE2 
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produced a new currently lowest cost solution with a value of €1.923 million for the BN 

case study. 

 

Figure 11 Solution distributions for the BN case study 

Table 7 Algorithm performance for the BN case study 

Algorithm 

Number 
of 

different 
runs 

Best 
solution 
found 
($M) 

Percentage 
of trials 

with best 
solution 

found (%) 

Average 
cost 

solution 
($M) 

Worst 
solution 
found 
($M) 

Maximum 
number of 
allowable 

evaluations 

Average 
number of 
evaluations 
to find best 
solutions 

NLP-DE1 10 1.956 0 1.957 1.959 1,000,000 412,000 

NLP-DE2 10 1.9234 10 1.927 1.934 2,000,000 1,427,850 

DE3 10 1.982 0 1.986 1.989 10,000,000 9,210,143 

HD-DDS-11 1 1.941 0 - - 30,000,000 - 

HD-DDS-21 10 1.956 0 - - 10,000,000 - 

GHEST2 - 2.002  2.055 - 10,000,000 254,400 

GENOME 
GA3 

10 2.302 0 2.334 2.350 10,000,000 - 

1Tolson et al. [2009]. 2Reca and Martínez [2006]. 3Bolognesi et al. [2010].4 A new current best solution for 
the BN case study.HD-DDS-1 and HD-DDS-2 are HD-DDS approach with maximum number of allowable 
evaluations of 30,000,000 and 10,000,000 respectively. 

On comparing the algorithmic performance with other optimization techniques, the 

proposed new optimization approach (NLP-DE1 and NLP-DE2) performed the best in 

terms of quality of the best solution found and efficiency as shown in Table 7. NLP-DE1 
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found the same best cost solution with a value of €1.956 as that found by HD-DDS 

[Tolson et al. 2009] in a total of 10 different runs. However, it is noted that the 

computational budget for the NLP-DE1 was only 10% of that for HD-DDS-2 [Tolson et 

al. 2009]. The HD-DDS-1 [Tolson et al. 2009] found the previous best solution with a 

value of €1.941 million using 30 million evaluations, while the NLP-DE2 located a new 

lower cost solution with a cost of €1.923 million using only 2 million evaluations (6.67% 

of the computational budget required by HD-DDS-1). In addition, the worst solution 

produced by 10 different NLP-DE2 runs was €1.934 million, which is still lower that 

the best solution found by HD-DDS [Tolson et al. 2009], GHEST [Bolognesi et al 2010] 

and GENOME GA [Reca and Martínez 2006]. This implies that the proposed 

optimization approach is able to locate better quality solutions with significantly 

improved computational efficiency when dealing with such large scale water networks. 

3.5. Summary of results 

It has been shown that the new proposed NLP-DE algorithm has outperformed all the 

other optimization algorithms in terms of efficiently finding optimal solutions for the 

four case studies. The dominance of the proposed method is more clearly shown for the 

larger networks including the ZJ and BN case studies. In terms of solution quality, NLP-

DE1 yielded a similar performance to NLP-DE2 for relatively small water networks 

(such as the NYTP and HP case studies). However, for relatively larger water networks 

(such as the ZJ and BN cases studies), NLP-DE1 was able to converge faster than NLP-

DE2 while NLP-DE2 found lower cost solutions than NLP-DE1. This is explained by 

the fact that NLP-DE2 was seeded with an initial seeding table with four different pipe 

diameters, while NLP-DE1 was initialized with a seeding table consisting of only two 

different pipe diameters. Consequently, NLP-DE2 explored a relatively larger search 

space than NLP-DE1 and hence resulted in a greater search time but with better quality 

solutions being found. Based on the observation of this study, a DE seeded with two 

tailored pipe diameters based on the NLP solution (NLP-DE1) is recommended for 

relatively small water network optimization. For relatively large WDS case studies, DE 

seeded with four tailored pipe diameters based on the NLP solution (NLP-DE2) is 
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recommended. For a WDS case study with a larger number of pipes and loops, the 

continuous diameter solution obtained in Step 2 with the NLP may be more of an 

approximation to the actually global optimum as more pipes are removed as chords. In 

such a case, the initial seeding table based on this continuous diameter solution can be 

further increased in size (for example-to say six successive pipes diameters to be 

included in the seeding table for each pipe). As a result, this should lead to a more 

effective seeding of the DE exploration. 

It has also been found from this study that, for the optimization problem of designing a 

completely new WDS, the flows in the shortest-distance tree determined by the 

assumption that there is no discharge in the chords (Method 1 in section 2.2) is effective. 

For the expansion of an existing WDS optimization problem (such as the NYTP case 

study), the flows in the shortest-distance tree determined by the assumption that the 

discharges in the chords are set to be equal to that from the hydraulic calculation for the 

original existing WDS (Method 2 in section 2.2) is the most effective. 

In the proposed method, the shortest path is used as a surrogate indicator of the main 

flow paths within the network (the network tree). It is considered that the accuracy of this 

assumption will be reduced in situations where there are significant differences in nodal 

elevations. However, the NLP solution based on the assumed tree is simply used to 

identify an initial seeding table for seeding the DE optimization. Minor changes in the 

NLP solution may not necessarily vary the initial seeding table components as the two or 

four adjacent discrete pipe sizes based on the continuous diameter pipe solution from the 

NLP are included in the seeding table for each pipe. In addition, our experiments have 

shown that a moderate change to the initial seeding table components does not influence 

the performance of DE significantly as the DE is able to progress the search outside of 

the bounds of the seeding table. The BN case study involved in this study is a network 

having significant nodal elevation differences, however, the proposed method was 

observed to exhibit satisfactory performance on this case study in terms of solution 

quality and efficiency (See Table 7). 
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An analysis of the computational effort required in Step 1 and Step 2 in the proposed 

optimization approach has been undertaken. The computational time required to find the 

shortest-distance tree and to run the NLP solver for each case study is converted to an 

equivalent number of case study evaluations respectively. Note all these tests were 

performed in the same computer (Pentium PC at 3.0 GHz). The results are given in Table 

8. It can be seen from Table 8 that the computational effort required to find the shortest-

distance tree in Step 1 and to run the NLP solver in Step 2 is negligible compared to that 

required in Step 3. Thus, the computational effort in running the Dijkstra algorithm and 

NLP for each case study has not been included in the total computational overhead. For 

example, the computational overhead of running the Dijkstra algorithm and NLP for the 

ZJ case study is only 0.19%, 0.033% and 0.014% of that required by the NLP-DE1, 

NLP-DE2 and DE3 respectively. This implies that it is computationally efficient to find 

the shortest-distance tree and solve the NLP for the shortest-distance tree for a given 

WDS. This further improves the attractiveness of the proposed approach for optimization 

of WDSs. 

Table 8 Computational effort analysis for finding shortest-distance tree and 
running the NLP solver for each case study 

Case 
study 

Number 
of 

decision 
variables 

Computational 
effort required to 
find the shortest-

distance tree 
(Step 1) 

Computational 
effort required to 
solve the NLP for 

the shortest-
distance tree 

(Step 2) 

Average 
number of 
evaluations 
required by 
NLP-DE1 
(Step 3) 

Average 
number of 
evaluations 
required by 
NLP-DE2 
(Step 3) 

NYTP 21 11 10 8,277 10,631 

HP 34 10 26 34,609 42,782 

ZJ 164 6 125 69,300 400,853 

BN 454 8 2,133 412,000 1,427,850 
Note: The computational effort in Steps 1 and 2 has been converted to an equivalent number of evaluations 
for its corresponding case study. One simulation for the NYTP, HP, ZJ and BN case study on Pentium PC 
at 3.0GHz was 0.001, 0.001, 0.016 and 0.015 seconds respectively.  

4. Conclusions 

A new optimization approach aimed at optimizing the design of WDSs has been 

presented in this paper. This new approach divides the optimization process into three 

steps. These include: 
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1. Find the shortest-distance tree for the looped WDS that is being optimized. 

2. Carry out an NLP optimization of the shortest-distance tree. 

3. Optimize the original water network using the DE seeded based on pipe sizes in the 

proximity of those found in Step 2. 

The shortest-distance tree is identified in Step 1 using the Dijkstra algorithm. The 

shortest-distance tree is viewed as an optimal tree based on the assumption that 

delivering demand along the shortest path for each node is the most effective mode. A 

NLP is then formulated for optimizing the design of the shortest-distance tree in Step 2 

and has been solved by an NLP solver in this study. For each case study, a range of 

different initial starting points have been used for solving the NLP applied to the 

optimization of the shortest-distance tree. It was found that the final solution is identical 

for all the different initial starting points. The continuous pipe diameter solution 

produced in Step 2 complemented by the shortest-distance tree chords with the minimum 

allowable pipe sizes are used to create the initial seeding tables for the differential 

evolution (DE) optimization process. The DE optimization for finding the optimal 

discrete pipe size solution in Step 3 is seeded with the tailored pipe diameters seeding 

tables created in Step 2.  

Results for four cases studies show that the proposed new combined NLP-DE 

optimization approach has superior convergence properties. For the NYTP and HP case 

studies, the proposed optimization technique reached the current best known solution for 

each network more frequently and more efficiently compared with other optimization 

techniques. For the ZJ and BN case studies, the proposed new optimization approach 

found the new lowest cost solutions with a cost of $7.082 million and €1.923 million 

respectively. In addition, the new method produced optimal solutions with an extremely 

fast convergence speed. The consistent superior performance of the proposed 

optimization approach on four case studies illustrates that the proposed methodology is 

well suited for the least-cost design of WDSs. 
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The utility of the proposed method is that it provides an efficient and effective approach 

for seeding the optimization of the full combinatorial problem using near optimal 

solutions (achieved by solving an approximated continuous problem with NLP). A 

natural extension of this method to find an approximate Pareto front for multi-objective 

problems (to seed a full multi-objective combinatorial search) could be achieved by 

incorporating one of the many approaches to map multi-objective problems to a series of 

single objective problems [Konak et al. 2006]. This approximate front would then be 

used to seed a multi-objective combinatorial optimizer (i.e. NSGA2: Deb et al. [2002]) to 

determine the actual front. This extension should be the focus of future research. Another 

issue that needs to be addressed is that the decision variables in this paper are only pipe 

diameters for the case studies, whereas the real WDS design problems may be more 

complex. Since the proposed methodology has shown to be effective for the pipes-only 

WDS design problems, future work should be focus on applying the proposed 

methodology to deal with the real-world WDS problems that may include pumps, valves, 

storage facilities and pipes.  
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Chapter 7. Journal Paper 5-Coupled BLP-DE Method for WDS 
Optimization 

7.1 Synopsis 
A coupled binary linear programming-differential evolution algorithm approach 
for optimizing water distribution system optimization 

In Chapter 6, a combined NLP-DE method is presented, in which NLP is employed to 

optimize the entire water network in order to obtain an approximate optimal solution. 

Then this approximate optimal solution is used to initialize the DE search. As such, the 

DE focuses on exploring only the promising regions specified by the approximate 

optimal solution obtained by NLP optimization rather than the original whole search 

space. As a result, better quality solutions for the water network are reached more 

efficiently, and with a higher likelihood.  

In the NLP-DE method presented in Chapter 6, the deterministic optimization technique 

NLP is used to provide a good estimate for the DE exploration. Another novel hybrid 

optimization technique is developed in this Chapter based on a binary linear 

programming coupled with a DE (BLP-DE) for the water network optimization. This 

proposed optimization technique is presented in this Chapter (Chapter 7). 

Three stages are involved in the proposed BLP-DE optimization method. In the first 

stage, the WDS that is being optimized is decomposed into trees and the core using a 

graph algorithm. BLP is then used to optimize the design of the trees during the second 

stage. In the third stage, a DE algorithm is utilized to deal with the core design while 

incorporating the optimal solutions for the trees obtained in the second stage, thereby 

yielding optimal solutions for the original whole WDS. The proposed method takes 

advantage of both BLP and DE algorithms: BLP is capable of providing a global optimal 

solution for the trees (no loops involved) with great efficiency, while a DE is able to 

efficiently generate good quality solutions for the core (where loops are involved) with a 

reduced search space compared to the original full network. 
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Three main differences exist when comparing the BLP-DE method outlined in this 

Chapter with the NLP-DE approach presented in Chapter 6, which are (i) for the BLP-

DE method, the deterministic BLP method is used to optimize the design for the trees of 

the water network rather than providing the estimates for the evolutionary algorithms as 

for the NLP-DE method; (ii) BLP is able to provide discrete diameter solutions while the 

NLP only generated continuous diameter solutions and (iii) the DE in the BLP-DE is 

only utilized to deal with the core of the original whole network, in contrast, the DE in 

the NLP-DE is used to tackle the whole network.  

Another novelty of the proposed BLP-DE method is that a solution choice table method 

has been proposed to incorporate the optimal solutions for the trees when the core of the 

water network is being optimized. As such, the final optimal solutions obtained by the 

DE applied to the core are actually the optimal solutions for the original entire network.  

In the proposed BLP-DE method, different components of the whole water network are 

optimized by different optimization techniques, in which the trees are optimized by BLP 

and the core is handled by the DE. This proposed approach makes good use of the 

advantages of both the deterministic optimization techniques and the evolutionary 

algorithms, i.e., deterministic optimization techniques are suitable for the tree 

optimization as no loops are involved and the evolutionary algorithms are able to 

efficiently explore the relatively small search space effectively (only the core rather than 

the whole network is optimized by the DE in the proposed BLP-DE method).  

This work has been submitted to Journal of Water Resources Planning and Management 

and the paper is provided here. 

Citation of Paper 

Zheng, F., A. R. Simpson, and A. C. Zecchin (2012c). “A combined binary linear 

programming and differential evolution algorithm approach for water distribution system 

optimization.” Journal of Water Resources Planning and Management, submitted June 

2012.  
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7.2 Journal Paper 5: A coupled binary linear programming and 
differential evolution approach for water distribution system 
optimization (Submitted to the Journal of Water Resources Planning 
and Management) 

Feifei Zheng, Angus R. Simpson and Aaron C. Zecchin 

ABSTRACT 

A coupled binary linear programming-differential evolution (BLP-DE) approach is 

proposed in this paper to optimize the design of water distribution systems (WDSs). 

Three stages are involved in the proposed BLP-DE optimization method. In the first 

stage, the WDS that is being optimized is decomposed into trees and the core using a 

graph algorithm. Binary linear programming (BLP) is then used to optimize the design of 

the trees during the second stage. In the third stage, a differential evolution (DE) 

algorithm is utilized to deal with the core design while incorporating the optimal 

solutions for the trees obtained in the second stage, thereby yielding optimal solutions for 

the original whole WDS. The proposed method takes advantage of both BLP and DE 

algorithms: BLP is capable of providing global optimal solution for the trees (no loops 

involved) with great efficiency, while a DE is able to efficiently generate good quality 

solutions for the core (loops involved) with a reduced search space compared to the 

original full network. Two benchmark WDS case studies and one real-world case study 

(with multiple demand loading cases) with a number of decision variables ranging from 

21 to 96 are used to verify the effectiveness of the proposed BLP-DE optimization 

approach. Results show that the proposed BLP-DE algorithm significantly outperforms 

other optimization algorithms in terms of both solution quality and efficiency 

INTRODUCTION 

A number of deterministic optimization techniques have previously been applied to 

the optimization design problem of water distribution systems (WDSs). These 

include a complete enumeration approach (Gessler 1985); linear programming (LP) 

(Alperovits and Shamir 1977; Sonak and Bhave 1993; Guercio and Xu 1997); and 
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non-linear programming (NLP) (Lansey and Mays 1989; Fujiwara and Khang 1990). 

Each deterministic method offers advantages, but also has disadvantages in terms of 

optimizing WDS design. The complete enumeration approach guarantees that the 

global optimal solution will be found, for example, but the computational overhead is 

extremely intensive as this method evaluates every possible combination of discrete 

pipe diameters for a WDS. In most cases, this is an impossible task. LP and NLP 

converge quickly, on the other hand, but only a local optimum is located. In addition, 

split pipe sizes are usually allowed by a LP solution and continuous pipe diameters 

are normally included in a NLP solution, neither of which is practical from an 

engineering perspective.  

Samani and Mottaghi (2006) proposed a binary linear programming (BLP) approach 

for WDS design optimization, in which the objective function and constraints were 

linearized using zero-one variables. Four steps are involved for their BLP method, 

which are step 1: each pipe in the water network to be optimized is initially assigned 

a commercially available pipe diameter; step 2: a hydraulic solver is performed for 

the known network configuration to obtain water flows for each pipe; step 3: a BLP 

model is formulated and solved for the water network based on the known flows at 

each pipe and solved while satisfying the head constraints at each node and step 4: 

the resulting pipe sizes obtained in step 3 are compared with the assumed pipe 

diameters in step 1. If they are the same, the optimization process has converged and 

the resulting pipe sizes are the final solution, otherwise, the resulting pipes sizes are 

assigned to the water network and steps 2, 3 and 4 are repeatedly performed until the 

convergence (where resulting pipe sizes in step 3 are the same as the those used in 

step 2) is achieved.  

Samani and Mottaghi (2006) used two relatively small WDS case studies to verify 

the effectiveness of their proposed BLP method, and reported that the performance of 

the BLP method was satisfactory in terms of accuracy and convergence based on 

results of two WDS case studies. 
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The advantage of the BLP developed by Samani and Mottaghi (2006) over LP and 

NLP is that it is able to handle the discrete search space, thereby providing discrete 

pipe diameter solutions. However, the BLP approach is compromised by extreme 

inefficiency when dealing with relatively large WDS case studies (Savic and Cunha 

2008). In addition, the global optimum for a looped WDS cannot be guaranteed as 

the final solution reached by this BLP approach is dependent on the initially assumed 

pipe diameters (Martínez 2008). 

In addition to deterministic optimization techniques (LP, NLP and BLP), 

evolutionary algorithms (EAs), as stochastic approaches, have also been employed to 

optimize the design for WDSs. Simpson et al. (1994) first applied a genetic algorithm 

(GA) to tackle the water network optimization problem. Afterwards, a number of 

other evolutionary algorithms were developed and applied to WDS design. These 

include simulated annealing (Cunha and Sousa 2001); harmony search (Geem et al. 

2002); the shuffled frog leaping algorithm (Eusuff and Lansey 2003); Ant Colony 

Optimization (Maier et al. 2003); the modified GA (Vairavamoorthy and Ali 2005); 

particle swarm optimization (Suribabu and Neelakantan 2006); cross entropy 

(Perelman and Ostfeld, 2007); scatter search (Lin et al. 2007); HD-DDS (Tolson et al 

2009) and differential evolution (Suribabu 2010). These EAs have been applied to a 

number of WDS case studies and exhibit good performance in terms of finding 

optimal solutions.  

The advantages of EAs over deterministic optimization methods are (i) EAs are able 

to deal with the discrete search space directly and (ii) EAs explore the search space 

broadly and are therefore more likely to provide good quality solutions. However, a 

major issue pertaining to the application of EAs for WDS design is the computational 

intensity. This is a severe limitation for EAs dealing with real-world WDS 

optimization, for which, a large number of pipes are normally involved. Zheng et al. 

(2011a) reported that EAs perform well on relatively small case studies in terms of 

solution quality, whereas solution quality deteriorates for EAs when dealing with 
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larger networks. Thus, it is desirable to develop advanced optimization techniques to 

overcome these limitations to enable a more generic application of optimization 

techniques for WDS design. The development of hybrid optimization methods is a 

way of overcoming the problems outlined above.  

Recently, EAs have been combined with deterministic optimization methods in 

attempts to overcome the disadvantages of both optimization techniques when 

optimizing the design of WDSs. Krapivka and Ostfeld (2009), for example, proposed 

a coupled GA-LP method for the WDS optimization. In their technique, all possible 

spanning trees for a looped water network are first evaluated to identify the least-cost 

spanning tree. The chords of the tree are assigned with the minimum allowable pipe 

diameters. The coupled GA-LP technique is then used to further polish the optimal 

solution of the least-cost spanning tree, in which a GA is used to update the flow 

distribution, while LP is employed to optimize the tree for a given flow distribution. 

However, this GA-LP method is limited by the fact that split pipe sizes are allowed in 

the final solution and it is computationally expensive to evaluate all possible 

spanning trees for a large WDS.  

Tolson et al. (2009) developed a hybrid discrete dynamically dimensioned search 

algorithm (HD-DDS) for WDS design optimization. In the HD-DDS, a stochastic 

algorithm is combined with two local search methods (one-pipe search and two pipes 

search algorithms). These two local search methods are carried out using complete 

enumeration. Efficiency improvements were reported by Tolson et al. (2009) when 

this method was compared to other optimization algorithms in terms of optimizing 

WDSs.  

Zheng et al. (2011b) developed a combined NLP-DE approach to deal with WDS 

optimization problems. In the NLP-DE method, graph decomposition is first 

employed to identify the shortest-distance tree for a looped WDS. NLP is then used 

to optimize the shortest-distance tree and an approximately optimal solution is 

obtained for the original full network. Finally, a DE is seeded in the vicinity of the 
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approximately optimal solution rather than the whole search space in order to 

optimize the original full network. It was reported by Zheng et al. (2011b) that the 

combined NLP-DE method was able to find good quality solutions for the WDSs 

with great efficiency based on four case studies.  

Haghighi et al. (2011) combined a simple GA with BLP for WDS optimization 

design. In this GA-BLP method, a water network is first converted to a tree by 

removing one pipe from each primary loop and hence a total of NL pipes are 

removed, where NL is the number of loops in the water network. Then a set of N 

diameter combinations for the NL pipes are randomly generated using commercially 

available pipe diameters to form the initial population of the GA, where N is the 

population size of the GA. For each GA individual with different diameter 

combinations for the NL pipes, an iterative procedure using BLP combined with a 

hydraulic solver (EAPNET) is utilized to optimize the remaining tree (the NL pipes 

are not included in the BLP optimization).  

The optimum pipe diameters obtained from the iterative BLP optimization for the 

tree are returned to the GA along with corresponding cost. This cost in combination 

with the cost of the NL pipes handled by the GA provides the total cost of the original 

water network. This total cost is used to calculate the fitness of the GA individual. 

Subsequently, the GA operators (selection, crossover and mutation) are performed to 

evolve the initial solutions to achieve the final optimal solutions.  

In the GA-BLP method (Haghighi et al. 2011), the GA was only used to deal with the 

NL pipes, while BLP was employed to tackle the optimization of the tree that was 

obtained by removing NL pipes. Thus, efficiency of the GA optimization is expected 

to be improved as the GA only handles the NL pipes rather than the total number 

pipes in the original whole network (NL is normally significantly smaller than the 

total number pipes). However, the computational effort for iterative BLP 

optimization in this GA-BLP approach is massive when dealing with large water 
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networks since BLP has been found to be extremely inefficient when tackling large 

optimization problems (Savic and Cunha 2008; Martínez 2008). 

In the current paper, a novel hybrid optimization approach that combines BLP and 

DE is proposed for optimizing the design of WDSs. Three stages are proposed in the 

BLP-DE method. In the first stage, the full water network that is being optimized is 

decomposed into trees and the core using a graph decomposition algorithm. In the 

second stage, the trees of the original full network are individually optimized by 

BLP. In the third stage, the core of the original full network is optimized by a DE 

algorithm and the optimal solutions for the trees obtained in the second stage are 

incorporated during the DE optimization. The proposed BLP-DE method has been 

verified by two benchmark case studies each with a single demand loading case and a 

larger real-world network with multiple loading cases. The details of the proposed 

BLP-DE method are given in the next section. 

THE PROPOSED BLP-DE METHOD 

The first stage: water network decomposition 

Deuerlein (2008) introduced the novel idea of decomposing a water network based on its 

connectivity properties, using terms and concepts drawn from graph theory; and describe 

how a full WDS could be decomposed into forests, blocks and bridges. This 

decomposition allowed various types of systems analysis to be conducted on water 

supply networks. In the first stage of the proposed method, the full water network is 

decomposed into two main components, rather than the forest, blocks and bridges. These 

two components are trees and the core, where trees are the outer component of the 

network, while the core is the inner component of the network (Deuerlein 2008).  

Figure 1 represents the network layout of the New York tunnels problem (NYTP), a case 

study often used to test methods of WDS optimization. The NYTP is a pipe duplication 

optimization problem, the details of which are given by Dandy et al. (1996).  
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Figure 1 The network layout of the New York Tunnels problem 

Normally, a WDS can be described as a graph G(V,E), in which, vertices (V) of the graph 

represent the nodes of the WDS, and edges (E) of the graph represent links between 

nodes. For the NYTP network G(V,E) given in Figure 1, V={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15, 16, 17, 18, 19, 20} and E={[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], 

[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21]}.  

In graph theory, a connected graph without any loops is referred as a tree (T) (Deo 1974). 

Based on the decomposition method proposed by Deuerlein (2008), the trees (Ts) and the 

core (C) of the NYTP network G(V,E) (see Figure 1) are obtained and shown in Figure 

2, where G(V,E)= Ts∪C.  
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Figure 2 The decomposition results of the New York Tunnels problem 

As shown in Figure 2, two trees are identified after decomposition, including T1={10, 17, 

[9], [16]} and T2={18, 19, [17], [18]}, where 10, 17, 18 and 19 are nodes, and [9], [16], 

[17] and [18] are links in Figure 1. The remaining nodes and pipes form the core (C) of 

the NYTP network, where C={1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 20, [1], [2], 

[3], [4], [5], [6], [7], [8], [10], [11], [12], [13], [14], [15], [19], [20], [21]}. As can be seen 

from Figure 2, the trees and the core (C) overlap at the nodes 9 and 12, i.e., T1 ∩ C=9 and 

T2 ∩ C =12. The nodes that connect the core and the trees in the original water networks 

are defined as root nodes r (Deuerlein 2008). Thus, for the NYTP network given in 

Figure 1, nodes 9 and 12 are root nodes, i.e., r(T1)=9 and r(T2)=12, as shown in Figure 2.  
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The second stage: BLP optimization for the trees 

In the proposed method, binary linear programming (BLP) is employed in the second 

stage to optimize the design of the trees obtained at the end of the first stage. Since the 

WDS optimization problem is mathematically nonlinear due to the nonlinearity of the 

head loss equation, during BLP, zero-one variables are used as decision variables in 

order to convert the optimization problem from a nonlinear to a binary linear system. The 

trees of the original full network are individually optimized by BLP in the proposed 

method. The BLP formulation for tree optimization is given as follows. 

Objective function of BLP 

The objective function involved for the least-cost WDS design is normally the sum of the 

construction cost of each pipe in the WDS. The objective function F for a tree in BLP is 

given by: 

   
1 1

)C(DLXF j

N

i

P

j
iij∑∑

= =

=
 

(1) 

where N is the total number of pipes that needs to be optimized; P is the total number 

of commercially discrete pipe diameters that can be used; Li is the length of pipe i; 

C(Dj) is the unit length cost of the pipe diameter Dj and Xij is the zero-one variable.  

In Equation (1), Xij=1 indicates that the diameter Dj is selected for pipe i while Xij=0 

indicates that the diameter Dj is not selected for pipe i. No nonlinear terms are 

involved in the objective function F. 

Constraints of BLP 

Normally, when designing a WDS the hydraulic balance for the water network 

(including a continuity equation at each node and the energy conservation for each 

primary loop and required path) and the head requirement for each node are usually 

constraints that need to be satisfied. In the proposed method, however, BLP is only 

employed to deal with the trees of the original full network. Therefore, the hydraulic 

balance does not need to be considered as a constraint since no loops are involved in 
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the trees and the flows at each pipe in the trees can be determined for each demand 

loading case before BLP optimization is carried out.  

The head requirement for each node still needs to be considered as a constraint for 

the BLP optimization in the second stage of the proposed method. The Hazen-

Williams or Darcy-Weisbach formula may be used during the BLP to determine the 

head loss for each pipe. For the Hazen-Williams formulation,  

TiTNnq
DC

XL
h

P

j

n
i

jj

ijin
fi ∈∈=∑  ,     )(   α

βαω  (2) 

where n
fih  is the frictional head loss for pipe i for demand loading case n in the tree 

(T) that is being optimized; niq =flows in pipe i for demand loading case n; TN= total 

number of demand loading cases; P=total number of available pipe diameters; ω

=numerical conversion constant which depends on the units of flows and diameters; 

α , β =coefficients; jC =Hazen-Williams coefficient of pipe diameter Dj.  

As can be seen from Equation (2), for pipe i, each pipe diameter Dj is considered as 

its potential option. The final diameter for pipe i is selected by using Xij (the zero-one 

variables), where Xij=1 implies that diameter Dj is used for pipe i and then the nfih  is 

based on the selected diameter Dj; a value of Xij=0 means that diameter Dj is not 

selected for pipe i and no head loss is involved for the diameter Dj.  

The only unknown in Equation (2) is Xij (the zero-one variables) since n
iq  is already 

determined for each link in the tree and each commercially available pipe diameter is 

known. Consequently, by utilizing the zero-one decision variables Xij, the nonlinear 

Hazen-Williams formula is converted to a linear formula.  

In the proposed BLP, the constraint for each node k is that the total head loss used by 

the pipes involved in the water supply path from source node R to node k should be 

less than the value of the head at the source node minus the head requirement at node 

k for each demand loading case, which is given by: 
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where RH  is the available head provided by the source node (R) of the tree that is 

being optimized by BLP; min
,nkH  is the minimum head requirement for node k in the 

tree (T) for demand loading case n; Wk-R is the water supply path from source node R 

to node k (only one path is available for each node k to receive water demand from 

the source node R in a tree). ∑
k-RW

m

n
fmh  is total head loss involved in water supply path 

Wk-R for demand loading case n∈TN.  

An additional constraint in BLP is that the sum of Xij for each link i must be equal 1 

as only one pipe diameter is selected for each link, which is given by: 

  X 
P

j
ij 1  

1

=∑
=

 (4) 

BLP optimization for the trees 

It is noted that no supply sources (R) are available for trees that are obtained by 

decomposing the original whole network and hence RH  is unknown in Equation (3). 

For the trees T1 and T2 given in Figure 2, no supply source is available for these two 

trees obtained by decomposition. For the purposes of the proposed optimization 

method, however, the root nodes r are assumed as the supply source nodes for the 

trees. This is because the root nodes are the connection of the trees and the core and 

all the water demands required by a particular tree are delivered via its corresponding 

root node. As such, the supply source nodes for T1 and T2 in Figure (2) are r(T1)=9 

and r(T2)=12 respectively.  

The water demands at the root nodes are not considered when conducting the tree 

optimization using BLP. A series of assumed RH  values are used for each root node 

to enable BLP optimization of the corresponding tree. In the proposed method, RH  

values are selected from a pre-specified head range with a particular interval (of say 1 

foot or 0.1 meters). The lower boundary of the head range is the maximum value of 
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the head requirement across the whole tree (Hmin= )max( min
kH ), while the upper 

boundary of the head range is the head provided by the supply source node of the 

original full network (Hmax=Hs). T1 of the NYTP network given in Figure 2 is used to 

illustrate the proposed BLP optimization algorithm. For the NYTP case study, a 

single demand loading case was specified as per the original paper (Schaake and Lai 

1969). 

For T1, Hmin=272.8 ft and Hmax=300 ft, where 272.8 ft is the maximum value of the 

minimum allowable head requirement of all nodes contained within T1 (nodes 10 and 

17 as shown in Figure 2) and 300 ft is the allowable head provided by the reservoir 

given in Figure 1 (the head information is given by Dandy et al. 1996). 

A series of values of RH  ( ]300 ,8.272[∈RH ) with an increment of 1 ft is used for 

root node r(T1). BLP is formulated (see Equations (1), (2) and (3)) for each RH  value 

and solved. The final solutions for T1 with different RH  assigned for r(T1) are 

presented in Table 1. 

Table 1 Optimal solutions for T1 of the NYTP 

HR at R(T1) 
(ft)  

Cost of Optimal 
solutions from BLP 

($) 

Duplicate pipe 
diameters1 
(inches) 

Minimum 
pressure head 

excess (He) (ft)
1 

eRR HHH −=*  
(ft) 

272.8 Infeasible solution - - - 
273.8 8,337,060 (0, 96) 0.09 273.71 
274.8 7,0648,50 (0, 84) 0.64 274.16 
275.8 5,835,646 (0, 72) 0.96 274.84 
276.8 4,654,834 (0, 60) 1.00 275.80 
277.8 3,529,683 (0, 48) 0.77 277.03 
278.8 2,470,653 (0, 36) 0.47 278.33 
279.8 2,470,653 (0, 36) 1.47 278.33 
280.82 0 (0, 0) 0.71 280.09 

1The first diameter is for link 9 and the second diameter is for link 16 in Figure 1. 2The solution is 
zero in cost as no pipe needs to be duplicated when the HR is greater than 280.8 ft and hence these 
solutions are not given in Table 1. 

As can be seen from Table 1, a lower cost solution was found by BLP when a higher 

head was assigned for r(T1). When RH  is equal to or larger than 280.8 ft, no pipes 

need to be duplicated and hence the solution is zero in cost since NYTP is a pipe 

duplication optimization problem. The fourth column of Table 1 displays the 

minimum pressure head excess He across the tree for each optimal solution obtained 
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by BLP. For each optimal solution, the corresponding RH  can be further reduced by 

its corresponding He while still maintaining its feasibility. For example, there is a 

minimum pressure excess of 0.09 ft (He =0.09 ft) for the optimal solution with RH

=273.8 ft at r(T1) (as shown in the third row of Table 1). This RH  value can be 

reduced to 273.71 ft while still guaranteeing the feasibility of the optimal solution. 

The reduced RH  value is denoted as *RH , which is the minimum head required at 

r(T1) to maintain the feasibility of its corresponding optimal solution (  *
eRR HHH −= ). 

*
RH  values for all the optimal solutions for T1 are provided in the fifth column of 

Table 1. It should be noted that for each optimal solution, the eH  value varies for 

different demand loading cases and the *
RH  value is therefore different for each 

loading case.  

A solution choice table is developed for T1 (denoted as S(T1)) including the *
RH  

values, the optimal solution costs and the pipe diameters of the optimal solutions. In 

S(T1), each unique *
RH  is associated with a unique optimal solution (including the 

cost and the pipe diameters for each link of T1). In addition, *
RH  in the solution 

choice table is sorted from the smallest to the largest, while the optimal solution cost 

is sorted from the largest to the smallest. For each tree of the original full network, a 

solution choice table is constituted during the second stage of the proposed 

optimization method. For a water network having a total of TN demand loading 

cases, the solution choice table is composed of the optimal costs, pipe diameters for 

each optimal solution and * ,nRH  (n∈TN) values for each demand loading case. In the 

solution choice table, each demand loading case is associated with a different set of 
*

,nRH  values but the same optimal costs and the pipe diameters for the tree. 

The third stage: DE optimization for the core 

During the third stage of the proposed optimization method, a differential evolution 

(DE) algorithm is employed to optimize the design for the core of the original full 

network. The water demands at the root nodes in the core have to be increased by the 

total water demands of their corresponding trees before DE optimization. For the 
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example given in Figure 2, the water demands of T1 and T2 are added to the demands 

at node r(T1)=9 and r(T2)=12 in the cores respectively. Furthermore, during the DE 

optimization of the core, the optimal solutions obtained for the trees during the 

second stage are incorporated. The proposed DE optimization algorithm for the core 

is given as follows.  

(1) A total of N solutions (pipe diameter combinations for the core) are randomly 

generated for the core to initialize the DE search, where N is the population 

size of the DE algorithm. It should be noted here that only the pipes in the core 

are handled by the DE algorithm in the third stage of the proposed method. 

(2) For each individual solution, a hydraulic solver (EPANET2.0 [Rossman 2000]) 

was used in this study) is used to obtain the head at each node for each demand 

loading case. The head at each root node in the core for demand loading case n 

is tracked (denote as #,nRH ). 

(3) The total pipe cost of the core (PC) is computed for each individual solution of 

the DE algorithm. In addition, a penalty cost (PE) is computed for the solution 

has head deficits at the nodes in the core.  

(4) The optimal solutions for the trees during in the second stage are now 

incorporated into the DE process. The optimal solutions of trees are selected 

from their corresponding solution choice tables based on the head at the root 

nodes. The selection of the optimal solution for each tree from its 

corresponding solution choice table is guided by one of two possible sets of 

circumstances: 

(i) If any head value at a root node for loading case n∈TN ( #
,nRH ) in the core 

obtained by a hydraulic solver is smaller than the minimum *
,nRH  value 

associated with its corresponding demand loading case n in the solution 

choice table of its corresponding tree, the optimal solution cost associated 

with the minimum *
,nRH  is added to the PC. Additionally, a penalty cost is 

added to the PE for this individual solution as no feasible solution is found 

for this tree to satisfy the head constraints for all demand loading cases. 
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(ii)  If all #
,nRH  values in the core are greater than the minimum* ,nRH  values of 

their corresponding demand loading cases in the solution choice table, the 

minimum optimal solution in terms of cost in the choice table that has all 
*

,nRH  values smaller than their corresponding #
,nRH  values is selected and 

added to PC. 

The total pipe cost is obtained, therefore, by combining the selected optimal 

solution cost for each tree and the cost for the core. The total penalty cost is 

achieved by adding the penalty cost for each tree (if applicable) and the penalty 

cost of the core (if applicable). 

(5) The objective function value is obtained for each individual solution of the DE 

by adding the total pipe cost and the total penalty cost. Then the mutation, 

crossover and selection operators of the DE are carried out to generate the 

offspring.  

(6) Steps (2) to (5) are performed iteratively until the convergence criterion is 

satisfied.  

During the DE optimization, real continuous values for the pipe diameter are created 

in the mutation process although discrete pipe diameters are used to initialize the 

search. In the proposed method, the real diameter values are rounded to the nearest 

commercially discrete pipe diameters after the mutation operator of the DE is 

performed. Since the optimal solutions for the trees are included when the DE is 

optimizing the core, the final solution obtained is actually the optimal solution for the 

whole original network. However, the decision variables handled by the DE are only 

the pipes in the core as the solutions for the trees are selected from their existing 

solution choice tables. The DE, therefore, has a significantly reduced search space to 

explore, as defined by the core, while optimal solutions are provided for the whole 

network. This is the great benefit of the proposed optimization method.  
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CASE STUDIES 

Two benchmark WDS case studies each with a single demand loading case are used 

to demonstrate the effectiveness of the proposed coupled BLP-DE method. These 

studies are the New York Tunnels problem (NYTP) and the Hanoi Problem (HP). A 

real-world WDS case study with multiple demand loading cases is then used to 

further verify the effectiveness of the BLP-DE method in terms of dealing with a 

relatively large and more complex case study. The DE algorithm and the BLP 

formulation were coded using Matlab 7.5 and the BLP was solved by the ‘bintprog’ 

function in the Matlab 7.5. It is noted that the EPANET2.0 was used in this paper to 

enable the hydraulic simulation. The Hazen-Williams equation (Equation (2)) was 

used. The coefficients of Hazen-Williams equation used in this paper according to 

those used in EPANET 2.0 were ω =10.670 (SI units used in this study); α  =1.852 

and β =4.871. For the NYTP and HP benchmark case studies, all the previously 

published results presented in this paper have used EPANET2.0 as the hydraulic 

simulation model and hence utilized the same coefficients of Hazen-Williams 

equation as those used in the proposed method. This therefore enables a fair 

comparison between the proposed BLP-DE method and other previously published 

algorithms.  

Case study 1: New York Tunnels Problem (21 decision variables) 

The layout of the NYTP and the decomposition results of the NYTP were given in 

Figure 1 and 2 respectively. Two trees were identified for the NYTP network and a 

series of values of RH  ( ]300 ,8.272[∈RH ) with an increment of 1 foot was used for 

r(T1)=9 to enable the BLP optimization for T1. For T2, a series of values of RH  (

]300 ,255[∈RH ) with an increment of 1 foot was used for r(T2)=12 to conduct BLP 

optimization. A solution choice table was generated for each tree of the NYTP case 

study in the second stage of the proposed BLP-DE approach. Figure 3 gives the *
RH  

value versus the optimal solution cost in the solution choice table for each tree.  
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Figure 3 The *
RH  versus the optimal costs in the solution choice tables of two 

trees for the NYTP case study. 

As shown in Figure 3, only seven different optimal solutions were found for T1 with a 

large range of assumed heads at root node r(T1), while 23 different optimal solutions 

can be located for T2. For each tree, the optimal solution cost decreases as the head 

value at the root node increases. These optimal solutions are used to generate solution 

choice tables that are used during the third stage of the proposed method  

The number of decision variables in the core is 17, compared to 21 decision variables 

in the original full NYTP, as four pipes are located in the trees. A population size (N) 

of 50, a weighing factor (F) of 0.5 and a crossover rate (Cr) of 0.5 are used for the 

DE applied to the core optimization in the third stage of the proposed method. The 

number of maximum allowable evaluations (NMAE) is 7,500 and 100 runs with 

different starting random number seeds are performed for the DE applied to the core. 

The results of the proposed BLP-DE method and other optimization algorithms that 

have previously been applied to the NYTP case study are presented in Table 2.  

The current best known solution for the NYTP case study is $38.64 million (Maier et 

al. 2003). In the current study, this best solution was found with a 100% success rate 

by the proposed BLP-DE method over 100 different runs. The rate at which the best 
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known solution is found by the new BLP-DE method is higher than all the other 

optimization algorithms in Table 2. 

The most noticeable advantage of the proposed BLP-DE method over other 

optimization algorithms is the efficiency improvement. The proposed BLP-DE 

approach required only an average of 3,486 evaluations over 100 different runs to 

find the optimal solutions, which is significantly less than those required by all the 

other algorithms given in Table 2. It can be concluded that, for the NYTP case study, 

the proposed BLP-DE outperformed all the other optimization algorithms given in 

Table 2 in terms of percentage with the current best solution found and efficiency.  

Table 2 Summary of the results of the proposed method and other EAs 
applied to the NYTP case study 

(1) (2) (3) (4) (5) (6) (7) 

Algorithm10 
 

No. 
of 

runs  

Best 
solution 

($M)  

Percent of 
trials with 

best solution 
found  

Average 
cost 
($M)  

Average 
evaluations to 

find first 
occurrence of 

the best solution  

Maximum 
allowable 

evaluations or 
evaluations for 
convergence  

BLP-DE1 100 38.64 100% 38.64 3,4869 7,500 
NLP-DE2 100 38.64 99% 38.64 8,277 20,000 
GHEST3 60 38.64 92% 38.64 11,464 - 

HD-DDS4 50 38.64 86% 38.64 13,000 50,000 
Suribabu 

DE5 
300 38.64 71% NA 5,492 10,000 

Scatter 
Search6 

100 38.64 65% NA 57,583 - 

MMAS7 20 38.64 60% 38.84 30,700 50,000 
PSO 

variant8 
2000 38.64 30% 38.83 - 80,000 

1Results from this study. 2Zheng et al. (2011). 3Bolognesi et al. (2010). 4Tolson et al. (2009). 5Suribabu 
(2010). 6Lin et al. (2007). 7Zecchin et al. (2007). 8Montalvo et al. (2008). 9The total computational 
overhead required by proposed BLP-DE method has been converted to the equivalent number of full 
NYTP evaluations. 10Results are ranked based on column (4). 

It should be noted that all the computational overhead of the proposed BLP-DE 

method (including the BLP optimization for the trees and the DE optimization for the 

core) was converted to the equivalent number of full NYTP network evaluations 

using the same computer configuration. In particular, the full network was run 1000 

times with randomly selected pipe configurations using the Matlab code developed 

for this proposed method. The average computational time for each full network 
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simulation was obtained. Then the total computational time used by the core 

optimization and the BLP optimization applied to the trees was converted to the 

equivalent time for full network simulations. This allows a fair comparison between 

the proposed BLP-DE method and other optimization algorithms in terms of 

efficiency. This computational analysis approach has been used for each case study 

investigated in this paper. 

Case study 2: Hanoi Problem (34 decision variables) 

The Hanoi Problem (HP) (Fujiwara and Khang 1990) has frequently been used as a 

benchmark WDS case study to test the performance of various optimization 

algorithms. The layout of the HP is given in Figure 4. The details of the HP, the 

available pipe diameters and the cost of these diameters are given by Fujiwara and 

Khang (1990). 

 

Figure 4 The network layout of the HP case study 
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The decomposition results for the HP network in the first stage of the proposed BLP-

DE method are given in Figure 5. As shown in Figure 5, two trees were identified for 

the HP network including T1={11, 12, 13, [10], [11], [12]} and T2={21, 22, [21], 

[22]}, where 11, 12, 13, 21 and 22 are nodes, and [10], [11], [12], [21] and [22] are 

links. r(T1)=10 and r(T2)=20 are root nodes of the T1 and T2 respectively as T1 ∩ 

C=10 and T2 ∩ C =20 (C is the core of the HP network as shown in Figure 5). 

 

Figure 5 The decomposition results of the HP case study 
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*
RH  and the optimal solution costs from the solution choice table for each tree are 

presented in Figure 6. 

As shown in Figure 6, 18 different optimal solutions were found for each of both T1 

and T2 of the HP network, although 700 BLP runs with a range of heads between 30 

and 100 meters at the root nodes (0.1 meter interval) were performed for each tree. 

This indicates that a larger interval (of say 0.5 meter or 1 meter) may be enough to 

obtain these 18 optimal solutions for each tree. However, due to the extreme 

efficiency for the BLP applied to the tree optimization, a relatively small interval (0.1 

meter) was used in this study to improve the likelihood of including all possible 

optimal solutions. These optimal solutions are used to form solution choice tables for 

the trees, which are used for the DE optimization in the third stage of the proposed 

method. 

 

Figure 6 The *
RH  versus the optimal costs in the solution choice tables of two 

trees for the HP case study. 
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search space of the core. As such, the optimal solutions for the tree are used in 

conjunction with solutions from the core to yield optimal solutions for the whole HP 

network. 

Table 3 provides the final results of the proposed BLP-DE approach applied to the 

HP case study. The other previously published results for the HP case study are also 

included in Table 3 to enable the performance comparison. The current best known 

solution for the HP case study, with a cost of $6.081 million, was first found by Reca 

and Martínez (2006). As shown in Table 3, the proposed BLP-DE performs the best 

in terms of the percentage of the current best solution found for the HP case study. 

This is reflected by the fact that the proposed BLP-DE found the current best solution 

for the HP case study 98% of the time over 100 runs using different starting random 

number seeds, which is higher than all the other algorithms given in Table 3.  

Table 3 Summary of the results of the proposed BLP-DE method and other 
EAs applied to the HP case study 

(1) (2) (3) (4) (5) (6) (7) 

Algorithm11 
 

No. of 
runs  

Best 
solution 

($M) 

Percent of 
trials with 

best 
solution 
found 

Average 
cost 
($M) 

Average 
evaluations to 

find first 
occurrence of 

the best solution 

Maximum 
allowable 

evaluations or 
evaluations for 
convergence 

BLP-DE1 100 6.081 98% 6.085 33,14810 40,000 
NLP-DE2 100 6.081 97% 6.082 34,609 80,000 
Suribabu 

DE3 
300 6.081 80% NA 48,724 100,000 

Scatter 
Search4 

100 6.081 64% NA 43,149 - 

GHEST5 60 6.081 38% 6.175 50,134 - 
GENOME6 10 6.081 10% 6.248 NA 150,000 
HD-DDS7 50 6.081 8% 6.252 100,000 100,000 

PSO 
variant8 

2000 6.081 5% 6.310 NA 500,000 

MMAS9 20 6.134 0% 6.386 85,600 100,000 
1Results from this study. 2Zheng et al. (2011). 3Suribabu (2010). 4Lin et al. (2007). 5Bolognesi et al. 
(2010). 6Reca and Martínez (2006). 7Tolson et al. (2009). 8Montalvo et al. (2008). 9Zecchin et al. 
(2007). 10The total computational overhead required by proposed BLP-DE method has been converted 
to the equivalent number of full HP evaluations. 11Results are ranked based on column (4). 

The total computational effort required by the proposed BLP-DE method, including 

the BLP optimization for the trees and the DE optimization for the core, has been 

converted to the equivalent number of full HP network evaluations. As displayed in 
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Table 3, the proposed BLP-DE used an average number of 33,148 evaluations to find 

the optimal solutions, which is fewer than all the other algorithms shown in Table 3. 

This indicates that the proposed BLP-DE is able to find optimal solutions more 

quickly than other algorithms.  

Case study 3: Real-world network case study (96 decision variables) 

The real-world network case study (denoted as RN case study) was taken from a 

small town in the south of China. This is a completely new case study and has not 

been previously studied. The RN network has 96 pipes, 85 demand nodes and one 

reservoir with a fixed head of 50 meters. Three demands loading cases have been 

considered for this network including a peak hour demand loading case and two fire 

loading cases. The layout of RN case study and the two fire loading positions are 

shown in Figure 7. 

 

Figure 7 The network layout of the RN case study 
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The objective of this case study is to determine the least-cost design of this water 

network, while satisfying a minimum pressure of 15 meters at each demand node for 

all demand loading cases and 10 meters only at the fire demand loading nodes during 

the two separate fire loading cases. All the pipes have an identical Hazen-Williams 

coefficient of 130. A total of 14 commercially available pipe diameters ranging from 

150 mm up to 1000 mm are available for selection for each pipe and the cost of each 

pipe is given by Kadu et al. (2008). 

The graph decomposition algorithm was applied to RN case study in the first stage of 

the proposed method in order to identify the trees and the core. The decomposition 

results are given in Figure 8. As shown in Figure 8, a total of eight trees are 

determined and 43 pipes are assigned to these trees.  

 

Figure 8 The decomposition results of the RN case study 

In the second stage of the proposed method, eight solutions choice tables were 

generated for the trees. The number of pipes involved in the core of RN case study is 
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53 since 43 pipes are assigned to trees (96 pipes exist in the full RN case study). 

Thus, only the 53 pipes rather than the 96 pipes are handled by the DE in the third 

stage of the proposed method. For the DE applied to the core optimization of the RN 

case study, N=150, F=0.4 and Cr=0.8 were selected based on a few parameter trials. 

The maximum number of allowable evaluations was set 75,000 (NMAE=75,000). 

In order to enable a performance comparison, a standard DE (SDE) was also applied 

to the original full RN case study (96 pipes). For the SDE, N=300, F=0.3, Cr=0.8 and 

NMAE=600,000 were selected based on a detailed preliminary analysis. Ten runs 

with different starting random number seeds were performed for the DE applied to 

the core in the third stage of the proposed method and the SDE applied to the original 

full network (the proposed method and the SDE used the same random number 

seeds). It is not necessary to perform multiple runs for the tree optimization in the 

second stage of the proposed method. This is because that the same solutions are 

found for the trees using the deterministic BLP method. The solutions of the 

proposed BLP-DE method and the SDE algorithm applied to the BN case study are 

provided in Figure 9.  

 

Figure 9 Solution distributions of two algorithms applied to the RN case study 
(10 runs for each) 
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It is clearly shown in Figure 9 that the proposed BLP-DE method significantly 

outperformed the standard different evolution (SDE) with calibrated parameter values 

for the RN case study in terms of solution quality and efficiency. In addition, it is 

observed that the solutions produced by the proposed BLP-DE are less scattered than 

those generated by the SDE based on ten different runs. This indicates that the 

performance the proposed BLP-DE approach is less affected by the random number 

seeds than that of the SDE. The proposed method is therefore able to yield good 

quality optimal solutions with a higher confidence level.  

The results of the proposed BLP-DE and the SDE applied to the RN case study are 

provided in Table 4. As shown in Table 4, the proposed BLP-DE found a best 

solution for the RN case study with a cost of $6.16 million. The best solution found 

by the SDE was $6.24 million, which is 1.3% higher than the best solution produced 

by the proposed BLP-DE method. The average cost solution over 10 runs found by 

the BLP-DE method was $6.18 million, which is only 0.3% higher than the best 

solution ($6.16 million found by the proposed BLP-DE method in this study) while 

2.1% lower than that generated by the SDE. 

Table 4 Summary of the results of the proposed BLP-DE method and the SDE 
applied to the RN case study 

Algorithm 
 

No. 
of 

runs  

Best 
solution 

($M) 

Percent 
of trials 
with best 
solution 
found 

Average 
cost 
($M) 

Average 
evaluations to 

find first 
occurrence of 

the best 
solution 

Maximum 
allowable 

evaluations  

Total execution 
time (hours) for 
10 runs to find 

optimal solutions 
on Matlab 7.53 

BLP-DE1 10 6.16 10 6.18 73,0922 75,000 2.2 

SDE1 10 6.24 0 6.31 405,330 600,000 12.4 

1Results from this study. 2The total computational overhead required by proposed BLP-DE method has 
been converted to the equivalent number of full RN evaluations. 3The computer configuration is a 3.0 
GHz Pentium PC (Inter R). 

In terms of efficiency, the proposed BLP-DE was approximately 4.5 times more 

efficiently in terms of average numbers of evaluations than the SDE in finding 

optimal solutions for this case study. This is evidenced by the fact that the average 

number of equivalent full network evaluations required by the proposed BLP-DE 



CHAPTER 7. JOURNAL PAPER 5-COUPLED BLP-DE METHOD FOR WDS OPTIMIZATION  

188 

method for convergence was 73,092, which is only 18% of the number of evaluations 

required by the SDE. The average number of 73,092 was obtained by converting the 

total computational overhead of the proposed method to the equivalent number of full 

RN network evaluations. In terms of comparing the execution time in Matlab 7.5, the 

proposed method required a total of 2.2 hours to find optimal solutions for ten 

optimization runs, while the SDE needed a total of 12.4 hours to arrive at optimal 

solutions for ten runs. For the proposed method, the total execution time for the BLP 

optimization was 0.48 hours, which is 21% of that required by the total execution 

time of the proposed BLP-DE method. Note that the graph decomposition process is 

extremely efficient and hence its computational overhead is not included.  

CONCLUSIONS 

In this paper, a novel coupled binary linear programming and differential evolution 

(BLP-DE) optimization approach based on network decomposition is proposed for 

dealing with WDS optimization problems. Three stages are involved in the proposed 

BLP-DE optimization method. These are (i) the full water network is decomposed 

into trees and the core using a graph decomposition algorithm; (ii) the trees are 

individually optimized by BLP and a solution choice table is constituted for each tree 

and (iii) a DE is employed to optimize the core of the original full network while 

incorporating the optimal solutions for any tree. Different components of the original 

full network are, therefore, optimized by different optimization algorithms.  

The proposed BLP-DE method has been applied to three case studies and the results 

compared with those of other algorithms. For the NYTP and HP case studies, the 

proposed BLP-DE method found the current best known solutions for both of them 

with a higher success rate and a significantly improved efficiency compared to other 

algorithms given in Tables 2 and 3. For the relatively larger and more complex case 

study (RN case study with three demand loading cases: 96 decision variables), the 

proposed BLP-DE was able to find better quality optimal solutions than a standard 

differential evolution (SDE) with approximately 4.5 times faster convergence speed. 
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Thus, the proposed method shows substantial promise as a tool for finding good 

quality solutions for relatively large water networks.  

It should be noted that the proposed BLP-DE method is not appropriate to optimize 

the types of water networks having only loops or only trees. However, it is very 

common for a water network to have loops and multiple trees in practice and the 

proposed BLP-DE method has advantages in efficiently finding good quality optimal 

solutions for this common type of network over other optimization methods as 

demonstrated in this paper. It has been also found in this study that the computational 

overhead increases significantly when the number of decision variables in the tree 

handled by the BLP increases. Thus, the proposed method would need to be further 

developed when dealing with the water network having very large trees to be 

optimized by the BLP. Other future studies on this research line may include (i) the 

application of the proposed BLP-DE method to deal with the optimization of 

complex water networks, which may have pumps, valves and tanks involved, and (ii) 

the extension of the proposed BLP-DE method to tackle the multi-objective 

optimization problem for WDSs. 
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Chapter 8. Journal Paper 6-Decomposition Optimization of WDS 
with Multiple Sources 

8.1 Synopsis 

A decomposition and multi-stage optimization approach applied to the optimization 

of water distribution systems with multiple supply sources  

Chapters 3, 4 and 5 have outlined the research outcomes based on the first objective of 

this study (see Section 1.1 in Chapter 1). Chapters 6 and 7 have introduced two new 

hybrid optimization approaches for optimizing water distribution systems (WDSs) 

developed in this research, which is the second objective of this study. These two 

methods have been demonstrated to be effective in terms of efficiently finding good 

quality optimal solutions based on testing real-world sized water distribution systems.  

For the third and fourth objectives presented in Section 1.1 of Chapter 1, two advanced 

optimization methods that incorporate graph decomposition techniques during the 

optimization process have been developed in this research, which are outlined in 

Chapters 8 and 9. Two new water network decomposition concepts have been developed 

to facilitate network optimization, which are optimal source partitioning technique and 

the sub-network identification approach. These two network decomposition methods are 

presented in Chapters 8 and 9 respectively. 

In this Chapter, a decomposition and multi-stage optimization method developed in this 

research is introduced. For a WDS, a multiple source of supply strategy is normally 

adopted in addition to the presence of loops in the WDS in order to improve supply 

reliability. For such a complex WDS with multiple supply sources (WDS-MSS), existing 

algorithms normally tackle the system as a whole in order to find optimal design 

solutions. In contrast, a decomposition and multi-stage optimization approach is 

developed in this research to deal with the optimization for the WDS-MSS design.  

In the proposed decomposition and multi-stage optimization method, an algorithm is 

developed to identify the optimal source partitioning cut-set for a WDS with K supply 
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sources. As such, the whole original WDS is decomposed to K sub-networks by 

removing the optimal source partitioning cut-set. For each sub-network, one and only 

one supply source is assigned. Each sub-network is then optimized by a DE algorithm 

independently, which is the first stage optimization phase. It is expected that the optimal 

solution for each sub-network will be achieved with great efficiency as a significantly 

reduced search space (compared with the original search space of the entire network) is 

explored by the DE algorithm. 

The optimal solutions for all sub-networks are then combined to provide an approximate 

optimal solution for the whole original network. However, this approximate optimal 

solution needs to be further improved as the pipes within the optimal source partitioning 

cut-set are not included during the sub-network optimization (first stage optimization). 

Thus, a second phase DE is used to explore the search space in the region around the 

obtained approximate optimal solution and better quality solutions for the whole WDS 

are expected to be found with significant reduced computational effort. This is the 

second stage of the optimization process. 

The concept of multi-stage optimization is based on the decomposition of large-scale and 

complex systems into independent subsystems (although these sub-systems are actually 

interconnected and are not truly independent of one another). Each subsystem is 

optimized independently, and the optimal solutions for each subsystem are then 

combined together to derive the optimal solution for the whole system. This is the first 

known work to undertake the multi-stage optimization technique for designing WDS.  

This work has been published in Water Resources Research and the paper is presented 

here. 

Citation of Paper 

Zheng, F., A. R. Simpson, and A. C. Zecchin (2012d). “A decomposition and multi-

stage optimization approach applied to optimization of water distribution systems with 

multiple sources.” Water Resources Research, doi:10.1029/2012WR013160. 
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8.2 Journal Paper 6: A decomposition and multi-stage 
optimization approach applied to the optimization of water 
distribution systems with multiple supply sources (Published in 
Water Resources Research) 

Feifei Zheng, Aaron C. Zecchin and Angus R. Simpson  

Abstract 

The aim of this paper is to present a decomposition and multi-stage approach for 

optimizing the design of water distribution systems with multiple supply sources (WDS-

MSS). An algorithm is first proposed to identify the optimal source partitioning cut-set 

for a WDS-MSS. A WDS with K supply sources is therefore decomposed to K 

disconnected sub-networks by the removal of the determined cut-set. Then a total of K 

separate differential evolution (DE) algorithms are used to optimize the designs for the K 

sub-networks respectively. This is the first optimization stage. The optimal solutions for 

the K sub-networks plus the optimal cut-set being the minimum allowable pipe sizes are 

used to create a tailored seeding table. This table is used to initialize a second stage DE 

algorithm to optimize the whole of the original WDS, which is the second stage of the 

optimization process. Four WDS-MSS case studies are used to demonstrate the 

effectiveness of the proposed method. A standard DE algorithm (SDE) seeded by the 

total choice table rather than the tailored seeding table is applied to the entire network for 

each case study and the results are compared with those of the proposed method in terms 

of efficiency and solution quality. The comparison demonstrates that the proposed 

method (i.e., decomposition followed by multi-stage optimization) shows better 

performance than results from a whole of network optimization. Additionally, the 

proposed method also exhibits significantly improved performance compared with the 

optimization techniques that have been previously used to optimize these case studies. 

1. Introduction 

Over the last four decades, significant research has been undertaken to develop 

techniques to optimize the design of water distribution systems (WDSs). Various 
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optimization techniques including traditional optimization methods and evolutionary 

algorithms (EAs) have been applied to WDS optimization and these are summarized 

in Table 1 (it should be noted that only the first significant paper for each 

optimization technique applied to WDS optimization is provided in Table 1). 

Traditional optimization techniques such as linear programming (LP) and nonlinear 

programming (NLP) often converge at local optimal solutions due to the 

nonsmoothness properties of the WDS optimization problem [Eiger et al. 1994]. EAs 

given in Table 1 have been demonstrated to be able to find better quality solutions 

than traditional optimization methods based on testing on a number of WDS case 

studies. One major drawback with using EAs, however, is that they require a large 

number of network evaluations to find optimal solutions, resulting in an expensive 

computational overhead, especially for relatively large case studies. Thus, it is 

difficult for these EAs to find good quality optimal solutions for real-world sized 

WDSs, as these systems are generally complex, with large numbers of decision 

variables. 

Table 1 Types of previously used optimization techniques applied to WDS 
optimization 

Algorithm1 First reference 
Linear programming (LP) Alperovits and Shamir [1977] 
Nonlinear programming (NLP) Fujiwara and Khang [1990] 
Standard genetic algorithm (SGA) Simpson et al. [1994] 
Modified genetic algorithm (MGA) Dandy et al. [1996] 
Simulated annealing (SA) Loganathan et al. [1995] 
Tabu search (TS) Lippai et al. [1999] 
Harmony search (HS) Geem et al. [2002] 
Shuffled frog leaping algorithm (SFLA) Eusuff and Lansey [2003] 
Ant colony optimization (ACO) Maier et al. [2003) 
ANN metamodels Broad et al. [2005) 
Particle swarm optimization (PSO) Suribabu and Neelakantan [2006] 
Scatter search (SS) Lin et al. [2007] 
Cross-entropy algorithm (CE) Perelman and Ostfeld [2007] 
Hybrid discrete dynamically dimensioned 
search (HD-DDS) algorithm 

Tolson et al. [2009] 

Differential evolution (DE) Suribabu [2010] 
Honey-Bee Mating Optimization (HB) Mohan and Babu [2010] 
Genetic Heritage Evolution by Stochastic 
Transmission (GHEST) 

Bolognesi et al. [2010] 
1Only the first significant paper for each optimization technique applied to WDS optimization is 

provided. 
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Much research has been done in an attempt to improve the efficiency of EAs applied 

to large WDS optimization problems [Bolognesi et al. 2010]. Decomposing the 

original WDS using graph theory to facilitate the optimization process is one of these 

research lines. 

2. Decomposition of WDSs 

Normally, decomposition of a water network is used to carry out an analysis of 

network connectivity, reliability and management strategies. Ostfeld [2005] 

employed graph theory to undertake a connectivity analysis for WDSs. Deuerlein 

[2008] decomposed complex water networks into forests, blocks and bridges using 

graph theory. Based on the decomposition algorithm proposed by Deuerlein [2008], 

the original whole network can be simplified to several parts that are able to improve 

the understanding of the interaction among different network components, thereby 

enabling a network vulnerability analysis and improved management of the network. 

Yazdani and Jeffrey [2010] used graph theory and complex network principles to 

conduct a robustness analysis for WDSs while Di Nardo and Di Natle [2010] 

proposed a design support methodology for district metering of WDSs using graph 

decomposition.  

Few attempts have been made to utilize graph decomposition to facilitate the WDS 

design optimization. Krapivka and Ostfeld [2009] proposed a network decomposition 

based GA-LP scheme for the least-cost pipe sizing of WDSs. In their work, the 

looped water network was first decomposed into a number of spanning trees and 

chords. Then an LP was utilized to optimize each spanning tree, allowing the 

identification of the least-cost spanning tree. Finally a GA was used to alter the flows 

for the least-cost spanning tree (referred to the “outer” problem) and the LP was 

employed to optimize the tree network with the updated flows (the “inner” problem).  

Cisty [2010] proposed another network decomposition based GA-LP model for 

solving WDS design problems. In this proposed GA-LP method, a GA was used to 
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generate various trees for a complex looped network, and LP was used to optimize 

each tree network. Haghighi et al. [2011] developed a hybrid model incorporating a 

GA and integer linear programming (GA-ILP) to optimize the design of WDSs. As 

for the GA-LP method proposed by Cisty [2010], the GA in the GA-ILP model 

proposed by Haghighi et al. [2011] randomly generated tree networks for the original 

looped WDS and the ILP was utilized to optimize each tree network.  

Zheng et al. [2011a] proposed a combined NLP-DE method for optimizing WDS 

design. In the proposed NLP-DE approach, the original WDS was decomposed into a 

shortest-distance tree and chords. Then an NLP was employed to arrive at an 

approximate optimal solution for the decomposed WDS. The approximate optimal 

solution obtained from the NLP was then used to seed a DE in order to generate 

improved quality solutions for the original full WDS.  

3. The proposed decomposition and multi-stage optimization method 

The above analysis indicates that graph theory is normally used to find various trees 

for the looped WDS in previously proposed decomposition based optimization 

methods. This is motivated by the fact that optimal solutions for trees can be obtained 

by deterministic optimization methods such as LP, NLP or ILP with great efficiency. 

In contrast in this paper, a novel decomposition method is proposed to alternatively 

decompose the original complex WDS into sub-networks rather than into trees in 

order to facilitate network design optimization.  

For a real-world WDS, multiple sources of supply (that is - multiple tanks) are 

normally incorporated into the system in addition to having loops in order to improve 

the reliability of supply. For such a complex WDS with multiple supply sources 

(WDS-MSS), existing optimization algorithms normally tackle the system as a whole 

in order to find optimal design solutions. Normally, design of a large scale water 

network with multiple sources is computationally very rigorous. This is due to the 

size of the search space as well as the time for hydraulic simulation of the network. 
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The method proposed here has (i) developed a graph decomposition method to 

partition the larger optimization problems into smaller ones that in turn reduces the 

computational overhead for optimizing the design of the WDS-MSS, and has (ii) 

developed a multi-stage DE method to optimize the design of the sub-networks 

obtained by decomposing the WDS-MSS and then the original whole network. The 

outcome is a significantly more efficient and effective method for the optimization of 

the design of water networks with multiple sources.  

In the proposed decomposition and multi-stage optimization method, an algorithm is 

developed to identify the optimal source partitioning cut-set for a WDS with K 

supply sources. By removing the optimal source partitioning cut-set, the whole 

original WDS is decomposed to K sub-networks. For each sub-network, one and only 

one supply source is assigned. Each sub-network is then optimized by a DE 

algorithm independently, which is the first stage of optimization.  

The optimal solutions for all sub-networks are then combined to provide an 

approximate optimal solution for the whole original network. However, this 

approximate optimal solution needs to be further improved because the pipes within 

the optimal source partitioning cut-set were not included during the first stage of the 

sub-network optimization. A second phase DE is therefore used to explore the search 

space around the obtained approximate optimal solution and better quality solutions 

for the whole WDS are expected to be found with significantly reduced 

computational effort. This is the second stage of the optimization process.  

The concept of multi-stage optimization is based on the decomposition of large-scale 

and complex systems into independent subsystems (although these sub-systems are 

actually interconnected and are not truly independent of one another). Each 

subsystem is optimized independently, and the optimal solutions for each subsystem 

are then combined together to derive the optimal solution for the whole system. 

Although a multi-stage optimization approach has been used to control the pollution 

of water resource systems [Hass 1970, Haimes 1971], optimize urban water 
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management [Zhu et al. 2005] and deal with the reservoir operation problem [Canon 

et al. 2009], the method proposed here is the first time that multi-stage optimization 

method has been used to optimize the design of a WDS.  

Although the DE algorithm is used in this study, other EAs such as a GA could also 

be implemented in the proposed optimization framework. However, the performance 

comparison of the DE algorithm with other optimization algorithms has not been 

carried out in this study. The methodology of the proposed decomposition and multi-

stage method are given later. 

4. Formulation of the WDS-MSS optimization problem 

Typically, single-objective optimization of a WDS is the minimization of system total 

life cycle costs (pipes, tanks and other components) while satisfying head constraints at 

each node. In this paper, the proposed decomposition and multi-stage optimization 

method is verified using WDS-MSS case studies with pipes only for a single demand 

load case. Thus, the formulation of the WDS-MSS optimization problem can be given 

by: 

Minimize ∑
=

=
np

i
i

b
i LDaF

1

 (1) 

Subject to:   

 .....,nj,kHHH kkk 21   maxmin =≤≤  (2) 

 G(Hk, D)=0 (3) 

  }{  ADi ∈  (4) 

where F=network cost that is to be minimized [Simpson et al. 1994]; Di=diameter of the 

pipe i; Li=length of the pipe i; a, b=specified coefficients for the cost function; np=total 

number of pipes in the network; nj=total number of nodes in the network; G(Hk, 

D)=nodal mass balance and loop (path) energy balance equations for the whole network, 
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which is solved by a hydraulic simulation package (EPANET2.0 in this study); Hk=head 

at the node k=1,2….,nj; min
kH and max

kH  are the minimum and maximum allowable head 

limits at the nodes; and A = a set of commercially available pipe diameters.  

5. Methodology of the proposed method 

The flowchart in Figure 1 outlines the features of each step of the proposed 

decomposition and multi-stage optimization approach.  

 

Figure 1 Flowchart of the proposed optimization approach 

5.1. Decomposition of the WDS-MSS 

5.1.1. Source partitioning cut-set of the WDS-MSS 

In a connected graph G(V,E), a cut-set is a set of edges whose removal from G results 

in G being disconnected [Deo 1974], where V is a set of vertices and E is a set of 

edges. In this paper, a source partitioning cut-set (C) for a WDS-MSS is a set of pipes 

whose removal from the system results in the WDS-MSS being separated in such a 

The original WDS with K supply sources G

Sub-network G1

Identification and removal of the optimal source partitioning cut-set Ω

Sub-network G2 ............................ Sub-network GK-1 Sub-network GK

Optimal solution 1 Optimal solution 2 ……………….. Optimal solution K-1 Optimal solution K

Minimum allowable pipe
diameter for the 
optimal source partitioning
cut-set Ω

Final optimal solution for the original WDS with K supply sources

Graph theory algorithm

DE1 DE2 DEk-1
DEk

Creation of the initial seeding table

DEk+1
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Multi-stage optimization



CHAPTER 8. JOURNAL PAPER 6-DECOMPOSITION OPTIMIZATION OF WDS WITH MULTIPLE SOURCES  

203 

way that each sub-network is attached to one and only one unique supply source. 

That is, the original WDS with K supply sources is decomposed into K disconnected 

sub-networks after removal of the source partitioning cut-set. For a WDS-MSS with 

two supply sources (reservoirs) (see Figure 2(a)), all source partitioning cut-sets (C) 

and their corresponding two sub-networks after removal of the cut-set are given in 

Figure 2 (b, c, d).  

 

Figure 2 An example of cut-sets and the sub-networks for a two reservoir WDS 
(a: the two reservoirs water network; (b): Source partitioning cut-set (pipes 2 

and 5) and sub-networks, (c): Optimal source partitioning cut-set (pipes 2 and 3) 
and sub-networks and (d): Source partitioning cut-set (pipes (2 and 4) and sub-

networks)) 

As shown in Figure 2 (a), the original WDS G(V,E), where V={R1, R2, 1, 2, 3, 4} 

and E={1, 2, 3, 4, 5, 6}, has two reservoirs (R1 and R2), 6 links and 4 nodes. An 

arbitrarily selected source partitioning cut-set C={2, 5} is shown in Figure 2 (b). The 

original two-reservoir WDS is decomposed to two sub-networks G1(V1,E1), G2(V2,E2) 

after removal of the cut-set C={2, 5}, where V1={R1, 1, 3}, E1={1, 3}, V2={R2, 2, 4}, 

E2={4, 6}. It can be observed that a total of three cut-sets exist in this two-reservoir 
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WDS, which enable the network disconnection. In the proposed decomposition and 

multi-stage optimization method, an optimal source partitioning cut-set Ω  is 

proposed to decompose the WDS-MSS. The definition of the Ω  and the algorithm 

that has been developed in this study to identify the Ω  for a WDS-MSS are outlined 

in the next section. 

5.1.2. Identification of the optimal source partitioning cut-set Ω  of the WDS-

MSS 

For a WDS-MSS with K supply sources, each node i in the water network has K 

different potential water supply sources and a number of potential supply paths from 

each supply source. For a given supply source k and the demand i, there exists a finite 

set of independent paths joining these two nodes, symbolized here as Pki. For each 

supply path λ kiP∈ , the available friction slope is calculated as: 

   )(
min

∑
∈

−=

λ

λ

l
l

ik
ki L

HH
S

 

(5) 

where )(λkiS  is the available friction slope from source k to node i based on the 

supply path λ kiP∈ , kH  is the head of the source k and min
iH  is the minimum 

allowable head requirement at node i; lL  is the length of link l (l∈λ). Amongst the 

different paths λ kiP∈ , the path that has the largest available friction slope (*kiλ ) is 

considered to be the most economic supply path for this node i from source k [Zheng 

et al. 2011a], which is given as: 

   )(maxarg* λλ
λ

ki
P

ki S
ki∈

=
 

(6) 

Then for a given node i, the available friction slope for the economic paths from each 

source can be constructed to form the set )}(,)( ),({ **
22

*
11 KiKiiiiii SSS λλλξ ⋅⋅⋅⋅⋅= . Given 

this, the source k with the greatest available friction slope *
kiλ  for node i is taken to be 

the supply source for node i. This is based on heuristic reasoning that it is economical 

overall for a demand node to receive flows from a supply source having a relatively 

high available head and/or a relatively short distance to this demand node. As such, 
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each node i is assumed to receive flows from one and only one supply source in the 

proposed method according to this heuristic approximation.  

By assigning demand nodes to different supply source nodes, a demand node set Nk 

can be constructed for each supply source node k, which consists of all nodes for 

which k is the supply source. Then links that have different supply sources for two 

nodes on each side are obtained, which is defined as: 

 } , ,1, , , , :) ,{( KmkmkNjNiji mk ⋅⋅⋅⋅⋅=≠∈∈=Ω  
(7) 

where ) ,( ji  is the link having node i and j on each side. This set of links is defined 

as the optimal source partitioning cut-set Ω  for the WDS-MSS and the removal of 

the optimal cut-set leaves the original WDS-MSS decomposed into several sub-

networks. Each sub-network is composed of one and only one supply source and a 

particular number of nodes and pipes. Each supply source only provides water to 

specific nodes established when the optimal source partitioning cut-set is removed. 

Thus, the optimal source partitioning cut-set is actually the estimated optimal supply 

boundary of different supply sources in a WDS. 

The two-reservoir WDS presented in Figure 2(a) is used to explain the proposed Ω  

to decompose the network. The data, including the length of each link, the elevation 

of each node and reservoir, and the minimum head requirement for each node is 

given in Table 2. 

Table 2 Network data of the WDS with two reservoirs 

Nodes 
Elevation 

(m) 
Head requirement 

(m) 
Links 

Length  
(m) 

R1 54 - 5 550 
R2 56 - 6 400 
1 27 20 1 800 
2 29 20 2 800 
3 31 20 3 650 
4 33 20 4 700 

Each supply path for each node (λ) and the available friction slope for each path (

)(λS ) are provided in Table 3. The path having the largest available friction slope 

has been highlighted for each node in Table 3.  
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Table 3 Supplying paths and the available friction slope for each node 

Nodes 
(i) Path (λ) 

Length 
(m) 

Available head (
min
ik HH − ) (m) 

Available 
friction slope (

)(λS ) 

1 
R1-1 800 7 0.0088 

R2-6-2 1200 9 0.0075 
R2-6-4-5-3 2300 9 0.0039 

2 
R1-1-2 1600 5 0.0031 

R1-1-3-5-4 2700 5 0.0019 
R2-6 400 7 0.0175 

3 
R1-1-3 1450 3 0.0021 

R2-6-2-3 1850 5 0.0027 
R2-6-4-5 1650 5 0.0030 

4 
R1-1-2-4 2000 1 0.0005 
R1-1-3-5 2300 1 0.0004 
R2-6-4 1100 3 0.0027 

As shown in Table 3, NR1={1} as λR1-1 is the most economical path that has the 

largest available friction slope for node 1. NR2= {2, 3, 4} as these nodes have the 

largest available friction slopes from R2. Thus the optimal source partitioning cut set 

is given as Ω ={2, 3} as the nodes on each side of these two links are assigned to 

different reservoirs. The optimal partitioning cut-set Ω  and the sub-networks after 

removal of the Ω  are given in Figure 2 (c). 

For a relatively small WDS-MSS, the Ω can be determined using complete 

enumeration. However, it is impossible to enumerate all the paths for a relatively 

large WDS-MSS. An algorithm that is used to efficiently identify the optimal source 

partitioning cut-set Ω  for a large WDS-MSS has been developed in this research. 

The proposed approach is motivated by the fact that the shortest-distance path *
kiP  of 

all the available paths from the same supply source to a particular node always has 

the largest available friction slope *
kiλ . This is reflected in Equation (5), which shows 

that the available head for a particular node to a particular supply source is constant. 

Therefore, the shortest path between a node and a particular supply source has the 

largest available friction slope, i.e., *
kiP = *

kiλ . The Dijkstra algorithm [Deo 1974] is 

employed in this study to find the shortest-distance path for each node to different 

supply sources. The details of Dijkstra algorithm [Deo 1974] are given as follows. 
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In the Dijkstra algorithm, either a permanent label or temporary label is assigned to 

each node. A permanent label is given to a node once the shortest path from this node 

to source node has been determined. The value of the permanent label is made equal 

to the sum of lengths of the shortest path. In contrast, a temporary label is given to a 

node for which the shortest path has not yet been identified. The value of this 

temporary label is set to be equal to the sum of lengths of the shortest path in the 

current iteration and this value will be updated in later iterations. 

The Dijkstra algorithm begins by assigning a permanent label 0 to the starting node 

(supply source node) and a temporary label ∞ (this is replaced by a large number in 

the computer algorithm) to the remaining nodes (demand nodes in a WDS-MSS). In 

the search procedure, at each iteration, another node gets a permanent label according 

to the following rules [Deo 1974]: 

Rule 1. Every node j that has not yet permanently been labeled is updated with 

a new temporary label whose value is given by  

min [old label j, old label i + dij] 

where i is the latest node permanently labeled in the previous iteration. 

dij is the direct length from node i to node j. If nodes i and j are not 

directly connected, then dij=∞. 

Rule 2. At each iteration, the smallest value amongst all temporary labels is 

found and the corresponding node is permanently labeled with this 

value. Thus a new permanently labeled node is produced in this 

iteration. If more than one temporary label has the same value, then 

any one of the candidates for permanent labelling is selected.  

Rules 1 and 2 are repeated until all the nodes are permanently labeled. An example 

illustration of the Dijkstra algorithm performed for R1 to other demand nodes in the 

looped water network of Figure 2(a) is given in Table 4. The shortest-distance path 

for source node R1 to other demand nodes is presented in the last column of Table 4.  



CHAPTER 8. JOURNAL PAPER 6-DECOMPOSITION OPTIMIZATION OF WDS WITH MULTIPLE SOURCES  

208 

Table 4 The Dijkstra algorithm for identifying the shortest-distance tree 

iteration 
Length to Node* 

Description 
Shortest 

path *
kiP  R1 1 2 3 4 

1 0 ∞ ∞ ∞ ∞ 

Starting at the source node R1. It is 
labeled 0 and all the other nodes are 

labeled ∞. 
R1-R1 

2 0 800 ∞ ∞ ∞ 
All successors of R1 are labeled using 
Rule 1. The smallest label (node 1) is 
permanently labeled (Rule 2).  

1-R1 

3 0 800 1600 1450 ∞ 
All successors of 1 are labeled using 
Rule 1. The smallest label (node 3) is 
permanently labeled (Rule 2). 

3-1-R1 

4 0 800 1600 1450 2000 
All successors of 3 are labeled using 
Rule 1. The smallest label (node 2) is 
permanently labeled (Rule 2). 

2-1-R1 

5 0 800 1600 1450 2000 
All successors of 2 are labeled using 
Rule 1. The smallest label (node 4) is 
permanently labeled (Rule 2). 

4-3-1-R1 

    *The bold values are the succession of assignment of permanent labels. The value of ∞ would be 
designated as a large number in a computer implementation. 

The details of the proposed algorithm to identify the optimal source partitioning cut-

set Ω  for a WDS with K supply sources are given in Figure 3. As can be seen from 

Figure 3, three steps are involved in this proposed algorithm to identify the optimal 

source partitioning cut-set Ω . In Step 1, the Djikstra algorithm is performed to 

identify the shortest-distance path *
kiP = *

kiλ  for each supply source node k to each node 

i within the WDS. Then the available friction slope for the shortest distance path 

)( *
kikiS λ  is computed using Equation (5). As such, a total of K different )( *

kikiS λ  

values are obtained for each node i. In Step 2, node i=1, …..,n is assigned to the set 

Nk if )( *
kikiS λ  is the largest value from the K total available friction slope values, 

indicating that k is the supply source node for node i. In Step 3, all the links (i, j) that 

have the nodes on each side assigned to different supply source nodes are identified 

and form the optimal source partitioning cut-set Ω .  

It is observed from Figure 3 that the Djikstra algorithm is performed K times to 

determine the optimal source partitioning cut-set for a WDS with K supply sources. 

The computational time required to identify the optimal source partitioning cut-set 

for each WDS-MSS case study is analyzed in later discussion. The sub-networks are 
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obtained after removal of the optimal source partitioning cut-set. These sub-networks 

are independent and can be optimized separately.  

For a WDS with graph G(V, E), with K supply sources, n nodes and nl links. 

Step 1: 

FOR k=1,…..K 

Perform the Dijkstra algorithm for the supply source k to identify the shortest-

distance path *
kiP = *

kiλ  to each node i =1,…..,n as illustrated in Table 4. 

Compute the )( *
kikiS λ  for each node i using Equation (5). 

END FOR 

Step 2: 

FOR i=1,…..n 

Select k such that )()( **
jijikiki SS λλ >  for all j=1, …, K, j ≠ k using Equation (6) 

Node i is assigned to set kN  for which k is the supply source for node i. 

END FOR 

Step 3: 

FOR Eji ∈),( all  

IF KmkmkNjNi mk  , ,1 , ,  , , ⋅⋅⋅⋅⋅=≠∈∈ , i.e., the link with nodes at either end 

assigned to different sources. 

Link (i, j) is assigned to the source partitioning cut-set Ω  (Equation (7)) 

END IF 

END FOR 

Figure 3 Optimal source partitioning cut-set identification algorithm. 

5.1.3. Summary of the proposed decomposed method for WDS-MSS  

The proposed decomposition method partitions the whole water distribution system 

with K supply sources into K sub-networks. This differs significantly to the majority 

of the previously used decomposition approaches. These previous approaches 

identified a tree network as an approximation for the original full network [Krapivka 

and Ostfeld 2009; Kadu et al. 2008; Zheng et al. 2011a]. In the proposed 

decomposition method, the shortest-distance path only is used to assign the nodes to 

different supply sources and each node may receive flows via various paths from the 
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assigned supply source (not only the shortest-distance path). This is due to the fact 

that loops are retained within each sub-network obtained by the proposed 

decomposition method. However, in Krapivka and Ostfeld [2009], Kadu et al. [2008] 

and Zheng et al. [2011a], each node has one and only one path to receive flows to 

meet the demands from the source node.  

The available friction slope for each node is used in the proposed decomposition 

method to determine the optimal source partitioning cut-set Ω  for a WDS-MSS and 

the magnitude of the demands at each node are not considered during the 

decomposition. It is assumed to be cost effective overall for a demand node to receive 

the flows to meet the demands from a source having a relatively large available head 

and/or the shortest distance to this node. Thus, an approximate supply boundary is 

produced using the proposed decomposition method since each demand node 

receives the flows from one and only one supply source. However, it should be 

acknowledged that the supply boundary obtained by the proposed decomposition is 

an approximation to that of the real supply system as some nodes (especially nodes at 

the supply boundary) in the real WDS may receive the flows to supply demands from 

multiple supply sources.  

The available friction slope concept has also been used by Kadu et al. [2008] to 

identify a tree for a looped WDS. Thus, it is necessary to clarify the differences 

between the method used by Kadu et al. [2008] and the approach proposed here in 

terms of decomposing the WDS. The proposed decomposition method aims to 

specify a particular supply source for each demand node, for which this supply 

source has the largest available friction slope to this demand node, while Kadu et al. 

[2008] used the smallest available friction slope to identify the critical path for the 

original WDS. In addition, disconnected sub-networks are obtained using the 

proposed decomposition method, within which loops are involved, while a tree 

network is finally obtained using the method proposed by Kadu et al. [2008].  
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It is also useful to highlight the difference between the proposed decomposition 

method and the network aggregation method proposed by Pereman and Ostfeld 

[2008]. The main differences include: (i) in the new method presented here, the 

whole network is decomposed into several disconnected sub-networks, while the 

aggregation method keeps the general topology of the original system and only 

removes some nodes and links from the original system; (ii) in the proposed 

decomposed method, the decomposition results for a WDS are based on the number 

of different supply sources, while the aggregation result is dependent on the 

connectivity properties of the original system (such as the location of the monitor 

stations); and (iii) the demand distribution and link properties (such as link length and 

conductance) are not varied in the proposed decomposition approach, while they are 

changed in the aggregation network of Pereman and Ostfeld [2008] in order to 

resemble the hydraulics and water quality performance of the original system.  

5.2. Multi-stage optimization for the WDS-MSS 

5.2.1. Differential evolution algorithm applied to each sub-network (first stage 

optimization) 

The differential evolution (DE) algorithm, introduced by Storn and Price [1995] has 

performed well when used to find optimal solutions in a number of numerical 

optimization case studies [Vesterstrom and Thomsen 2004]. Vasan and Simonovic 

[2010] and Suribabu [2010] first applied DE to the optimization of WDSs, and 

concluded that the performance of the algorithms was at least as good as, if not 

better, than other EAs such as GAs and Ant Colony Optimization. Zheng et al. 

[2011a, 2011b] further investigated the performance of DE algorithms and reported 

that DE was effective in finding optimal solutions for WDS. Three operators 

including mutation, crossover and selection operators are involved in the application 

of DE in an optimization problem. Three parameters need to be pre-specified: the 

population size (N), mutation weighting factor (F) and the crossover rate (CR). The 

general ranges of these three parameters are 1D ≤N ≤10D (where D is the number of 
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decision variables) 0.1 ≤ F ≤ 1.0 and 0.1≤ CR ≤ 1.0 [Storn and Price 1995]. The 

pseudo-code for the DE algorithm applied to WDS optimization is given in Figure 4. 

Step 0. Specify following inputs of the differential evolution (DE): the population size (N), the 
crossover rate (CR), the mutation weighting factor (F), the maximum allowable number of 
generations (MG), and the number of decision variables (D) 

Step 1: Randomly generate N initial solutions Xi,G ={
1
,Gix , 

2
,Gix ,………

D
Gix , }, i=1,…..,N, G=0.  

Step 2: Evaluate the objective function of the N initial solutions f(Xi,G). 
 
Count=1 
 
REPEAT 
 
UNTIL Count≥ MG 

Step 3: Perform the DE mutation operator to generate N mutant solutions Vi,G ={ 1
,Giv , 2

,Giv ,………

D
Giv , } 

FOR i=1,…..,N 

)( ,3,2,1, GrGrGrGi XXFXV −+= , where 321 rrr ≠≠  and they are randomly generated for 

each i. 
END FOR 

Step 4: Perform the DE crossover operator to generate trial solutions GiU , ={
1
,Giu , 

2
,Giu ,………

D
Giu , } i=1,….,N 

FOR i=1,…..,N 
FOR j=1,…..,D 

IF Randj(0,1) ≤ CR, where Randj(0,1) is a uniformly distributed random number 
between 0 and 1.  

j
Gi

j
Gi vu ,, =  

ELSE 
j
Gi

j
Gi xu ,, =  

END IF 
END FOR 

END FOR 
Step 5: Alter the continuous pipe diameter solution to the nearest discrete diameter for each 

decision variable and then evaluate N trial solutions )( ,GiUf . 

Step 6: Select the next generation 1, +GiX ={
1

1, +Gix , 
2

1, +Gix ,………
D
Gix 1, + }  i=1,….,N 

FOR i=1,…..,N 
IF )( ,GiXf ≤ )( ,GiUf  

1, +GiX =
GiX ,

 

ELSE 

1, +GiX =
GiU ,

 

END IF 
END FOR  
 

Count=Count+1 

Figure 4 Pseudo-code for the differential evolution (DE) algorithm. 
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The basic DE algorithm is a continuous global optimization search algorithm [Storn 

and Price 1995], and requires modification when used to solve discrete WDS 

optimization problems. In this study, the modification made to the DE algorithm was 

based on the approach used in Suribabu [2010]. To handle the head constraints, 

constraint tournament selection [Deb 2001] was used in the DE algorithm. 

During the first stage of the optimization process, each sub-network is optimized by a 

separate DE. The sub-network optimization problem formulation is similar to that for 

the original whole network [Equations (1) to (4)]. Only the pipes (the objective 

function) and nodes (head constraints) in the sub-network are handled by each 

individual DE algorithm. Because the dimensionality of each sub-network is 

significantly reduced compared to the original network, the DE algorithm is expected 

to be able to more efficiently find optimal solutions for each sub-network than for the 

whole network.  

For the water network given in Figure 2, 14 pipe diameters including {150, 200, 250, 

300, 350, 400, 450, 500, 600, 700, 750, 800, 900, 1000} mm can be selected for each 

pipe and all the pipes are assigned to have an identical Hazen-Williams coefficient of 

130. The unit costs for each pipe diameter are given by Kadu et al. [2008]. Two 

separate DEs were employed to optimize the two sub-networks (S1={R1, 1, [1]}, S2={  

R2, 2, 3, 4, [4], [5], [6]}) as shown in Figure 2(c) obtained by removing the optimal 

source partitioning cut-set Ω ={2, 3}. The DE optimal solutions for S1 and S2 were 

$37,910 and $166,896 respectively and the pipe diameters for the optimal solutions 

are [1]=250 mm, [4]=450 mm, [5]=300 mm and [6]=500 mm. It is noted that the 

optimal cut-set Ω ={2, 3} was not included in the first stage of the proposed multi-

stage optimization method. 

5.2.2. Creation of the seeding table 

In the proposed method, the optimal solutions for K sub-networks are obtained after 

the first stage optimization, and an optimal pipe diameter is assigned for each link in 

all sub-networks. As the optimal source partitioning cut-set Ω  of the original 
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complete network is not included during the first stage optimization, the minimum 

allowable pipe diameters are therefore assigned to all the links in the Ω  in this study. 

Each link of the complete network is given a pipe diameter by combining the optimal 

solutions of the sub-networks and assigning the minimum allowable pipe diameters 

for the Ω . This therefore creates an approximate optimal solution (or a near optimal 

in a topological sense) for the complete network. For the example given in Figure 2, 

the approximate optimal solutions were $240,374 and the corresponding network 

configuration is [1]=250 mm, [2]=150mm, [3]=150 mm, [4]=450 mm, [5]=300 mm 

and [6]=500 mm (note 150 mm is the minimum allowable pipe diameter). 

The approximate optimal solution is now used to create a tailored seeding table to 

enable the second stage of the optimization. For each link in this seeding table, three 

pipe diameters are included, namely (i) the pipe diameter from the approximate 

optimal solution of the whole network, (ii) and the pipe diameters that are 

immediately smaller, and (iii) the pipe diameters that are immediately larger than the 

diameter provided by the approximate optimal solution. For a pipe that is already the 

minimum or maximum allowable diameters, the three adjacent smallest or largest 

pipe diameters are assigned to the seeding table for this pipe.  

Table 5 is used to illustrate the process of the creation of the seeding table based on 

the approximate optimal solution of the water network given in Figure 2. The pipe 

diameters of the approximate optimal solution obtained after the first stage 

optimization are given in column 2 of Table 5. As shown in Table 5, for links 1, 4, 5 

and 6, three adjacent pipe diameters are included in the seeding table and the middle 

one is the pipe diameter for the approximate optimal solution (column 2 of Table 5). 

For links 2, and 3, three adjacent smallest pipe diameters are assigned to the seeding 

table as the diameter of links 2 and 3 given in column 2 of Table 5 are already the 

minimum allowable diameter (150mm). This proposed method for the creation of the 

seeding table is applied to each case study in this paper. 
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Table 5 The process for creating the seeding table (applies to any sized network) 

Links 

Diameters for 
the approximate 

optimal 
solutions (mm) 

Link 
membership 

Pipe diameters in 
the seeding table 

(mm) 

Pipe diameters in the total 
choice table (mm) 

1 400 Belongs to R1 300, 400, 450 200, 300, 400, 450, 500, 600 
2 200 Cut-set 200, 300, 400 200, 300, 400, 450, 500, 600 
3 200 Cut-set 200, 300, 400 200, 300, 400, 450, 500, 600 
4 450 Belongs to R2 400, 450, 500 200, 300, 400, 450, 500, 600 
5 200 Belongs to R2 200, 300, 400 200, 300, 400, 450, 500, 600 
6 600 Belongs to R1 450, 500, 600 200, 300, 400, 450, 500, 600 

5.2.3. Final optimal solution for the original WDS-MSS (second stage 

optimization) 

In the proposed decomposition and multi-stage optimization method, another DE 

algorithm (denoted the final DE algorithm) is used in the second stage of 

optimization in order to find the optimal solutions for the original WDS with multiple 

supply sources. It is noted that the first stage optimization does not include the pipes 

in the optimal source partitioning cut-set Ω . In the proposed approach, an 

approximate optimal solution was generated by combining the sub-network optimal 

solutions and setting the pipes in the Ω  to be the minimum allowable pipe diameters. 

However, this approximate optimal solution is not acceptable for the original whole 

network. This is because (i) the network reliability will be reduced by simply 

assigning the pipes in the Ω  to be the minimum allowable diameter size as these 

pipes are the connections between sub-networks; and (ii) the approximate optimal 

solution produced in the first stage optimization may be infeasible for the original 

whole network with the inclusion of the minimum diameter pipes in the Ω . Thus, the 

approximate optimal solution obtained in the first stage optimization need to be 

further polished. This is achieved by applying the DE at the second stage 

optimization of the proposed method. 

During the second stage optimization phase [the formulation is given by Equations 

(1) to (4)], the final DE algorithm is seeded by a tailored seeding table (column 4 of 

Table 5) rather than the total choice table (14 pipe diameter options). Thus, the initial 

solutions of the final DE algorithm are randomly located in the search space specified 
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by the tailored seeding table rather than the whole search space. The final DE 

algorithm therefore focuses on exploring promising regions specified by the tailored 

seeding table and hence avoids wasting computational effort investigating infeasible 

or unnecessarily high cost regions within the search space. It is expected therefore 

that the final DE algorithm is able to locate better quality solutions for the original 

WDS-MSS with great efficiency and reliability as it has been seeded with good initial 

estimates [Grefenstette 1987; Harik and Goldberg 2000].  

The second stage DE was applied to the original full water network as shown in 

Figure 2 (a) but it is initialized by the seeding table in the column 4 of Table 5. A 

further better optimal solution with a cost of $239,034 was obtained after the second 

stage optimization and this optimal solution was feasible when determined by 

EPANET2.0.  

6. Case studies 

The algorithms for identifying the optimal source partitioning cut-set, creating the 

seeding table and the DE algorithm were all coded in C++ using MinGW Developer 

Studio 2.05. The program EPANET2.0 [Rossman 2000] was used as a network solver 

in this study. Four case studies have been used to verify the effectiveness of the 

proposed decomposition and multi-stage optimization approach: two artificial 

double-reservoir WDSs; a real-world three-reservoir WDS; and a realistic four-

reservoir WDS. It should be noted that the water network layout for each case study 

is drawn at different scales. In addition the cost for each diameter used for each case 

study is the sum of the pipe material cost and the pipe construction cost.  

6.1. Case study 1: Two-reservoir WDS 

The layout of the two-reservoir WDS is given in Figure 2 and the network data is 

included in Table 2. The global optimal solution for this small network was $239,034 

by using the full enumeration approach. In order to investigate the impact of the 

different decomposition strategies on the final solution, this water network 
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decomposed by all cut-sets obtained by the full enumeration were optimized by the 

proposed multi-stage DE method. A DE algorithm (SDE) seeded by the total choice 

table (14 pipe options) was also applied to this network in order to enable the 

performance comparison with the proposed approach. Table 6 presents the statistical 

results of different algorithms. It is noted that the parameters of the DE (N=30, 

F=CR=0.5) were fine-tuned. A maximum number of allowable evaluations was set to 

be 6,000 for this case study. 

Table 6 Algorithm performance for the two-reservoir WDS (F=CR=0.5) 

 Methods 
Number 
of trial 
runs  

Best 
solution 
found ($) 

Percentage of 
trials with 

best solution 
found (%) 

Average number of 
equivalent full two-

reservoir WDS evaluations 
to find best solution 

CS1 
Proposed cut-set based 
on friction slope method 
with Ω ={2, 3}   

100 239,034 100 376 

CS2 
Alternative  cut-set 1 
with C1={2, 4} 

100 239,034 54 1,568 

CS3 
Alternative cut-set 2 
with C2={2, 5} 

100 239,034 14 658 

- SDE 100 239,034 98 792 

As shown in Table 6, for this small network, all the algorithms are able to find the 

global optimal solution with a cost of $239,034. The proposed multi-stage DE 

method with Ω ={2, 3} (denoted as CS1) significantly outperformed the proposed 

multi-stage DE but with the cut-sets C1={2, 4} (CS2) and C2={2, 5} (CS3) in terms 

of the solution quality and the efficiency. This is proven by the fact that CS1 found 

the global optimal solution with a success rate of 100%, which is significantly higher 

than CS2 (54%) and CS3 (14%). In addition, the proposed multi-stage DE method 

with Ω ={2, 3} performed slightly better than the SDE in terms of the percent with 

the best solution found.  

The computational overhead for a hydraulic evaluation of one sub-network with 

EPANET 2.0 is different from the computational effort required to evaluate the 

original whole network because of the smaller size of the sub-network. In order to 

enable a fair comparison, the computational overhead for the evaluation of each sub-

network has been converted to the equivalent number of evaluations for the whole 
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network. Each sub-network and the full network were run 1000 times with randomly 

selected pipe configurations using the code developed for this proposed method. 

Then the average computational time for one sub-network simulation was converted 

to the equivalent number of corresponding full network simulations. This approach 

has been used for each case study investigated in this paper. The code was developed 

in C++ (linked to EPANET2.0 through the Tookit) and run on a Pentium PC (Inter R) 

at 3.0 GHz. 

In terms of comparing the efficiency, CS1 performed the best as it only required an 

average of 376 equivalent full network evaluations to find the optimal solutions. This 

is only 24%, 57%, and 47% of those required by CS2, CS3, and SDE respectively. 

6.2. Case study 2: Double-reservoir WDS 

The double-reservoir network (DRN) was first presented by Kadu et al. [2008]. The 

DRN consists of 24 demand nodes, 34 pipes and 9 loops, and is fed by two reservoirs 

with 100 and 95 meters of fixed head respectively. The layout of the DRN is given in 

Figure 4.  

 

Figure 5 Layout, the optimal source partitioning cut-set ( Ω ) and the sub-
networks (DRN1 and DRN2) of the two-reservoir network (DRN) 
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A total of 14 pipe diameters are available in the DRN case study and hence the total 

choice table includes 14 pipe diameters for each pipe. The search space is therefore 

1434
≈9.2972× 1038. Details of this network and the cost of the pipes are given by 

Kadu et al. [2008]. The optimal source partitioning cut-set for the DRN identified 

through the developed graph decomposition approach (Figure 5), included pipes 5, 

15, 22 and 32 (Ω ={5, 15, 22, 32}). The original DRN was therefore partitioned into 

two sub-networks (as shown in Figure 5): sub-network one (DRN1) and sub-network 

two (DRN2). DRN1 included reservoir 1, 13 nodes and 15 pipes on the left side of the 

optimal source partitioning cut-set. DRN2 was composed of reservoir 2, with 11 

nodes and 15 pipes on the right side of the optimal source partitioning cut-set. 

In order to enable a performance comparison, the runs of the standard DE algorithm 

(SDE) seeded by the total choice table (14 pipe diameters) with different starting 

random number seeds were also conducted for the DRN case study. Table 7 provides 

the parameter values used for the DE algorithm applied to the DRN case study. As 

shown in Table 7, a population size (N) of 50 and a maximum number of allowable 

evaluations of 30,000 were used for the DE applied to sub-networks DRN1 and DRN2 

(the first stage optimization of the proposed method). For the DE algorithm used in 

the second stage optimization phase and the SDE applied to the original whole DRN, 

a population size of 100 and a maximum number of allowable evaluations of 400,000 

were used. Values of F=0.6 and CR=0.5 were utilized for all DE used in the proposed 

method and the SDE applied to the DRN case study. These values were selected 

based on trials of a number of different parameter values.  

Table 7 The DE algorithm parameter values applied to different sub-networks 
and the whole DRN (F=0.6, CR=0.5) 

Network 
No. of decision 

variables 
(Pipes) 

Population 
size (N) 

Maximum number of 
allowable evaluations 

DRN1 15 50 30,000 
DRN2 15 50 30,000 

DRN (the second phase DE algorithm) 34 100 400,000 
DRN (the SDE) 34 100 400,000 
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A total of 100 runs of the proposed method with different starting random number 

seeds were performed for the DRN case study. A typical run of the proposed method 

is illustrated in Table 8. 

As shown in Table 8, DRN1 and DRN2 were optimized by DE algorithm during the 

first optimization stage of the proposed method and hence optimal solutions with 

costs of $1.405 million and $1.191 million were obtained for DRN1 and DRN2 

respectively (see columns 2 and 3 of Table 8). By assigning the optimal source 

partitioning cut-set with the minimum allowable pipe diameters (150 mm for the 

DRN case study), an approximate optimal solution was produced for the original full 

DRN with a cost of $2.752 million, which is given in the column 4 of Table 8. A 

seeding table was constituted based on the obtained approximate optimal solution 

(column 5 of Table 8) and this seeding table was used to initialize the DE for the 

second stage optimization of the proposed method. 

The final solution yielded by the proposed method after the second phase 

optimization was $2.750 million (column 6 of Table 8), which is lower than the 

approximate optimal solution obtained after the first optimization stage. It should be 

highlighted here that the approximate optimal solution with a cost of $2.752 million 

was slightly infeasible as determined by EPANET2.0 with the maximum head deficit 

of 0.5 meters. This is because that (i) the water flow distribution was slightly changed 

after combining the sub-networks; and (ii) the optimal source partitioning cut-set was 

simply assigned the minimum allowable pipe diameters. 

However, this slightly infeasible solution was located at the vicinity of the final 

optimal solution. This is reflected by the fact that 28 out of a total of 34 pipes had the 

same diameters for the approximate optimal solution and the final optimal solution 

(as shown in Table 8). In addition, the pipe diameters for each link of the final 

optimal solution are located in the seeding table that was created based on the 

approximate optimal solution. 
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Table 8 A typical run of the proposed method for DRN case study 

Links  

Sub-network 
optimization results 

(the first stage 
optimization) (mm) 

Approximately 
optimal 

solution (mm)c 

Creation of 
choice table 

Final optimization 
results (the second 
stage optimization) 

(mm)c 

Networks DRN1 DRN2 
DRN1+DRN2+ 
cut-set pipes 

- DRN 

1 1000 - 1000 800, 900, 1000 900 
2 900 - 900 800, 900, 1000 900 
3 350 - 350 300, 350,400 350 
4 300 - 300 250, 300, 350 300 
5a  - 150 150, 200, 250 150 
6  250 250 200, 250, 300 250 
7 800 - 800 750, 800,900 800 
8 150 - 150 150, 200, 250 150 
9  450 450 400, 450, 500 450 
10  500 500 450, 500, 600 500 
11  800 800 750, 800, 900 750 
12 700 - 700 600, 700, 750 700 
13 500 - 500 450, 500, 600 500 
14 450 - 450 400, 450, 500 500 
15a  - 150 150, 200, 250 150 
16 450 - 450 400, 450, 500 500 
17 350 - 350 300, 350,400 350 
18 400 - 400 350, 400, 450 400 
19  150 150 150, 200, 250 150 
20  150 150 150, 200, 250 150 
21  700 700 600, 700, 750 700 
22a  - 150 150, 200, 250 150 
23  450 450 400, 450, 500 450 
24  350 350 300, 350,400 350 
25  700 700 600, 700, 750 700 
26 200 - 200 150, 200, 250 250 
27 300 - 300 250, 300, 350 250 
28  300 300 250, 300, 350 300 
29  200 200 150, 200, 250 200 
30  300 300 250, 300, 350 300 
31 150 - 150 150, 200, 250 150 
32a  - 150 150, 200, 250 150 
33  150 150 150, 200, 250 150 
34  150 150 150, 200, 250 150 

Cost ($ million) 1.405 1.191 2.752b - 2.750 
Minimum pressure 
surplus (m) and its 
corresponding node 

0.08 
(Node 

23) 

0.42 
(Node 

20) 

-0.50  
(Node 23) 

- 
0.15  

(Node 12) 
aOptimal source partitioning cut-set pipes for the DRN. bInfeasible solution. cThe cost of the 

solution is the sum of the unit cost for each selected pipe multiplied by the length of this pipe.  
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The statistical results of the proposed method, the SDE and other previously reported 

feasible solutions (determined by EPANET2.0) for the DRN case study are given in 

Table 9.  

Table 9 Algorithm performance for the DRN case study 

Row Algorithm 
Number 
of trial 
runs  

Best 
solution 
found 
($M) 

Percentage 
of trials 
with best 
solution 

found (%) 

Average 
cost 

solution 
($M) 

Average 
number of 
original 

evaluations 
to find best 

solution 

Average 
number of 
equivalent 
full DRN 

evaluations 
to find best 

solution 
1 

Proposed 
method 

using Ω  
(This 
study) 

DRN1 100 1.405 85 1.410 10,765 2,702 

2 DRN2 100 1.191 80 1.206 7,955 2,991 

3 
DRN1+ 

DRN2+cut-
set pipesa 

100 2.752b 80 2.772 18,720 5,693 

4 DRN 100 2.750f 75 2.755 66,740 66,740 

5 Total 100 - - - - 72,433c 

6 SDE (This study) 100 2.750 32 2.762 201,457 201,457 
7 GA [Kadu et al. 2008] 10 2.847 0 NA NA NA 

8 
GA-ILP  

[Haghighi et al. 2011] 
NA 2.839 0 NA NA NA 

9 
Proposed method  

using C1
d 

100 2.898 0 2.901 - 78,965 

10 
Proposed method  

using C2
e 

100 2.755 0 2.783 - 156,620 
aThe cost of the cut-set pipes is $0.156 million by assigning them with the minimum pipe diameters 
(150 mm). 
bInfeasible solution determined by EPANET2.0 with the maximum head deficit of 0.5 meters. 
cThe total computational overhead required by the proposed method has been converted to the 
equivalent number of the whole network evaluations (DRN1+DRN2+DRN3+cut-set+DRN). 
dThe proposed method applied to the DRN decomposed by cut-set C1={4, 12, 31}. 
eThe proposed method applied to the DRN decomposed by cut-set C2={6, 15, 19, 23, 33}. 
fThe best solution based on the new method proposed in this paper. 

In this study, a new best solution (feasible when verified by EPANET2.0) was 

produced at a cost of $2.750 million. Kadu et al. [2008] and Haghighi et al. [2011] 

found the previous best solutions for this case study with costs of $2.847 million and 

$2.839 million respectively. The new best known solution with a cost of $2.750 

million was found with a success rate of 75% by the proposed method, whereas the 

SDE only returned a success rate of 32%.  

As shown in Table 9, the current best solutions for DRN1 and DRN2 found by the 

first stage optimization of the proposed method were $1.405 million and $1.191 
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million. These two optimal solutions for DRN1 and DRN2 were found with success 

rates of 85% and 80% respectively. The approximate optimal solutions for the 

original whole DRN were obtained by combining the optimal solutions for both sub-

network and assigning the minimum pipe diameters for the optimal source 

partitioning cut-set. As can be seen from Table 9, the best approximate optimal 

solution provided after the first optimization stage was $2.752 million and this 

solution was found with a success rate of 80%. 

The average computational time of one evaluation for the DRN1 and DRN2 was 

equivalent to 0.251 and 0.376 evaluations for the whole DRN network respectively. 

Since the original average number of evaluations for DRN1 and DRN2 during the first 

stage optimization were 10,756 and 7,955 (column 7 of Table 9), the equivalent 

number of full DRN evaluations was, therefore, 2,702 and 2,991 respectively 

(column 8 of Table 9).  

The computational time required to find the optimal source partitioning cut-set was 

also converted to the equivalent number of whole network evaluations. For the DRN 

case study, the computational time required to find the optimal source partitioning 

cut-set was equivalent to 19 evaluations of the whole DRN network.  

As shown in Table 9, the total equivalent average number of evaluations required to 

find the optimal solutions using the proposed approach was 72,433, which is only 

36% of the number of evaluations required by the SDE algorithm. This shows that 

the proposed method significantly outperforms the SDE algorithm in terms of 

efficiency. It was observed that the first optimization stage found the approximate 

optimal solutions that are extremely close to the final best solution ($2.750 million) 

using only 5,693 equivalent full DRN evaluations.  

A convergence comparison between a DE algorithm seeded with the initial seeding 

table (the proposed method) and a SDE algorithm is given in Figure 6. It is evident 

that that the proposed algorithm converges significantly faster than the SDE 

algorithm. 
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Figure 6 A convergence comparison between DE algorithm seeded with tailored 
seeding table and the DE algorithm seeded with total choice table 

In order to further investigate the impact of the different decomposition strategies on 

the final solution, the proposed method was also applied to the DRN case study 

decomposed by C1={4, 12, 31} and C2={6, 15, 19, 23, 33} respectively (C is the 

source partitioning cut-set), and the results are included in Table 9. As shown in 

Table 9, the best solutions found by the proposed method with decomposition cut-

sets C1={4, 12, 31} and C2={6, 15, 19, 23, 33} were $2.898 million and $2.755 

million respectively, which are both larger than the current best known solution of 

the DRN case study.  

In contrast, the proposed method using the optimal source partitioning cut-set Ω ={5, 

15, 22, 32} was able to find the current best known solution with a success rate of 

75% (see Row 4 of Table 9). In addition, the proposed method with Ω ={5, 15, 22, 

32} used fewer average equivalent full DRN evaluations (72,433 in Row 5 of Table 

9) to find optimal solutions than the proposed method with C1={4, 12, 31} (78,965 in 

Row 9 of Table 9) and C2={6, 15, 19, 23, 33}(156,620 in Row 10 of Table 9).  

Based on the results of case study 1 (Table 6) and case study 2 (Table 9), it can be 

concluded that (i) the search performance of the proposed method in terms of both 
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solution quality and efficiency is significantly affected by the decomposition strategy 

used; and (ii) the proposed optimal source partitioning cut-set Ω , as developed in 

this paper, is effective in terms of decomposing the water network for design 

optimization. 

6.3. Case study 3: Three-reservoir WDS 

The three-reservoir network (TRN) is an actual water network supplied by three 

reservoirs located in an eastern province of China. This case study is the first time 

that it has been investigated. The three reservoirs are denoted as R1, R2 and R3 as 

shown in Figure 7, and have fixed heads of 44, 45 and 47 meters respectively. The 

TRN has 287 pipes, 199 demand nodes and 86 primary loops. At each demand node, 

a minimum pressure of 20 meters is required. All the pipes are assigned to have an 

identical Hazen-Williams coefficient of 130. The objective of this case study is to 

determine the least-cost design of this water network, while satisfying the pressure 

constraints. A total of 14 commercially available pipe diameters ranging from 150 

mm up to 1000 mm are available for selection for each pipe (as in case study 1). 

Thus, the total search space is 14287
≈8.6845× 10328.  

Utilizing the proposed algorithm, 14 links were identified to form the optimal source 

partitioning cut-set for the TRN case study. Hence, the original TRN was 

disassembled into three sub-networks, denoted TRN1, TRN2 and TRN3 as shown in 

Figure 7. Reservoir 1 (R1), with 73 demand nodes and 91 pipes, was assigned to 

TRN1. Reservoir 2 (R2), with 65 demand nodes and 98 pipes, was assigned to TRN2. 

The remaining reservoir (R3), with 61 demand nodes and 84 pipes was given to 

TRN3. These three sub-networks are shown in Figure 7 in different shades of grey. 

The computational time required to identify the optimal source partitioning cut-set 

for the TRN case study was the equivalent of 15 evaluations of the original TRN 

(using EPANET 2.0). As for the same method used for the DRN case study, the 

evaluations of TRN1, TRN2 and TRN3 were found to be the equivalent of 0.11, 0.10 
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and 0.091 of the whole TRN evaluation in terms of average computational time based 

on 1000 runs with randomly selected pipe configuration.  

 

Figure 7 Layout, the optimal source partitioning cut-set and the sub-networks 
(TRN1, TRN2 and TRN3) of the three-reservoir network (TRN). 

For the TRN case study, ten runs of the proposed method and ten SDE algorithm runs 

with different starting number seeds were performed in order to compare the 

performance of the two methods. Table 10 provides the parameter values used for the 

DE algorithm applied to the TRN case study.  

As displayed in Table 10, for sub-network optimization, the population size (N) of 

the DE algorithms was 150 and the maximum number of allowable evaluations used 

was 150,000. A population size of N=200 was used for the DE algorithm in the 

second stage of the proposed method and two population sizes of N=200 and 500 

were used for the SDE algorithm. The maximum number of allowable evaluations for 

DE algorithms applied to optimize the complete TRN (including the SDE and the DE 
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used in the second phase optimization of the proposed method) was 2.5 million. 

Values of F=0.3 and CR=0.5 were used for all DE algorithm runs for this case study 

based on a few parameter trials.  

Table 10 The DE algorithm parameter values applied to different sub-networks 
and the whole TRN (F=0.3, CR=0.5) 

Network 
No. of decision 

variables 
(Pipes) 

Population 
size (N) 

Maximum number of 
allowable evaluations 

TRN1 91 150 150,000 
TRN2 98 150 150,000 
TRN3 84 150 150,000 

TRN (the second stage DE algorithm) 287 200 2,500,000 
TRN (the SDE) 287 200/500 2,500,000 

The solution distribution obtained by the proposed method and the SDE algorithm 

applied to the TRN case study is given in Figure 8. It should be noted that the number 

of evaluations of the proposed method shown in Figure 8 has been converted to the 

equivalent number of evaluations for the complete TRN using the same approach as 

for the DRN case study. 

 

Figure 8 Solution distributions of proposed method and the SDE applied to the 
TRN case study. 

As can be seen from Figure 8, the proposed method exhibits superior performance 

when compared with the SDE algorithm in term of solution quality and efficiency. 
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The SDE algorithm with N=500 was able to find better quality solutions than the 

SDE algorithm with N=200, but at expense of significantly more evaluations. The 

final solutions found by the SDE algorithm trial runs with different starting random 

number seeds are more scattered in distribution than those found by the proposed 

method. This demonstrates that the performance of the proposed method is less 

sensitive to the randomized starting points of the search. The statistical results for this 

case study are shown in Table 11.  

Table 11 Algorithm performance for the TRN case study 

Algorithm 
Number 
of trial 
runs  

Best 
solution 
found 
($M) 

Percentage 
of trials 
with best 
solution 

found (%) 

Average 
cost 

solution 
($M) 

Average 
number of 
original 

evaluations 
to find best 

solution 

Average 
number of 
equivalent 
full TRN 

evaluations 
to find best 

solution 

Proposed 
method 
(This 
study) 

TRN1 10 2.311 10 2.322 101,190 11,131 

TRN2 10 2.291 10 2.294 76,535 7,654 

TRN3 10 2.050 10 2.058 61,820 5,626 
TRN1+ 
TRN2+ 

TRN3+cut-
set pipesa 

10 6.874 10 6.883 239,545 24,411 

TRN 10 6.823 10 6.844 245,760 245,760 

Total 10 - - - - 270,171c 
SDE (N=500,this 

study) 
10 6.874 0 6.904 1,737,300 1,737,300 

SDE (N=200,this 
study) 

10 6.902 0 6.923 559,860 559,860 
aThe cost of the cut-set pipes is $0.211 million by assigning them with the minimum pipe diameters 
(150 mm). 
bInfeasible solution determined by EPANET2.0 with the maximum head deficit of 0.2 meters. 
cThe total computational overhead required by the proposed method has been converted to the 
equivalent number of the whole network evaluations (TRN1+TRN2+TRN3+cut-set+TRN). 

As shown in Table 11, the proposed method found the current best solution for the 

TRN case study with a cost of $6.823 million. The best solutions found by the SDE 

algorithms with N=500 and N=200 were $6.874 million and $6.902 million 

respectively, which are 0.73% and 1.17% higher than the current best solution found 

by the proposed method. It was also found that the proposed method performed better 

than the SDE algorithm in terms of the average cost of solution quality based on ten 

different runs. The most noticeable advantage of the proposed method was that it 
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converged to the optimal solutions with significantly greater speed than the SDE 

algorithm. This is reflected by the fact that the proposed method required an average 

270,171 total equivalent full TRN evaluations to find the optimal solutions, while the 

SDE algorithm with N=200 and N=500 used average 559,860 and 1,737,300 

evaluations respectively as shown in Table 11.  

The best and the average approximate optimal solution obtained by the first stage 

optimization were $6.874 million and $6.883 million, which is only 0.75% and 

0.88% larger than the current best solution found by the proposed method after the 

second stage optimization ($6.823 million). In addition, these approximate optimal 

solutions were located extremely quickly since they only required an average number 

of 24,411 equivalent full TRN evaluations as presented in Table 11.  

For this case study, a sensitivity analysis for variations in the nodal demands and 

Hazen-Williams coefficients (HWs) has been conducted to investigate the impact on 

the final solution. A nodal demand multiplier (R) was used to adjust the demands for 

each node. For example, R=0.9 indicates the new demands of each node are 0.9 times 

the current demand. In this study, values of R=0.9 and 1.1 were used to undertake the 

sensitivity analysis on the nodal demands, while maintaining a consistent Hazen-

Williams coefficients value (HW=130).  

Additionally, the values of HW of 100 and 115 were used to analyze the sensitivity of 

the final solution on the Hazen-Williams coefficient (HW) for the TRN case study. 

The nodal demands for each node were kept constant (R=1.0). Finally, each node was 

randomly assigned a value of R in the range of [0.9, 1.1] and each link was assigned a 

value of HW in the range of [100, 130] for the TRN case study. The results of the 

proposed decomposition and multi-stage method applied to the TRN case study with 

the variation of demands and Hazen-Williams coefficient values are presented in 

Table 12. 

As shown in Table 12, for a HW=130, the cost of the final optimal solutions obtained 

by the proposed method increases for an R value that is greater. The cost of the best 
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solution and the average cost solution for the TRN case study with R=1.0 increases 

by 4.3% and 4.5% respectively compared to those with R=0.9, while it decreases by 

4.0% and 3.8% compared to those with R=1.1. When the nodal demand was constant 

(R=1), the proposed method found the lower cost solutions as the value of HW 

increases as displayed in Table 12. This is to be expected as a larger HW value 

reflects a smoother pipe. 

Table12 Sensitivity analysis for the TRN case study (HW: Hazen-Williams 
coefficient. R=nodal demand multiplier) 

Values of HW and R  
Number 
of trial 
runs  

Best 
solution 
found 
($M) 

Average 
cost 

solution 
($M) 

Average number 
of equivalent full 
TRN evaluations 

to find best 
solution 

HW=130 
R=0.9 10 6.542 6.549 279,985 
R=1.0 10 6.823 6.844 270,171 
R=1.1 10 7.100 7.107 315,700 

R=1.0 
HW=100 10 7.629 7.637 280,720 
HW=115 10 7.177 7.182 303,600 
HW=130 10 6.823 6.844 270,171 

R=[0.9, 1.1], HW=[100,130] 10 7.176 7.186 288,520 

The best solution obtained for the TRN with HW=100 is $7.629 million (R=1), which 

is 6.3% and 11.8% higher than those found for the TRN with HW=115 and HW=130 

respectively. The best solution found by the proposed method for the TRN with 

randomly assigned R values (in the range of [0.9, 1.1]) for each node and randomly 

assigned HW values (in the range of [100, 130]) for each link is $7.176 million, 

which is 5.2% higher than the best solution found for the original TRN with R=1.0 

and HW=130 ($6.823 million). 

The average number of equivalent full TRN evaluations required by the proposed 

method applied to each network with variations of demands and HW values are 

similar. This shows that the search efficiency of the proposed method is not 

significantly affected by network parameter variations (demands and HW values). 
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6.4. Case study 4: Four-reservoir WDS (Balerma network) 

The four-reservoir network (FRN) is the Balerma network, which was first 

investigated by Reca and Martínez [2006]. It consists of 4 reservoirs, 8 loops, 454 

pipes and 443 demand nodes as shown in Figure 9. Ten PVC commercial pipes with 

nominal diameters from 125 mm to 600 mm are to be selected for this network and 

hence the search space is 10454. All the pipes are assumed to have an absolute 

roughness height of k=0.0025 mm and the minimum required pressure at each node is 

20 meters. Pipe costs are given by Reca and Martínez [2006]. For this case study, the 

total choice table is composed of 10 pipe diameters for each pipe.  

 

Figure 9 Layout, the optimal source partitioning cut-set and the sub-networks 
(FRN1, FRN2, FRN3 and FRN4) of the four-reservoir network (FRN) 

The optimal source partitioning cut-set for the FRN case study was identified to be 

composed of five pipes using the proposed method given in Figure 3. The whole 

FRN was partitioned into four sub-networks after removal of the optimal source 
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partitioning cut-set. These include FRN1, FRN2, FRN3 and FRN4 as shown in Figure 

9. There were 45 demand nodes and 45 pipes in FRN1; 130 demand nodes and 132 

pipes in FRN2; 41 demand nodes and 41 pipes in FRN3; and 227 demand nodes and 

231 pipes in FRN4. For the FRN case study, the computational time to identify the 

optimal source partitioning cut-set was equivalent to 32 whole FRN evaluations. The 

average computational time for one evaluation of FRN1, FRN2, FRN3 and FRN4 was 

equivalent to 0.031, 0.20, 0.031 and 0.52 whole FRN evaluations respectively based 

on 1000 runs using the same method as for the DRN case study. The pipe 

configuration for each sub-network and the full network was randomly generated for 

the 1000 runs.  

For the FRN case study, because the size of the sub-networks varies significantly, the 

population size (N) and the maximum number of allowable evaluations of DE 

algorithms applied to different sub-network optimizations need to be slightly tuned. 

Table 13 gives the parameter values used for the DE algorithms run for the 

optimization of each sub-network and for the whole FRN optimization. These 

parameters values were selected based on a few trials. As can be seen from Table 13, 

the larger sub-network was given a larger population size and the maximum number 

of allowable evaluations. Two SDE algorithms with population sizes of N=500 and 

N=2000 were applied to the FRN case study. Values of F=0.3 and CR=0.5 were used 

for all the DE algorithms in this case study. The statistical results for these different 

algorithms and the published results for this case study are provided in Table 14.  

Table 13 The DE algorithm parameter values applied to different sub-networks 
and the whole FRN (Balerma network)  

Network 
No. of decision 

variables 
(Pipes) 

Population 
size (N) 

Maximum number 
of allowable 
evaluations 

FRN1 45 100 20,000 
FRN2 132 200 200,000 
FRN3 41 100 20,000 
FRN4 231 300 800,000 

FRN (the second phase DE algorithm) 454 200 10,000,000 
FRN (the SDE) 454 500/2000 10,000,000 
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As displayed in Table 14, the current best known solution for the FRN case study 

was first reported by Zheng et al. [2011a] with a cost of €1.923 million using a NLP-

DE method. This best solution was also found by the proposed method in this paper, 

however, using only an average of 639,960 total equivalent full FRN evaluations 

based on ten different runs, compared to 1,427,850 evaluations required by the NLP-

DE method [Zheng et al. 2011a]. The best solution found by HD-DDS [Tolson et al. 

2009] were €1.940 million using 30 million evaluations budget. The SDE algorithm 

with N=500 produced the best solution of €1.988 million spending 2,042,000 

evaluations and the SDE algorithm with N=2000 yielded the best solution of €1.982 

million with 9,230,000 evaluations.  

Table 14 Algorithm performance for the FRN case study (Balerma network) 

Algorithm 
Number 
of trial 
runs  

Best 
solution 
found 
(€M) 

Average 
cost 

solution 
(€M) 

Worst 
solution 
found 
(€M) 

Average 
number of 
original 

evaluations 
to find best 

solution 

Average 
number of 
equivalent 
full FRN 

evaluations 
to find best 

solution 

Proposed 
method 
(This 
study) 

FRN1 10 0.182 0.182 0.182 14,867 461 

FRN2 10 0.710 0.712 0.714 122,889 24,578 

FRN3 10 0.133 0.133 0.133 15,400 477 

FRN4 10 0.883 0.884 0.884 567,366 295,030 
FRN1+FRN2+ 
FRN3+ FRN4 

+cut-set 
pipesa 

10 1.930b 1.931 1.931 720,522 320,546 

FRN 10 1.923 1.931 1.935 319,360 319,360 

Total  10 - - - - 639,906c 
NLP-DE [Zheng et al. 

2011a] 
10 1.923 1.927 1.934 1,427,850 1,427,850 

HD-DDS [Tolson et al. 
2009] 

1 1.940 - - NA 30,000,000 

SDE (N=2000,this study) 10 1.982 1.985 1.987 9,294,666 9,294,666 

SDE (N=500,this study) 10 1.988 2.208 2.050 1,814,700 1,814,700 

HS [Geem 2009] 1 2.018 - - 10,000,000 10,000,000 
GANOME GA [Reca and 

Martínez 2006] 
10 2.302 2.334 2.350 10,000,000 10,000,000 

aThe cost of the cut-set pipes is $19,674 by assigning them with the minimum pipe diameters. 
bInfeasible solution determined by EPANET2.0 with the maximum head deficit of 2.2 meters. 
cThe total computational overhead required by the proposed method has been converted to the 
equivalent number of the whole network evaluations (FRN1+FRN2+FRN3+FRN4+cut-set+FRN).  
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Reca and Martínez [2006] and Geem [2009] employed the GANOME GA and HS to 

find the best solutions of €2.302 million and €2.018 million for this case study 

respectively running a total of 10 million evaluations. As shown in Table 14, the 

worst solution found by the proposed method based on the ten different runs is 

€1.935 million, which is still lower than the best solutions found by the majority of 

other algorithms presented in Table 14. From these results, it is concluded that the 

proposed method is able to find better solutions for this case study with higher 

reliability than the majority of other optimization techniques.  

In terms of efficiency (total equivalent number of evaluations), the proposed method 

found the best solution 1.23 times faster than the NLP-DE method; 44.8 times faster 

than the HD-DDS; 13.6 times faster than the SDE algorithm with population size of 

N=2000; 1.83 times faster than the SDE algorithm with population size of N=500; 

and 14.3 times faster than GANOME GA and HS. This implies that the proposed 

decomposition and multi-stage optimization approach is able to find optimal 

solutions for such a relatively large case study (454 decision variables) with 

substantially improved efficiency compared to all other algorithms presented in Table 

14. 

It is interesting to note that the best approximate optimal solution generated by the 

first stage optimization of the proposed method was €1.930 million, which is only 

0.7% higher than the current best solution for the FRN case study produced by the 

proposed method after the second stage optimization. The average cost of the ten 

approximate optimal solutions was €1.931 million, which is also extremely close to 

the current best solution. In addition, these approximate optimal solutions were found 

with extremely good efficiency as shown in Table 14. Although these approximate 

optimal solutions were infeasible when determined by EPANET2.0, they are able to 

specify promising regions for the second stage optimization of the proposed method, 

thereby allowing the good quality solutions for the whole FRN to be found 

efficiently.  
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6.5. Sub-network optimization analysis (first stage optimization) 

Table 15 summarizes the number of pipes for which the diameters in the approximate 

optimal solutions (produced by the sub-network optimization during the first stage 

optimization) are different from the current best known solutions for each case study.  

Table 15 Summary of the number of different pipe diameters for the 
approximate optimal solutions and the current best known solutions for each 

case study 

Case study 
Number 
of pipes 

Number of pipes 
in optimal source 
partitioning cut-

set (Ω ) 

Number 
of 

different 
runs 

Number of pipes different 
in diameters between the 
approximate solution and 
the current best known 

solution 
Two-reservoir 

WDS 
6 2 100 1 to 2 

TRN 287 14 10 29 to 35 
FRN 454 5 10 52 to 61 

As can be seen from Table 15, the number of different pipes diameters range from 

only 1 to 2 for the two-reservoir WDS case study (6 total pipes), 6 to 8 for the DRN 

case study (34 total pipes) based on 100 different runs, from only 29 to 35 for the 

TRN case study (287 total pipes) and from only 52-61 for the FRN case study (454 

total pipes) based on ten different runs. Thus the majority of the pipes in the 

approximate optimal solution obtained in the first stage optimization have the same 

diameters as for those in the current best known solution for each case study. This 

demonstrates that the proposed source partitioning approach for a WDS with multiple 

supply sources is effective in terms of providing good initial estimates for the whole-

of-network optimization. This is proven in that the network configuration obtained by 

combining each sub-network’s design is extremely close to that provided by the final 

optimal solution as shown in Table 15.  

Thus, it can be concluded that during the first stage optimization phase of the 

proposed decomposition and multi-stage optimization approach, the approximate 

optimal solutions for the whole network were efficiently found with very satisfactory 

quality in terms of both cost and network configuration compared to the current best 

known solution for each case study. The benefits are attributed to two factors 



CHAPTER 8. JOURNAL PAPER 6-DECOMPOSITION OPTIMIZATION OF WDS WITH MULTIPLE SOURCES  

236 

including: (i) each DE algorithm is used to deal with a portion of the whole network 

and hence explore a significantly reduced search space in the proposed method. This 

allows good quality solutions for each sub-network to be located with substantially 

improved efficiency; and (ii) the sum of computational overhead for each sub-

network’s hydraulic evaluation is smaller than that of one whole network evaluation.  

7. Conclusions and future work  

A novel decomposition and multi-stage optimization method is proposed to optimize 

the design of water distribution systems with multiple supply sources. The proposed 

method begins by identifying an optimal source partitioning cut-set for a given water 

network with K supply sources based on the available friction slopes at each node. 

The whole water network is then partitioned into K disconnected sub-networks after 

the removal of the optimal source partitioning cut-set. A total of K independent DE 

algorithms are used to optimize the K sub-networks individually during the first stage 

optimization. The optimal solutions for each sub-network plus the optimal source 

partitioning cut-set with the minimum allowable pipe diameter are used to create a 

tailored seeding table. Another DE algorithm is seeded with this given seeding table 

to optimize the design of the original whole network during the second stage 

optimization.  

The proposed method was applied to four case studies and the results were compared 

with those of standard DE algorithms seeded with the total choice table also applied 

to these three case studies. It was found that the proposed method (decomposition 

followed by two-stage optimization) significantly outperforms the SDE algorithms in 

terms of solution quality and efficiency. Based on the results of the proposed method 

applied to the three case studies, the following observations can be made.  

(1) The proposed partitioning approach for a WDS with multiple supply sources 

based on the available friction slopes at each node is effective. This is reflected by 

the fact that (i) the approximate optimal solutions obtained from the sub-network 
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optimizations were extremely close to the current best solution for each case study in 

terms of both solution costs and network configurations and (ii) the good quality 

solutions for each case study were found efficiently by a DE seeded by the tailored 

seeding table obtained from sub-network optimization. 

(2) The computational overhead required to find the optimal source partitioning 

cut-set for a given WDS with multiple supply sources is negligible compared with 

that required by the whole optimization process (smaller than 0.01% of the total 

time). This indicates that the proposed algorithm given in Figure 3 used to identify 

the optimal source partitioning cut-set for a WDS with multiple supply sources is 

extremely efficient. 

(3) The DE algorithm seeded with the tailored seeding table based on the 

approximate optimal solution efficiently produces better quality solutions than the 

standard DE algorithm seeded with the total choice table.  

(4) The proposed method found the new current best solution for the DRN with a 

cost of $1.750 million and the current best known solution for the FRN case study 

with the best known efficiency. The proposed method produced a current best 

solution for the TRN case study, with a value of $6.823 million (R=1.0 and 

HW=130). 

The performance of the proposed method has been compared with other previously 

reported optimization techniques based on the three case studies. It was found that 

the newly proposed method (decomposition followed by two-stage optimization) 

yielded better optimal solutions than other optimization techniques such as GAs and 

the HD-DDS with an extremely faster convergence speed.  

It is important to note that the computational time for each sub-network optimization 

was added to the total computational time for the whole proposed optimization 

process in this study. This is due to the fact that sub-network optimization is 

individually completed in a predetermined sequence. However, sub-network 
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optimization using this proposed method can actually be undertaken utilizing parallel 

computing technology or multiple computers. In this case, all the sub-network 

optimizations could be started simultaneously, therefore further improving the 

efficiency of the whole optimization process. Thus, the proposed method provides an 

opportunity to exploit parallel computing techniques for the design optimization of a 

WDS with multiple supply sources. 

The proposed decomposition and multi-stage optimization method presented in this 

paper has been demonstrated to be effective in finding the least-cost design (single 

objective optimization) for water distribution systems with multiple supply sources 

(WDS-MSS). A further future extension to the proposed method would be to deal 

with multi-objective optimization problems for WDS-MSS, in which say both the 

network cost and reliability will be considered. For the purpose of multi-objective 

optimization for WDS-MSS, a multi-objective optimization technique (such as 

NSGA-II: Deb et al. [2002] or Borg: Hadka and Reed [2012]) could be used to deal 

with sub-networks separately during the first stage optimization phase. Then another 

multi-objective optimization run would be seeded by the results obtained from the 

first stage optimization in order to generate multi-objective optimal solutions for the 

original whole WDS-MSS. This extension could be a focus of future work. 

It should be noted that in this study the proposed decomposition and multi-stage 

optimization method aims to optimize a regional water supply system with multiple 

supply sources (WDS-MSS). The proposed method may not be transferred directly to 

deal with the optimization of a local supply system. For example if pressure reducing 

valves are used to partition a local water supply system into different zones, then 

application of the proposed method will require significant modification. Again, 

another future focus will be to extend the proposed method to deal with the 

optimization design of more complex networks (local water supply systems), for 

which the pumps, valves, tanks and multiple demand loading cases may be involved.  
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Although the proposed decomposition and multi-stage optimization method has been 

applied to find the optimal design for water distribution systems with multiple supply 

sources (WDS-MSS) in this paper, this concept (i.e., decomposition followed by 

multi-stage optimization) could be also transferred or extended to deal with other 

optimization problems, such as leakage hotpot detection [Wu and Sage 2006], 

contaminant detection [Weickgenannt et al. 2010] and the real-time optimization 

problems for WDSs [Kang and Lansey 2010].  
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Chapter 9. Journal Paper 7-Graph Decomposition Optimization of 
WDS 

9.1 Synopsis 

A graph decomposition based approach for water distribution network 

optimization 

Normally, a water network can be viewed as a connected graph G(V,E), where V is a set 

of links and E is a set of nodes in the WDN. Thus, it is natural to introduce graph theory 

algorithms to facilitate WDN analysis. Traditionally, graph theory was used for water 

network connectivity and reliability analysis. This thesis develops a number of graph 

decomposition concepts for water networks in order to facilitate the optimization of the 

design. These decomposition concepts include (i) the determination of the shortest-

distance tree for the water network presented in Chapter 6; (ii) the identification of the 

trees and core for the water network outlined in Chapter 7; (iii) the optimal source 

partitioning cut-set approach presented in Chapter 8, and (iv) the sub-network 

identification for the whole network which is given in Chapter 9. 

The shortest-distance tree shown in Chapter 6 is used to decompose the original looped 

water network into a tree and chords. Consequently, non-linear programming (NLP) is 

used to obtain the optimal solution for the shortest-distance tree, which in turn is utilized 

to seed a differential evolution (DE) algorithm to optimize the original whole network.  

The full water network is decomposed into trees and core in Chapter 7, where no loops 

are involved in the trees and loops are only included in the core. Then binary linear 

programming (BLP) is used to exclusively optimize the design for the trees and a DE is 

employed to find the optimal design for the core. Using this decomposition method, 

different components of the water network are optimized by different optimization 

techniques. 

The optimal source partitioning concept proposed in Chapter 8 is used to decompose a 

complex water network with multiple supply sources into sub-networks based on the 

number of supply sources. One and only one supply source and a set of nodes and links 

are assigned to each sub-network. Rather than optimizing the full water network, the sub-
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networks are optimized separately and the solutions from all sub-networks are combined 

to form an approximate optimal solution for the full network. This approximate optimal 

solution is used to initialize a DE in order to find further better solution for the original 

full network. 

The sub-network identification concept presented in this Chapter differs from those in 

Chapters 6, 7 and 8. In this Chapter, a complete water network is decomposed into sub-

networks based on the connectivity of the network’s components. Each resulting sub-

network contains a single block, bridges and trees if applicable. It should be highlighted 

here that the sub-network definition in this Chapter differs to the sub-network definition 

in Chapter 8. The differences include: (i) the sub-network identification in this Chapter is 

based on network’s connectivity properties while the sub-network identification in 

Chapter 8 is based on the number of supply sources and (ii) no pipes are removed to 

identify the sub-networks in this Chapter while the source partitioning cut-set has to be 

removed in order to constitute the sub-networks in Chapter 8.  

In the proposed decomposition based optimization approach in this Chapter, the original 

whole network is simplified to a directed augmented tree after the sub-network 

identification, in which the sub-networks are substituted by augmented nodes and 

directed links are created to connect them. A DE is then employed to optimize the design 

for each sub-network based on the sequence specified by the assigned directed links in 

the augmented tree. Rather than optimizing the original network as a whole, therefore, 

the sub-networks are sequentially optimized by the DE algorithm.  

In the proposed graph decomposition based optimization method, a solution choice table 

is established for each sub-network (except for the root sub-network that includes the 

reservoir) and the optimal solution of the original whole network is finally obtained by 

use of the solution choice tables. Furthermore, in order to improve the efficiency of the 

optimization process, a pre-conditioning algorithm is developed to optimize the sub-

networks, thereby producing an approximately optimal solution for the original whole 
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network. This solution specifies promising regions for the final optimization algorithm to 

further optimize the sub-networks, allowing better quality solutions to be found. 

The proposed approach takes advantage of the fact that the evolutionary algorithm (DE 

in this research) is effective in exploring a relatively small search space. As the number 

of decision variables for each sub-network is significantly less than the original whole 

network, the DE is able to exploit the substantially reduced search space effectively and 

quickly. This allows good quality optimal solutions for each sub-network to be found 

with great efficiency. Another substantial benefit of the proposed method is that it 

provides a way to exploit parallel computing techniques for the design optimization of a 

WDS 

This work has been submitted to Water Resources Research and the paper and the 

algorithm details are given as follows. 

Citation of Paper 

Zheng, F., A. R. Simpson, A. C. Zecchin and J. Deuerlein (2012b). “A graph 

decomposition based approach for water distribution network optimization.” Water 

Resources Research, submitted June 2012. 
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9.2 Journal Paper 7: A graph decomposition based approach for 
water distribution network optimization (Submitted to Water 
Resources Research) 

Feifei Zheng, Angus R. Simpson, Aaron C. Zecchin and Jochen Deuerlein 

Abstract 

A novel optimization approach for water distribution network design is proposed in 

this paper. Using graph theory algorithms, a full water network is first decomposed 

into different sub-networks based on the connectivity of the network’s components. 

The original whole network is simplified to a directed augmented tree, in which the 

sub-networks are substituted by augmented nodes and directed links are created to 

connect them. Differential evolution (DE) is then employed to optimize each sub-

network based on the sequence specified by the assigned directed links in the 

augmented tree. Rather than optimizing the original network as a whole, the sub-

networks are sequentially optimized by the DE algorithm. A solution choice table is 

established for each sub-network (except for the sub-network that includes a supply 

node) and the optimal solution of the original whole network is finally obtained by 

use of the solution choice tables. Furthermore, a pre-conditioning algorithm is 

applied to the sub-networks to produce an approximately optimal solution for the 

original whole network. This solution specifies promising regions for the final 

optimization algorithm to further optimize the sub-networks. Five water network case 

studies are used to demonstrate the effectiveness of the proposed optimization 

method. A standard DE algorithm (SDE) and a genetic algorithm (GA) are applied to 

each case study without network decomposition to enable a comparison with the 

proposed method. The results show that the proposed method consistently 

outperforms the SDE and GA (both with tuned parameters) in terms of both the 

solution quality and efficiency. 
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1. Introduction  

The optimization of water distribution network (WDN) design has been investigated 

over the past few decades, and a number of optimization techniques have been 

developed to tackle WDN optimization problem. These include linear programming 

(LP) [Alperovits and Shamir 1977], nonlinear programming (NLP) [Fujiwara and 

Khang 1990], and evolutionary algorithms [Simpson et al. 1994; Dandy et al. 1996; 

Montesinos et al. 1999; Reca and Martínez 2006; Geem et al. 2002; Maier et al. 

2003; Suribabu and Neelakantan 2006; Tolson et al. 2009; Suribabu 2010]. 

However, it has been found that each optimization algorithm has its own advantages 

and disadvantages.  

For LP and NLP, optimal solutions can be located efficiently, while only local 

minimums are provided. Evolutionary algorithms (EAs) are able to find good quality 

solutions but are computationally expensive. A number of advanced methods have 

been proposed to reduce the computational intensity required by EAs in terms of 

WDN optimization [van Zyl et al. 2004; Tu et al. 2005; Keedwell and Khu 2006; Reis 

et al. 2006]. Combining optimization techniques with water network decomposition 

is one of those advanced methods.  

Normally, a WDN can be viewed as a connected graph G(V,E), where V is a set of 

links and E is a set of nodes in the WDN. Thus, it is natural to introduce graph theory 

algorithms to facilitate WDN analysis. Traditionally, graph theory was used for water 

network connectivity and reliability analysis. Gupta and Prasad [2000] used linear 

graph theory for the analysis of the pipe networks. Deuerlein [2008] proposed a 

graph theory algorithm to decompose a WDN into forests, bridges and blocks. This 

method provides a tool to simplify complex WDNs and provides a better 

understanding of the interactions between their different parts of the network.  

In terms of WDN optimization, Kessler et al. [1990] developed a graph theory based 

algorithm to optimize the design of WDNs. In their work, the design process 
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consisted of three distinct stages. In the first stage alternative paths were allocated 

using graph theory algorithms. In the second stage the minimum hydraulic capacity 

(diameters) of each path was determined using an LP model. In the third stage the 

obtained solution from the second stage was tested by a network solver for various 

demand patterns.  

Sonak and Bhave [1993] introduced a combined graph decomposition-LP algorithm 

for WDN design. In this combined algorithm, all the trees of the looped WDN were 

first identified by a graph theory algorithm and optimized by a LP, allowing the 

global optimum tree solution to be located. The final optimal solution for the original 

WDN was then determined by assigning the chords of the global optimum tree the 

minimum allowable pipe diameters. Savic et al. [1995] used graph theory to partition 

a water network into ‘tree’ and ‘co-tree’ to enable an optimization problem that 

involved minimizing the heads by setting regulation valves.  

Kadu et al. [2008] proposed a genetic algorithm (GA) combined with a graph theory 

algorithm to optimize water distribution systems. In their method, graph theory is 

used to identify the critical path for each node in order to reduce the search space for 

the genetic algorithm. Krapivka and Ostfeld [2009] proposed a coupled GA-LP 

scheme for the least-cost pipe sizing of water networks. A spanning tree 

identification algorithm was introduced in their work. Zheng et al. [2011] proposed a 

combined NLP-DE algorithm to optimize WDNs. In this algorithm, a graph theory 

algorithm was first used to identify the shortest-distance tree for the original whole 

WDN. Then an NLP was implemented to optimize the tree network. The optimal 

solution obtained from the NLP optimization was finally utilized to seed a DE to 

optimize the original whole network.  

Improvements in terms of efficiency and solution quality have consistently been 

reported by researchers when these optimization techniques are combined with graph 

theory algorithms and applied to WDN case studies. It was observed that, for the 

existing graph theory based optimization techniques, graph theory is normally used to 
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identify the critical path or the spanning tree for the WDN in order to facilitate the 

optimization.  

For the proposed method here, a complete WDN is decomposed into sub-networks 

(rather than spanning trees) based on the connectivity of the network’s components. 

The resulting sub-network may consist of a single block, bridges to this block and 

trees connected to this block if applicable. For relatively simple networks, (such as 

networks that have only one block and multiple trees attached to this block (case 

studies 2 and 3 in this paper)), the trees can be viewed as sub-networks. The sub-

network containing the water supply node (reservoir) is designated the root sub-

network. The definitions of block, bridge and tree for the water network are given by 

Deuerlein [2008], who described a block in a WDN as a maximal biconnected 

subgraph; a bridge is a link joining two disconnected parts of a graph; and a tree is a 

connected subgraph without any circuits or loops. 

After the sub-networks have been identified, each one is represented as an augmented 

node and these augmented nodes are connected using directed links to form a 

directed augmented tree (AT), in which the directed links are used to specify the sub-

network optimization sequence. In order to improve the efficiency of the 

optimization process, a pre-conditioning approach is developed to approximately 

optimize the sub-networks in order to produces an approximate optimal solution for 

the original full network. The obtained approximate solution is able to specify 

promising regions within the entire search space. A final optimization method is then 

used to exploit these promising regions in order to generate further improved 

solutions for the original full network. The details of the proposed methodology are 

given later.  

2. Formulation of water distribution network optimization problem 

Typically, a single-objective optimization of a WDN is the minimization of system costs 

(pipes, tanks and other components) while satisfying head constraints at each node. In 
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this paper, the proposed graph decomposition based optimization method is verified 

using WDN case studies with pipes only. Thus, the formulation of the WDS optimization 

problem can be given by: 

Minimize ∑
=

=
np

i
i

b
i LDaF

1

 (1) 

Subject to:   

 .....,nj,kHHH kkk 21   maxmin =≤≤  (2) 

 G(Hk, D)=0 (3) 

  }{  ADi ∈  
(4) 

where F=network cost that is to be minimized [Simpson et al. 1994]; Di=diameter of the 

pipe i; Li=length of the pipe i; a, b=specified coefficients for the cost function; np=total 

number of pipes in the network; nj=total number of nodes in the network; G(Hk, 

D)=nodal mass balance and loop (path) energy balance equations for the whole network, 

which is solved by a hydraulic simulation package (EPANET2.0 in this study) ; Hk=head 

at the node k=1,2….,nj; min
kH and max

kH  are the lower and upper head limits at the nodes; 

A = a set of commercially available pipe diameters.  

3. Methodology 

Four steps are involved in the proposed method for optimizing a WDN. 

Step 1 The sub-networks for the full WDN that is being optimized are identified 

using a graph decomposition algorithm. 

Step 2 A directed augmented tree (AT) is built for the original full WDN. In the 

AT, the sub-networks appear as augmented nodes connected by directed 

links. The direction of the directed links in the AT determines the sub-

network optimization sequence in the proposed method.  
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Step 3 The sub-networks are then preconditioned using a DE algorithm to produce 

an approximate optimal solution for the original full network. 

Step 4 The sub-networks are further optimized by a DE algorithm based on the 

approximate optimal solution obtained in Step 3. 

The details of each step are as follows.  

3.1. Sub-network identification for the full water network (Step 1) 

Deuerlein [2008] proposed a graph theory algorithm to decompose a water network 

graph (G) into forest, blocks and bridges according to its connectivity properties. In 

the method proposed here, however, the original network graph (G) is decomposed 

into a series of sub-networks (S). Each of the sub-networks may consist of one block, 

bridges to this block and trees attached to this block if applicable, or purely trees (if 

blocks are not applicable). Figure 1 illustrates the decomposition results of a water 

network using the proposed new method.  

  

Figure 1 An example of 27-pipe water network decomposition. (a): the 
original water network; (b) the proposed decomposition results. 
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For the water distribution network (G) given in Figure 1(a), six sub-networks are 

identified specified as follows by a set of nodes and pipes, including S1={a, b, c, d, v, 

1, 2, 3, 4, 5}, S2={e, f, 6, 7, 8,}, S3={g, h, i, j, 9, 10, 11, 12, 13}, S4={k, l, m, n, 14, 15, 

16, 17, 18}, S5={o, p, q, 19, 20, 21, 22} and S6={ r, s, t, u, 23, 24, 25, 26, 27}. S1 is 

denoted as root sub-network as it includes the supply source node v of the original 

water network. 

As shown in Figure 1(b), each sub-network contains one and only one block, bridges 

to this block if applicable, and the trees attached to this block if applicable. The sub-

networks overlap at some nodes as can be seen from Figure 1, i.e. S1 ∩ S2=c, S2 ∩ 

S3=f, S2 ∩ S4=e, S4 ∩ S5=m and S4 ∩ S6=n. In this study, nodes c, f, e, m and n are 

denoted as sub-network cut nodes (C), i.e. C={c, f, e, m, n}. A depth first search 

(DFS) is employed to identify sub-network cut nodes [Tarjan 1972; Deuerlein 2008] 

to enable the network decomposition. 

3.2. Directed augmented tree (AT) construction for the original WDN (Step 2) 

In order to assist in visualizing the proposed optimization method, the decomposed 

water network G is reconstructed as a directed augmented tree (AT) by imagining 

each of the sub-networks as an augmented node and connecting the augmented nodes 

using directed links. The directed augmented tree AT of water network G given in 

Figure 1(a) is presented in Figure 2.  

As shown in Figure 2, reflecting graph theory terminology, S1 is the root augmented 

node in the AT since sub-network S1 is the root sub network in Figure 1. S2 and S4 are 

located in the middle of the AT, while S3, S5 and S6 are located at the leaves of the AT. 

The AT is now used to illustrate the two novel features of the proposed optimization 

method, which are (i) the optimization is carried out for each sub-network separately 

(rather than for the original full network as a whole) in a predetermined sequence 

specified by the directed links in the AT; and (ii) each sub-network design 

optimization incorporates the solutions for all the sub-networks that are immediately 
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attached to this sub-network based on the direction of the directed links in the AT. 

Referring the novel feature (i), as specified by the directed links in the AT given in 

Figure 2, S3, S5 and S6 are first separately optimized, followed by S4; then S2 and 

finally is S1. That is, sub-network optimization takes place from the leaves to the root 

of the AT, which is opposite to the flow direction of the AT (that is from the root to 

the leaves as the supply source node is included in the root augmented node). 

 

Figure 2 The directed augmented tree (AT) of the water network G given in 
Figure 1(a) 

In order to facilitate the implementation of the novel feature (ii), for each sub-

network represented by an augmented node in the AT, all the other sub-networks that 

are immediately attached to this sub-network based on the direction of the directed 

links are defined as its correlated sub-networks ϕ . Based on this definition, the 

correlated sub-networks for each sub-network given in Figure 2 is ϕ (S1)={S2}, ϕ

(S2)={S3, S4},  ϕ (S3)= ∅ , ϕ (S4)={S5, S6}, ϕ (S5)= ∅  and ϕ (S6)= ∅ . Based on the 

novel feature (ii) of the proposed method, each sub-network design optimization 

needs to include the solutions for all the sub-networks in its ϕ .  

By applying the two novel features to the water network given in Figure 1 (its AT is 

presented in Figure 2), S3, S5 and S6 should be first individually optimized and they 

do not consider other networks during optimization since their ϕ = ∅ . Then S4 is 

S1

S2

S3

Augmented node

Directed links

Root augmented node

l2

l1

S4

S5 S6

l3

l4 l5

S: Sub-networks



CHAPTER 9. JOURNAL PAPER 7-GRAPH DECOMPOSITION OPTIMIZATION OF WDS 

256 

optimized while incorporating the solutions for S5 and S6 since ϕ (S4)={S5, S6}. 

Subsequently, S2 is optimized and S3 and S4 are included during the optimization (ϕ

(S2)={S3, S4}). Finally, S1 is optimized and S2 is included (ϕ (S1)={S2}).  

As previously mentioned, two distinct optimization steps are utilized in the proposed 

method when dealing with the optimization design for a WDN, which are 

preconditioning optimization for the sub-networks (Step 3) and the final optimization 

for the sub-networks (Step 4). The details of these two proposed optimization 

algorithms are discussed in the later section. The water network given in Figure 1(a) 

(denoted N1) is used to illustrate the proposed optimization approach. The water 

demands for each node and the length for each pipe are given in Table 1. 

Table 1 Nodal and pipe information of N1 

Link 
Length  

(m) 
Node  

Water 
demand 

(L/s) 
1 800 v Reservoir 
2 750 a 25 
3 600 b 27 
4 485 c 32 
5 452 d 15 
6 478 e  48 
7 492 f 20 
8 562 g 124 
9 145 h 14 
10 785 i 32 
11 456 j 13 
12 325 k 17 
13 148 l 22 
14 478 m 42 
15 528 n  89 
16 400 o 26 
17 258 p 23 
18 547 q 11 
19 500 r 19 
20 200 s 17 
21 200 t 16 
22 900 u 32 
23 654   
24 698   
25 250   
26 700   
27 254   
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The elevation of all the demand nodes is 10 meters and the head provided by the 

supply source node (v) is 45 meters. The minimum head requirement for each 

demand node is 35 meters. The Hazen-Williams coefficient for each new pipe is 130. 

A total of 14 diameters ranging from 150 mm to 1000 mm are used for the N1 design. 

The pipe diameters and the cost for each diameter are given by Kadu et al. [2008]. 

3.3. Preconditioning optimization for the sub-networks (Step 3) 

Three typical sub-networks can be defined for the decomposed network in the 

proposed method, including the sub-networks at the leaves (L(AT)), sub-networks in 

the middle of the directed augmented tree (M(AT)) and the root sub-network 

(Rt(AT)). For the sub-networks represented by augmented nodes in Figure 2, {S3, S5 

S6} ∈L(AT), {S2, S4} ∈M(AT) and S1∈Rt(AT). 

Sub-networks at the leaves [S∈L(AT)] differ from other sub-networks as their ϕ =∅ . 

The root sub-network [S∈Rt(AT)] is characterized by its known available head, since 

it includes the supply source node of the original WDN. The available heads of the 

sub-networks in the middle of the directed augmented tree (S∈M(AT)) are unknown 

and their ≠ϕ ∅ , which are different from S∈L(AT) and S∈Rt(AT). In the proposed 

method, the optimization process for each type of the sub-network varies. 

3.3.1 Optimization for the sub-network at the leaves of the AT  

The sub-networks at the leaves (S∈ L(AT)) are first optimized in the proposed 

method. Since no supply source node exists for each S∈L(AT), each sub-network cut 

node connecting the S∈L(AT) and the S∈M(AT) is assumed to be a supply source 

node for S∈L(AT). Therefore, the sub-network cut nodes f, m and n represent the 

supply source nodes for S3, S5, and S6 respectively as shown in Figure 1 (b).  

Since the available head (H) at a sub-network cut node is unknown, a series of 

sequential heads (H) between Hmin and Hmax are assigned for the sub-network cut 

node, where Hmin is the maximum value of all minimum required nodal heads across 

the whole sub-network that is being optimized and Hmax is the allowable head 
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provided by the supply source node of the original network. The logic behind setting 

the head range [i.e., H∈(Hmin, Hmax)] is that no feasible solution can be found if the 

available head at the sub-network cut node is smaller than the maximum value of the 

minimum head constraints at all sub-network nodes, and the maximum head of the 

sub-network cut node cannot be greater than the head of the supply source node. A 

series of different H, H∈(Hmin, Hmax), with a particular interval (say one meter) are 

used for the sub-network cut node in order to enable sub-network optimization. 

For each value of H assigned to a sub-network cut node, a differential evolution (DE) 

algorithm combined with a hydraulic simulation model (EPANET2.0) is used to 

optimize the sub-network design, while satisfying the head requirements for each 

node within the sub-network. The minimum pressure head excess Hexcess (Hexcess 0≥ ) 

across the sub-network is obtained for each optimal solution associated with a 

particular value of H at the sub-network cut node. This indicates that the head at the 

sub-network cut node can be further reduced by Hexcess while maintaining the 

feasibility of this optimal solution. The head H at the sub-network cut node is then 

adjusted to *H , where *H =H-Hexcess, which is the minimum head requirement at the 

sub-network cut node for the optimal solution associated with the minimum pressure 

head excess Hexcess.  

Consequently, a solution choice table (ST) is constituted for the sub-network that is 

being optimized by assigning a series of different values of H to its assumed supply 

source node, sub-network cut node. In the ST, *H , optimal solution costs and the 

sub-network configurations (pipe diameters) of optimal solutions are included and 

each unique *H  is associated with a unique optimal solution (including the cost and 

the sub-network configuration).  

The sub-network S6 in N1 is used to illustrate the proposed optimization method for 

the S∈L(AT). The Hmin and Hmax values for S6 are 35 and 45 meters respectively, 

where Hmin is the maximum head requirement for all the nodes across S6 (35 m) and 

the Hmax is the allowable head provided by the actual supply source node (45 m). A 
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series of H ranging from 35 to 45 m with an increment of 1 m, i.e.,

}4538......., 37, ,36{=H  is used for the sub-network cut node n to optimize the 

design for S6. Note that no feasible solution can be found if H=35 m is assigned to 

node n as the minimum head requirement for S6 is 35 m. Thus, the value of H=35 m 

is not included in the series of H values assigned for the sub-network cut node n. The 

optimal solution for each value of H, the minimum pressure head excess (Hexcess) and 

the *H value for each optimal solution for S6 are given in Table 2. 

As can be seen from Table 2, with values of H given at the sub-network cut node n 

from the smallest to the largest (the first column of Table 2), values of *H are also 

ordered from the smallest to the largest, while its corresponding optimal solution is 

ordered from the largest to the smallest in terms of cost. This is due to the fact that a 

lower cost solution is achieved if a higher head is provided at the sub-network cut 

node. The solution choice table for S6 of N1 includes the *H values, the cost of the 

optimal solutions and the pipe diameters for optimal solutions as shown in the third, 

fourth and fifth columns in Table 2. This solution choice table is denoted as STn since 

the sub-network cut node n is the assumed supply source for S6.  

Table 2 Optimal solutions for S6 of N1 

H at sub-
network cut 

node n 
(m) 

Minimum 
pressure head 
excess Hexcess 

(m) 

*H = 
H-Hexcess 

(m) 

Cost of 
optimal 

solutions 
($) 

Pipe diameters for each 
optimal solution (mm)1 

36 0.014 35.986 155,487 450, 250, 300, 150, 300 
37 0.231 36.769 130,288 400, 200, 300, 150, 250 
38 0.157 37.843 115,622 350, 200, 250, 150, 300 
39 0.120 38.880 108,175 350, 150, 250, 150, 250 
40 0.397 39.603 105,079 350, 150, 250, 150, 200 
41 0.513 40.487 98,175 300, 150, 250, 150, 250 
42 0.790 41.210 95,079 300, 150, 250, 150, 200 
43 0.402 

42.598 92,032 300, 150, 200, 150, 200 
44 1.402 
45 0.160 44.840 89,168 250, 150, 200, 150, 250 

1The pipe diameters are for links 23 to 27 of N1 network (Figure 1 (a)) from the first to the last pipe 
respectively. [Note that only one solution is recorded in the table for the identical solutions (having the 
same *H , optimal cost and pipe diameter for links)]. 

It is found in STn that the value of *H , the cost and the pipe diameters for each link 

are the same for the optimal solutions generated when the heads at the sub-network 
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cut node n are 43 and 44 meters. This indicates that no further improved optimal 

solutions are to be found when the head at the sub-network cut node increases from 

43 to 44 meters. It should be noted here that the identical solutions (having the same 
*H , optimal cost and the pipe diameters for links) are removed from the solutions 

choice table (only one is left in the solution choice table).  

Each S∈L(AT) is optimized using the same approach as for S6 described above and 

hence a solution choice table is constituted for each one after optimization. For N1 

case study, in addition to S6, S3 and S5 are also sub-networks at the leaves of the 

directed augmented tree (see Figure 2). For S3 and S5, Hmin=35m and Hmax=45m, 

hence a series of values for }4538......., 37, ,36{=H  are used for the sub-network cut 

nodes f and m to optimize the design for the S3 and S5 respectively. As previously 

explained, H=35m is not assigned to the sub-network cut nodes as no feasible 

solution can be found with this assumed head value (the minimum head requirement 

is 35m for the N1 case study). The obtained solution choice tables for S3 and S5 are 

presented in Table 3 (the identical solutions have been removed from solution choice 

tables).  

Table 3 Solution choice tables for S3 and S5 of N1. 

Sub-network 
H at assumed 
supply source 

node (m)  

*H = 
H-Hexcess 

(m) 

Cost of 
optimal 

solutions ($) 

Pipe diameters for each 
optimal solution (mm)1 

Solution Choice 
table for S3 [ST 

(f)] where node f 
is the assumed 
supply source 
node for S3 

36 35.845 90,200 500, 150, 350, 200, 200 
37 36.939 73,900 400, 150, 300, 150, 200 
38 37.765 67,620 400, 150, 250, 150, 200 
39 38.886 63,553 350, 150, 250, 150, 150 
40 39.916 62,915 300, 150, 250, 150, 200 
41 40.903 60,483 400, 150, 200, 150, 150 
42 41.547 57,995 350, 150, 200, 150, 200 
43 42.575 57,357 300, 150, 200, 150, 200 

44, 45 43.054 55,778 300, 150, 200, 150, 150 
Solution Choice 
table for S5 [ST 
(m)] where node 
m is the assumed 

supply source 
node for S5 

36 35.995 74,686 350, 250, 150, 150 
37 36.864 64,603 300, 200, 150, 150 
38 37.925 62,469 300, 150, 150, 150 
39 38.649 57,717 250, 200, 150, 150 

40, 41, 42, 43, 44 39.710 55,583 250, 150, 150, 150 
45 44.607 51,623 200, 200, 150, 150 

1The pipe diameters are for links 9 to 13 of N1 network (Figure 1 (a)) in S3 and for links 19 to 22 of 
N1 network in S5 from the first to the last respectively. 
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As shown in Table 3, the solutions choice tables for S3 [ST(f)] and S5 [ST(m)] include 

a total of nine and six various optimal solutions respectively. For S3, the optimal 

solutions for the values of H at the assumed supply source node f being 44 and 45 m 

were the same obtained by the DE algorithm in terms of cost and network 

configuration. With H=40, 41, 42, 43 and 44 m at the assumed source node m for S5, 

the optimal solutions were the same and hence only one solution was included in the 

solution choice table [ST(m)] as shown in Table 3. 

3.3.2 Optimization for the sub-network in the middle of the AT 

The optimization for the S∈M(AT) is carried out once the optimization for S∈L(AT) 

has been finished. For each S∈M(AT), the water demands at each sub-network cut 

node have to be increased by the flows in the directed links to this sub-network that is 

being optimized (note the direction of the flows is opposite to the directed links). For 

the example given in Figure 1(b), the water demands at sub-network cut nodes f, m 

and n [f∈S2, {m, n} ∈S4, {S2, S4} ∈M(AT)] are increased by the flows in directed link 

l3 l4 and l5 respectively (see Figure 2), which are actually the demands of sub-

networks S3, S5 and S6 respectively. The water demand at sub-network cut node e is 

added by the flows in directed link l2, which are the total demands of sub-network S4, 

S5 and S6, as shown in Figure 2.  

It is noted that each S∈L(AT) is connected to the original entire network via only one 

sub-network cut node, while each S∈M(AT) is attached to the whole system with 

multiple sub-network cut nodes. For the example in Figure 1, S3, S5 and S6 belong to 

L(AT) and each of them is connected to the whole network with only one sub-

network cut node, which are nodes f, m and n respectively. In contrast, S2, S4 ∈

M(AT) are attached to the whole network with more than one sub-network cut nodes, 

for which nodes e m and n combine S4 with other parts of the whole network, and c f 

and e are used to connect S2 to the original entire network.  

Among these sub-network cut nodes attached to each S∈ M(AT), the one that is 

located at the upstream end based on the flow direction is assumed as supply source. 
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Thus, sub-network cut nodes c and e are the assumed supply sources for S2 and S4 

respectively for the water network given in Figure 1. A series of different H, H∈

(Hmin, Hmax), with a particular interval (of again say one meter) are assigned to the 

sub-network cut node for optimizing the S∈M(AT), which is the same approach as 

for optimizing S∈L(AT) described in Section 2.3.1. 

It is important to note that for each S∈M(AT), at least one sub-network is located at 

its immediately adjacent downward side based on the direction of the directed links 

in the AT, i.e. ≠ϕ ∅. In the proposed method, the optimization of each S∈M(AT) 

needs to include all the sub-networks in its ϕ  and the solutions for the sub-networks 

in its ϕ  are selected from their corresponding solution choice tables during 

optimization. The formulation of the optimization problem for each S∈M(AT) is 

given by: 

Minimize )(,))(()(' ATMSSfSFF ∈+= ∑ ϕ  (5) 

Subject to:   

 nsjkHHH kSkSkS ,....,1   max
,,

min
, =≤≤  (6) 

 G( kSH , , sD )=0 (7) 

 ))(())(( SSTSf ϕϕ ∈  (8) 

where 'F = total cost (to be optimized); )(SF =cost of the sub-network S (S∈M(AT)); 

∑ ))(( Sf ϕ =total costs for all other sub-networks connected to the subnetwork S (ϕ );       

G( kSH , , sD )=nodal mass balance and loop (path) energy balance equations for the sub-

network S, which is handled by a hydraulic simulation package (EPANET2.0 in this 

study) ; kSH , =the nodal head of the node k=1,….nsj; nsj=number of nodes within the 

sub-network S; min
,kSH  and max

,kSH   are the lower and upper head boundaries at the nodes of 

S. ))(( SSTϕ =the solution choice tables of sub-networks in the ϕ . 

As shown from Equations (5) to (8), although the total costs of the S∈M(AT) and all sub-

networks in its ϕ  are to minimized, only the cost and the nodal head constraints of the    
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S∈M(AT) are explicitly handled by an optimization algorithm (DE used in this study). 

This is because the optimal solutions for the sub-networks in ϕ  [denoted as ))(( Sf ϕ ] 

are selected from their corresponding solution choice tables ))(( SSTϕ  during 

optimization [Equation (8)]. In addition, head constraints of sub-networks in the ϕ  are 

also handled by their corresponding solution choice tables. This is one of the novel 

aspects of the proposed optimization method. The details of the proposed method in 

terms of selecting optimal solutions from solutions choice tables and handling constraints 

during the optimization for the S∈M(AT) are given as follows. 

The optimization of S4 in N1 is now used to illustrate the proposed methods for 

optimizing the S∈M(AT). For the water network given in Figure 1 and its AT shown 

in Figure 2, } ,{)( 654 SSS =ϕ  and hence S5 and S6 are included when S4 is optimized. 

For S4 optimization, different values of }4538......., 37, ,36{=H  are used for the 

assumed supply source e (Hmin=35m and Hmax=45m) and then a DE is employed to 

optimize the design for S4 for each H value.  

The total cost, including the cost of S5, the cost of S6 and the cost of S4 is to be 

minimized for the DE applied to optimize S4 [ } ,{)( 654 SSS =ϕ ]. For each individual 

solution in the DE algorithm, the head at the sub-network cut nodes m (Hm) and n 

(Hn) are tracked after the hydraulic simulation for S4 (EPANET2.0). Then the optimal 

solution for S5 and S6 are selected from their corresponding solution choice tables 

STm and STn based on assigning Hm and Hn to the sub-network cut nodes m and n. As 

the Hm and Hn may not equal precisely any particular *H  values in STm and STn, an 

approach is proposed in this study to select the appropriate optimal solutions based 

on the values of Hm and Hn. Figure 3 illustrates the details of this selection approach 

and the values of *H  versus the optimal solution costs in the solution choice table 

STn for S6 is presented in Figure 3 to facilitate the explanation. 

For each individual solution of the DE applied to optimize S4, Hn (head at the sub-

network cut node n) is obtained after hydraulic simulation for S4. Based on the value 

of Hn, three cases exist for selecting the optimal solution for S6, as shown in Figure 3: 
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Figure 3 *H  versus the optimal solution cost for S6 of N1 

Case 1: if Hn is smaller than the minimum *H  )]([ * AH  in STn, the cost associated 

with the minimum *H  (the cost of solution A in Figure 3) is added to the 

total cost of this individual solution and the network configuration (pipe 

diameters) associated with )]([ * AH  is assigned for S6. In addition, a 

penalty is applied to this individual solution as no feasible solution is 

found for S6.  

Case 2: if Hn is greater than the maximum *H  ))(( * BH  in STn, the cost associated 

with the maximum *H (the cost of solution B in Figure 3) is added to the 

total cost of this solution and the network configuration (pipe diameters) 

associated with )]([ * BH  is assigned for S6.  

Case 3: if Hn is between two adjacent *H  values in STn, the solution has the *H  

immediately smaller than the Hn is selected and its cost is added to the 

total cost of this individual solution. As shown in Figure 3, the solution C 

will be selected for S6 if the individual solution has a Hn between )(* CH  

and )(* DH , resulting in a pressure head excess of Hn- )(* CH  for S6. As 

such, the solution selected from STn can be guaranteed to be feasible as 

the solution with *H  smaller than Hn is chosen. The network 
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configuration (pipe diameters) associated with )]([ * CH  is assigned for S6 

in this case.  

The approach described above is also used to include the cost of S5 when a DE is 

used to optimize S4. As such, although only the pipes in S4 are handled by the DE, the 

solutions in the DE actually include the total cost of S4, S5 and S6. Once the DE has 

converged to the final optimal solution for S4, the minimum pressure head excess 

Hexcess for this optimal solution is determined by: 

(9)                         )](-( ),(-( ,min[ *
n

*
nm

*
mexcessexcess STHHSTHHHH =

 

where *
excessH  is the minimum pressure head excess across all the demand nodes for 

S4 that is being optimized; )( m
* STH  and )( n

* STH  are the values of *H  associated 

with the solutions selected for S5 and S6 from mST  and nST  respectively based on the 

approach illustrated in Figure 3. The head H at the sub-network cut node e is then 

adjusted to *H , where *H =H-Hexcess.  

For each different value of H assigned to the sub-network cut node e, the optimal cost 

solution for S4, S5 and S6 is obtained by the DE algorithm. In addition, the Hexcess is 

obtained using Equation (9) and hence the value of *H ( *H =H- Hexcess) is obtained 

for each optimal solution. As such, a solution choice table for S4 is formed, in which, 

*H , optimal solution cost and sub-networks configuration (pipe diameters for S4, S5 

and S6) of the optimal solution are included, which is presented in Table 4. 

As shown in Table 4, a total of nine different feasible optimal solutions were found 

by the DE applied to S4 optimization with the heads at the assumed source node e 

being }4538......., 37, ,36{ . No feasible solution was found with H=36 meters 

assigned to node e. In the solution choice table ST(e) for S4, the values of *H  across 

the sub-networks of S4, S5 and S6, the total cost of S4, S5 and S6 , the design for each 

of these three sub-networks are included. 
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Table 4 Solution choice table for S4 of N1 

H cut 
node 

e 
(m) 

*H = 
H-

Hexcess 
(m) 

Cost of 
optimal 

solutions 
($) 

Pipe diameters for each optimal solution (mm)1 in the solution choice table 
for S4 [ST(e)] 

 
S4 S5 S6 

36 - infeasible - - - 
37 36.94 542,915 700, 600, 450, 600, 150 350, 250, 150, 150 450, 250, 300, 150, 300 
38 37.94 484,396 600, 500, 400, 600, 150 350, 250, 150, 150 450, 250, 300, 150, 300 
39 38.94 437,211 600, 500, 400, 500, 150 300, 200, 150, 150 400, 200, 300, 150, 250 
40 39.76 414,439 600, 450, 350, 450, 150 300, 200, 150, 150 400, 200, 300, 150, 250 
41 40.94 392,887 600, 450, 350, 450, 150 250, 200, 150, 150 350, 200, 250, 150, 300 
42 41.86 380,809 500, 450, 350, 500, 150 300, 150, 150, 150 350, 200, 250, 150, 300 
43 42.98 368,869 500, 500, 350, 400, 150 250, 200, 150, 150 350, 150, 250, 150, 250 
44 43.78 348,862 500, 400, 300, 400, 150 250, 200, 150, 150 350, 200, 250, 150, 300 
45 44.84 339,281 500, 400, 300, 400, 150 250, 150, 150, 150 350, 150, 250, 150, 250 

1The pipe diameters are for links 14 to 27 of N1 network from the first to the last respectively (see 
Figure 1 (a)). 

As shown in Figure 2, } ,{)( 432 SSS =ϕ , thus S3 and S4 are included when S2 is 

optimized in the proposed method. The sub-network S4 is optimized before S2 as the 

optimization sequence in the proposed method is from the leaves to the root based on 

the directed augmented tree. The approach described in Figure 3 was used to select 

the solutions for S3 and S4 from their corresponding solution choice tables when S2 is 

optimized. A similar method presented in Equation (9) was utilized to obtain the 

Hexcess for each optimal solution of S2. Since Hmin=35m and Hmax=45m for S2, 

}4538......., 37, ,36{=H  were used for the assumed supply source node c to optimize 

S2. In a similar way to that for S4, a solution choice table is formed for S2 after the 

optimization, which is denoted as ST(c) as the sub-network cut node c is the assumed 

supply source node. The final solutions in the ST(c) are the optimal solutions for S2, 

S3 and S4, which is actually the total optimal solutions for S2, S3, S4, S5 and S6 as the 

solutions in S4 have already included the S5 and S6. The designs for the optimal 

solutions of S2, S3, S4, S5 and S6 are also included in the ST(c).  

The formulation of the optimization problem given from Equations (5) to (8) and the 

approach used for S4 optimization [Figure 3 and Equation (9)] are employed to 

optimize each S∈M(AT), thereby a solution choice table is constituted for each sub-

network in the middle of the directed augmented tree AT. 
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3.3.3 Optimization for the sub-network at the root of the AT 

The root sub-network is the final one to be optimized in the proposed method. As the 

supply source node in the original full WDN is included in S∈Rt(AT), the available 

head is known when optimizing S∈Rt(AT). For the S∈Rt(AT), ≠ϕ ∅  and hence the 

approach used for the optimization of S∈M(AT) is also employed to deal with the 

optimization of the sub-network at the root of the AT. For the example given in 

Figure 1, S1 ∈ Rt(AT) and 21)( SS =ϕ , thus ST(c) is used to provide the optimal 

solution for S2 when S1 is optimized. 

An approximate optimal solution with a cost of $1.021 million is obtained after the S1 

optimization, which is also the optimal solution for the whole N1 network. This is 

because S5 and S6 were included when S4 was optimized, S3 and S4 were included 

when S2 was optimized, and S2 was in turn included when S1 was optimized in the 

proposed method. Thus, the final optimal solutions from the optimization of S1 are 

the optimization results for the original full network N1. 

During the pre-conditioning optimization for the sub-networks in the proposed 

method, a series of H with a relatively larger interval (H∈(Hmin, Hmax)) is used for the 

sub-network cut nodes (1 meter in this study). This aims to approximately explore the 

search space of the original full network, thereby producing an approximate optimal 

solution. This approximate optimal solution is used to specify promising regions for 

the entire search space, allowing the next step (Step 4) of the final optimization for 

the sub-networks to be conducted. The final optimization for the sub-networks 

method is described in the next section. 

3.4. Final optimization of the sub-networks (Step 4) 

Based on the approximate optimal solution obtained by the preconditioning sub-

networks optimization, an optimal head (#H ) for each sub-network cut node can be 

determined. An optimal head range )( #Hℜ  is created for each sub-network cut node 
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through expansion of the obtained optimal head, i.e. )( #Hℜ =[ δ−#H , δ+#H ]. In 

this proposed method, δ =2 meters is used to obtain the optimal head range )( #Hℜ . 

During the final optimization of the sub-networks, all the sub-networks are optimized 

employing the same approach used for preconditioning optimization for sub-

networks, while the head assigned for the sub-network cut nodes is varied. For the 

preconditioning optimization for sub-networks, a whole range of possible H values 

between Hmin and Hmax at the sub-network cut nodes with a relatively large increment 

(1 meter) was used, while a series of H values within the optimal head range )( #Hℜ  

with a relatively small increment (e.g., 0.1 meter) was used for sub-network cut 

nodes during the final optimization of the sub-networks. The optimization sequence 

is also taken from the leaves to the root specified by the directed augmented tree in 

the final optimization step. The solution choice table for each sub-network created 

after the pre-conditioning optimization is updated during the final optimization step. 

For the example given in Figure 1, the heads at the sub-network cut nodes n is 36.8 

meters based on the approximately optimal solution obtained after the 

preconditioning sub-networks optimization ($1.021 million). Thus the optimal heads 

range for node n is ]38.8 ,8.34[)( # =ℜ nH . The *H  versus the optimal solution cost for 

S6 using the head given by the obtained optimal head range )( #Hℜ  with an 

increment of 0.1 meter is given in Figure 4.  

A total of 23 different optimal solutions were found for S6 of the N1 case study with 

the head given at node n within the optimal head range )( #Hℜ , compared to only 

nine different approximate optimal solutions generated during the pre-conditioning 

optimization step for S6. This shows that the proposed final optimization method is 

able to further exploit the promising regions specified by the optimal head range in 

the pre-conditioning phase, thereby allowing more optimal solutions to be located. 

This is also shown by Figure 4 that a number of additional optimal solutions were 

found by the final sub-network optimization process between two adjacent optimal 

solutions found initially by pre-conditioning.  
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Figure 4 *H  versus the optimal solution cost for S6 of N1 

All other sub-networks of N1 are optimized based on the obtained optimal head range 

for each sub-network cut node during the final optimization step. The final optimal 

solution for the N1 case study obtained after the final optimization step was $1.016 

million, a value lower than the optimal solution generated by the pre-conditioning 

optimization for sub-networks (Step 3) with a cost of $1.021 million. This shows that 

the proposed final optimization of the sub-networks approach is effective in 

improving the quality of optimal solutions generated by the preconditioning 

optimization step.  

3.5. Summary of the proposed method  

The proposed method does not need to know the actual head constraints at the sub-

network cut nodes, instead a series of assumed heads are assigned at sub-network cut 

nodes. Then the DE optimization is used to seek the least-cost design of the sub-

network for each assumed head at the sub-network cut node, while satisfying the 

specified head requirement at each node (such as 35 m for the N1 network). This 

results in the development of a solution choice table for each sub-network (except the 

root sub-network). For each solution choice table, every *H  is associated with an 

optimally feasible solution (determined by EPANET2.0) for its corresponding sub-
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network. Therefore, the final optimal solutions can be guaranteed to be feasible for 

the whole original WDN since all the selected optimal solutions from solution choice 

tables are feasible (i.e., all the head constraints are satisfied).  

The proposed method recognizes the fact that, although decomposed, sub-networks 

in a WDN are in reality always interconnected and never truly independent of one 

another. Thus, for each sub-network optimization, all the sub-networks in its ϕ  are 

considered. Therefore, the optimal solution obtained for each sub-network is actually 

the optimal solution as a whole of this sub-network and all the sub-networks in its ϕ . 

As the optimization is carried out from the leaves to the root along the assigned 

directed links in the directed augmented tree, the root sub-network contains all the 

sub-network optimization results by use of solution choice tables. Consequently, the 

optimal solution for the root sub-network is actually the final solution for the whole 

WDN.  

In the proposed method, each sub-network optimization also considers all the sub-

networks in its ϕ  , while the number of decision variables handled is the number of 

pipes of the sub-network that is currently being optimized plus the number of 

solution choice tables that are associated with the sub-networks in the ϕ . This is 

because all the optimal solutions for the sub-networks in the ϕ  are already provided 

by their corresponding solution choice tables.  

4. Case study results and discussion 

A total of five case studies are used to verify the effectiveness of the proposed 

optimization approach, including one artificial water network, two benchmark case 

studies and two real-world water networks. A DE combined with a hydraulic solver 

(EPANET2.0) was employed to optimize each sub-network design. In addition to the 

proposed graph decomposition optimization approach, a SDE and a GA with tuned 

parameters were applied to each case study in order to enable a performance 

comparison with the proposed method. 
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4.1. Case study 1: Artificial network 1 (N1) (27 decision variables) 

The layout and the network details of artificial network 1 (N1) were previously 

provided in Figure 1(a) and Table 1 as examples of network decomposition. The 

decomposition results (sub-networks S1 to S6) and the directed augmented tree of N1 

(directed links l1 to l5) are provided in Figure 1(b) and Figure 2 respectively. Table 5 

summarizes the DE parameter values used for optimizing the full N1 and each 

network into which it has been decomposed by the graph theory algorithm. In 

addition, the computational times for running simulation on the whole N1 and each 

sub-network (S1, S2, S3 S4, S5 and S6) are provided. A mutation weighting factor (F) of 

0.5 and a crossover rate (CR) of 0.5 were selected based on the results of a few 

parameter trials for the DE used in the proposed method, while the parameters of the 

SDE and GA have been fine-tuned through extensive parameter calibration. The best 

parameter values obtained were F=0.6, CR=0.7 for the SDE, and crossover 

probability (Pc) with 0.9 and mutation probability (Pm) with 0.03 were selected for 

the GA.  

Table 5 Evolutionary algorithm parameter values and the hydraulic simulation 
time for each sub-network and the full N1. 

EAs Network 
No. of decision 

variables and the 
search space size 

Population 
size (N) 

Maximum number 
of allowable 
evaluations 

The computational 
time for 1000 
simulations 
(seconds)1 

SDE N1 27 (8.82×1030) 100 500,000 0.765 

GA N1 27 (8.82×1030) 200 800,000 0.765 

DE used 
in the 

proposed 
method 

S1 5 (537,824) 20 2,000 0.105 
S2 3 (2,744) 20 2,000 0.081 
S3 5 (537,824) 20 2,000 0.110 
S4 5 (537,824) 20 2,000 0.108 
S5 4 (38,416) 20 2,000 0.095 
S6 5 (537,824) 20 2,000 0.098 

11000 simulations were based on randomly selected network configuration and conducted on the 
same computer configuration (Pentium PC (Inter R) at 3.0 GHz). 

As previously mentioned, a total of 14 discrete diameters can be used for the N1 case 

study, thus the total search space size is 1427
≈8.82×1030. The search spaces for sub-

networks are significantly reduced compared to the original whole network as shown 
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in Table 5, Hence the population size (N) and maximum number of allowable 

evaluations assigned for the sub-network optimization are considerably less than 

those used by the original full network optimization as shown in Table 5.  

The results of the proposed method and SDE applied to the N1 case study are 

provided in Table 6. As shown in Table 6, the current best solution for the N1 case 

study is $1.016 million. This solution was found by the proposed method after the 

final optimization step with a success rate of 100% based on 50 different runs using 

different random number seeds, compared to 90% returned by the SDE. The best 

solution found by the GA was $1.016 million, which is 0.3% higher than the current 

best solution ($1.016 million) for this case study. In terms of average cost of 

solutions based on 50 runs, the proposed method exhibits similar performance with 

the SDE, but significantly outperformed the GA.  

Table 6 Algorithm performance for the N1 case study 

Algorithm 

Number 
of 

different 
runs 

Best 
solution 
found 
($M) 

Percentage 
of trials with 
best solution 

found  

Average 
cost 

solution 
($M) 

Average number of 
equivalent 

evaluations to find 
best solution 

Proposed method1 50 1.021 0% 1.021 15,6083 
Proposed method2 50 1.016 100% 1.016 78,0393 

SDE4  50 1.016 90% 1.017 152,854 
GA4 50 1.019 0% 1.027 392,676 

1The results of the proposed method after preconditioning sub-networks optimization (Step 3). 2The 
results of the proposed method after final sub-network optimization (Step 4). 3The total computational 
overhead required by the proposed method has been converted to the equivalent number of the whole 
network (N1) evaluations. 4Parameters were tuned. 

In order to enable a fair comparison in terms of efficiency, all the computational 

times required by the proposed method has been converted to the equivalent number 

of full N1 evaluations using the same computer configuration. These include the 

computational time used for identifying the sub-networks (equivalent to nine full N1 

evaluations) and the computational time spent for the sub-networks optimization 

(Step 3 and 4). This conversion was made for each case study to allow an efficiency 

comparison between the proposed method and the SDE. As shown in Table 6, the 
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proposed method required an average number of full N1 evaluations of 78,039 to find 

the best solutions after the final optimization step. 

The most noticeable advantage of the proposed graph decomposition optimization 

method is the significantly improved efficiency for finding the current best known 

solutions compared to the SDE and GA. The proposed method only required an 

average of 78,039 equivalent full network evaluations to find the optimal solutions, 

which is only 51% and 20% of those used by the SDE and GA respectively.  

The results of the proposed method after the preconditioning optimization for the 

sub-networks optimization (Step 3) are also included in Table 6. An approximate 

solution with a cost of $1.021 million was consistently located by the proposed 

method after the preconditioning optimization step, which is only 0.5% higher than 

the current best solution ($1.016 million). However, this approximate solution was 

found only using 15,608 equivalent full N1 evaluations, which is only 10% of that 

required by the SDE. This shows that the proposed preconditioning optimization for 

the sub-networks (Step 3) is effective as it is able to specify promising regions for the 

final optimization of the sub-networks (Step 4) with great efficiency.  

4.2. Case studies 2 and 3: Benchmark case studies (N2 and N3) 

Two benchmark case studies including the New York Tunnels problem (NYTP: N2) 

and the Hanoi problem (HP: N3) have been used to demonstrate the effectiveness of 

the proposed method. The details of NYTP and HP case studies, including the head 

constraints, pipe costs and water demands are given by Dandy et al. [1996] and 

Fujiwara and Khang [1990] respectively. For the NYTP and HP case studies, the 

trees are viewed to be the sub-networks since the blocks are not applicable and the 

nodes connecting the trees with the other components of the network are viewed as 

sub-network cut nodes. The sub-networks and the directed augmented tree for the 

NYTP and HP case study are presented in Figure 5 and 6 respectively (the original 

NYTP and HP networks can be found in Zheng et al. [2011]). 



CHAPTER 9. JOURNAL PAPER 7-GRAPH DECOMPOSITION OPTIMIZATION OF WDS 

274 

For the NYTP case study, the optimization sequence for sub-networks is indicated by 

the directed augmented tree in Figure 5, with the S2 and S3 being optimized first, 

followed by the root sub-network S1 (ϕ (S1)={S2, S3}). A series of heads with an 

interval of one foot were used for the sub-network cut nodes 9 and 12 during the 

preconditioning optimization for the sub-networks S2 and S3 (

},300274....... 273, ,272{=H  feet for S2 and },300257....... 256, ,255{=H  feet for 

S3). The DE parameters used for the proposed method and computational simulation 

time for each sub-network are given in Table 7.  

 

Figure 5 The full network, sub-networks and the directed augmented tree of 
the NYTP (N2) network  
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Figure 6 The full network, sub-networks and the directed augmented tree of the 
Hanoi (HP: N3) network 

Table 7 DE parameter values for each sub-network of the NYTP and HP case 
studies 

Case 
study 

Network 
No. of decision 

variables and the 
search space size 

DE parameter 
values  

Maximum 
number of 
allowable 

evaluations 

The computational 
time for 1000 
simulations 
(seconds)1 

NYTP 

Full 
network 

17 (1.94×1025) - - 0.95 

S1 17 (2.95×1020) N=50, F=CR=0.5 10,000 0.810 
S2 2 (256) N=10, F=CR=0.5 1,000 0.100 
S3 2 (256) N=10, F=CR=0.5 1,000 0.110 

HP 

Full 
network 

34 (2.86×1026) - - 1.156 

S1 29 (3.68×1022) 
N=80, 

F=0.7,CR=0.8 
50,000 0.908 

S2 2 (36) N=10, F=CR=0.5 1,000 0.140 

S3 3 (216) N=10, F=CR=0.5 1,000 0.141 
11000 simulations were based on randomly selected network configuration and conducted on the 

same computer configuration (Pentium PC (Inter R) at 3.0 GHz). 
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The optimization results of the proposed graph decomposition optimization method 

are presented in Table 8. The previously published results for this case study are also 

included in Table 8 to enable a performance comparison with the proposed method. 

The current best known solution for the NYTP case study is $38.64 million [Maier et 

al. 2003] and this best solution was found by the proposed method after the 

preconditioning optimization step (Step 3) with a success rate of 100% based on 100 

runs starting with different random number seeds. The total computational overhead 

required by the proposed method has been converted to the equivalent number of full 

NYTP evaluations to enable the efficiency performance with other algorithms. The 

proposed method exhibits the best performance in terms of percent of trials with the 

best solution found and the efficiency for the NYTP case study as can be seen from 

Table 8. Based on 100 runs, the proposed method only required an average of 3,772 

equivalent full network evaluations to find the current best known solution, which is 

significantly lower than those used by other methods shown in Table 8.  

Table 8 Summary of the results of the proposed method and other algorithms 
applied to the NYTP (N2) case study 

Algorithm10 
 

No. 
of 

runs  

Best 
solution 

($M)  

Percent of 
trials with best 
solution found  

Average 
cost 
($M)  

Average evaluations 
to find first 

occurrence of the 
best solution  

The proposed method1 100 38.64 100% 38.64 3,7728 
NLP-DE2 100 38.64 99% 38.64 8,277 
GHEST3 60 38.64 92% 38.64 11,464 

HD-DDS4 50 38.64 86% 38.64 47,000 
Suribabu DE5 300 38.64 71% NA 5,492 

Scatter Search6 100 38.64 65% NA 57,583 
GA7 100 38.64 45% 39.25 54,789 

1The results of the proposed graph decomposition optimization method after preconditioning sub-
networks optimization (Step 3). 2Zheng et al. [2011]. 3Bolognesi et al. [2010]. 4Tolson et al. [2009]. 
5Suribabu [2010]. 6Lin et al. [2007]. 7Zheng et al. [2012]. 8The total computational overhead required 
by proposed method has been converted to the equivalent number of full NYTP evaluations using the 
simulation time presented in Table 7. 

The optimization sequence for sub-networks of the HP case study is shown in the 

directed augmented tree in Figure 6. Sub-networks S2 and S3 are optimized first and 

then the root sub-network S1 (ϕ (S1)={S2, S3}) is optimized while incorporating the 

optimal solutions for S2 and S3. A series of heads in the range of [30, 100] meters 

with an interval of one meter were used for the sub-network cut nodes 20 and 10 
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during the preconditioning optimization for S2 and S3. The DE parameter values for 

the proposed method applied to sub-networks of the HP case study and the 

computational simulation time for each sub-network are shown in Table 7. Table 9 

presents the optimization results of the proposed method applied to the HP case study 

and also the results obtained by previously published algorithms.  

The current best known solution for the HP case study was first reported by Reca and 

Martínez [2006], with a cost of $6.081 million. Similarly as for the NYTP case study, 

the proposed graph decomposition optimization method found the current best known 

solution for the HP case study after the preconditioning optimization step (Step 3). 

As can be seen from Table 9, the proposed method was able to locate the current best 

known solution for the HP case study 98% of the time based on 100 trials, which is 

higher than all the other algorithms presented in Table 9. In terms of efficiency, the 

proposed method also performed the best as it found the optimal solutions with an 

average of 26,540 equivalent full network evaluations, which is fewer than other 

algorithms in Table 9.  

Table 9 Summary of the results of the proposed method and other algorithms 
applied to the HP (N3) case study 

Algorithm10 
 

No. 
of 

runs  

Best 
solution 

($M)  

Percent of 
trials with 

best solution 
found  

Average 
cost 
($M)  

Average 
evaluations to find 
first occurrence of 
the best solution  

The proposed method1 100 6.081 98% 6.081 26,5408 
NLP-DE2 100 6.081 97% 6.082 34,609 

Suribabu DE3 300 6.081 80% NA 48,724 
Scatter Search4 100 6.081 64% NA 43,149 

GHEST5 60 6.081 38% 6.175 50,134 
HD-DDS6 50 6.081 8% 6.252 100,000 

GA7 100 6.112 0% 6.287 384,942 
1The results of the proposed graph decomposition optimization method after preconditioning sub-

networks optimization (Step 3). 2Zheng et al. [2011]. 3Suribabu [2010]. 4Lin et al. [2007]. 5Bolognesi 
et al. [2010]. 6Tolson et al. [2009]. 7Zheng et al. [2012]. 8The total computational overhead required 
by proposed method has been converted to the equivalent number of full HP evaluations using the 
simulation time presented in Table 7. 

Based on the results of two benchmark case studies (the NYTP (N2) and HP (N3)), it 

can be concluded that the proposed method produced the current best known 

performance in terms of both the solution quality and efficiency.  



CHAPTER 9. JOURNAL PAPER 7-GRAPH DECOMPOSITION OPTIMIZATION OF WDS 

278 

4.3. Case study 4: Network 4 (N4) (237 decision variables) 

Network four (N4) was taken from a town in the southeast of China. N4 has 237 pipes, 

one reservoir and 192 demand nodes. The head provided by the reservoir is 65 

meters. The minimum pressure requirement for each demand node is 18 meters. The 

Hazen-Williams coefficient for each pipe is 130. A total of 14 pipes ranging from 

150 mm to 1000 mm are used for this network design and the cost of each diameter 

was provided by Kadu et al. [2008]. The original network layout of N4 is given in 

Figure 7 and the sub-networks and the directed augmented tree obtained by the 

proposed decomposition method are presented in Figure 8.  

As shown in Figure 8, seven sub-networks were identified by the proposed method. 

The optimization process has to be taken based on the direction from the leaves to the 

root of the directed augmented tree (Figure 8(b)).  

 

Figure 7 The original full network of N4 case study 
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Figure 8 The sub-networks and the directed augmented tree of N4 (a): the sub-
networks. (b): the directed augmented tree 

Table 10 presents the sizes of the networks (including the full network and sub-

networks), the population sizes of the DE and GA and the computational time for 

simulating each network. Values of F=0.3 and CR=0.7 were selected for the SDE, 

and values Pc=0.9 and Pm=0.005 were selected for the GA based on an extensive 

parameter calibration phase. Values of F=0.3 and CR=0.5 were used for the DE 

applied to each sub-network in the proposed graph decomposition optimization 

method based on a preliminary parameter analysis. It is interesting to note from Table 

10 that the total computational running time for hydraulically simulating each sub-

network 1000 times is 8.75 seconds, which is only 31% of that required by 1000 

original full network simulation. 

The search space sizes for the original N4 case study and each sub-network are 

included in Table 10. The original search space size for the whole network is 

14237
≈4.29× 10271, while the search space for each sub-network is significantly 

reduced. Thus, the DE optimization for the sub-network requires a lesser number of 

population size (N) and the maximum number of allowable evaluations compared to 

the optimization for the original full N4 network.  
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Table10 Evolutionary algorithm parameter values and the hydraulic simulation 
time for each sub-network and the full N4 

EAs Network 
No. of decision 

variables and the 
search space size 

Population 
size (N) 

Maximum number 
of allowable 
evaluations 

The computational 
time for 1000 

simulations (seconds)1 

SDE N4 237 (4.29×10271) 500 5,000,000 28.20 

GA N4 237 (4.29×10271) 500 5,000,000 28.20 

DE used 
in the 

proposed 
method 

S1 51 (2.83×1058) 100 50,000 2.19 
S2 9 (2.07×1010) 50 5,000 0.32 
S3 21 (1.17×1024) 100 50,000 0.62 
S4 23 (2.30×1026) 100 50,000 0.78 
S5 18 (4.27×1020) 50 25,000 0.62 
S6 52 (3.97×1059) 200 400,000 2.19 
S7 63 (1.61×1072) 200 400,000 2.03 

11000 simulations were based on randomly selected network configuration and conducted on the 
same computer configuration (Pentium PC (Inter R) at 3.0 GHz). 

Ten different runs with different starting random number seeds were performed for 

the proposed method and the SDE applied to N4 case study. The solutions are 

presented in Figure 9 and the statistical results of these solutions are given in Table 

11. It should be noted that the number of evaluations given in Figure 9 for the 

proposed method is the equivalent number of full N4 evaluations that was converted 

by the total computational running time of the proposed method. The computational 

time used for identifying the seven sub-networks is equivalent to 178 full N4 

evaluations. 

As shown in Figure 9, the proposed method is able to find significantly better 

solutions than the SDE and GA after the final sub-network optimization (Step 4) with 

fewer number of equivalent evaluations. In addition, the optimal solutions produced 

by the proposed method are less scattered than those found by the SDE in terms of 

distribution. This implies that the proposed method was capable of consistently 

locating extremely similar or the same final optimal solutions with different starting 

random number seeds. The optimal solutions found by the proposed method after 

preconditioning optimization for the sub-networks (Step 3) were higher than those 

yielded by the SDE and the GA as displayed in Figure 9.  
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Figure 9 Solutions of the proposed method, the SDE and the GA applied to N4 
case study 

Table 11 Algorithm performance for the N4 case study 

Algorithm 

Number 
of 

different 
runs 

Best 
solution 
found 
($M) 

Percentage 
of trials with 
best solution 

found  

Average 
cost 

solution 
($M) 

Average number of 
equivalent 

evaluations to find 
best solution 

Proposed method1 10 12.22 0% 12.23 1,208,3243 
Proposed method2 10 11.37 30% 11.38 3,215,6853 

SDE4  10 11.45 0% 11.52 4,730,200 
GA4 10 11.85 0% 11.99 4,654,000 

1The results of the proposed method after the preconditioning sub-network optimization (Step 3). 2The 
results of the proposed method after the final sub-network optimization (Step 4). 3The total 
computational overhead required by the proposed method has been converted to the equivalent number 
of the whole network (N4) evaluations. 4Parameters were tuned. 

As can be seen from Table 11, the proposed method after the final optimization of the 

sub-networks (Step 4) found the current best solution for N3 case study with a cost of 

$11.37 million, which is 0.7% and 4.2% lower than the best solutions yielded by the 

SDE and the GA respectively. The current best solution was found three times out of 

a total of ten different runs by the proposed method after Step 4. The average cost 

solution generated by the proposed method after Step 4 was $11.38 million, which is 

only 0.09% higher than the current best solution while 1.2% and 5.4% lower than the 

average cost solutions of the SDE and the GA. 
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In terms of the average number of equivalent evaluations, the proposed method after 

the preconditioning sub-network optimization (Step 3) required only 26% of that 

used by the SDE. Although the solutions found by the proposed method after Step 3 

were slightly worse than those located by the SDE and GA, they provided promising 

regions quickly to allow the further exploitation by the final optimization step (Step 

4). After the final sub-network optimization of the proposed method (Step 4), the 

solution quality was substantially improved and the efficiency was still significantly 

better than the SDE and GA as shown in Table 11. 

4.4. Case study 5: Network 5 (N5) (433 decision variables) 

A network (N5) having 433 pipes and 387 demand nodes has been used in order to 

verify the effectiveness of the proposed method in terms of dealing with more large 

and complex networks. The network topology of N5 was taken from Battle of the 

Water Networks II (BWN-II) presented in Water Distribution Systems Analysis 

Conference 2012. The pumps and valves in the original BWN-II network have been 

replaced by pipes as the aim of this paper is to demonstrate the utility of the proposed 

method in terms of optimizing the design for the pipes-only network. For this 

network, the head provided by the reservoir is 75 meters and the minimum pressure 

requirement for each demand node is 25 meters. The Hazen-Williams coefficient for 

each pipe is assumed to be 130. As the same for case study N4, 14 pipe choices are 

used for this network design. The layout of the original N4 is given in Figure 10, and 

the decomposed sub-networks and the directed augmented tree (AT) are presented in 

Figure 11.  

A total of 12 sub-networks were identified using the proposed method for the N5 

network as shown in Figure 11 (a). The optimization sequence for the 12 sub-

networks is indicated by the directed augmented tree in Figure 11 (b). A SDE and a 

GA were also applied to the full N5 and their parameter values have been fine-tuned. 

Values of F = 0.3 and CR=0.8 were selected for the SDE, and the Pc=0.9 and Pm= 

0.003 were used for the GA.  
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Figure 10 The original full network of N5 case study 

 

Figure 11. The sub-networks and the directed augmented tree of N5 (a): the sub-
networks. (b): the directed augmented tree 

(b) Directed augmented tree AT of N5
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The sizes of the networks, the population sizes of the DE (including the SDE and the 

DE used in the proposed graph decomposition optimization method) and GA and the 

computational time for simulating each network are presented in Table 12. Values of 

F=0.5 and CR=0.5 were used for the DE applied to each sub-network in the proposed 

method. As can be seen from Table 12, for the N5 case study, the total computational 

runtime for hydraulically simulating each sub-network 1000 times is 7.44 seconds, 

which is only 18% of that used by 1000 full network simulation. This indicates that 

the hydraulic simulation of the decomposed sub-networks is significantly faster than 

simulating the full network as a whole in terms of computational running time. 

Table 12 Evolutionary algorithm parameter values and the hydraulic simulation 
time for each sub-network and the full N5 

EAs Network 
No. of decision 

variables and the 
search space size 

Population 
size (N) 

Maximum number 
of allowable 
evaluations 

The computational time 
for 1000 simulations 

(seconds)1 
SDE N5 433 (1.88×10496) 1000 10,000,000 42.06 

GA N5 433 (1.88×10496) 1000 10,000,000 42.06 

DE used 
in the 

proposed 
method 

S1 49 (1.44×1056) 200 200,000 0.72 
S2 40 (7.00×1045) 200 200,000 0.61 
S3 81 (6.86×1092) 200 500,000 2.13 
S4 50 (2.02×1057) 200 200,000 0.81 
S5 28 (1.23×1032) 100 100,000 0.30 
S6 15 (1.56×1017) 50 50,000 0.23 
S7 11 (4.05×1012) 50 50,000 0.14 
S8 15 (1.56×1017) 50 50,000 0.23 
S9 56 (1.52×1064) 200 200,000 0.92 
S10 51 (2.83×1058) 200 200,000 0.74 
S11 16 (2.18×1018) 50 50,000 0.22 
S12 21 (1.17×1024) 100 100,000 0.27 

11000 simulations were based on randomly selected network configuration and conducted on the 
same computer configuration (Pentium PC (Inter R) at 3.0 GHz). 

For the N5 case study, a total of ten different runs with different starting random 

number seeds were performed for the proposed method, the SDE and the GA. Figure 

12 presents the solutions obtained by these three different optimization methods. The 

computational run time for each run of the proposed method has been converted to 

the equivalent number of full N5 evaluations based on network simulation time in 
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Table 12. The computational time used for identifying the 12 sub-networks is 

equivalent to 215 full N5evaluations. 

It may be clearly seen from Figure 12 that the proposed method after Step 4 was able 

to find lower cost solutions with significantly fewer number of full network 

evaluations compared to the SDE and GA. The optimal solutions found by the 

proposed graph decomposition optimization method after Step 3 are better than those 

obtained by the GA and comparable to those generated by the SDE, but with 

significantly improved efficiency. Similarly to that for the N4 case study, the optimal 

solutions yielded by the proposed method for N5 case study are closer to each other 

compared to the SDE and GA, showing greater robustness as similar cost solutions 

were found with different starting random number seeds. 

 

Figure 12 Solutions of the proposed method, the SDE and the GA applied to N5 
case study 

Table 13 presents the statistical results of the proposed method, the SDE and GA. 

The current best solution was found by the proposed method after Step 4 with a cost 

4.55

4.60

4.65

4.70

4.75

4.80

4.85

4.90

1000000 3000000 5000000 7000000 9000000 11000000

O
pt

im
al

 C
os

t s
ol

ut
io

n 
($

M
ill

io
n)

Evaluations

Solutions found by the proposed 
method after Step 3

Solutions found by the proposed 
method after Step 4

Solutions found by SDE

Solutions found by GA



CHAPTER 9. JOURNAL PAPER 7-GRAPH DECOMPOSITION OPTIMIZATION OF WDS 

286 

of $4.57 million and this best solution was found eight times out of ten runs with 

different random number seeds. The best solutions yielded by the SDE and GA were 

$4.60 million and $4.72 million, which are 0.7% and 3.2% higher than the current 

best known solutions provided by the proposed method after Step 4. The proposed 

method exhibited the best performance in terms of comparing the efficiency to find 

optimal solutions as shown in Table 13. The average computational run time required 

by each run of the proposed method is equivalent to 2,720,668 full N5 evaluations, 

which is 47% and 30% of those used by the SDE and GA.  

Table 13 Algorithm performance for the N5 case study 

Algorithm 

Number 
of 

different 
runs 

Best 
solution 
found 
($M) 

Percentage 
of trials with 
best solution 

found  

Average 
cost 

solution 
($M) 

Average number of 
equivalent 

evaluations to find 
best solution 

Proposed method1 10 4.61 0% 4.61 1,220,9243 
Proposed method2 10 4.57 80% 4.58 2,720,6683 

SDE4  10 4.60 0% 4.61 5,786,300 
GA4 10 4.72 0% 4.77 8,909,500 

1The results of the proposed graph decomposition optimization method after the preconditioning sub-
network optimization (Step 3). 2The results of the proposed method after the final sub-network 
optimization (Step 4). 3The total computational overhead required by the proposed method has been 
converted to the equivalent number of the whole network (N5) evaluations.4Parameters were tuned. 

Interestingly, the proposed method after Step 3 was able to find lower cost solutions 

than the GA but with approximately five times the convergence speed. The best 

solutions found by the proposed method after Step 3 were only 0.2% higher than the 

best solution given by the SDE (the average costs of ten solutions for both are the 

same as shown in Table 13), while the average number of evaluations required by the 

proposed method after Step 3 is only 21% of that used by the SDE. 

4.5. Summary of results 

Traditionally, WDNs are optimized as a whole when they are being designed. In the 

proposed method, however, the WDN is treated as a graph and decomposed with a 

graph theory algorithm into sub-networks. A directed augmented tree is built for the 

decomposed network and used to specify the optimization sequence for the sub-

networks. Optimization takes place from the leaves to the root based on the directed 
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augmented tree and is both sequential and cumulative. Therefore, when the 

optimization algorithm runs through the root sub-network, which is the last to be 

optimized, it brings with it all the best solutions from the sub-networks and hence 

produces the optimal solution for the original full network. 

The proposed approach takes advantage of the fact that the evolutionary algorithm 

(DE in this paper) is effective in exploring a relatively small search space. As the 

number of decision variables for each sub-network is significantly less than the 

original whole network, the DE is able to exploit the substantially reduced search 

space quickly and effectively. This allows good quality optimal solutions for each 

sub-network to be found with great efficiency.  

A pre-conditioning sub-network optimization step (Step 3) is used in the proposed 

method to identify the optimal head range for the sub-network cut nodes. The final 

sub-network optimization is then conducted using a series of heads within the 

specified optimal head range with a relatively small interval (0.1 meters in the 

proposed method) in order to find further better solutions. The results of the five case 

studies show that the preconditioning sub-network optimization found the optimal 

head range for each sub-network cut node effectively, and the final sub-network 

optimization runs on the pre-conditioned sub-networks were able to generate 

improved quality solutions. 

In spite of conducting multiple DE runs on each sub-network, the total efficiency of 

the proposed method is still better than the SDE and GA. This can be attributed to the 

fact (i) the population size and the maximum allowable evaluations required by the 

DE applied to the sub-network optimization were significantly smaller than the SDE 

applied to the original whole network and (ii) the computational time for simulating 

the sub-networks was considerably reduced compared to the original whole network.  

An important advantage of the proposed method is that with multiple sub-networks in 

place, optimization of the water distribution systems can be undertaken using parallel 

computing technology. For the optimization of sub-networks at leaves and in the 
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middle of the directed augmented tree, parallel computing technology can be 

employed to conduct the optimization for different heads at the sub-network cut 

nodes simultaneously. In addition, all the sub-networks at the leaves can also be 

optimized separately and simultaneously by parallel computing technology. As such, 

the efficiency of the whole optimization process can be massively improved in terms 

of computation time. This is a significant benefit when designing a real-world WDS, 

for which a large number of pipes and demand nodes are normally involved. 

Another observation can be made in this study is that the SDE with the fine-tuned 

parameter values consistently outperformed the GA with calibrated parameter values 

for five case studies with the number of decision variables ranging from 21 to 433. 

This agrees with the conclusion made by Zheng et al. [2012] in that the DE algorithm 

appears to be better suited for optimizing water network designs than the widely used 

GA algorithm. 

5.  Conclusion and future work 

A novel optimization approach for WDS design has been developed and described in 

this paper. In the proposed method, a graph theory algorithm is employed to identify 

the sub-networks for the original full water network. The sub-networks, rather than 

the original full water network, are individually optimized by a DE in a 

predetermined sequence. Five case studies have been used to verify the effectiveness 

of the proposed method. A DE and a GA have also been applied to the full network 

for each case study (SDE) to enable a performance comparison with the proposed 

method. 

The results show that the proposed method is able to find the same lowest cost 

solution for the relatively small case study, while producing better optimal solutions 

for the relatively larger case studies than the SDE and GA. It was also noted that the 

proposed method was able to find extremely similar optimal solutions, if not 

identical, for each run with different starting random number seeds. This 
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demonstrates the great robustness of the proposed method. In terms of efficiency, the 

proposed method significantly outperformed the SDE and GA for each case study. In 

addition, the proposed method exhibits the current best known performance in terms 

of efficiency in locating the best known solutions for the NYTP and HP case studies. 

Another substantial benefit of the proposed method is that it provides a way to 

exploit parallel computing techniques for the design optimization of a WDS.  

It should be noted that the proposed method presented in this paper is not applicable 

to the networks for which sub-network cut nodes do not exist (i.e. for networks that 

cannot be decomposed). However, it is very common for a water network to have 

multiple blocks and multiple trees in practice (in other words- that the network is 

decomposable) and the proposed method has advantages in efficiently finding good 

quality optimal solutions for this common type of network compared to other 

optimization methods as demonstrated in this paper.  

The future research scope of the proposed method includes (i) applying the proposed 

method to more complex water networks that may include multiple reservoirs, 

pumps, valves, storage facilities and pipes; and (ii) extending the proposed method 

for multi-objective WDS optimization design.  
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Chapter 10. Conclusions and Future Work 

This thesis has proposed some advanced optimization techniques for water 

distribution system (WDS) optimization. These novel techniques have been assessed 

using both the benchmark case studies and real-world water networks, and the results 

show that they are able to find good quality optimal solutions for WDSs with great 

efficiency. Thus, this research provides advanced optimization approaches capable of 

outperforming existing optimization techniques for use by practising water engineers 

when designing new water systems or rehabilitating existing water distribution 

systems.  

10.1 Thesis outcomes 

The main contributions of this thesis are outlined in Section 1.3 of Chapter 1 

(Introduction). The outcomes of this research are summarised below. 

Chapter 2 presented a detailed review of the optimization techniques that have 

previously been used to optimize WDSs. The analysis for each type of optimization 

technique is outlined in Chapter 2 and the research gaps in terms of WDS 

optimization are identified in Section 2.6 of Chapter 2. 

Chapters 3 and 4 outlined two new genetic algorithm (GA) variants for WDS 

optimization. These include a dynamically expanding choice table GA (Chapter 3) 

and a non-crossover dither creeping mutation GA (Chapter 4). These two GA 

variants were demonstrated to be more effective than the traditional GAs in terms of 

optimizing the design of WDSs. This is the first work to develop a non-crossover GA 

for WDS optimization.  

Chapter 5 introduced a new self-adaptive differential evolution algorithm 

(SADE) for WDS optimization. In addition to the self-adaption strategy, a new 

convergence criterion is proposed in order to avoid the pre-specification of the 

computational budget for the DE run. It has been demonstrated that the proposed 

convergence criterion presented in Chapter 5 is able to avoid computational waste. 

The SADE only needs to tune the population size parameter when optimizing the 

design of a WDS. In addition, an approximate heuristic is described in Chapter 5 that 
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is able to determine the appropriate population size for the SADE applied to a new 

WDS case study. The proposed SADE provides a robust optimization tool for the 

optimization of the design of WDSs (or rehabilitation of an existing WDS).  

Chapters 6 and 7 presented two novel hybrid optimization models for WDS 

optimization, which are the NLP-DE method (Chapter 6) and the BLP-DE approach 

(Chapter 7). In Chapter 6, a shortest-distance tree is proposed to decompose the 

looped water network and an efficient graph theory algorithm is used to determine 

the shortest-distance tree. The NLP-DE method proposed in Chapter 6 differs from 

the traditional hybrid optimization models. In the traditional hybrid optimization 

models, EAs have been used to determine the regions of optimal solutions, whereas 

deterministic methods (such as LP) have been used to further explore the interior of 

these regions identified by EAs. However, in the proposed NLP-DE model, NLP is 

used to identify the approximate region of the optimal solution, while an EA is 

employed to further search the interior of the region.  

The utility of the NLP-DE method has been verified using four WDS case studies 

with the number of decision variables ranging from 21 to 454 (two of them are real-

world WDSs) in Chapter 6. The consistent superior performance of the proposed 

optimization approach on four case studies illustrates that the proposed methodology 

is well suited for the least-cost design of WDSs. 

Chapter 7 outlined a completely new optimization methodology that applies 

different optimization techniques to optimize different components of the water 

network. In the proposed BLP-DE method given in Chapter 7, the deterministic 

method BLP is only used to deal with the optimization of the trees (no loops) and DE 

is employed to optimize the core (loops are involved). As such, the proposed BML-

DE method makes good use of both types of optimization techniques, which are 

deterministic methods suitable for tree network optimization, and the EAs are 

effective when exploring relatively small search spaces. (The search space of the core 

is significantly smaller than that of the full network since the trees are removed.)  

Chapter 8 presented a complete new water network decomposition concept-

optimal source partitioning cut-set in which complex water networks with multiple 

supply sources are decomposed into sub-networks based on the number of supply 



CHAPTER 10. CONCLUSIONS AND FUTURE WORK 

294 

sources. A multi-stage optimization technique is developed to optimize the design for 

WDSs, which is also the first known work in the field of WDS optimization. The 

new methodology (i.e., decomposition followed by multi-stage optimization) 

presented in Chapter 8 is demonstrated to be extremely efficient and effective in 

finding optimal solutions for real-world sized water networks.  

Chapter 9 outlined another completely novel methodology for water network 

optimization, in which the original water network is not optimized as a whole but the 

whole is optimized by optimizing the separate parts. In Chapter 9, a new sub-

network identification concept is proposed to decompose the original full network 

into sub-networks based on the connectivity of the network’s components. The sub-

networks are optimized separately and combined to form the final solution for the 

whole water network by use of solution choice tables.  

10.2 Recommendations of optimization algorithms 

In this thesis, a total of four advanced optimization methods have been developed 

including the NLP-DE methods (Chapter 6), the BLP-DE approach (Chapter 7), the 

decomposition and multi-stage optimization method (Chapter 8) and a graph 

decomposition based optimization method (Chapter 9). The three variants of the 

evolutionary algorithms presented in Chapters 3 to 5 are modifications of the existing 

algorithms.  

It is noted that the standard differential evolution (SDE), rather than the self-adaptive 

differential evolution (SADE) algorithm described in Chapter 5, was used in 

Chapters 6 to 9, resulting in a need to tune the parameter values for the proposed 

optimization algorithms. The use of SDE is primarily due to the fact that the 

experimental runs for Chapters 6 to 9 were finished before the publication of the 

paper on the SADE algorithm (Zheng et al. (2012a) in the Journal of Computing in 

Civil Engineering). In addition, the focus of the methods described in Chapters 6 to 9 

is the development the hybrid optimization techniques and graph decomposition 

methods to facilitate the optimization for WDSs.  
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However, for future applications it is recommended that the SADE algorithm be used 

to replace the SDE algorithm in practice for the optimization frameworks presented 

in Chapters 6 to 9. This is because: (i) the SADE algorithm developed in this research 

has been demonstrated to perform similarly (if not better) with the SDE with fine-

tuned parameter values; and (ii) that is no need to tune parameter values for the 

SADE algorithm and hence its uses will remove the need for an extensive parameter-

calibration process.  

It is necessary to make a recommendation as to the best of the developed algorithms 

to adopt when dealing with a given water network. The recommendation is 

dependent on the property of the water network that is to be optimized, and is given 

as follows: 

(1) It is recommended that the NLP-SADE algorithm presented in Chapter 6 be 

employed to deal with single reservoir water networks. 

(2) For water networks having multiple trees (such as the trunk main distribution 

system), it is recommended to use the BLP-SADE algorithm described in 

Chapter 7. In addition, the BLP-SADE algorithm has been demonstrated to 

effectively deal with water networks with multiple demand loadings, which is 

normally the case for the trunk main distribution system. 

(3) For multi-reservoir water networks, such as an irrigation network or a 

regional supply system with multiple tanks, it is recommended to adopt the 

decomposition and multi-stage optimization methods presented in Chapter 8. 

(4) For single-reservoir water networks with a number of different blocks 

connected by bridges (as for regional supply systems), the graph 

decomposition based optimization framework described in Chapter 9 is 

recommended to be used to conduct the design optimization. 
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10.3 Scope for future work 

Future work includes: 

1. The optimization techniques developed in this research have been verified 

using real-world water networks (100 pipes or more). However, these real-

world networks are relatively simple as only pipes are involved. Extension of 

the proposed optimization techniques to deal with more complex water 

networks that include pumps, valves and tanks should be conducted in the 

future.  

2. The optimization techniques proposed in this thesis have been demonstrated to 

be effective for single objective optimization of WDSs. It would be appropriate 

to extend these optimization techniques to deal with multi-objective 

optimization for WDSs, for which, in addition to the network cost, reliability 

or greenhouse gases should also be considered.  

3. Several optimization techniques and water network decomposition concepts 

were used to optimize the design of WDSs in the research described in this 

thesis. Implementing these methods to tackle other water network management 

problems, such as leakage hotspot detection, optimal valve operation, 

contaminant detection and operational optimization problems for WDSs, 

should also be considered in the future. 

4. Although DE is used in two proposed hybrid optimization methods (Chapters 6 

and 7) and two proposed advanced optimization techniques (Chapters 8 and 9) in 

this research, other EAs, such as GAs, and Ant Colony Optimization (ACO), 

could also be implemented in these proposed optimization frameworks.  
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