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Abstract

The cost of water distribution system (WDS) design or rehabilitation is normally
expensive. Over the past 40 years, a number of optimiz&tidmiques have therefore
been developed to find optimal designs for WDSs in order to save costs, while satisfying
the specified design criteria. Often there are a large number of decision variables
involved. The majority of currently available optimization techniques exhibit limitations
when dealing with large WDSs. Two limitations include (i) finding only local optimal
solutions and/or (ii) exhibiting computational inefficiency. The research undertaken in
this dissertation has focused on developing advanced optimization techniques that are
able to find good quality solutions for real-world sized or large WDS design or
rehabilitation strategies with great efficiency. There were three objectives for the
research: (i) the modification and improvement of currently available optimization
techniques; (i) the development of advanced hybrid optimization techniques
(evolutionary algorithms combined with traditional deterministic optimization
techniques) and (iii) the proposal of novel optimization methods with the incorporation

of graph decomposition techniques.

The most novel feature of this research is that graph decomposition techniques have
been successfully incorporated to facilitate the optimization for WDS design. A

number of decomposition techniques have been developed to decompose WDSs by
the use of graph theory in this research. Real-world sized or large WDSs are used to
demonstrate the effectiveness of the proposed advanced optimization techniques
described in this thesis. Results show that these advanced methods are capable of
obtaining sound optimal solutions with significantly improved efficiency compared

to currently available optimization techniques. The main contribution of this thesis is

! American spelling has been used in this thesis as all the publications included in this thesis have been
submitted to or published in American journals.



the provision of effective and efficient optimization techniques for real-world sized

or large WDS designs or rehabilitation problems.
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CHAPTER1.INTRODUCTION

Chapter 1. Introduction

A typical water distribution system (WDS) consists of pipes, reservoirs, pumps, valves
and other hydraulic elements. WDSs are used to supply water to users within specific
pressure levels under various demand conditions. For a completely new WDS, extensive
planning is required to ensure that satisfactory delivery of water is provided to customers
in the most reliable and economical way. For an existing WDS, as the water distribution
system ages, an optimal rehabilitation strategy is normally needed to improve its service

quality.

In most cases, the design, construction and rehabilitation costs for WDSs can be very
large; often on the order of millions of dollars. Thus, the optimization of WDSs has
historically been investigated by many researchers in order to potentially save significant
costs. Optimization of a WDS design normally involves the determination of the optimal
network layout, the pipe diameter sizes and the sizes of other system components, such
as valves and pumps, thereby providing the minimum total cost life cycle while
satisfying all the design constraints. The nonlinear relationship between pipe head loss
and discharge, plus the discrete nature of the availability of pipe sizes that can be used,
result in many complexities when optimally designing WDSs. For looped WDSs, in
which pipe flows and nodal heads are unknown quantities, optimization offers particular

challenges.

Traditionally, water engineers have designed WDSs using trial and error approach, and
the final design is the result of a combination of engineering experience and judgment.
However, the trial and error approach is time consuming and normally only an extremely
limited number of WDS designs can be developed and assessed, indicating that a

satisfactory solution is the outcome rather than an optimum solution.

Linear programming (LP) and nonlinear programming (NLP) have since been introduced
by researchers in order to optimize WDS designs. These methods, unfortunately, are only
suitable for ‘tree’ networks design (no loops involved) and only provide local optimal
solutions for looped WDSs. In addition, LP and NLP cannot deal directly with a discrete

search space. The optimal solutions provided by LP contain split pipe solutions (usually
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two adjacent pipe diameters are assigned for a single link) and the final solutions
generated by NLP include continuous pipe diameters, which are both impractical from an

engineering perspective.

Subsequently, evolutionary algorithms (EAs) have been employed to optimize the design
for WDSs. A number of EAs have been developed for water network optimization. The
techniques have been successfully applied to a number of WDS optimization problems,
and have proven to be more effective in finding optimal solutions compared with
traditional deterministic optimization techniques (LP and NLP). However, EAs tend to
locally converge when dealing with complex and large scale optimization problems, and
can be inefficient for application in real-world sized WDSs, which normally involve

large numbers of pipes and other hydraulic components.

Recently, there has been interest in combining the EAs with traditional optimization
techniques such as LP and NLP for WDS optimization. These hybrid optimization
technigues are motivated by the fact that EAs are effective in exploring a broad search
space while LP and NLP are efficient in exploiting small regions within the whole search
space. However, although a few hybrid optimization models have been developed for

designing WDSs, they are largely limited to the research domain.

With growing populations and more complex social organisation, WDSs are becoming
larger while the standards for the water supply are becoming stricter. More loops and
other hydraulic facilities are now involved in WDSs. The increasing complexity and

scale of water distribution systems have resulted in enormous challenges for current
optimization techniques, and as a result, improved techniques are required. The
development of novel methods of optimization to accommodate this demand was the

purpose of the research described in this thesis.
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1.1 Objectivesof research

The four main objectives of this research are:

1. To improve the performance of evolutionary algorithms (EAS) in terms of optimizing
the design of WDSd he EAs investigated in this research include the genetic
algorithm, which is the most frequently used EA, and the differential evolution
algorithm, which is a relatively new EA that has recently received attention in terms
of WDS optimization.

2. To develop hybrid optimization methods that combine EAs with deterministic
optimization techniques (such as linear programming (LP) or nonlinear
programming (NLP)) for large water network optimizatidhese hybrid techniques
are used to deal with real-world sized water networks in the current research.

3. To extend elements of graph theory to enable water network decomposition and
develop novel decomposition concepts for use with water netwdHese
decomposition techniques are used to partition the water networks in order to
facilitate the design optimization. This is motivated by the fact that it is more
effective and efficient for optimization techniques to find optimal solutions for
relatively small-scale problems (sub-networks after the partitioning process has been
carried out) compared to the original full problem (original entire water network).

4. To develop advanced optimization techniques that incorporate elements of graph
decomposition within the whole optimization process for WDBsse advanced
optimization techniques aim to achieve optimal designs for real-world sized water
networks.

1.2 Outlineof thethesis

This thesis is a collection of published, accepted or submitted papers from internationally
recognised Journals, as shown in the section of List of Publications within the thesis.
Chapter 2 reviews the formulation of the optimization problems for WDS design and
the previously published algorithms for WDS optimization. The normal formulation of

the optimization model for a WDS design is analyzed in Section 2.1. Deterministic
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algorithms including LP, NLP and binary linear programming (BLP) that have been
previously employed to optimize WDSs are presented in Section 2.2. Evolutionary
algorithms (EAs) that have been applied to WDS optimization are reviewed in Section
2.3. In Section 2.4, the hybrid optimization techniques that have been reported in the
literature are presented and analyzed. Section 2.5 describes the application of graph
theory in WDS. Water network decomposition is one of the focuses of this thesis. In
Chapter 2, the limits of these currently available optimization techniques are elaborated

upon.

From Chapters 3 to 9, the titles of the chapters reflect the titles of the journal papers. At
the beginning of each chapter, a synopsis of the research motivation and the novelties of
the paper are described. The paper that has been submitted, accepted or published is then

provided, followed by the short synopsis.

Chapters 3 to 5 focus on the methods that have been developed to improve the
effectiveness of the evolutionary algorithms (genetic algorithms and the differential

evolution algorithm), which is the first objective of this research (see Section 1.1).

Specifically, Chapters 3 and 4 introduce a dynamically expanding choice table genetic
algorithm and a non-crossover dither creeping mutation genetic algorithm for WDS
optimization. The details of the two new GA variants developed in this research are
presented in Chapters 3 and 4.Chapter 5, a self-adaptive differential evolution
algorithm (SADE) is proposed to reduce the effort required to tune the control parameter
values of the DE. In addition, a new convergence criterion is developed and used in the
proposed SADE to eliminate the need for the pre-specification of the computational

budget.

Chapters 6 and 7 present two novel hybrid optimization techniques that combine EAs
with deterministic optimization techniques, which is the second objective of this research
(see Section 1.1). Bhapter 6, a combined NLP-DE method developed in this research

is described, in which NLP is combined with DE to optimize the design of WDSs. The

proposed NLP-DE is able to overcome the disadvantages of the currently available

4
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hybrid optimization methods in terms of WDS optimization. A concept of the shortest-
distance tree is introduced to enable network decomposition and an algorithm is

developed to efficiently identify the shortest-distance tree for a water network.

In Chapter 7, a combined BLP-DE approach is presented. In the proposed BLP-DE
method, a graph decomposition algorithm is first employed to identify trees and the core
for the WDS that is being optimized. Then BLP is used to optimize the design for the
trees while a DE algorithm is used to deal with the core optimization design. The
proposed method takes advantage of both BLP and DE algorithms: BLP is capable of
providing global optimal solution for the trees (no loops involved) with great efficiency,
while DE is able to efficiently generate good quality solutions for the core (loops
involved) with a reduced search space compared to the original full network. The
algorithm details and the results of the BLP-DE applied to the WDS case studies are

shown in Chapter 7.

Chapters 8 and 9 outline two advanced optimization techniques that have been developed
in this research, which are the third and fourth objectives given in Section 1.1. A
decomposition and multi-stage optimization approach for a WDS with multiple water
supply sources is presented @hapter 8. In this method, a novel decomposition
concept-optimal source partitioning cut-set is proposed and outlined, which is used to
partition the water network based on the water supply sources. In addition, an algorithm
for efficiently identifying the optimal source partitioning cut-set is developed and
presented. The multi-stage optimization method is first developed for water network
optimization in this research. The concept of multi-stage optimization is based on the
decomposition of large-scale and complex systems into independent subsystems. Each
subsystem is optimized independently, and the optimal solutions for each subsystem are

then combined to derive the optimal solution for the system as a whole.

Another advanced optimization method based on graph decomposition is proposed in
Chapter 9 of this thesis. A definition of a sub-network based on the connectivity

properties of the whole network is given in Chapter 9. In this proposed advanced
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algorithm, graph theory is employed to identify the sub-networks for a water network
that is being optimized. Rather than optimizing the original network as a whole, the sub-
networks are sequentially optimized by the DE algorithm, which is the most novel
feature of the advanced optimization technique. The algorithm details are presented in
Chapter 9. This is regarded as the most important outcome of this research work

presented in this thesis.

In Chapter 10, the conclusions of the research are presented in Section 10.1 and possible

future extensions based on this research are discussed in Section 10.2.

1.3 Main contributions of research

The five main contributions and innovations delivered by the current research are:

1. Improving the performance of the evolutionary algorithms (Chagterand5):

Two new genetic algorithm variants are introduced for optimizing the design for
WDSs. These are dynamically expanding choice table genetic algorithm (Chapter 3)
and the non-crossover dither creeping mutation genetic algorithm (Chapter 4). These
two GA variants have been demonstrated to be effective for WDS optimization in
this research. The non-crossover dither creeping mutation genetic algorithm shows
clearly that the performance of a GA can be achieved without crossover and that
mutation, used in the right way, is just as effective. This is the first known work to
develop a non-crossover and mutation only based genetic algorithm for WDS design.

A self-adaptive DE algorithm (SADE) for optimizing the design of WDSs is
proposed in Chapter 5 in order to avoid the need to tune the control parameter values.
In addition, a convergence criterion has been proposed in the SADE algorithm in
order to avoid pre-specifying convergence conditions (such as the maximum number
of allowable evaluations or maximum number of generations) for different
optimization problems. Consequently, SADE significantly reduces the effort required
for the trial-and—error process normally used to determine the effective parameters
for use in the DE algorithm. The proposed SADE provides a robust tool for the
optimization of the design of WDSs and rehabilitation of an existing WDS. This is
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because (a) the proposed SADE algorithm does not require as much fine-tuning of
parameter values nor does it require the pre-specification of a computational budget;
and (b) the proposed SADE algorithm is able to find optimal solutions with good
guality and great efficiency.

2. Development of novel hybrid optimization algorithms that combine EAs with
deterministic optimization techniques for WDS optimization (Chaptensl 7)

A novel hybrid optimization technique that combines NLP and DE is proposed
(Chapter 6). In this context, it is worth noting the comments given by the editorial
panel of the journdlVater Resources Researavhich highlights the contribution of
this work, saying:

This paper provided a scope for improving the several already attempted

algorithms for water distribution system optimization and for searching the

new algorithm. It is possible to develop exclusive software for optimal design

of water distribution system once the research in this field advances. The

authors of the manuscript have put forward some new ideas, which may

result in the development of various other developments in the optimal

design of large scale water distribution system in future.
Another new hybrid optimization approach that combines the DE with the BLP is
introduced (Chapter 7). This proposed BLP-DE is able to find the current best known
solutions for two benchmark WDS case studies with the best known efficiency and
yield better quality solutions for a real-world case study compared to other EAs with
greater efficiency. In the BLP-DE method, BLP is only used to optimize the design
of the trees while a DE algorithm is utilized to deal with the optimization of the core
portion of the network. The trees and core of the water network are identified using
graph theory based on the connectivity properties of the original full water network.
The research presented here is the first known work to employ different optimization
techniques to optimize different parts of the water network while producing optimal
solutions for the whole network.

3. Development of decomposition techniques for water networks (Chéeaad9).

A shortest-distance tree is proposed in this research as outlined Chapter 6, with which
a looped water network is decomposed into a tree. The shortest-distance tree in the
looped network is identified using the Dijkstra graph theory algorithm, for which an
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extension in this research is proposed to find the shortest-distance tree for multi-
source WDSs. The concept of the shortest-distance tree from water network
decomposition is the first time that this idea has been proposed.

A novel concept of an optimal source partitioning cut-set is proposed in this research
to decompose a complex water network with multiple supply sources (Chapter 8).
The source partitioning cut-set concept is used in this research and an algorithm is
developed in this research to efficiently identify the optimal source partitioning cut-
set. This is developed by this research for the first time.

Identification of sub-networks of a complex water network using graph theory
(Chapter 9) based on their connectivity properties. It is the first known work to use
this sub-network identification method to enable water network design.

4. Development of advanced optimization techniques for designing water networks
(Chapters3 and9)

A decomposition and multi-stage optimization technique is introduced to optimize
the design of WDSs (Chapter 8). In the decomposition and multi-stage optimization
method, graph decomposition technique is used to partition a complex water network
into sub-networks. Then each sub-network is optimized independently, and the
optimal solutions for each sub-network are then combined to derive the optimal
solution for the whole original water network. This method has been demonstrated to
be extremely effective for optimizing WDS with multiple supply sources. This
research is the first known work to develop a decomposition and multi-stage
optimization algorithm for WDS optimization.

A completely novel optimization method based on graph decomposition is developed
in this research (Chapter 9). In this proposed method, sub-networks for a water
network that is being optimized are identified using graph theory. Rather than
optimizing the original network as a whole, the sub-networks are sequentially
optimized by the evolutionary algorithm. This approach has been demonstrated to be
effective, especially when dealing with large water networks. This part of the
research represents the most significant element of the research presented in this
thesis.
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Chapter 2. Literaturereview

This Chapter provides a review of the relevant background regarding the optimization of
water distribution system (WDS) design. The formulation of the optimization model for
WDS design is first reviewed in Section 2.1. Then deterministic optimization methods
that have previously been used to tackle WDS optimization problems are reviewed
(Section 2.2), followed by a detailed review of evolutionary algorithms that have been
applied to WDS optimization design (Section 2.3). Subsequently, the hybrid optimization
techniques that have been proposed for optimizing WDS design are reviewed in Section
2.4. Finally, the graph theory applications in WDS optimization design are reviewed
(Section 2.5). In addition, this Chapter gives an assessment of each type of optimization

algorithm in terms of its capacity to deal with WDS optimization problems.

2.1 Optimization model for water distribution system design

The optimal design for a water distribution system (WDS) normally involves
determination of pipe diameters, location and the capacity of tanks, and location and
sizes of other hydraulic elements. The objective of WDS optimization is the
minimization of life cycle system costs (pipes, tanks and other components) while
satisfying a set of constraints at each node. Typically, an optimization model for a WDS

design is given by:

Minimize F= aZpll DL, (2.1)
Subject to:
Hun<H<H (2.2)
G(H, D)=0 (2.3)
DA (2.4)

where F=network cost (to be minimized;=diameter of the pipé (usually selected

from a discrete set of commercially available choicég)length of the pipd; a,
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b=specified coefficients in the cost functiorg=total number of pipes in the network;
G(H, D)=nodal mass balance and loop (path) energy balance equations for the whole
water network;H=head at the nodesimin and Hyax are the minimum and maximum

allowable heads at the nodés; a set of commercially available pipe diameters.

Two features contribute to the nonsmoothness properties of WDS optimization
problems. These include: (1) the pipe diameter choices being composed of discrete sizes
rather than being continuous decision variables (Equation 2.4); and (2) the nonlinear term
involving the discharge or velocity within the head loss equations (Equation 2.3). The
nonsmooth nature of the landscape constituted by a WDS design problem results in
many local optimal solutions, which poses a challenge when seeking good quality or

global optimal solutions.

Due to the complexity of the WDS optimization problem, a large body of research has

been undertaken to develop techniques for WDS optimization design in the past 40
years. Generally, these optimization techniques can be divided into three types, which are
deterministic optimization approachesvolutionary optimization techniquesd the

hybrid optimization method&ach type is reviewed below.
2.2 Deterministic optimization methods

2.2.1 Linear programming (LP)

Alperovits and Shamir (1977) presented a linear programming (LP) gradient method to
find the least-cost design for WDSs. In their proposed LP for WDS design, each pipe
was assumed to be composed of segments of different pipe diameters and the

formulation of this proposed LP model is given by:
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Minimize F= igC(Dj)Iﬁj (2.5)

Subject to:
HM™ < H, <H™ 2.6)
H,=H, - T(_kl)n 2.7)
h= gwﬁq’ (2.8)
2, =0 29)
ghj =L (2.10)
DU A 2.11)

whereC(D;) = cost per unit length ($/m) for pipe diamejtelj=the segment length of

pipe diametey in link i; m= total number of available discrete pipe diametaps;total

number of links of the WDS to be optimizes; total number of nodes of the WDS to be
optimized; H, = head at nodk=1,...n; H;""= minimum allowable head requirement at

nodek; H™= maximum allowable head requirement at nkdél .= head at supply
source node (reservoir or pump)k)=water supply path from source nasl® nodek;
h = head loss in pipe «=numerical conversion constant which depends on the units;

a, B=coefficients corresponding to the Hazen-Williams head loss equatdtiazen-

Williams coefficient for pipe diametgr Q=pipe flow rates in pipé (m*/s); Lj=the
segment length of pipe diamejen link |; h, = head loss in pipel; Z h,, = the sum of

Loop
the head loss for each primary lodpsthe total length of linki; A=the set of
commercially available pipe diameters. Note that the formulation given by Alperovits
and Shamir (1977) is based on the Hazen-Williams head loss equation. An LP could also

be formulated in terms of Darcy-Weisbach head loss equation.

11
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As can be seen from the LP model given above, the unknown lengths of pipe segments
were the decision variables rather than the discrete pipe diameter sizes. The original
nonlinear WDS optimization problem was therefore converted to a linear optimization
problem because the cost of the network is linearly proportional to the length of each
pipe segment. Constraints (2.6) to (2.8) ensure the pressures at all nodes are within the
specified range. Equation (2.9) is the energy balance at each primary loop (path) of the
water network. Constraint (2.10) ensures that the total length of each segment equals to
the original total length of each linkit should be highlighted that this LP model allows

split pipe diameter solutions, in which various pipe diameters are selected for a single

link and each pipe diameter is associated with a particular segment.

In the LP method proposed by Alperovits and Shamir (1977), the WDS optimization
problem is decomposed into two stages, namely the inner and the outer stage. Initially, a
set of pipe flows is selected for the water network that is being optimized to satisfy the
continuity at each node in the outer stage. Then the LP model presented by Equations
(2.5) to (2.11) is formulated and solved in the inner stage to find the combination of pipes
that offers the least cost to the network based on the known flow distribution obtained in
the outer stage. In addition, a vector of gradients of the cost against flow for each loop is
obtained during the LP optimization. These gradients are, in turn, used to determine the
magnitude and the direction of the loop-flow steps, thereby producing an updated flow
distribution of the water network in the outer stage. The LP is rerun to find the least-cost
design of the pipe network based on the updated flow distribution in the inner stage. This
process is iteratively performed until no further improvement is achieved within the

minimum step size allowed or the maximum number of iterations is exceeded.

In the LP method reported by Alperovits and Shamir (1977), a gradient is obtained for
each loop flow change using the values of the dual variables at each iteration. Then, to
reduce the cost of the network, a fixed step length for the loop flow variation is taken
along the direction specified by the gradient. This approach was criticiZegi ilmar a

et al. (1987) for its inefficiency when dealing with relativelarge WDSs, since the
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search direction was a negative gradient and the dimension of the gradient vector was

actually the total loops in the network.

The negative gradient direction is referred to as the direction of “steepest decent” in
nonlinear programming terminology (Fujiwara et al. 1987). It is well known that the

method of “steepest decent” normally requires a large number of iterations while making
very slow progress toward a solution since the convergence rate of this algorithm is only
linear (Fujiwara et al. 1987). Therefore, the LP method proposed by Alperovits and

Shamir (1977) is subject to large computational overheads, resulting in inefficiency.

In order to overcome this drawback, Fujiwara et al. (1987) proposed a quasi-Newton
techniqgue and backtracking line-search method to determine the directions and
magnitudes of the loop flows, which improved both convergence rate and speed when

compared to the LP method originally used by Alperovits and Shamir (1977).

Quindry et al. (1981) presented another method to tackle the least-assgrd for

WDSs. In their method, a set of initial nodal pressures, rather than the flows as used by
Alperovits and Shamir (1977), was assumed for the water network being optimized.
Based on the known nodal heads, pipe diameters were then selected using LP to be the
least-cost whilst satisfying the continuity equations at all nodes. A set of gradients of the
cost against heads at all nodes was employed to ensure the iteration progressively moved

towards the least-cost design.

Calhoun (1981) appliedan LP to optimize tree networks, in which a pump wwelsided.
Stephenson (1984) also developed an LP to deal with the optimization ofttiek main

pipes (the tree network), in which, the simplex method was employed to solve the LP. In
addition, the LP has been extended by Stephenson (1984) to optimize the looped
network. An assumption was made in his work that the least-cost network was in fact
invariably a tree-like network. Hence, the looped network was reduced to a tree-like

network first and then the LP was formulated for the tree network.
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Morgan and Goulter (1985) described a heuristic LP approach linked with avaek

solver to find the least-cost design for WDSs. Figure 2.1 illustrates this algorithm. As
shown in Figure 2.1, for a given combination of pipes for the water network initially, a
hydraulic solver is carried out to maintain the continuity at all nodes and energy
conservation in all simple loops. In addition, the flow distribution of the water network is
obtained. Once this process is complete, a new pipe combination for the known flows in
the pipes is generated using LP while satisfying minimum and maximum head
requirements at each node. If the new pipe combination is the same as the one evaluated
by the network solver, the least-cost design has been obtained. Otherwise, the new pipe
combination is evaluated by the network solver again to produce an updated flow
distribution. The process is iterative, and stops if there is no difference between the
resulting pipe combination and the previous combination, or the maximum number of

iterations has been exceeded.

A network solver runs for the current water netwark
configuration (diameters)

Flows of the

New network
water network

configuration

\ 4
LPis employed to seek the least cost design for
given flow distribution

he

~—+

Figure2.1 Thealgorithm of heuristic linear programming
(Morgan and Goulter 1985)

2.2.2 Nonlinear programming (NLP)

The objective function of the least-cost design dDS¥ with a set of constraints is
mathematically nonlinear. Nonlinear programming (NLP) can handle the nonlinear

problem directly and was introduced by researchers to optimize the design of WDSs.
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Lansey and Mays (1989) proposed a generalised reduced gradient (GRG) NLP
technique for dealing with WDS optimization problems. In their work, the original whole
optimization problem was decomposed into the simulation and optimization steps. In
their proposed simulation-optimization model, a hydraulic simulator is used to solve for
the pipe flows and nodal pressures that satisfy the constraints for any given pipe
diameters, while GRG NLP is employed to iteratively update the pipe diameters. The
advantage of this method is that the size of the optimization problem is reduced as the

hydraulic constraints are handled by the simulator.

Subsequentlyf-ujiwara and Khang (1990) proposed a two-stage decomposition NLP
optimization technique for WDS design. In the first stage of the two-stage optimization
method, a NLP gradient method was introduced to extend the LP gradient method
proposed by Alperovits and Shamir (1977). A set of flows that satisfy the continuity at
each node is first assumed, and then the NLP gradient method is employed to find a local
optimal solution for the water network. In the second stage, the link head losses of the
obtained local optimum in the first stage are fixed and the resulting concave problem is
solved using NLP to obtain a new flow distribution. The resultant new flow distribution

is used to restart the first phase, and the two stages are continued until no better local
optimum can be found. The main advantage of the two-stage NLP optimization method
proposed by Fujiwara and Khang (1990) is that it is able to generate a sequence of
improving local optimal solutions. However, this method cannot guarantee the global
optimal solution is found although it allows a move from one local optimal solution to

another, better one.

2.2.3 Binary linear programming (BLP)
Samani and Mottaghi (2006) proposed a binary linear programming (BLP) approach
for WDS design optimization, in which the objective function and constraints are

linearized using zero-one variables. The formulation of a BLP model proposed by

Samani and Mottaghi (2006) in terms of Hazen-Williams head loss equation is given by:
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N P

Minimize F= ;; X; L C(D)) (2.12)
Subject to:

Weg ,

> s He-H™ nOW, (2.13)

P L X,

hy =) w _q” i0OT (2.14)

fi Z CJngﬁ ql

P

2% =1 (2.15)

j=1

DA (2.16)

whereN is the total number of pipes needs to be optimiZes; the total number of

commercially discrete pipe diameters that can be wseésithe length of pipg C(D;) is
unit length cost of the pipe diamef@randX; is zero-one variable:i is the available

head provided by the source nodi™ is the minimum allowable head requirement for
Wir

nodek; Wir is the water supply path from source nBd®e nodek; thm is total head

loss involved in water supply paitir h; is the head loss for piped =flows in pipei;

« =numerical conversion constant which depends on the units of flows and diameters;
a , B=coefficients andC; =Hazen-Williams coefficient of pipe diameter

In Equation (2.12)X;=1 indicates that the diametey is selected for pipewhile X;=0
represents the diametyis not selected for pigelt is noted that no nonlinear terms are
involved in the objective functioR. In Equation (2.14)X;=1 implies that diametdd; is

used for pipa and then thdn, based on the selected diamdgris obtained. While
X;=0 means that diamet&; is not selected for pipeand no head loss is involved for
diameterD;. As can be seen from Equation (2.14), by utilising zero-one variables, the
nonlinear Hazen-Williams formula is converted to a linear formula if flows are known

for each pipe.

Four steps are involved in the BLP method proposed by Samani and Mottaghi (2006):
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Step 1. Each pipe in the water network to be optimized is initially assigned a

commercially available pipe diameter.

Step 2: A hydraulic solver is performed for the known network configuration to obtain

water flows for each pipe.

Step 3: A BLP model is formulated and solved for the water network based on the
known flows at each pipe and solved while satisfying the head constraints at each

node.

Step 4: The resulting pipe sizes obtained in step 3 are compared with the assumed
quantities in step 1. If they are the same, the optimization process has converged
and the resulting pipe sizes are the final solution; otherwise, the resulting pipes
sizes are assigned to the water network and steps 2, 3 and 4 are repeatedly
performed until the convergence (resulting pipe sizes in step 3 are the same with

the those used in step 2) is achieved.

Samani and Mottaghi (2006) used two relatively small looped WDS case studies to
verify the effectiveness of their proposed BLP method, and reported that the performance
of the BLP method was satisfactory in terms of accuracy and convergence based on

results of two looped WDS case studies.

2.2.4  Analysis of deterministic optimization techniques

The advantage of these deterministic methods including LP, NLP is that they are able to
provide local optimal solutions with great efficiency for treed water networks. This is
because the flow distribution in the treed water network can be pre-determined since no
loops are involved. Although these deterministic optimization approaches have been
extended to deal with the optimization of small looped water networks, the majority of
the applications remain in the research domain. Limitations of these approaches are given

as follows.
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Linear programming. The disadvantages of LP include:

= Itis highly likely to become trapped by local optimal solutions due to its point by
point movement (gradient based) in the search space;

= The final solution allows split pipe diameters, in which a link is composed of
several different (usually two adjacent) pipe diameters and each diameter is
associated with a particular length. This is impractical from an engineering
perspective since it normally uses one pipe diameter for a link.

Nonlinear programming. For NLP, the drawbacks are that:

» |tis also highly likely to be trapped by local optimal solutions in the same way
that occurs for LP;

» |t allows the continuous pipe diameters in the final solution, which is a severe
disadvantage as only commercially discrete pipe diameters can be used in
practice. Thus, a procedure is needed to round off the continuous pipe diameter
to the nearest discrete one, which may lead to a sub-optimal solution or even an
infeasible solution for the WDS design

Binary linear programming. The advantage of the BLP developed by Samani and

Mottaghi (2006) over LP and NLP is that it is able to provide discrete pipe diameter
solutions over complete segment of pipe lengths. However, the BLP approach is
compromised by extreme inefficiency when dealing with relatively large WDS case
studies (Savic and Cunha 2006). In addition, the global optimum for a looped WDS
cannot be guaranteed as the final solution reached by the BLP approach is dependent on

the initially assumed pipe diameters (Martinez 2006).

2.3 Evolutionary algorithms

Within the past two decades, evolutionary algorithms (EAs) have frequently been used to
optimize WDSs. EAs are able to handle discrete search spaces directly and are less likely
to be trapped at local optima. The search strategy of EAs differs from deterministic
optimization techniques (such as LP or NLP) in that EAs explore the search space in a

manner broadly based on stochastic evolution rather than on gradient information. A
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number of EAs have been developed for optimizing WDS design, and the first
significant publication of each EA is provided in Table 2.1. These EAs have been
successfully applied to a number of WDS design optimization problems, yielding better
quality solutions than deterministic optimization techniques.

Table2.1 Typesof previously used EAs applied to WDS optimization

Algorithm* First reference

Genetic algorithm (GA) Simpson et al. (1994)
Simulated annealing (SA) Loganathan et al. (1995)
Tabu search (TS) Lippai et al. (1999)

Harmony search (HS) Geem et al. (2002)

Shuffled frog leaping algorithm (SFLA) Eusuff and Lansey (2003)
Ant colony optimization (ACO) Maier et al. (2003)

ANN metamodels Broad et al. (2005)

Particle swarm optimization (PSO) Suribabu and Neelakantan (2006)
Scatter search (SS) Lin et al. (2007)
Cross-entropy algorithm (CE) Perelman and Ostfeld (2007)
Differential evolution (DE) Suribabu (2010)

Honey-Bee Mating Optimization (HB) Mohan and Babu (2010)

Genetic Heritage Evolution by Stochastic
Transmission (GHEST)
'All mentioned algorithms in this table are referred to Evolutionary Algorithms for ease of reference,
although the metaheuristics TS and SA are not strictly ¥y the first significant paper for each EA
applied to WDS optimization is provided

Bolognesi et al. (2010)

The EAs investigated in this research include the genetic algorithm (GA), which is the
most frequently used EA, and the differential evolution algorithm (DE), which is a

relatively new EA that has recently received attention in terms of WDS optimization.

2.3.1 Genetic algorithms

Amongst EAs presented in Table 2.1, GAs have gained popularity due to their ease of
implementation and satisfactory search abilijicklow et al. (2010) presented a
comprehensive review on the GA applications to various water resources planning and
management problems during the last two decades. It was concluded by Nicklow et al.
(2010) that the GA has been consistently proven to be flexible and powerful in solving

complex water resources problems.

19



CHAPTERZ2. LITERATURE REVIEW

The GA is a stochastic search technique based on artificial evolution (Holland, 1975).
Three operators including selection, crossover and mutation, are commonly used in the
GA to constitute the evolutiorSmpson et al. (1994) first used GA to solve the
optimization problem of WDSs. In their work, a performance comparison was made
between GAs and deterministic optimization techniques (LP and NLP) in terms of
finding optimal solutions for WDSs. It was reported by Simpson et al. (1994) that GAs
are far more effective for providing good quality solutions than deterministic
optimization techniques. In addition, a standard GA implementation for WDS

optimization design was elaborated on by Simpson et al. (1994).

Subsequently, considerable research has been undertaken to improve the performance of
GAs in terms of WDS optimizatiomandy et al. (1996) proposed an improved GA for
WDS optimization. Compared to the standard GA, three modifications were made by

Dandy et al. (1996) for the improved GA. These include

» Introducing a variable scaling power of the fitness function into the GA, accentuating
the small differences between string fitness in the later generations when the Roulette
wheel selection method is used. This method is able to lead the GA to explore the
best region of the solution space when highly fit strings are dominating in the later
generations.

» Using a Gray coding scheme rather than binary coding. Adjacent codes representing
nearby designs in the solution space are guaranteed by the Gray coding method,
thereby avoiding the Hamming cliff and making the GA perform better.

» Implementing an adjacency mutation in addition to bitwise mutation to allow the GA
to locally explore. The improved GA was demonstrated to be more effective in
finding better quality solutions for the case study used by Dandy et al. (1996).

Vairavamoorthy and Ali (2000) applied an integer coding method in the formulation of
GA strings, thereby avoiding the redundant states often found when using binary or Gray
coding. Deb (2000) introduced a constraint tournament selection algorithm to facilitate
the GA to effectively handle the constraints. The basic algorithm when comparing two

solutions in a constraint tournament selection is given as follows:
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» A feasible solution is selected when compared with an infeasible solution.

» The solution with a smaller value of the objective function value (if cost is being
minimised) is preferred between two feasible solutions.

» The solution with less constraint violation is preferred between two infeasible
solutions.

Using this method, the comparison between the solutions in a tournament never happens
in terms of both objective function and penalty function. In the first case, the solution
with no head violation is preferred to the one with a head violation and does not take the
value of the objective function into account. In the second case, the two solutions are
compared based on the objective values and the one with a smaller value is selected as
both solutions satisfy the constraints. In the last case, the solution with less head violation
is selected and the value of the objective function is not considered. Thus, unlike
traditional tournament selection, there is no need to specify a penalty multiplier in the

proposed method.

Wu et al. (2001) introduced a fast messy genetic algorithm (mGA) to deal with the
optimization of water networks, which showed a significant improvement in terms of
efficiency and robustness compared to the standard GA. Vairavamoorthy and Ali (2005)
proposed a pipe index vector based GA for WDS optimization design. In their work, a
pipe index vector was established to assess the relative importance of the pipes in terms
of their impact on the hydraulic performance of the pipe network. This pipe index
reduced the search space for the GA and guided the GA search to promising regions

where the optimal solutions were likely to be.

2.3.2 Differential evolution

The differential evolution (DE) algorithm, introduced by Storn and Price (1995), has
been found to be a relatively simple but powerful EA for global optimization. More

recently, the DE algorithm has received much attention as a method of dealing with
WDS optimization problems (Suribabu 2010). Three operators are involved in the DE

during optimization including mutation, crossover and selection operators. The process
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names are similar to those the commonly used when talking about GA. However, there

are significant differences in the order of application and form of these operators.

DE differs significantly from a GA in the mutation process due to the fact that the mutant
solution is generated by adding the weighted difference between several random
population members to another random member of the population. Three parameters
need to be pre-specified for the use of DE including the populationNjizen(tation
weighting factor F) and crossover rat€€R). In addition to these three parameters, a
particular mutation strategy needs to be selected for the use of DE among a number of
possibilities (Price et al. 2005). Since DE is a relatively new optimization algorithm in
the water community, the basic process of standard DE is reviewed in the sub-sections
that follow (Storn and Price 1995).

2.3.2.1. Initialization

DE is a population based stochastic search technique. Thus, a set of members of the

initial population is required to initialise the DE search. Normally, each initial population
Xio={ Koy X0 yeeeerenn X} is generated by randomising individuals from a uniform

distribution within the search space, that is

Xo = X + rand(0,1) (Xn — X% =1, 2,...N,j=1, 2, ...,.D (2.17)

where X/, =the initial value of thg™ parameter for thé" individual in the initial

population, x!. andx!_ = the minimum and maximum bounds of ffeparameter

respectivelyrand(0, 1) represents a uniform distributed random variable in the range [O,
1], while N and D=population size and dimension of the vector respectively. The
population size is not changed during the DE process.

2.3.2.2. Mutation

DE is mainly defined by its mutation approach, compared with GAs, in that a mutant
vector Vg, with respect to each individu s, is produced by adding the weighted
difference (with weightF) between several random population members to a third
member from the current population. Each individGalassociated with a mutant vector

is denoted as a target vector. Five frequently used mutation strategies in DE are provided:
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DE1-RandL:

\{G = Xrl,G + F( XrZ,G - er,e ) (2.18)
whereV,gis the mutant vector with respect to the target vectof @fat generation G.
Xier Xo6 @and X, 5 are three vectors randomly selected from the current population

G. As shown in Equation (2.18), DE1 generates a mutant Wéeidor each vector by
adding the weighted difference of two randomly selected vectors to a third vector. The
random integersl, r2 andr3 are different values from the population of $izé& is the
weighted difference factor within the range [0, 1].

DE2-Best:

VG = xbestG + F( Xrl,G - xrz,G ) (2-19)

DEZ2 is similar to DE1 in terms of producing the mutant vector except that the third
vector that is to be perturbed is the best individual of the current generxtiqp, .
DE3-Besg:

V,G = xbestG + F( erG - xrz,e) + F( xra,G - Xr4,G ) (2-20)

where X, .. is the best individual of the current generation G. DE3 uses two weighted

differences of four randomly selected individuals and the best individual to produce the
mutant vector. The random integetsr2, r3 andr4 are different values chosen from the

population of sizé\.

DE4-CurrentToBest:

V,G = XrLG +F( XbestG - er,G) + F( Xr3,G - Xr4,G ) (221

Like DE3, DE4 also employs two weighted difference individuals, but one is the
weighted difference between the best individual and a random individual. In addition, for
DE4, the individual to be perturbed is a random individual rather than the best individual

that used in DE3.
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DE5-rand2:

\{G = Xr:LG + F( XrZ,G - xr3,G)+ F( Xr4,G - er,G ) (2-22)

DES5 is quite similar to DE3, only differing in that the individual to be perturbed is a
random individual from the population of DE5, while the individual to be perturbed is
the current best individual for DE3. The integersr2, r3, r4 andr5 are different values
randomly selected from the population of gize

2.3.2.3. Crossover

After the application of the mutation operator, a trial vetiqr is generated though
selecting solution component values of from eitkgyor V. In the basic DE version

(Storn and Price 1995), uniform crossover is employed as:

- {vi{s ,if rand(0,1),< CR
i,G

x)s, otherwise (2.:23)

whereu/, v/g, x); =thej™ parameter for thé” trial vector, mutant vector and target
vector respectivelyCR s the crossover rate within the range of [0,rahd(0,1),is a
random number between O and 1 generated for each pargméteand(0,1); is
smaller tharCR, the parametevi"ye in the mutant vector is copied to the trial vector,

otherwise, the paramebq{rG in the target vector is copied to the trial vector.

2.3.2.4. Selection

After crossover, all the trial vectors are evaluated using the objective fufftctighand

are compared with their corresponding trial vector objective funfiog). The vector

with a lower objective function value (given a minimisation problem) survives for the
next generation. That is

Xigun=

Uie if T(U o< (X0
X, ¢ otherwise (2.24)

where X, ., is thei™ individual at the generatia@+1.

24



CHAPTERZ2. LITERATURE REVIEW

Mutation, crossover and selection are repeatedly applied generation by generation until a

stopping criterion (normally a maximum number of allowable evaluations) is satisfied.

Suribabu (2010) first introduced DE algorithm to optimize the WDS design. A total of
four WDS case studies were used in his study to assess the effectiveness of the DE
algorithm for optimizing WDS design. The results obtained by Suribabu (2010) clearly
showed that DE significantly outperformed other EAs such as GAs and ACOs in terms
of efficiently finding optimal solutionsVasan and Simonovic (2010) developed a
DENET optimization model to tackle the WDS optimization problem, in which a DE
algorithm was combined with the network simulation model EPANET2.0 (Rossman
2000). The efficiency and robustness of the DENET was tested based on two benchmark
WDS problems. It was reported by Vasan and Simonovic (2010) that DE was able to
provide good quality optimal solutions with great efficiency based on results obtained for
the two benchmark WDS problems.

2.3.2.5. Parameter sensitivity analysis for differential evolution

Research has been undertaken to systematically analyze the influence of the control
parameters on the performance of DE applied to numerical optimization problems, and
provide guidelines for selecting appropriate control parameters (Storn and price 1995;
Price et al. 2005; Liu and Lampinen 2005). It is argued by these researchers that DE,
with 1D < N < 10D (whereD is the number of decision variables) 8.6 < 1.0, 0.8 CR

< 1.0 shows generally good performance in convergence properties. In addition, DE with
N=10D, F=0.5 andCR=0.9 are recommended as universally suited control parameters
for different numerical optimization problems. However, as with most EAs, the optimal
setting of these parameters is heavily reliant on the properties of the fithess landscape
associated with the problems that are being optimized. The numerical optimization
problems that have been used to verify the effectiveness of DE (Storn and price 1995;
Vesterstrom and Thomsen 2004; Price et al. 2005; Liu and Lampinen 2005) all have
continuous search spaces, while the WDS optimization problem is a discrete search

space problem as only commercially available pipe diameters can be used for the WDS
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design. The global optimal solutions for these numerical optimization problems lie at the
centre of the search space or along the coordinate axes. In addition, there is no linkage
among the different variables in a numerical optimization problem. Whereas, for the
optimization of the WDS design, the global optimal solution for the WDS design
normally lies at the boundary of the whole search space and different variables interact
with one another. Thus, the WDS optimization problem has a by far more complex
fitness landscape than the numerical optimization problem. Consequently,
recommendations for parameter guidelines based on the numerical optimization

problems cannot necessarily be directly transferred to the WDS optimization problem.

Vasan and Simonovic (2010), and Suribabu (2010) concluded that the performance of a
DE algorithm was at least as good as, if not better, than other EAs such as GAs and Ant
Colony Optimization. HoweveDandy et al. (2010) compared performance of GAs and

DE in terms of optimizing WDSs and stated that GAs gave better results overall than

DE. This contradiction can be explained by the fact that the different parameter values

includingN, F andCR may be used in these DE applications.

Zheng et al. (2011e) undertook a systematic parameter analysis for the DE algorithm in
terms of WDS optimization. The parameters involved in their work were the mutation
weighting factor ) and the crossover rat€R), which are considered to be the most
important parameters to influence the DE algorithm’s performance. The researchers
concluded that the performance of DE is dependent on these two parameter values and
that the appropriate DE parameter values are optimization problem dependent. Thus, a
trial-and-error process is required to determine the preferable parameter values when DE
is applied to a given WDS optimization proble#heng et al. (2011c) have also
investigated the effectiveness of the five available mutation strategies (see Equations
2.18 to 2.22) in terms of WDS optimization and concluded that the mutation strategy

given in Equation (2.18) exhibited the overall best performance.
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2.3.3 Analysis of evolutionary algorithms

Advantages of EAs compared to deterministic methods can be concluded as follows in

the context of optimizing WDS design.

» EAs are able to cover more regions of the search space than deterministic methods
such as LP and NLP as they are stochastic optimization techniques. As a result, it is
more likely that EAs will reach good optimal solutions for WDS optimization

problems.

» EAs are capable of handling the discrete search space of the WDS design problem
directly. This is of great benefit as they are able to produce practical final solutions,
with each pipe being assigned a commercially discrete diameter. While split pipe
solutions or continuous pipe diameters are included in the final solutions generated

by deterministic methods (LP and NLP), both are impractical in practice.

» In contrast with deterministic methods, EAs can provide a set of solutions at the end
of each run. These solutions are slightly different in cost but completely different in
design. Thus the practitioner can select the more practical design from the options

based on objectives which cannot be expressed explicitly during optimization.

» EAs can be modified to deal with multi-objective WDS design problems, while

deterministic approaches are only limited for single objective optimization problems.

However, there are also limitations of EAs when applied to WDS optimization problems.
The efficiency of EAs, for example, is frequently of concern, especially when dealing
with relatively large and complex WDS optimization problems where simulation model
run times are long. The majority of EAs are population based search algorithms and a
hydraulic simulation model is normally required to evaluate each individual of the EA
population, resulting in a large computational overhead. The inefficiency of EAs when

dealing with large-scale problems has also been clearly stated by Nicklow et al. (2010).

Another issue in the use of EAs is that a number of parameter values need to be tuned

when EAs are applied to various optimization problems. Table 2.2 gives a summary of
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number of parameters that need to be selected for different EAs that have been reported
for WDS design optimization (Tolson et al. 2009). As can be seen in Table 2.2, the
number of parameters varies from three to eight. The performance of these EAs has been
demonstrated to be heavily dependent on the parameter values used and suitable
parameter values are dependent on the optimization problem under consideration. Thus,
it requires significant effort, normally by trial and error, for practitioners to determine the
most appropriate parameter values for these EAs in order to apply them to different
optimization problems. The resulting computational budget is unavoidably large.

Table 2.2 Parameter statisticsfor various EAs (Tolson et al. 2009)

Algorithm Reference Number of reported parameters
GENOME Reca and Martinez (2006) 8
PSO variant Montalvo et al. (2008) 8
SFLANET Eusuff and Lansey (2003) 6
GHEST Bolognesi et al. (2010) 6
HS Geem (2006) 5
MSATS Reca et al. (2007) 5
GA Simpson et al (1994) 5
MMAS-ACO Zecchin et al. (2007) 4
PSHS Geem (2009) 4
DE Suribabu (2010) 4
CE Perelman and Ostfeld (2007) 3

The solution quality cannot be guaranteed for EAs when dealing with large case studies.
Zheng et al. (2011d) investigated the search ability of GAs applied to a number of case
studies with the number of decision variables ranging from 21 to 1050 pipes. The
performance assessment of the GAs was made by comparing the optimal solution found
by GAs and the estimated global optimal solution for each case study. The results of this

study are given in Table 2.3.

The results recorded in Table 2.3 demonstrate that the GA was able to find the estimated
global optimal solutions (current best known solutions) for case studies with 21 and 42
decision variables. The GA exhibited reasonably good performance on the case study
with 105 decision variables; the best solution it deviates only 0.53% from the estimated

global optimal solution.
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Table 2.3 Results of GA runsapplied to a gradually increasing number of
decision variables based on the New York Tunnels Problem (NYTP)
networ k (Zheng et al. 2011d)

NOTE:
This figure/table/image has been removed
to comply with copyright regulations.
It isincluded in the print copy of the thesis
held by the University of Adelaide Library.

As shown in Table 2.3, the best solution found by the GA deviated further from the
estimated global optimal solution as the number of decision variables increased. This
shows that the optimization problem becomes more and more intractable for GAs as the
number of decision variables increases. When the number of decision variables increases
to 1050, the best solution found by the GA was 16% higher than the estimated global
optimal solution. Thus, it can be concluded that GAs are able to perform well on
relatively small case studies (for a small number of decision variables) in terms of
solution quality, whereas solution quality deteriorates for GAs when dealing with

relatively larger networks.

In a conclusion, factors including (i) the inefficiency, (ii) the large effort required to tune
parameter values and (iii) the deterioration of the solution quality are major concerns for
EAs when dealing with real-world sized water networks, for which a large number of
pipes and other components are normally involved. Thus, it is desirable to develop
advanced optimization technigques to overcome these limitations to enable a generic

application of optimization techniques for WDS design.
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2.4 Hybrid optimization techniques

A number of hybrid optimization techniques have been developed in recent years to
overcome disadvantages of EAs (inefficiency and solution deterioration) applied to
relatively large WDS optimization problems. Typically, two approaches are used to
enhance the search performance of EAs, including (1) refining an EA’s search
performance by combining it with traditional optimization techniques (LP or NLP) or

local search procedures and (2) guiding an EA’s search by providing it with initial near-

optimal seeding estimates.

2.4.1 Combining EAs with deterministic optimization methods

When EAs are combined with deterministic optimization methods, they are generally
used first to locate the approximate regions of the optimal solutions for the problems that
are being optimized. A traditional or local search method is then employed to find the
minimum solution within the localized search space region identified by the EAs. A few
hybrid optimization models combining the EAs and traditional methods have been

developed and improvements have been reported in terms of WDS optimization.

Tolson et al. (2009) developed a hybrid discrete dynamically dimensioned search (HD-
DDS) algorithm to optimize the design of WDSs. The HD-DDS combines an
evolutionary search method with two local search approaches: a one-pipe search and a
two-pipe search. In their work, the metaheuristic search method is first used to explore
broadly in the whole search space specified by a WDS design problem. Then one-pipe
and two-pipe search approaches are employed to further polish the final solutions

produced by the evolutionary search method.

Four WDS case studies with number of decision variables ranging from 21 to 454 were
used to assess the performance of the HD-DDS, and it was reported by Tolson et al.
(2009) that the HD-DDs exhibited a superior performance than GA and ACO methods in

terms of efficiency and solution quality. In addition, it was found by Tolson et al. (2009)
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that the local search methods were effective at improving the final solutions obtained by

the evolutionary search method of the HD-DDS approach.

Krapivka and Ostfeld (2009) proposed a coupled GA-LP scheme for the least-cost pipe
sizing of water networks. In this method, the optimization problem is decomposed into
an “inner” and an “outer” problem. The “inner” LP is formulated and solved for a fixed
set of flows, while the flows are altered in the “outer” using a GA. In their proposed
optimization approach, an enumeration technique is initially used to identify all possible
spanning trees for a looped water network. Then an LP solver is employed to optimize
the pipe diameter sizes for each spanning tree to allow the least-cost tree to be
determined. Lastly, the spanning tree chords are locked into the minimum permissible
pipe diameters and the least-cost spanning tree is further optimized using the proposed

coupled GA-LP technique.

The main advantage of this approach is that the search space handled by the GA-LP is
reduced as the chords of the spanning tree are set to be the minimum allowable pipe sizes
and removed as decision variables. However, this approach is computationally expensive
for finding the least-cost spanning tree since all possible spanning trees need to be
evaluated. The method is therefore limited in practical applications by the fact that it is
impossible to evaluate all the spanning trees for a relatively large water network, and the
global optimal solution for the original water network could be missed as the spanning
tree chords are fixed by the minimum allowable pipe sizes in this method. An additional

criticism is that a split-pipe approach is used in the proposed optimization technique.

Cisty (2010) proposed another combined GA and LP (GA-LP) model for solving WDS
design problems. In this proposed GA-LP method, a GA is used to generate branched
networks for a complex looped network, and LP is used to optimize each branched
network. The proposed GA-LP method utilizes the fact that the LP is suitable for solving
branched networks and GA is effective in dealing with networks with a small number of

decision variables. This GA-LP was tested on three WDS case studies and proven to be
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robust and efficient. However, split pipe solutions are still included in the final optimal

solution, which is a severe limitation for practical application.

Haghighi et al. (2011) combined a simple GA with BLP for a WDS optimization
design. In this GA-BLP method, a water network is first converted to a tree by removing
one pipe from each primary loop and hence a totdLgipes are removed, whexi. is

the number of loops in the water network. Then a sitdiémeter combinations for the

NL pipes is randomly generated using commercially available pipe diameters to form the
initial population of the GA, wher&\ is the population size of the GA. For each
individual in the GA with different diameter combinations for Wiepipes, an iterative
procedure using BLP combined with a hydraulic solver (EAPNET) is used to optimize

the remaining tree (th¥L pipes are not included in the BLP optimization).

The optimum pipe diameters obtained from the iterative BLP optimization for the tree
are returned to the GA along with the corresponding cost. This cost in combination with
the cost of the\L pipes handled by the GA provides the total cost of the original water
network. This total cost is used to calculate the fitness of the GA individual.
Subsequently, the GA operators (selection, crossover and mutation) are performed to

evolve the initial solutions to achieve the final optimal solutions.

In the GA-BLP method (Haghighi et al. 2011), the GA is only used to deal witkiLthe
pipes, while BLP is employed to tackle the optimization of the tree that was obtained by
removingNL pipes. Thus, efficiency of the GA optimization is expected to be improved
as the GA only handldsL pipes rather than the total number pipes in the original whole
network (L is normally significantly smaller than the total number pipes). However, the
computational effort required for iterative BLP optimization in this GA-BLP approach is
massive when dealing with large water networks since BLP has previously been found to
be extremely inefficient when tackling large optimization problems (Savic and Cunha
2006; Martinez 2006).
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2.4.2 Providing EAs with good estimates

The efficiency of an EA is improved if its search is initialised with good starting points
since it requires less time to find optimal solutions. This approach allows the EA to focus
on exploring the neighboring region that is specified by the good initial estimates,
thereby speeding up the convergence speed. In this approach, an EA or traditional
optimization technique is first used to explore the search space in an approximate way in
order to identify an approximate optimal solution. The resulting solution is then used to
seed another EA in order to attempt to locate better solutions. Since the EA is seeded
with good initial estimates, better solutions can be generated at a low computational cost.
This has been demonstrated in a number of studies (Grefenstette 1987, Harik and
Goldberg 2000).

Keedwdl and Khu (2006) proposed an optimization approach that combined a local
representative cellular automata (CA) and a GA (CANDA-GA) for optimizing the design
of WDSs. In CANDA-GA, the CA is used to find the approximate optimal solutions and
the GA is seeded with these approximate optimal solutions in order to reach better
solutions. It was reported by Keedwell and Khu (2006) that the CANDA-GA showed
significant improvement in efficiency compared to a GA without any estimates based on
two real-world WDS case studies with 632 and 1277 decision variables. However,
premature convergence was observed by Keedwell and Khu (2006) for the CANDA-GA

method.

2.4.3 Analysis of hybrid optimization techniques

The majority of currently available hybrid optimization techniques remain in the research
domain due to their limitations. For the GA-LP method proposed by Krapivka and
Ostfeld (2009), it is extremely inefficient to find the least-cost spanning tree for the
looped water network. For the GA-LP method developed by C26Y0), split pipe
solutions are generated, which is not practical. For the GA-BLP method proposed by
Haghighi et al. (2011), it is extremely inefficient to deal with the large tree network with
BLP algorithm. For the HD-DDS method (Tolson et al. 2009), although its performance
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is superior to that of GAs and ACO, it requires considerable computational resources
when dealing with relatively large case studies. For example, HD-DDS used 30 million
evaluations budget to find an optimal solution for a WDS case study with 454 pipes as
shown in Tolson et al. (2009). For the CANDA-GA (Keedwell and Khu 2006),

premature convergence is a concern and the efficiency needs to be further improved.

In a conclusion, the majority of currently available hybrid optimization techniques have
disadvantages in terms of WDS optimization. This results in their application being

limited in terms of their capacity to deal with real-world sized WDS design problems.

2.5 Graph theory applicationsin water network design

Normally, a WDS can be viewed as a connected g&{ptE), whereV is a set of links

andE is a set of nodes in the water distribution network. Thus, it is natural to introduce
graph theory algorithms to enable the WDN analysis. Traditionally, graph theory has
been used for water network connectivity and reliability anal@igta and Prasad

(2000) used the linear graph theory for analysis of pipe netwdkserlein (2008)
proposed a graph theory algorithm to decompose the WDN into forest, bridges and
blocks. This method provides a tool to simplify complex WDNs and provides a better

understanding of the interactions between their different parts.

In terms of WDS design optimizatioK,esder et al. (1990) developed a graph theory
based algorithm to optimize the design of WDSs. In their work, the design process
consists of three distinct stages. In the first stage alternative paths are allocated using
graph theory algorithms. In the second stage the minimum hydraulic capacity (diameters)
of each path is determined using a LP model. In the third stage the obtained solution

from the second stage is tested by a network solver for various demand patterns.

Sonak and Bhave (1993) introduced a combined graph decomposition-LP algorithm for
WDN design. In this combined algorithm, all the trees of the looped WDS are first
identified by a graph theory algorithm and optimized by a LP, allowing the global

optimum tree solution to be located. The final optimal solution for the original WDS is
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then determined by assigning the chords of the global optimum tree the minimum
allowable pipe diameter§avic et al. (1995) used graph theory to partition the water
network into ‘tree’ and ‘co-tree’ to enable an optimization problem that involved

minimising the heads by setting regular valves.

Kadu et al. (2008) proposed a genetic algorithm (GA) combined with a graph theory
algorithm to optimize water distribution systems. In their method, graph theory is used to
identify the critical path for each node in order to reduce the search space for the genetic
algorithm. Krapivka and Ostfeld (2009) proposed a coupled GA-LP scheme for the
least-cost pipe sizing of water networks. A spanning tree identification algorithm is

introduced in their work.

Improvements in terms of efficiency and solution quality have been consistently reported
by the researchers when these optimization techniques are combined with graph theory
algorithms and applied to WDS case studies. Graph theory is normally used to identify
the critical path or the spanning tree for the WDN in the majority of graph theory based

optimization techniques.

2.6 Research gaps

Based on the literature review, areas in the field of the WDS optimization that would

benefit from further investigation are as follows.

» Although a number of optimization techniques have been successfully applied to
optimize the design of WDSs, limitations exist for each of them when dealing with
real-world water networks. Traditional optimization techniques (LP, NLP and BLP)
often converge at local optimal solutions due to the nonsmoothness of the search
space of the WDS optimization problem. EAs require a large number of network
evaluations to find optimal solutions, resulting in an expensive computational
overhead, especially for relatively large case studies. In addition, the solution quality

found by EAs is inferior when dealing with relatively larger WDSs.
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The majority of currently available hybrid optimization techniques (combine EAs
with deterministic methods) remain in the research domain due to their limitations.
This makes it is difficult, if not impossible, for these hybrid optimization techniques

to tackle the optimization problems of real-world WDSs.

Although graph theory has been used in work with water networks, the majority of
the studies involving graphs and WDSs are concerned with network connectivity
analysis. A few attempts have been undertaken to conduct the optimization of WDSs
with the incorporation of graph decomposition techniques. However, these methods
still remain in the research domain and cannot be used to deal with the real-world

WDS optimization due to their severe limitations.

The majority of optimization techniques have been evaluated using small benchmark
WDS case studies. It is desirable to assess the performance of these and new
techniques using relatively large or real-world sized water networks. There is no
clear definition yet on the typical number of pipes for a real-world sized water
network. In this research, we made the assumption that WDSs that have 100 pipes or

more are considered to be real-sized water networks.

The research outlined in this thesis has been undertaken to address these current

shortcomings in WDS design, as explained in the Section 1.1 of Chapter 1.
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Chapter 3. Journal Paper 1-Dynamically Expanding Choice Table
GA

3.1 Synopsis
A dynamically expanding choice table approach to genetic algorithm optimization
of water distribution systems

Genetic algorithms (GAs) have been frequently used to find optimal solutions for the
water distribution system (WDS) design. A significant issue within the use of the GA
when dealing with the WDS optimization problem is the intensive computational
overhead. This has been addressed in Section 2.3.4 of Chapter 2. Thus, it is desirable to
improve the efficiency of the GAs, especially when dealing with real-world water
networks, for which a large number of pipes are involved. A dynamically expanding
choice table GA is developed in this research in order to enhance the search efficiency of
the GAs.

Typically, all available diameters in the complete choice table for a decision variable are
considered as potential choices for each pipe of the network when a GA is applied to
optimize a WDS design. An example of a typical choice table is given in Table 3.1.
Binary coding and integer coding for each pipe size are shown in the second and third
columns respectively. If there are a total of eight different diameters in a choice table for
a pipe, the GA will generally have a random selection of the eight different diameters in
the population of GA strings. The GA starts by exploring the entire solution space in
order to reach the lowest cost solution. All regions within the solution space are
considered to be equally important in the conventional GA, and hence, much
computational effort is wasted on investigating infeasible or unnecessarily high cost

regions within the search space.

In this Chapter, a dynamically expanding choice table method is proposed to reduce the
search space so that the GA can concentrate on promising regions of the search space.
Initially, all the diameters in the full choice table are sorted from the smallest to largest

and each pipe is given a diameter choice table.
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Table 3.1 A typical choicetable

Nominal Diameter (mm) Binary Coding Integer Coding Unit Cost ($/m)
150 000 1 49
200 001 2 63
250 010 3 95
300 011 4 133
375 100 5 171
450 101 6 220
500 110 7 270
600 111 8 330

In this newly proposed method, only a small portion of pipe sizes in the full choice table
for each pipe are used to generate solutions randomly in the initial population of the GA.
During the run of the GA, if most of the members of the population in a generation select
the smallest diameter for a particular pipe from its corresponding reduced size choice
table, a smaller diameter is added to the pipe’s choice table and the choice table has been

dynamically expanded.

To the contrary, if most of the members of the GA population prefer the largest diameter
for a pipe from its reduced size choice table, a larger diameter is added to expand the
current choice table for this pipe. As a result, each pipe selects its own tailored choice
table in the later generations of the GA. If the majority of members in the population
select the smallest or largest diameter for a particular pipe at the extremity of the full
choice table, this pipe is locked in to be the smallest or largest pipe size and is then

removed as a decision variable.

This work has been published ajournal of Water Resources Planning and

Managemenand the paper is provided here.
Citation of Paper

Zheng, F., A. R. Simpson, and A. C. Zecchin (2011b). “Dynamically expanding choice-
table approach to genetic algorithm optimization of water distribution systéoostial
of Water Resources Planning and Managen&8#(6), 547-551
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3.2 Journal Paper 1. A dynamically expanding choice table
approach to genetic algorithm optimization of water distribution
systems (Published in the Journal of Water Resources Planning and
Management)

Feifei Zheng, Angus R. Simpson and Aaron C. Zecchin

ABSTRACT

This paper proposes a modified genetic algorithm (GA) for optimization of water
distribution systems. A method of dynamically expanding pipe choice table selections
and reducing the number of decision variables is introduced that occurs during a GA run.
Based on the progressive selection, an initially reduced size choice table for each
decision variable is allowed to dynamically expand and then the number of decision
variables is gradually reduced. This process enables the GA search to concentrate on
promising regions of the search space. The dynamically expanding choice table genetic
algorithm (GAvect) has been applied to a benchmark case study, the New York Tunnels
Problem. The results obtained show that the,&Ayields a superior performance in

terms of solution quality and computational efficiency.
CE Database subject headings: Optimization; Water distribution systems; Algorithms.

INTRODUCTION

Evolutionary algorithms have been introduced over the last 15 years to seek the least-cost
design of water distribution systems. Among them, genetic algorithm (GA) optimization
has gained popularity in terms of optimal design of water distribution systems because of
its robustness and search performance (Simpson et al. 38@i4; and Walters 1997).

Many methods have been developed by researchers to improve the performance of GAs.
A creeping mutation operator, variable power scaling of the fithess function and Gray
coding (Dandy et al. 1996) were incorporated into the GA and were shown to be more
effective. Vairavamoorthy and Ali (2000) applied integer coding in GAs to avoid the
problem of redundant states often found when using binary or Gray codings. Wu et al.

(2001) introduced a fast messy genetic algorithm to deal with optimization of water
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networks, showing significant improvement in terms of efficiency and robustness.
Vairavamoorthy and Ali (2005) used a pipe index method to modify GA-based pipe
optimization. Other evolutionary optimization approaches have also been developed.
Eusuff and Lansey (2003) proposed a shuffled frog leaping algorithm (SFLA) which
showed improvement on the convergence speed in the context of optimal design of water
distribution systems. Maier et al. (2003) applied ant colony optimization approach to
optimize water distribution systems. Zecchin et al. (2006) proposed a Max-Min Ant

System optimization (MMAS) and compared results obtained by GAs.
THE MODIFIED GENETIC ALGORITHM

Dynamically expanding choice tables

Typically all available diameters in the complete choice table for a decision variable are
considered as potential choices for each pipe of the network when a GA is applied to
optimize a WDS design. All regions within the solution space are considered to be
equally important in the conventional GA, and hence, much computational effort is

wasted on investigating infeasible or unnecessarily high cost regions within the search

space.

In this research, a dynamically expanding choice table method is proposed to reduce the
search space so that the GA can concentrate on promising regions of the search space.
Initially, all the diameters in the full choice table are sorted from the smallest to largest
and each pipe is given a diameter choice table. In the new method, only a subset of pipe
sizes in the full choice table for each pipe (say the 3 successive middle sizes) are used to
generate solutions randomly in the GA’s initial population. During the GA run, if most of

the members of the population in a generation have taken on the smallest diameter for a
particular pipe from its corresponding reduced size choice table, this implies that this
pipe diameter potentially can be further reduced in size to further reduce the cost of the
whole network. Consequently, a smaller diameter is added to the pipe’s current choice

table and the choice table has been dynamically expanded. The same principle can be
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applied to the larger diameter options in a choice table. As a result, each decision variable

in terms of pipe diameter size selects its own tailored choice table in the later generations.

Reduction of the number of decision variables

If the majority of members in a population select the diameter size for a particular pipe at
the extremity of the full choice table, this pipe is locked to be the selected pipe size and
then removed as a decision variable (whether it is either the smallest or largest diameter
options). This process is used to dynamically remove such decision variables that cannot
be further evolved as they have already converged at one extremity of the choice table.
Therefore, the GA is able to more effectively and efficiently search the reduced search

space, and focus on regions that show promise.

In summary, there are five cases that may occur for a choice table as shown in Fig. 1.
Assume that the full choice table is made up of pipe diameters D1 to D10 ranked from
the smallest to the largest diameter. An initial reduced size choice table including D5, D6
and D7 (middle column in Fig. 1) is used to randomly generate the initial population of
GA.

-4— Case 3
D2

Initial choice table

D3 l
D4 - Casel
D5 | «—

D5 D5 D5 D5

D6 D6 | €255° | D6 D6 D6
Case 2

D7 D7 D7 — D7 | —» D7

B [

D9

Case
—>

Figurel An exampleof expanding of achoicetableand reduction of decision variables

The following threshold percentages are defined: (1) for expanding the choicégable (

(2) for removing decision variable®;} and (3) for when the majority of population
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members select the middle size of the current choice table during the GR)rufive

cases are given as follows.

Case 1: For a particular pipe, if more tliRypercent of the members in a population
select the smallest size (D5) of the current choice table (middle column of Fig.
1), a smaller pipe size D4 asldedto the choice table (the second column from
left in Fig. 1). Diameters of D4 and D5 are then randomly reselected for this

pipe for all the members in the GA population.

Case 2: If more thaR. percent of the members in a population select the largest size
(D7) of the current choice table (middle column of Fig. 1), a larger pipe size D8
is addedto the choice table (the second column from right in Fig. 1). Diameters
of D7 and D8 are then randomly reselected for this pipe for all the members in

the GA population.

Now consider the situation where the choice table has been eventually expanded to

include either the smallest or largest pipe:

Case 3: If more thaR, percent of the members in a population select the smallest size
(D1) of the choice table (the first column from left in Fig. 1), this pipe is
removedas a decision variable and the diameter for this pipe is locked at the

minimum pipe size (D1).

Case 4: If more thaR; percent of the members in a population select the largest size
(D10) of the choice table (the last column on the far right in Fig. 1), this pipe is
removedas a decision variable and the diameter for this pipe is locked at the

maximum pipe size (D10).
Now consider the situation where the majority of the pipes are the pipe size from the

middle of the current choice table for that pipe:

Case 5: If more thaRs percent of population members select the middle size (D6) of
the current choice table for a particular pipe during the GA run, all the pipe
sizes in the current choice table are randoreelectedfor this pipe in all

members of the whole population. This process is used to maintain the
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population diversity, as occurs with the common mutation operator. However,
case 5 is quite different from the normal mutation operator in that it only occurs
when most of the population members select the middle pipe size diameter from

its corresponding choice table.

CASE STUDY

The dynamically expanding choice table genetic algorithmpfc was developed in
C++ and combined with the EPANET2 hydraulic network solver. A total of 1000
independent optimization runs based on different random number seeds have been
performed for New York Tunnel Problem (NYTP). The parameters settings used in
GApect are given in Table 1. Constraint tournament selection was usedift£Beb
2000).

Table 1 GApect parameter valuesfor the NY TP case study

Parameter Value
Population sizeN) 100
Maximum number of evaluations 100,000
Probability of crossoverR) 0.9
Probability of bitwise mutationR,) 0.0
Threshold percentage for expanding the choice té&h)e ( 65%
Threshold percentage for removing decision variati#gs ( 95%
Threshold percentage for reselectiéy) ( 70%

Case Study: New York Tunnels Problem

The New York Tunnels Problem (NYTP) has 21 existing tunnels and 20 nodes fed by
the fixed-head reservoir. Details of this network, including the layout, the head
constraints, pipe choices and costs, and water demands can be found in Dandy et al.
(1996). The objective is to determine which pipes should be installed in parallel with the
existing pipes to minimize the cost while satisfying the minimum head requirement at all
nodes. The entire choice table for the NYTP case study involved 16 choices of pipe
diameters consisting of {0, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192,
and 204} inches.
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An initial choice table with the diameters of {48, 60, 72} inches for each pipe was used
to seed the initial population in the & for the NYTP case study. One requirement of

the proposed Ggxcr is that the threshold percentagél, (P and Ps) need to be
specified. As given in Table 1, the parameter settings for the NYTP case study were as
follows: Pe=65% (that is, expansion of the choice table occurred if more than 65% of the
members selected the largest or smallest pipe size for a pipe from its choice table);
P=95% (that is, if more than 95% of the members for a particular pipe have selected the
smallest or the largest diameter size, this pipe is locked in to be the smallest or largest
diameter and then removed as a decision varid®ej0% (that is, if more than 70% of

the members selected a particular middle size for a pipe from its choice table, all the sizes
in the current choice table are randomly reselected for this pipe for the whole
population). An example of the initial choice table and the final choice table for a typical
GApect run applied to the NYTP, after dynamic expansion plus the decision variable

removal, are shown in Table 2.

As can be seen from Table 2, the second column is the initial choice table of {48, 60, 72}
inches for diameters for each pipe and the third column is the final choice table for each
pipe at the end of GA run. The final column is the least-cost solution found by the
GApect with a cost of $38.64 million (the current best known-least-cost solution). It is
observed from Table 2 that choice tables for individual pipes were expanded differently
during the GA run, despite the fact that they all started with the same initially reduced
size choice table. The pipes labeled with a hash were removed as decision variables, as a
pipe size of zero was selected during the GA run. From column 3 of Table 2, the total
search space covered by thegad is given by 5 x 7 x & x11~7.0224x10'°, which is

only a small fraction (3.6210%%) of the size of the original solution space.

As can be seen from Table 2, some pipes (such as pipe 4, 6, 10, 11, 12, 13, 14, 15 and
20) moved towards the smaller pipe sizes during the GA run and finally were dropped as
decision variables with a pipe size of zero, indicating that it was not economic for these

pipes to be duplicated. However, several pipes (such as pipe 7, 16, 17, 18, 19, 21) were
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assigned larger sizes within the GA process, implying that these pipes were the potential
candidates for duplication. It is noted that choice tables of some pipes (such as pipe 1, 2,
3, 5, 8, 9) expanded to larger diameters at the beginning and then to smaller diameters
afterwards, showing that these pipes were indentified to be potential duplicates initially,
but were eliminated from consideration in the later generations of the GA.

Table2 An example of the expansion of choice tablesand removing decision
variables during the GApgecr process applied tothe NYTP

Links Choice table for pipe diameters (inches) Einal solution
Initial choice End (inches)

1* 48, 60, 72 0, 36, 48, 60, 72, 84, 96 0

2" 48, 60, 72 0, 36, 48, 60, 72, 84, 96 0

3 48, 60, 72 0, 36, 48, 60, 72, 84, 96 0

4 48, 60, 72 0, 36, 48, 60, 72 0

5* 48, 60, 72 0, 36, 48, 60, 72, 84, 96 0

6" 48, 60, 72 0, 36, 48, 60, 72 0

7 48, 60, 72 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168 144

g* 48, 60, 72 0, 36, 48, 60, 72, 84, 96 0

9* 48, 60, 72 0, 36, 48, 60, 72, 84, 96 0

10" 48, 60, 72 0, 36, 48, 60, 72 0

17" 48, 60, 72 0, 36, 48, 60, 72 0

12 48, 60, 72 0, 36, 48, 60, 72 0

13 48, 60, 72 0, 36, 48, 60, 72 0

14" 48, 60, 72 0, 36, 48, 60, 72 0

15" 48, 60, 72 0, 36, 48, 60, 72 0

16 48, 60, 72 48, 60, 72, 84, 96, 108, 120, 132, 144 96

17 48, 60, 72 48, 60, 72, 84, 96, 108, 120, 132, 144 96

18 48, 60, 72 48, 60, 72, 84, 96, 108, 120 84

19 48, 60, 72 48, 60, 72, 84, 96, 108, 120 72

20° 48, 60, 72 0, 36, 48, 60, 72 0

21 48, 60, 72 48, 60, 72, 84, 96, 108, 120 72

Cost ($M) 38.64

# Pipe was locked in at zero size and eliminated as a decision variable duringbepB#cess.

The dynamic reduction of the number of the decision variables for a typigab&Ain

is shown in Fig. 2. At stage A in Fig. 2, there were 21 decision variables. After 16
generations (at stage B), pipe 11 was the first pipe dropped out as a decision variable
with a size of zero. The following sequence of pipes involving 4, 10, 12, 13, 14, 15 and

20 were consecutively eliminated. Thus, only 13 decision variables were left at stage C
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after 44 generations. Subsequently, pipes 2, 3, 5, 6 and 8 were removed as decision
variables from stage C to D. After 176 generations (at stage E), only six decision
variables were left, which were pipes 7, 16, 17, 18, 19 and 21. In the final stager GA

dealt with a reduced search space size and hence worked more efficiently.

Number of decision variables left

0 20 40 60 80 100 120 140 160 180 200

Generations

Figure 2 Example of dynamical reduction of number of decison variables

RESULTSAND DISCUSSION

For the NYTP cases study, the current best known solution with a value of $38.64
million was first found by Maier et al. (2003) and this solution has been also found by the
proposed GAecr. Fig. 3 gives a summary of a range of different sets of threshold values
for GApect applied to the NYTP case study. The g program with each set of
threshold values was performed for 1000 runs using different random number seeds. As
can be seen from Fig. 3, GAcrwith relatively high threshold percentages is able to find

the best known solution with higher frequency, but at the expense of increased
computational overhead. It was found thatgg&with Pe=65%, P,=95% andP<=70%
exhibited overall well with an appropriate balance between performance in terms of
frequency that the best solution was found and computational efficiency based on 1000

different runs.
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The results for GAecr (P—=65%, P,=95% andPs=70%) runs are given in Table 3. In
order to enable a comparison of performance, the results of other optimization techniques

that have previously applied to the NYTP case study are also included in Table 3.
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Figure 3 Results of GApect with different set of parameter values applied to the

NYTP case study
Table 3 Comparison of algorithmic performance applied tothe NYTP case
study
. No. of Bes_,t Average No. of No. of best
Algorithm funs solution cost average solution found
($M) (M) evaluations
GApect (P=65%,
P.=95% andP=70%) 1000 38.64 39.06 29,101 479
Improved GA 5 38.80 38.98 143,790 NA
MMAS? 20 38.64 38.84 30,711 NA
ACO? 3 38.64 NA 13,928 NA
Messy GA 5 38.80 39.09 48,427 NA
PST 30 38.64 38.93 NA 10
DE® 30 38.64 40.33 NA 22

"Dandy et al. (1996§Zecchin et al. (2006}Maier et al. (2003fWu and Simpson (2001).
®Dandy et al. (2010). NA means “not available”

The best solution found by Improved GA (Dandy et al. 1996) and Messy GA (Wu and
Simpson 2001) was $38.80 million, which deviates 0.414% from the best known
solution. In terms of efficiency, the proposed #£sér outperformed the other

optimization techniques, but had slightly more average evaluations than the ACO (Maier
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et al. 2003). However, it is highlighted that there were only three different ACO runs
used, whilst a total of 1000 different &t runs were performed in this study. The
average cost solution produced by gpé, based on 1000 different runs, is $39.06
million, which only deviates 1.087% from the known-least-cost solution. Even though
the average cost solution provided by MMAS (Zecchin et al. 2006) and particle swarm
optimization (PSO) (Dandy et al. 2010) are slightly lower than that ofeg&Athe
number of random number seeds are only 20 and 30 respectively, FherGas able

to locate the current best solution 479 times out of a total of 1000 different runs, a higher
frequency in finding optimal solutions than the PSO but slightly lower than that found by
DE (Dandy et al. 2010).

CONCLUSION

A dynamically expanding choice table approach has been developed to enhance the
performance of GA optimization for water distribution systems. The proposed approach
provides a guide for the GA search to focus within regions of good fitness values. Thus,
the search time is reduced and the optimal solution is more likely to be found. It is noted
that, from the results of NYTP case study, thes&@Aperformed better than, or at least

as good as, other optimization techniques presented in this paper such as other GA
variants, ACO, MMAS and PSO methods.
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Chapter 4. Journal Paper 2-A Dither Creeping Mutation GA for
WDS Optimization

4.1 Synopsis
A non-crossover dither creeping mutation genetic algorithm for water distribution
system optimization

In Chapter 3, a dynamically expanding choice table genetic algorithrae{@Avas
proposed to optimize the design for water distribution systems (WDSs). It was
demonstrated in Chapter 3 that the efficiency of theggAls improved compared to the
standard GA. However, a number of parameter values need to be calibrated for the
GApect, which causes difficulties for the practicing water engineers wanting to
implement the GAgcr to tackle real-world sized WDS. This is because it is time
consuming to tune the parameter values for evolutionary algorithms and specific
knowledge is required to determine the appropriate parameter values (see discussion in
Section 2.3.4 of Chapter 2)

In this current research, a non-crossover dither creeping mutation-based genetic
algorithm (CMBGA) for water distribution system (WDS) optimization is developed and
analyzed. This CMBGA differs from the classic GA optimization in that it ames

utilize the crossover operator, but instead only uses selection and a proposed dither
creeping mutation operator. The creeping mutation rate in the proposed dither creeping
mutation operator is randomly generated in a range rather than being set to a fixed value.
In addition, the dither mutation rate is applied at an individual chromosome level rather
than the generation level. The dither creeping mutation probability is set to take values
from a small range that is centered aboNDL(ND=number of decision variables of the
optimization problem being considered). The reason for adopting this range is that a
mutation probability of MD has been demonstrated to be an effective value and is

normally used for the GA.

Genetic algorithms have usually been previously thought to be highly dependent on

crossover. The research reported in this paper shows clearly that the performance of the
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GA can be achieved without crossover and that mutation, used in the right way, is just as
effective. This is the first known work to develop a non-crossover and mutation only

based genetic algorithm for WDS design.

An important objective of this research is to compare the performance of the proposed
CMBGA to other standard GA variants. This systematic comparison amongst GA
variants has proven important, and it serves to highlight the relative importance of the
GA mechanisms of mutation and crossover in yielding an effective search. The proposed
GA has shown significant improvements compared to four other GA variants in terms of
the quality of the optimal solutions based on four WDS case studies used in this research.
Thus the non-crossover dither creeping mutation based GA is a preferred tool for water
distribution system optimization in contrast to standard GA variants. Additionally,
another advantage of the proposed CMBGA over other GA variants is that it does not

involve as much elaborate tuning of the parameter values.

This work has been published ojournal of Water Resources Planning and

Managemenand the paper is provided here.
Citation of Paper

Zheng, F., A. R. Simpson, A. C. Zecchin, M. F. Lambert (2013). “A non-crossover
dither creeping mutation genetic algorithm for pipe network optimizatigwutnal of
Water Resources Planning and Managemedbi: 10.1061/(ASCE)WR.1943-
5452.0000351.
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4.2 Journal Paper 2: A non-crossover dither creeping mutation
genetic algorithm for pipe network optimization (Published in the
Journal of Water Resources Planning and Management)

Feifei Zheng, Aaron C. Zecchin, Angus R. Simpson and Martin F. Lambert

Abstract

A non-crossover dither creeping mutation-based genetic algorithm (CMBGA) for water
distribution system optimization has been developed and is analyzed. CMBGA differs
from classic GA optimization as it does not utilize crossover, but instead only uses
selection and dither creeping mutation. The creeping mutation rate is randomly generated
in a range rather than being set to a fixed value for each individual. An objective of this
paper is to compare the performance of the CMBGA with four other GA variants. The
results based on four case studies show that the CMBGA exhibits considerable
improvement over the considered GA variants. The CMBGA shows a very significant
improvement in optimization for the Hanoi Problem and the Go Yang network compared
to all previously published results. A main advantage of the proposed CMBGA over the
majority of the other evolutionary algorithms is that it avoids the need for an extensive

parameter calibration phase.

Keywords: Optimization; water distribution systems; genetic algorithms; creeping

mutation; dither mutation.

1. Introduction

The non-linear constraints and the discrete combinatorial decision space of water
distribution systems (WDSSs) bring a significant challenge when optimizing their design.
A number of optimization techniques have been previously applied to optimal water
network design, such as complete enumeration (Gessler 1985), linear programming
(Alperovits and Shamir 1977, Morgan and Goult@85, Fujiwara et al. 1987) and non-
linear programming (Lansey and Mays 1989, Fujiwara and Khang 1990). The complete

enumeration approach is able to guarantee that the global optimal solution is reached.
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However, the computational overhead is huge since all possible solutions need to be
evaluated. Other optimization techniques, such as linear or non-linear programming are

often trapped at local optimal solutions.

Evolutionary algorithms (EAs) have been used to optimize WDSs since the early 1990s.
Examples of these studies include the following: Murphy and Simpson (1992)
introduced genetic algorithms (GAs) to the water community, specifically for water
network optimization; Cunha and Sousa (2001) used simulated annealing to optimize
WDSs; Geem et al. (2002) developed a harmony search model for optimizing WDSs;
Eusuff and Lansey (2003) proposed a shuffled frog leaping algorithm (SFLA) for
network optimization; Maier et al. (2003) applied an ant colony optimization approach to
optimize WDSs; Tolson et al. (2009) developed a hybrid discrete dynamically
dimensioned search (HD-DDS) approach to optimize the WDSs; and Suribabu (2010)
employed the differential evolution (DE) to the optimization of WDSs. These techniques
have been successfully applied to a number of optimization problems and have been
demonstrated to be more effective in finding optimal solutions compared with traditional

optimization techniques.

Amongst these EAs, GAs have gained popularity due to their ease of implementation and
search ability (Simpson et al. 1994, Savic and Walters 1997)). Much research has been
undertaken to enhance the performance of GAs. A creeping mutation operator, variable
power scaling of the fitness function and Gray coding were incorporated into the GA and
were shown to be more efficient (Dandy et al. 1996). Vairavamoorthy and Ali (2000)
applied integer coding in GAs to avoid the problem of redundant states often found when
using binary or Gray codings. Wu and Simpson (2001) introduced a fast messy genetic
algorithm (fmGA) to deal with the optimization of water networks, showing significant
improvement in terms of efficiency and robustness. A pipe index method proposed by
Vairavamoorthy and Ali (2005) was able to guide the GA search into the promising
regions, thus enabling the GA to provide optimal solutions in less search time. Zheng et

al. (2011a) developed a modified GA for water distribution system design. In their work,
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a method of dynamically expanding pipe choice table selections and reducing the

number of decision variables was introduced to improve GA’s performance.

The GAs used by the water community are derived from Holland (1975), with the
crossover operator being considered to be the dominant operator while mutation has been
considered to be a second order operator. Thus high crossover probabilities and low
mutation probabilities have been suggested for a better performance of GAs for the
optimization of WDSs (Simpson et al. 1994, Savic and Walters 1997, Deb 2001). A
typical parameter combination for GA optimization WDS is a crossover probability of
0.9 and a mutation probability of 0.01 (Simpson et al. 1994, Dandy et al. 1996,
Vairavamoorthy and Ali 2000).

In contrast, some other EAs such as Evolutionary Strategy (ES) (Rechenberg 1965) and
Evolutionary Programming (EP) (Fogel et al. 1966) have concentrated on mutation as the
main driving evolution operator. ES algorithms with adaptive mutation rates have been
found to be effective when dealing with some optimization tasks (Rechenberg 1965).
Fogel and Atmar (1990) strongly suggested that crossover has no general advantage over
mutation. As a result, mutation-based GAs have been proposed to solve some
optimization problems (Falco et al. 2002, Dai et al. 2002). Although there exists a large
body of conventional wisdom concerning the relative importance of crossover and
mutation, no explicit conclusion has been made on this issue to date. In addition, it is
reported in Spears (1993) that the relative importance of crossover and mutation is
heavily dependent on the properties of the fithess landscape associated with the
optimization problem. Consequently, conclusions that have been made based on other
optimization problems cannot necessary be easily transferred to WDS optimization

directly.

This paper aims to develop and investigate a non-crossover dither creeping mutation-
based GA (CMBGA) to optimize the design of WDSs. The term dither comes from
differential evolution algorithm as its use will be explained later on (Das et al. 2005). In

the proposed CMBGA, only the selection and dither creeping mutation operators are
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applied. The performance of the proposed CMBGA is assessed in this paper using a large

range of different random number seeds.

2. Background analysis

The most commonly used GA in the water community is a crossover-based GA. A
typical parameter combination for a GA optimization WDS is a crossover probability of
0.9 and a mutation probability of 0.01 (Simpson et al. 1994; Dandy et al. 1996;
Vairavamoorthy and Ali 2000). This version of the GA is based on Holland (1975) and
uses bitwise mutation of strings while crossover is used as the primary search
mechanism. Mutation has traditionally been viewed as secondary operator while being
considered only useful in maintaining diversity of the population. Holland formalized his
GA using the Schema Theorem (the theory of building blocks) to provide a theoretical
background justification of crossover. The building block hypothesis has often been used
as a basis for theoretical and experimental work on GAs (Goldberg 1989, Deb 2001).
Goldberg (1989) suggested that crossover was the dominant operator in GAs as it was
able to efficiently assemble the short, low-order and high performance schemata or
building blocks. Syswerda (1989) has argued that the building block hypothesis lacks
theoretical justification. Fogel (2000) and Zheng et al. (2010) found that uniform
crossover outperformed two-point crossover, which in turn outperformed one-point
crossover on many of the optimization case studies. Those results contradict the building
blocks hypothesis that one-point and two-point crossover should perform better than

uniform crossover because they are much less disruptive of the short and low schemata.

The critical issue that exists when comparing the crossover- and mutation-based GAs is
as to which operator is the dominant operator for driving evolution. Much work has been
done previously to identify the dominant operator in GAs (Vose 1994, Palmes et al.
2005). Proponents of Holland’s version of GAs have claimed that crossover is a more
powerful operator compared with mutation based on a number of experimental results
(Schaffer and Eshelman 1991). In contrast, others have asserted that mutation is the

dominant operator for driving evolution (Vose 1994, Palmes et al 2005). However, the
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empirical comparisons made by one group of researchers have often been disputed by

other groups, and no theoretical justification has been universally claimed on this issue.

Spears (1993) asserted that there were some important individual characteristics of each
of these two operators that were not captured by the other operator. Spears (1993)
conducted his analysis based on hyperplanes (building blocks) and defined two potential
roles of a genetic operator: disruption (exploration) and construction (exploitation). He
provided a theoretical justification that crossover was more effective for constructing
high order building blocks from lower building blocks in comparison to mutation,
indicating that crossover was more powerful in terms of construction; while mutation
was more powerful in terms of disruption. Crossover emphasizes the evolutionary
information exchange between individuals, thus it is able to maximize accumulated
payoff and exhibits high simultaneous levels of preservation, indicating more
exploitation. In contrast, mutation emphasizes preservation of the behavior links between
parent and offspring, thus it provides higher levels of exploration. Therefore the mean
behaviour of a GA with crossover outperformed the mean behaviour with a GA without
crossover while a GA without crossover outperformed a GA with crossover in terms of
seeking optimal solutions (Fogel and Atmar 1990). Thibert-Plante and Charbonneau
(2007) found that crossover was not particularly helpful in producing better solutions,
while it markedly improved the overall evolutionary stability. Zheng et al. (2010)
demonstrated that a GA without mutation or an extremely low mutation rate tended to

converge prematurely.

The mutation operator used in the Holland’s GA has been viewed to be oversimplified
by some researchers (Vose 1994) and can be greatly modified to enhance its performance
(Spears 1993). Falco et al. (2002) employed a modified-mutation-based GA to deal with
several test functions and a comparison was made between the modified-mutation-based
GA and the traditional crossover-based GAs. The results achieved showed that the
modified-mutation-based GA outperformed the traditional crossover-based GA. Dai

(2002) developed a non-crossover GA and applied it to the travelling salesman problem
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(TSP) and showed that the non-crossover GA outperformed the crossover-based GA in

terms of solution quality and efficiency.

As the non-crossover GA shows potential merits in other field, it is desirable to provide
an analysis for the non-crossover GA applied to WDS optimization problems. This is the

first known work in terms of applying the non-crossover GA to WDS design.

3. The proposed non-crossover dither creeping mutation-based GA

The non-crossover dither creeping mutation genetic algorithm (CMBGA) proposed in
this paper is characterized by the fact that crossover is not used. Additionally, a dither
creeping mutation operator is introduced into the CMBGA to replace the commonly used
bitwise mutation operator. A flowchart of the proposed CMBGA applied to WDS
optimization is illustrated in Figure 1 and the details of the proposed CMBGA are
discussed in the following sections. The CMBGA run is stopped when the criterion is
satisfied. In the proposed CMBGA, a maximum number of allowable evaluations is used

as the stopping criterion.

‘ Initialization (N) ‘
v
‘ Generation(G)=O‘
v

4,‘ Hydraulic analysis ‘

‘ Obijective function calculatior*

v
‘,‘? | Constraint tournament selectiob
®
i3 v

‘ Dither creeping mutation ‘

Figure 1 Flowchart of the proposed CMBGA
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3.1 Initialization
An initial random population oN solutions is generated by uniformly randomizing
individuals within the search space as:

x,=U)(OK-1) F12, ..ND =1, 2,....,N (1)
where xi{O represents the initial value of teparameter in the” individual at the initial
population, where an individual is given By & [, X5,.........X3]". U/ represents a

randomly generated integer variable within the range ofl@tdor thej™ parameter in
the i™ individual. The symbold\, ND andK are population size, number of decision

variables and number of pipe diameter choices respectively.
3.2 Hydraulic analysis

For each network design, a steady state hydraulic solver is used to compute the heads at
each node for the given water demands. The actual head for each node is compared with
its corresponding minimum allowable head, thereby computing the head deficit (if any).
The head deficits for every node are cumulated and this Pallis recorded for its

corresponding network design to be used in the selection phase.
3.3 Objective function calculation

The integer strings are decoded into the corresponding pipe diameters andNhence
network designs are produced. The total material and construction cost for each network

design is computed as:
ND _
f=>1LC )
j=1

where f is the objective function value for the individuaht the generatiois, L;

represents the length of the pjand C' is the cost per unit for the pipe diameter of pipe

j in the individuali.
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3.4 Sdlection

Constraint tournament selection (Deb 2000, Prasad and Park 2004,Tolson et al. 2009) is
used to determine the individuals that survive to the next generation (a noted advantage

of this method is that it does not require a penalty multiplier parameter). For two
candidate solutionX ,; and X ; ;, the selection algorithm is given as:

argminf(X) , X ,; anX; areboth feasiblsolutions.
XO(X ae X g6
Xen = . : ©)
argmin P(X), otherwise.
XO(X ae X g6

where Xg,, is the individual at generatigg+1 which is eitherX , ;or X, f(X) is the

objective function value for string, andP(X) is the cumulative head deficit for striXg

If a vectorX is a feasible solutiorR(X)=0. As can be seen from Equation (3), the
solution with a smaller value of objective function is selected between two feasible
solutions. A feasible solution is selectd®(X)=0) when compared with an infeasible
solution P(X)>0); The solution with less head constraint violation is chosen between

two infeasible solutions.
3.5 Dither cregping mutation

Creeping mutation

Davis and Coombs (1987) first introduced a creeping mutation operator into their GAs
for designing communication networks. A creeping mutation operator, in addition to
bitwise mutation, was subsequently employed by Dandy et al. (1996) for WDS
optimization. The basic idea of creeping mutation for WDS optimization is as follows:
the creeping mutation operator mutates a selected substring to an adjacent pipe size,
where conditional probabilities of downwar®q and upward F,) movement are
employed. For exampl®s=0.6 means that there is a 60% probability of the creeping
mutation operator will change the selected pipe size to the next adjacent smaller size,

thus implying a 40% probability of creeping mutation moving the current pipe size to the
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next larger size (aB=1-Py). This creeping mutation approach (Dandy et al. 1996) is

termed the traditional creeping mutation in this paper.
Dither mutation

The dither mutation strategy was used in differential evolution algorithm by Das et al.
(2005). In their work, rather than providing a fixed value, a randomly generated value of
the mutation weighting factoF] was used in the mutation operator (the mutation
weighting factor If) used in differential evolution algorithm plays the same role as the
mutation probability used in the GA). The dither differential evolution algorithm was
applied to a number of mathematic optimization test functions (Das et al. 2005). The
results of their study showed that the dither mutation strategy improved the convergence

properties of differential evolution algorithm.

Dither creeping mutation

The dither creeping mutation is proposed in this paper to combine the creeping mutation

and the dither mutation strategy. Within the proposed dither creeping mutation
mechanism, each strinig:1,...., N, is first assigned a probability?(, ), where P, O]

P P is a uniform random variable. Each bit of each stiiig) selected with a
probability of P, to be mutated. Then the selected bit has a probaBjitf being
mutated to the adjacent bit value below and a probabilRy df-being mutated to the
adjacent bit value above. For a bit that is already set to the smallest (largest) value,
upward (or downward) mutation is allowed only. The dither creeping mutation algorithm
used in the proposed CMBGA is given in Figure 2. kquipe diameter choices, the
integer numbers from 0 t§-1 are associated with each pipe diameter, order from the

smallest to the largest.

The proposed dither creeping mutation used in this paper is novel in that the mutation
probability used for each string is uniformly randomly generated rather than being set to
a fixed value. Thus different strings in the proposed CMBGA will be subject to different

creeping mutation probabilities at the same generation and the same string will be also
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subject to varied mutation probabilities at different stages. This differs significantly to the
creeping mutation GA used by Dandy et al. (1996), for which, a fixed mutation
probability was used throughout all the optimization and all the strings were subject to an

identical mutation probability.

FORi=1,2 ......... N
Piem= Pitm +randx( Py - Pin)
FORj=1,2 ......... ND
IF Rand <P,
IFRang<=P,

X/c = maxp, x'; —1]

ELSE

X/ =min[K =1 x); +1]
END IF

END FOR
END FOR

Figure 2 Dither cregping mutation algorithm

In Figure 2,P,, is the dither creeping mutation probabili§®J> and P[> are the
maximum and minimum allowable dither creeping mutation probabilirs;i;sis the

i bit of the string in the proposed GAs1,....N; rand, Rang and Rang, are
uniformly distributed random variables between O and 1; Bnds conditional

probability of downward mutation.

It is noted that the ES (Rechenberg 1965) and the proposed creeping mutation-based GA
(CMBGA) proposed here have the same feature in that both of them do not utilize
crossover operator. However, there exist some important differences between these two
optimization algorithms. ES (such as yES) normally selects the best p individuals
from the total (u%) individuals to become parents for the next generation (Rechenberg
1965), where p is the population size (parentshasdhe number of offspring produced

by the p parents. In contrastlindividuals of the next generation are selected from the

63



CHAPTER4. JOURNAL PAPER2-A DITHER CREEPINGMUTATION GA FORWDS OPTIMIZATION

N parents utilizing constraint tournament selection strategy (Deb 2001) for the proposed
CMBGA. Real values are typically used to represent the strings in ES, while integer
coding is utilized in the proposed CMBGA. A self-adaptive mutation strategy is
normally used for ES (such as 1/5 success rule proposed by Rechenberg (1965)), while a

dither creeping mutation strategy is adopted in the proposed CMBGA.

4, Case studies

Four case studies from the literature are used to investigate the effectiveness of the
proposed CMBGA. These include the New York Tunnels Problem (NYTP) (Dandy et al.
1996), the Go Yang water network (GYN) (Kim et al. 1994), the Hanoi Problem (HP)
(Fujiwara and Khang 1990) and the Balerma network (BN) (Reca and Martinez 2006).
The CMBGA has been coded in C++ and combined with the EPANET2 hydraulic

network solver.

In this study, the dither creeping mutation rate takes values from a small range that is
centered about NID, whereND is number of decision variables for the WDS that is
being optimized. This is motivated by the fact that a mutation probabilityNdd thas

been demonstrated to be an effective value and is normally used for the GA (Goldberg
1989). A small interval of siz&(1/ND) is used to form the lower and upper bounds of
the range. For example, for a WDS optimization problem with tiB40.05, the range

of P,,0J[0.03, 0.07] is used for the proposed CMBGA. The number of decision

dem

variables, the range for the dither creeping mutation probabity. X, the population

size and the maximum number of allowable evaluations for each case study are given in
Table 1.

Table 1 Summary of case study characteristics and parameters of the CMBGA

WDS case Numper of . Range for Population Maximum number of
decision variables 1/ND &) . ;
study (ND) Pgcm size (\) allowable evaluations
NYTP 21 ~0.05 [0.03, 0.07] 100 50,000
GYN 30 ~0.03 [0.01, 0.05] 100 20,000
HP 34 ~0.03 [0.01, 0.05] 100 100,000
BN 454 ~0.002 [0.001, 0.004] 500 10,000,000

UDither creeping mutation probability.
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5. Preliminary sengtivity analysis
5.1 Sengtivity analysis of the probability of downward mutation

A sensitivity analysis of the conditional probability of downward mutatigg) (s
conducted. Values &1;=0.4, 0.5 and 0.6 were used for the CMBGA applied to each case
study, with all other parameter values being held constant. In order to present a reliable
comparison, 1000 trial runs with different random number seeds were performed for the
NYTP, GYN and HP case studies, and 100 runs for the BN case study. The properties of
the best solution found versus the evaluation number for the CMBGA with different

values applied to the NYTP case study is shown in Figure 3.
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Figure 3 Exampletrial resultsfor the best solution found ver sus evaluation number
for the CMBGA with different Py applied to the NY TP case study

From Figure 3, it is seen that the CMBGA wij=0.6 converged fastest, whereas for a
value ofP4=0.4, it tended to converge the slowest. The CMBGA Rit#0.6 andP4=0.5

found the same final best solution with a cost of $38.64 million, the current best known
solution for the NYTP (Maier et al. 2003). The CMBGA witl=0.4 found a final best

solution with a cost of $38.80 million. The results for the trial runs are provided in Table
2.
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It is observed from Table 2 that the CMBGA exhibited a similar performance for each
value of Py on each case study in terms of solution quality. The current best known
solutions for the GYN and HP case studies, with costs of $1.770 million (Tolson et al.
2009) and $6.081 million (Reca and Martinez 2006) respectively, were found by the
proposed CMBGA with differer®q values. In comparing efficiency (average number of
evaluations to find the optimum), tRg=0.5 runs performed the most efficiently for the
HP case study. For the NYTP, GYN and BN case studies, the CMBGAPwwih6
outperformed that fdP;=0.4 and 0.5. This can be explained by the fact that the final best
solutions for the NYTP, GYN and BN case studies contain many minimum pipe
diameters, and hence a conditional probability of downward mutatyF0f6 is able to
speed up the convergence.

Table 2 Results of CMBGA with different probabilities of downward mutation

Conditional Number of Average Average
WDS L Best . -
case probabilities of solution best solutions cost of evaluations to
stud downward found (M) found inR solutions  find best solutions
y mutation Pgy) runs (M) for Rruns
NYTP 0.4 $38.64 565 $39.61 52,345
(N=100 0.5 $38.64 623 $38.82 42,385
R=1000) 0.6 $38.64 673 $38.81 26,512
GYN 0.4 $1.770 845 $1.774 14,357
(N=100 0.5 $1.770 1000 $1.770 12,453
R=1000) 0.6 $1.770 867 $1.772 9,847
HP 0.4 $6.081 640 $6.198 94,371
(N=100 0.5 $6.081 820 $6.112 70,423
R=1000) 0.6 $6.081 814 $6.117 89,056
BN 0.4 €1.971 1 €2.065 8.7x10
(N=500 0.5 €1.963 1 €2.060 7.6x10
R=100) 0.6 €1.969 1 €2.001 6.3x16

R=number of runs using different random number sédgsopulation size.

It is concluded from this sensitivity study tHat is a relatively robust parameter as a
slight change of this parameter does not significantly affect the search performance of the
CMBGA. As a result, in this paper, a probability of downward mutatp df 0.5 is
adopted.
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6. CMBGA perfor mance discussion and comparison

The performance of the CMBGA for each case study is now discussed, and compared

with other GA variants considered in this paper and also previously published results.

6.1 Performance of CMBGA compared with other GA variants

A total of four other GA variants with fine-tuned calibrated parameters have been studied
in this paper in order to enable the comparison with the proposed CMBGA. These
include a non-crossover traditional creeping mutation based GA (GAl), a crossover-
based GA with bitwise mutation (GA2), a non-crossover bitwise-mutation based GA
(GA3) and a crossover-based GA with creeping mutation (GA4). GA2 and GA4 are two
normally used standard GA variants, whereas GA1 and GA3 were included in this work
in order to investigate the performance of the GA variants for which only the traditional
creeping mutation and only bitwise mutation were employed (compared to the proposed

CMBGA where the dither creeping mutation operator is used).

For each case study, each GA variant used the same population size and the same
maximum allowable number of evaluations (outlined in Table 1). Integer coding,
constraint tournament selection (tournament size=2) and an elite count of 2 were used for
all the GA variants. The elite count is the number of individuals with the best fitness
values in the current generation that are guaranteed to survive to the next generation
(Gibbs et al. 2008). The other parameter values for the four GA variants applied to each
case study are given in Table 3. These parameter values have been fine-tuned by a
calibration process for each case study to give the best performance. A typical run for
both CMBGA and GA2 (normally used GA) for the HP case study is presented in Figure

4.

As can be seen from Figure 4, the proposed CMBGA tends to converge faster than the
GAZ2 with tuned parameter values. In addition, the final solution found by the CMBGA
for the HP case study is significantly lower than that generated by the GA2. Similar

results were obtained for other case studies and hence are not given.
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Table 3 Fine-tuned calibrated parameter valuesfor thefour GA variants
applied to each case study

Case study GAl GA2 GA3 GA4
NYTP P“,'\I‘zoorf‘r" P=0.5,P,=0.03, two-point  P,=0.03, Pczct’\;\?(;_PC(';‘i:n?'O“’
crossover Non-crossover P
crossover crossover
Per=0.02, _ _ . _ P.=0.8,P.,+0.03,
) P.=0.8,P,=0.02, two-point  P,=0.03, Font
GYN Non crossover Non-crossover two-point
crossover crossover
Per=0.02, _ _ . _ P.=0.6,P.,0.02,
) P.=0.6,P,=0.02, two-point P,=0.01 o
HP Non crossover Non-crossover two-point
crossover crossover
BN P 0003, p20.6,P,=0.002, two-point  P,=0.002 "¢+ Pen0.002,
crossover Non-crossover P
crossover crossover

P.: crossover probability?,; bitwise mutation probability?.,, traditional creeping mutation probability.
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Figure 4 Exampletrial resultsfor the best solution found ver sus evaluation number
for the CMBGA and GA2 applied to the HP case study

For each GA variant, a total of 1000 trial runs with different starting random number
seeds were performed for the NYTP, GYN and HP case studies, and 100 runs were used
for the BN case study. The results of CMBGA and the four other GA variants with the

calibrated parameter values are given in Table 4.

From the results, it is clearly seen that the proposed CMBGA consistently outperformed

all the other GA variants in terms of solution quality and efficiency. In particular, the
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proposed CMBGA found the best known solution for the HP case study with 82% based
on 1000 different runs, while the GA1 and GA4 located the best known solution with
only 39% and 2% respectively, and GA2 and GA3 were unable to find this best solution.
For the GYN case study, the proposed CMBGA found the current best known solution
with a 100% success rate based on 1000 different runs, which is higher than all the other
GA variants presented in this paper. For the large BN case study, the proposed CMBGA
was able to find better solutions than the other GA variants as shown in Table 4, while
requiring fewer evaluations.

Table 4 The performance comparison of four GA variants against the proposed

CMBGA
Best Percent of best No. of average
Case studiés Algorithm solution solutions found Average evaluations foR
found (M) in Rruns cost (M) runs
CMBGA?® $38.64 62% $38.82 42,385
NYTP GA1° $38.64 61% $38.82 46,850
(R=1000, GA4° $38.64 50% $39.04 44,324
N=100) GA2* $38.64 45% $39.16 49,950
GAZ® $38.64 7% $40.07 57,469
CMBGA?® $1.770 100% $1.770 12,453
GYN GA1° $1.770 94% $1.770 15,661
(R=1000, GA4° $1.770 80% $1.775 16,987
N=100) GA2* $1.770 42% $1.825 19,387
GAZ® $1.770 15% $1.997 19,657
CMBGA?® $6.081 82% $6.112 70,423
HP GA1° $6.081 39% $6.136 68,492
(R=1000, GA4° $6.081 2% $6.264 70,164
N=100) GA2* $6.099 0% $6.329 68,568
GAZ® $6.113 0% $6.259 73,695
CMBGA?® €1.963 1% €2.060 7.6x16
BN GA1° €1.967 0% €2.060 8.4x10
(R=100, GA4° €2.057 0% €2.111 8.7x16
N=500) GAY €2.069 0% €2.113 8.6x16
GAZ® €2.105 0% €2.234 8.9x16

'Ranked based on Column 4 for the NYTP, GYN and HP case studies, while Column 3 for the BN case
study.R=number of runs using different random number sédejsopulation size.

®Non-crossover dither creeping mutation based GA (CMBGXJn-crossover and traditional creeping
mutation based GACrossover and traditional creeping mutation GBrossover and bitwise mutation

GA. ®Non-crossover and bitwise mutation GA
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It was noted that the only difference between the CMBGA and the GA1l was that the
dither creeping mutation was used for the CMBGA, while the traditional creeping
mutation approach was implemented for GA1l. This shows that the dither creeping
mutation strategy is more effective than the traditional creeping mutation method as the
CMBGA consistently yielded a better performance than GA1l with the best calibrated

parameter value for each case study in terms of solution quality and efficiency.

The GA1 was found to perform the second best (only worse than the proposed CMBGA)
for each case study. The only difference between GA1 and GA4 was that the crossover
was not used for GA1, while the crossover was utilized for GA4. This shows that, for the
four WDS case studies considered, the non-crossover GA with the traditional creeping
mutation is more effective than the crossover based GA with traditional creeping

mutation.

It is observed that the crossover-based GA with creeping mutation (GA4) consistently
performed better than the crossover-based GA with bitwise mutation (GA2) for all the
case studies. This suggests that creeping mutation is more effective than the bitwise
mutation. This is also evidenced by the fact of that the bitwise mutation-based GA (GAS3)
was found to perform the worst as can be seen from Table 4. Both the proposed CMBGA
and GA3 utilized only the mutation operator (both are non-crossover based GA variants).
However, the proposed CMBGA significantly outperformed GA3 for each case study.
This can be attributed to the fact that the dither creeping mutation was used in the

proposed CMBGA, while only simple bitwise mutation was used in GA3.

In concluding the comparison, a final note on parameter calibration effort for each
algorithm is required. For the proposed CMBGA, the dither creeping mutatioRga)e (

is set to be a range around the inverse value of the number of decision variables for the
optimization problem, and hence no calibration is required. AlthBygi®.6 was found

to be able to speed up the convergence of the CMBGA applied to some case studies, the
CMBGA with P4 =0.5 showed a consistently reasonably good performance for each case

study. ThereforeR4=0.5 is recommended for application of the proposed CMBGA. For
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the traditional GA or the GA with traditional creeping mutation, the crossover rate and
mutation rate (bitwise or creeping mutation rate) require tuning. Thus, the proposed
CMBGA removes the need of the users to utilize a trial-and—error process to determine
the effective parameters of the GA in order to tackle different WDS optimization

problems.

6.2 Performance of CMBGA compared with previoudy published results

The performance of the proposed CMBGA for each case study is now compared with
other previously reported optimization techniques in terms of search ability and
efficiency. The results obtained by some evolutionary optimization algorithms
mentioned in this section are based on the algorithm parameters that have been tuned by
the authors based on an extensive calibration process. These include the Improved GA
(Dandy et al. 1996), Messy GA (Wu and Simpson 2001), GENOME (Reca and Martinez
2006), harmony seach (HS) (Geem 2006b), Max-Min Ant System (MMAS) (Zecchin et

al. 2007), particle-swarm harmony search (PSHS) (Geem 2009), genetic heritage
evolution by stochastic transmission (GHEST) (Bolognesi et al. 2010) and differential
evolution (DE) (Suribabu 2010). In contrast, the results from the hybrid discrete
dynamically dimensioned (HD-DDS) method (Tolson et al. 2009) were based on a
default parameter value and hence no parameter tuning was undertaken. From the
particle swarm optimization (PSO) variant algorithm (Montalvo et al. 2008), however, it

IS unclear that whether the parameters were tuned or not. For each case study, the results
of GA1, GA2, GA3 and GA4 with calibrated parameter values are also presented to

enable a comparison with other published results.

New York Tunnels Problem (NYTP)

A comparison of algorithmic performance for the NYTP case study is given in Table 5.
In terms of percent of trials with different random number seeds of finding the best
solution, the HD-DDS (Tolson et al. 2009) and DE (Suribabu 2010) performed better
than the proposed CMBGA, however, the average cost over all runs was only negligibly

different. In terms of search efficiency, as measured by the average number of
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evaluations, the proposed CMBGA performed worse than the DE, HD-DDS and
MMAS, while better than other EAs given in Table 5.

Table 5 The performance comparison of the proposed CMBGA with previously
published resultsfor the NY TP case study

No. Percent of . Average
Best . Average Maximum :
1 of . best solutions evaluations to
Algorithm solution ; cost allowable ' .
runs ($M) found inR ($M) evaluations find best solutions
R runs for Rruns
HD-DDS? 50 38.64 86% 38.64 50,000 13,000
DE? 300 38.64 71% NA 10,000 5,494
CMBGA 1000 38.64 62% 38.82 100,000 42,385
GAl 1000 38.64 61% 38.82 100,000 46,850
MMAS* 20 38.64 60% 38.84 50,000 30,700
GA4 1000 38.64 50% 39.04 100,000 44,324
GA2 1000 38.64 45% 39.16 100,000 49,950
PSO variamt 2000 38.64 30% NA 80,000 NA
GA3 1000 38.64 7% 40.07 100,000 57,469
Messy GA 5 38.80 0 39.09 NA 48,427
'mgrg)’ed 5 3880 0 38.98 200,000 143,790

'Ranked based on Columri®olson et al. (2009jSuribabu (2010):Zecchin et al. (2007YMontalvo et al.
(2008).°Wu and Simpson (2001'Dandy et al. (1996). NA means “not available”.

Go Yang Network (GYN)

Table 6 shows the performance comparison of different optimization techniques applied
to the GYN case study. The current best known solution ($1.770 million) was first

located by HD-DDS and proposed CMBGA found this best solution 100% compared

with 32% found by the HD-DDS. It is noted that the computational budget used by HD-

DDS was 10,000, while 100,000 was used for the proposed CMBGA method.

Table 6 The performance comparison of the proposed CMBGA with previously
published resultsfor the GYN case study

Percent of Average
No. of  Best . ; Average Maximum evaluations to
g . trials with best .
Algorithm runs  solution solution found cost allowable find best
(R ($™M) in R runs ($M) evaluations solutions forR
runs
CMBGA 1000 1.770 100% 1.770 100,000 12,453
HD-DDS 50 1.770 32% 1.775 10,000 NA
NLP® NA 1.791 0 NA NA NA

'Ranked based on Column“Zolson et al. (2009YKim et al. (1994). NA means “not available”.
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Hanoi Problem (HP)

The HP network has been investigated in many studies and is of particular interest as the
region of the search space that contains feasible solutions is extremely small. The
performance of different optimization techniques previously applied to the HP, including

the results of the proposed CMBGA, are given in Table 7.

In comparing the algorithmic performance, it can be seen that the CMBGA achieved the
highest percentage of best solutions found with a value of 82%, which is significantly
higher than the other previously published algorithms. As the computational budget used
by the DE (Suribabu 2010) was 10,000 while 100,000 used by the proposed CMBGA,
we cannot conclude the proposed CMBGA performs better than the DE algorithm in
terms of percentage of the best solutions found. The proposed CMBGA produced the
lowest average solution with a value of $6.112 million, which deviates only 0.51% from
the best known solution. This illustrates that the CMBGA has a robust search strategy
that is relatively effective in exploring the search space for highly constrained problems.

Table 7 The performance comparison of the proposed CMBGA with previously
published resultsfor the HP case study

Percent of . Avergge
No. of Best best solutions Average Maximum evaluations to
Algorithm* runs  solution found inR cost allowable find best
(R) ($M) NS ($M) evaluations solutions forR
runs
CMBGA 1000 6.081 82% 6.112 100,000 70,423
GAl 1000 6.081 39% 6.136 100,000 68,492
DE? 300 6.081 21% NA 10,000 6,244
GENOMP® 10 6.081 10% 6.248 100,000 NA
HD-DDS' 50 6.081 8% 6.252 100,000 <100,000
PSO variamt 2000 6.081 5% 6.310 80,000 NA
GA4 1000 6.081 2% 6.264 100,000 70,164
HS® 18 6.081 NA 6.139 NA NA
PSHS 81 6.081 NA 6.340 NA NA
GA2 1000 6.099 0% 6.329 100,000 68,568
GA3 1000 6.113 0% 6.259 100,000 73,659
MMAS® 20 6.134 0% 6.386 100,000 85,600

'Ranked based on Column ZBuribabu (2010)° Reca and Martinez (2006jTolson et al. (2009).
*Montalvo et al. (2008fGeem (2006b)Geem (2009¥Zecchin et al. (2007). NA means “not available”.
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Balerma network (BN)

Table 8 give performance comparisons among different optimization techniques applied
to the BN case study. As shown in Table 8, the current best known solution for the BN
case study was found by Zheng et al. (2011b) using a coupled NLP and DE algorithm
with a cost of€ 1.923 million using 1,427,850 evaluations. Tolson et al. (2009) proposed
the HD-DDS to find a best solution & 1.940 million using 30 million evaluations
budget. The CMBGA located a best solution with valu&€df963 million for the BN

case study, which is lower than the GHEST (Bolognesi et al. 2010), HS (Geem 2009)
and GENOME (Reca and Martinez 2006). The average cost solution produced by the
proposed CMBGA was lower than that obtained by GENOME.

In comparing the quality of the best solution for the BN case study, the proposed
CMBGA was not as efficient as the NLP-DE (Zheng et al. 2011b) or HD-DDS (Tolson
et al. 2009). However, both the NLP-DE and HD-DDS are hybrid optimization
techniques. For the HD-DDS method, an EA was combined with two local search
techniques (one pipe and two pipes search methods), while for the NLP-DE approach,
the DE was combined with a NLP.

Table 8 The performance comparison of the proposed CMBGA with previously
published resultsfor the BN case study

No. Best Percent of Average Maximum Average
. 1 of . best solutions evaluations to find
Algorithm solution . cost allowable ;
runs eM found in R eM evaluations best solutions for
(R ( ) runs ( ) Rruns
NLP-DE? 10 1.923 10% 1.927 10 1.4x10
HD-DDS® 1 1.940 10% 2.014 3xi0 NA
CMBGA 100 1.963 1% 2.060 10 7.6x10
GAl 100 1.967 1% 2.060 io 8.4x10
GHEST 10 2.002 10% 2.055 NA 2.54x10
HS® NA 2.018 NA NA 10 NA
GA4 100 2.057 1% 2.111 io 8.7x10
GA2 100 2.069 1% 2.113 io 8.6x10
GA3 100 2.105 1% 2.234 io 8.9x10
GENOME® 10 2.302 NA 2.334 10 NA

'Ranked based on ColumrfZheng et al. (2011b)Tolson et al (2009¥Bolognesi et al. (2010yGeem
(2009).°Reca and Martinez (2006). NA means “not available”.
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7. Conclusions

Within this paper, a dither creeping mutation based GA with no crossover (CMBGA) has
been proposed. It differs significantly from the commonly used GA approach as no
crossover operator is used. A big advantage of CMBGA is its simplicity and that it
requires the tuning of fewer parameters compared with the traditional GA. It should be
noted that the proposed CMBGA is a variant of the GA with constraint tournament
selection (but with the crossover probability set to be zero) and its effectiveness has been

demonstrated for pipe network optimization in this paper.

The proposed CMBGA has been compared with the other four GA variants based on
four case studies. The results obtained show that the proposed CMBGA exhibits
improvements in efficiently finding optimal solutions for the four case studies compared

with the other GA variants studied in this paper. In addition, it has been concluded from
this study that the dither creeping mutation approach is more effective than the traditional

creeping method, which in turn, is better than the bitwise mutation method.

The proposed CMBGA has also been compared with other EAs that have been
previously applied to the four case studies. The proposed CMBGA shows a comparable
performance to the other EAs, but it is not as efficient as the DE (Suribabu 2010) and
HD-DDS (Tolson et al. 2009) for the NYTP case study. For the GYN case study, the
proposed CMBGA was able to find the current best known solution with a success rate
of 100% based on 1000 different runs, which is significantly higher than other algorithms
(the other GA variants and all previously published results for this problem). For the HP
case study, the CMBGA significantly outperformed the other EAs as it found the current
best known solution for this case study with the highest success rate (82%). For the large
case study (BN case study), the proposed CMBGA was able to find satisfactory results.
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Chapter 5. Journal Paper 3-A Sef-adaptive DE for WDS
Optimization

5.1 Synopsis

A sdf-adaptive differential evolution algorithm applied to water distribution system
optimization

Chapters 3 and 4 focus on improving the performance of genetic algorithms (GAS) in
terms of water distribution system (WDS) optimization. Another type of evolutionary
algorithm that has been investigated in this research is the differential evolution (DE)
algorithm. DE is a relatively new optimization algorithm that has been recently
introduced for dealing with the WDS optimal design problems. A review of DE was

elaborated upon in Section 2.3.2 of Chapter 2.

DE has been viewed as a promising optimization technique due to its excellent
performance when applied to WDS optimization problems. A performance comparison
between the standard DE and the standard GA applied to two benchmark WDS case
studies is presented in Figure 5.1 and 5.2 respectively. These two case studies are the
New York Tunnels Problem (NYTP) and the Hanoi Problem (HP). The details of these

two case studies are included in the paper of this Chapter (Chapter 5).

The control parameters for each algorithm have been tuned by a trial-and-error approach
and the selected parameter values are presented in Table 5.1. The starting random
number seeds for the DE and GA run were identical for each case study in order to

enable a fair comparison.

Table 5.1 Parameter valuesfor each algorithm applied to two case studies

Algorithms NYTP HP
DE N=100, F=0.5, CR=0.6 N=100, F=0.7, CR=0.8
GA N=100, Pc=0.6, Pm=0.03 N=100, Pc=0.5, Pm=0.02

N=population size;F=mutation weighting factor used for DEJR=crossover rate used for DE;
P.=crossover probability used for the GA dPygbitwise mutation rate used for the GA.
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Figure5.1 A convergence comparison between DE and GA applied to
the NYTP case study
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Figure 5.2 A convergence comparison between DE and GA applied to
the HP case study

As clearly shown in Figures 5.1 and 5.2, DE significantly outperformed the GA for both
case studies in terms of the convergence speed of the whole search process. It is observed
from Figure 5.1 that DE and the GA have a similar convergence speed during early
generations for the NYTP case study. For the HP case study, the GA exhibits a slightly
faster convergence speed than the DE algorithm at the early stages. However, the GA

tends to be stagnate at the later generations for both case studies as shown in Figures 5.1
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and 5.2, while the DE algorithm still maintains a high convergence speed. This implies
that DE is more robust than the GA at the later generations. All solutions for the SDE

and SGA applied to the HP case study are presented in Figure 5.3.
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Figure 5.3 Solutions of the DE and SGA applied to the HP case study

As shown in Figure 5.3, the solutions generated by the GA are scattered while the
solutions yielded by DE (denoted as SDE in Figure 5.3) tend to converge one final
solution. This illustrates the significant difference between the GA and the DE algorithm.
All the GA solutions are significantly higher in cost than the best known solution for the
HP case study ($6.081 million), while all DE solutions finally converged to the current

best known solution.

It has been widely recognized that a GA is able to converge quickly at the early stages of

an optimization process, while tending to be stagnate at the later stage of the whole
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search process. This agrees with observations made in the current research (see Figures
5.1, 5.2 and 5.3). In contrast, DE exhibits consistently good convergence speed
throughout the whole search process as shown in Figures 5.1, 5.2 and 5.3. Thus, DE can
be viewed as a more suitable optimization technique for use when designing water
networks. However, the performance of DE is extremely sensitive to the control
parameters (especially tlie and CR) used, which has been clearly stated in Section
2.3.2.5 of Chapter 2. These parameters need to be fine-tuned for different optimization
problems as they are generally problem-dependent. This causes difficulties in
implementing the DE algorithm to deal with real-world sized optimization problems,
because tuning the parameter values is computationally expensive, especially when

dealing with relatively large water networks.

In order to reduce the effort required to tune the parameter values of the DE algorithm, a
self-adaptive DE algorithm is proposed in this research. Three new contributions in this

thesis are included in the proposed SADE algorithm:

» Instead of pre-specification, the control parameters ahdCR are encoded into
the chromosome of the SADE algorithm and hence are adapted by means of
evolution.

* TheF andCR values of the SADE algorithm apply at the individual level rather
than at the generational level normally used by the traditional DE algorithm.

* A new convergence criterion is proposed for the SADE algorithm as the
termination condition, thereby avoiding pre-specifying a fixed number of
generations or computational budget to terminate the evolution. The only
parameter value that needs to be provided for the proposed SADE, therefore, is the
population sizeN)). The population size is a relatively easy parameter to adjust
since a slight variation of its value does not appear to significantly impact the
performance of the SADE. In addition, it was proven in the current research that a
population size within [@, 6D] is an approximate heuristic for the proposed
SADE applied to WDS case studies.
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The proposed SADE provides a robust tool for the optimization of the WDS design (or
rehabilitation of an existing WDS). This is because that (i) the proposed SADE algorithm
does not require as much fine-tuning of parameter values nor pre-specification of a
computational budget; and (2) the proposed SADE algorithm is able to find optimal

solutions with good quality and great efficiency.

The proposed SADE algorithm differs from the self-adaptive DE algorithm (denoted as
JDE) developed by Brest et al. (2006) in that: (i) fh@endCR parameters that are able to

generate better solutions are directly passed onto the next generation in the proposed
SADE, in contrast they survive in the next generation with a probabilitymmfatd 1-

r, (0 <1, 1, <1) respectively in the |DE; (ii) the JDE has two more parameters, than
the proposed SADE, that need to be specifigdagd 7,); and (iii) the convergence
criterion developed for the proposed SADE removes the need to pre-specify the
computational budget, while a computational budget needs to be pre-set for the jDE
(Brest et al. 2006).

It is necessary to define the traditional DE here in order to enable the comparison with
the proposed SADE. The traditional DE is the DE algorithm uses the mutatioR)rate (
and crossover rateCR at the generational level, both of which need to be tuned. In
addition, the computational budget for the traditional DE needs to be pre-specified. The
previous DE applications including Vasan and Simonvonic (2010), Suribabu (2010) and

Dandy et al. (2012) are traditional DE algorithms.

This work has been published daurnal of Computing in Civil Engineeringnd the

paper is provided here.
Citation of Paper

Zheng, F., A. C. Zecchin and A. R. Simpson (2012a). “A self adaptive differential
evolution algorithm applied to water distribution system optimizatidotrnal of
Computing in Civil Engineeringloi:10.1061/(ASCE)CP.1943-5487.0000208.
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5.2 Journal Paper 3. A sef-adaptive differential evolution
algorithm applied to water distribution system optimization
(Published in the Journal of Computing in Civil Engineering)

Feifei Zheng, Aaron C. Zecchin and Angus R. Simpson

ABSTRACT

Differential evolution (DE) is a relatively new technique that has recently been used to
optimize the design for water distribution systems (WDSs). Several parameters need to
be determined in the use of DE, including: population Blzejutation weighting factor,

F; crossover rat€;Rand a particular mutation strategy. It has been demonstrated that the
search behavior of DE is especially sensitive toRleedCR values. These parameters

need to be fine-tuned for different optimization problems as they are generally problem-
dependent. A self-adaptive differential evolution (SADE) algorithm is proposed to
optimize the design of WDSs. Three new contributions are included in the proposed
SADE algorithm: (i) instead of pre-specification, the control parametérsanfiCR are
encoded into the chromosome of the SADE algorithm and hence are adapted by means
of evolution; (i) F andCR values of the SADE algorithm apply at the individual level
rather than the generational level normally used by the traditional DE algorithm; and (iii)

a new convergence criterion is proposed for the SADE algorithm as the termination
condition, thereby avoiding pre-specifying a fixed number of generations or
computational budget to terminate the evolution. Four WDS case studies have been used
to demonstrate the effectiveness of the proposed SADE algorithm. The results obtained
show that the proposed algorithm exhibits good performance in terms of solution quality
and efficiency. The advantage of the proposed SADE algorithm is that it reduces the

effort required to fine-tune algorithm parameter values.

CE Database subject headings: optimization; water distribution systems; differential

evolution.

Author Keywords: optimization; differential evolution; water distribution systems.
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INTRODUCTION

Water distribution systems (WDSs) are one of the most expensive public infrastructure
works as they require a high level of capital investment for construction and a continuing
investment for maintenance. Research into the optimal design of WDSs is motivated,
therefore, by the possibility of substantial cost savings. The optimal design of a WDS
involves identifying the lowest cost pipe network that is able to provide the required
demand and head pressure for each individual supply node. The design of WDSs poses
challenges for optimization tools for two main reasons: (i) the nonlinear relationships
between pipe discharges and head losses introduce complex nonlinear constraints into
the optimization problem, and (ii) the discrete pipe diameters lead to a combinatorial

optimization problem.

Historically, a number of traditional optimization techniques have been applied to water
network optimal design, such as linear programming (Alperovits and Shamir 1977,
Quindry et al. 1981; Fujiwara et al. 1987) and non-linear programming (Lansey and
Mays 1989; Fujiwara and Khang 1990). However, due to the multi-modal nature of the
fitness landscape for the optimization of water distribution system problem, these
methods are more likely to converge on local optimal solutions, where the final solutions
are highly sensitive to the initial starting point (Eiger et al. 1994). In addition, the final

solutions may include continuous pipe sizes or split pipes, which is a significant practical

limitation.

Evolutionary algorithms (EAs) have been popular alternatives for optimizing WDS
designs as they are able to handle a discrete search space directly, and are less likely to be
trapped by local optimal solutions. The search strategy of EAs differs from the traditional
optimization techniques, such as linear programming or non-linear programming, in that
they explore broadly across the search space using a population-based stochastic

evolution algorithm, where no gradient information is required.
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Over the last two decades, a number of EAs have been employed to optimize the design
of WDSs, such as genetic algorithms (Murphy and Simpson 1992; Simpson et al. 1994;
Dandy et al. 1996; Savic and Walters 1997); simulated annealing (Cunha and Sousa
2001); harmony search (Geem et al. 2002); shuffled frog leaping algorithm (Eusuff and
Lansey 2003); Ant Colony Optimization (Maier et al. 2003); particle swarm optimization
(Suribabu and Neelakantan 2006); cross entropy (Perelman and Ostfeld, 2007); and
scatter search (Lin et al. 2007). These techniques have been successfully applied to a
number of WDS optimization problems and have been demonstrated to be more
effective in finding optimal solutions compared to traditional optimization techniques. It
has been noticed that the performance of all these EAs, in terms of robustness and
efficiency, are significantly affected by the algorithm parameter settings, which need to
be adjusted for different optimization problems. It has been reported by Tolson et al.
(2009) that the number of parameters that need to be fine-tuned for different optimization
problems for these EAs varies from 3 to 8. These do not include a termination criterion
parameter that also needs to be pre-specified to end the EA run (i.e. normally the
maximum number of allowable evaluations or generations). The appropriate parameters
of EAs are varied for different optimization problems and normally are adjusted by trial
and error. Thus, it is extremely computationally expensive to determine the proper

parameter values for a newly given WDS case study.

Differential evolution (DE), proposed by Storn and Price (1995), has recently been used
to optimize WDSs (Suribabu 2010; Dandy et al. 2010). There are three important
operators involved in the application of the DE algorithm: a mutation operator, a
crossover operator and a selection operator. These operators are similar to a genetic
algorithm (GA), but DE algorithms differ significantly from a GA in the mutation
process, in that the mutant solution is generated by adding the weighted difference

between two random population members to a third member.

A total of four parameters need to be pre-determined in the use of DE, including:

population sizeN; mutation weighting factor; crossover rateCR, and a particular
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mutation strategylt has been demonstrated that the performance of DE is governed by
these parameters (especially handCR) based on a number of numerical optimization
case studies (Storn and Price 1995; Vesterstrom and Thomsen 2004). In terms of
optimizing WDSs, Suribabu (2010) and Vasan and Simonovic (2010) concluded that the
performance of DE algorithms was at least as good as, if not better, than other EAs such
as GAs and Ant Colony Optimization. While Dandy et al. (2010) has stated that GAs
give better results overall than DE algorithms in terms of solution quality and efficiency.
The contradiction of results reported by Suribabu (2010) and Dandy et al. (2010) can be
explained by the fact that the different parameter values inclifjiRgagndCR are used

in these DE applications. In addition, Suribabu (2010) investigated the effectiveness of
the DE using a number of differeRtand CR combinations is constant) applied to

WDS optimization problems. His results show that the performance of the DE algorithm
applied to the WDS optimization is highly dependent on the parameter values selected.
As these control parameters are problem dependent, using the DE algorithm effectively
is time consuming since appropriate parameter values have to be established for each

new WDS case study.

Investigations have been undertaken to avoid pre-specifying parameter values in EAs.
Back et al. (1991) introduced a self-adaptive algorithm to dynamically adjust the
mutation probability in the evolution strategy. Eiben et al. (1999) gave a systematic
analysis of a self-adaptation strategy for the parameters of EAs. Wu and Simpson (2002)
and Wu and Walski (2005) proposed a self-adaptive penalty approach GA for pipeline
optimization. The penalty multiplier was encoded onto each member of the population,
thereby allowing the penalty multiplier to evolve over the course of the GA optimization.
Thus, there is no need to pre-specify a penalty multiplier before running the GA run.
Gibbs et al. (2010) provided an estimate of population size for GA applications based on
the genetic drift. Tolson et al (2009) developed a hybrid discrete dynamically
dimensioned search (HD-DDS) algorithm for WDS optimization and proposed the HD-
DDS as a parameter-setting-free algorithm. Geem and Sim (2010) proposed a parameter-

setting-free harmony search algorithm to optimize the design of WDSs.
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Brest at al. (2006) proposed a self-adaptive strategy to evolteath@CR values of the

DE algorithm, which is called JDE. In the jDE algorithm, theand CR values were
adjusted by introducing two new parametgraind 7,. They concluded that the self-
adaptive DE algorithm performed better than the traditional DE algorithm in terms of
convergence speed and final solution quality based on testing a number of numerical

benchmark optimization problems.

In this paper, a new self-adaptive differential evolution (SADE) algorithm is proposed. A
total of three novel aspects are involved in the proposed SADE algorithm, which are (i)
control parameters oF and CR are encoded into the chromosome of the SADE
algorithm rather than pre-specification and hence are adapted by means of evolution; (ii)
F andCR values of the SADE algorithm apply at the individual level, which differs to
the traditional DE algorithm th&t andCR values applied at the generational level; and
(i) a new convergence criterion is proposed for the SADE algorithm as the termination
condition in order to avoid pre-specifying a fixed number of generations or evaluations to

terminate the evolution.

TheF andCR are encoded onto the solution string and hence are subject to evolution in
the proposed SADE algorithm. Each individual in the initial population is assigned with
randomly generateBl andCR values within a given range. The better values ahd

CRthat produce fitter offspring are directly passed onto the next generationk latite
CRvalues are unable to yield better offspring, these two values are randomly regenerated
within the given range for the next generation. This newly proposed SADE differs with

the jDE algorithm (Brest et al. 2006). For the jDE algorithm used in Brest et al. (2006),
the F andCR values survive to the next generation with a particular probaljliagnd

r, (0 <1, 1, <1) respectively. With a probability of &-and 17, the F andCR

values are randomly re-initialized to new values within the given range for the next
generation respectively. The and 7, values need to be pre-specified and hence two

new parameters were introduced in the jDE algorithm proposed by Brest at al. (2006).

The self-adaptive strategy proposed in this paper allows dmelCR values that are able
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to yield fitter offspring are more likely to survive longer over generations during the
running of the algorithm, which in turn, generates further better offspring. The details of

the proposed SADE algorithm are presented later in this paper.

The F andCR values in traditional DE algorithms (Storn and Price 1995) and the DE
algorithms applied to the WDS optimization (Suribabu 2010; Dandy et al. 2010; Zheng
et al. 2011) are typically applied at the generation level during optimization. This implies
all the individuals are therefore subject to identical mutation weighting and crossover
strength. As with Brest et al. (2006), theand CR values in the proposed SADE
algorithm are applied at the individual level and hence different individuals within a
population may have different mutation weightings and crossover rates applied. This
approach was motivated by the fact that different individuals in a generation will be at
varying distances from the optimal solutions and therefore require different mutation and
crossover strength. For the individuals at greater distances from the optimal solutions, a
relatively largeF andCRis probably appropriate, while in contrast, for the individuals at
relatively short distances from the optimal solutions, a relatively snfalieid CR may

be suitable. Thus, the search performance of the proposed SADE algorithm is expected
to improve as different individuals are associated with diffefeand CR values by

means of evolution.

For EAs, the convergence condition is usually a fixed number of generations reached
(limit of computational budget) or a predefined small value reached between two
consecutive generations in terms of objective function values (Deb 2001). In the case of
WDS optimization problems, the maximum number of allowable evaluations or
generations is normally used as the termination condition (Savic and Walters 1997,
Tolson et al. 2009; Suribabu 2010; Dandy et al. 2010). However, the appropriate number
of allowable evaluations or generations is optimization problem-dependent and hence
generally determined by trial and error. Moreover, the evolution time to reach the same
final solutions of EAs applied to the same optimization problem with different starting

points is also different. This unavoidably results in computational waste when the budget
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is greater than required or computational insufficiency when the budget is smaller than
required. In addition to the self-adaptive strategy, a new convergence criterion is
proposed in this paper for the SADE algorithm to eliminate the need to preset the
computational budget and thereby avoid computational excess and insufficiency. The

details of the proposed convergence criterion are given in the next section.

SELF-ADAPTIVE DIFFERENTIAL EVOLUTION

Figure 1 illustrates the flowchart of the proposed SADE algorithm to be discussed in the

Set up ranges for tfeandCR

)

Initialization (N initial solutions with
individual F andCR)
v
Set Generationd)=1

v

——»| SetN target vectorsX s i=1,....N)

v

ProduceN mutant vectors\(, g i=1,....N) using the mutation
operator. EacW, ¢ is generated from three different randoml|y
selected target vector¥ (;, X, gand X; ) and theF; ; value

v
Generate N trial vector vectofd,(, i=1,....N) using the
crossover operator froM o andX; ; with theCR  value.

v

DetermineN solutions for the next generation by selectipng
fromU; g or X ¢

v

Determine thé, ., andCR ¢, for each individual of the
next generation based on the success of the selection opgrator

following sections.

T+9=9

A 4
Converged?

No

Yes

Figure 1 Flowchart of the proposed SADE algorithm
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Initialization

The SADE algorithm is a population based stochastic search technique. Thus, an initial
population is required to start the DE algorithm search. Normally, each initial population
Xio={ X gy X0 seeeenenn X} is generated by uniformly randomizing individuals within

the search space. In addition, initial values of the mutation faetnd crossover rateR

are randomly generated within a given range for each initial individual real-valued string.

The initialization rule is given by:
%= %, + Rand(X,, —x.) i=1,2,...N,j=1, 2, ...D

Fo= F+Rand(F,-F) 1)

GR= CR RangCR-CR)

where xi{0 represents the initial value of tieparameter in th&" individual at the initial
population; ). andx!__are the minimum and maximum bounds of jfigparameter;

F, andCR,are the initial values for th" individual; F; and F, are the minimum
and maximum lower and upper bounds of the mutation weighting f&&rand CR,

are the minimum and maximum lower and upper bounds of the crossovdRaatt;
Rand, and Rand represent three independently uniformly distributed random
variables in the range [0, I} andD are population size and dimension of the vector
(number of decision variables) respectively. pbpulation sizéN is not changed during

the SADE evolution process.

In the proposed SADE algorithm, the and CR values are appended to the actual

solution strings as shown in Figure 2.

le I:l,G CRiG
XZ,G F2,G CR3G
X N,G I:N,G CR\IG

Figure 2 Encoding for the proposed SADE algorithm
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whereG is the generation number a@#F0 is the initial generation. ThegeandCR

values will evolve along with their corresponding actual solutions.

Mutation
Before the mutation operator is applied, each vektqrin the current population is

treated as the target vector. Corresponding to each target vector, a mutant; yecfor
Vigy Vig seeeennn. Vi } is generated by adding the weighted difference between two

random vectors to a third vector (the base vector) from the current populati®the
number of decision variables). The, value of each target vectd; is used to

generate the mutant vector, which is given by:
Vie= Xa6t+ Fia(Xye = Xee) 2
where X, X, s, X, are three vectors randomly selected from the current population

(a# b#c). These three indices are randomly generated for each mutant\Wectar
total of N mutant vectors, one for each target vector in the population, are produced using
Equation (2).

Crossover

Atrial vectorUig={ U, UZ;,......... u’, }is produced by selecting solution component

values from either mutant vector;§) or its corresponding target vectof ) using a
crossover process that is similar to uniform crossover. Thus, each component within the

trial vectorU; s becomes:

. {vi{G, if Rand <CR -

e X/ ,otherwise
whereu/, v/;, x); are thg™ parameters in th& trial vector, mutant vector and target
vector respectively. IRand, is smaller tharCR (0<CR<1), the valuev/; in the

mutant vector is copied to the trial vector. Otherwise, the wq!gen the target vector is

copied to the trial vector. A total &f mutant vector¥;c and their corresponding target

vectorsX; are crossed over to generisterial vectors using Equation (3).
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Selection

After crossover, the objective functié; c) for each trial vector is evaluated. Then each
trial vector Ui iIs compared with the corresponding target ved{gy in terms of
objective function values. The vector with a smaller objective function value (given that
a minimization problem is being considered) survives into the next genertjqn, §.

That is

$ = Uie if F(Uig< (X0
11X, otherwise (4)

Thus,N solutions are selected utilizing Equation (4) to form the next generation.

The F and CR values in this proposed SADE algorithm are subject to the selection
operator. If a combination df, ; andCR,  is able to generate a better solutidy),

compared toX,;, these two values are given ¥,.,, and survive to the next
generation; in contrast, i, ; and CR, ; generate a worse solutidh, , than X,

then new randomly generatédand CR values are given tX,,,. The F andCR

selections for the next generation are given by:

_[Fie if f(Uig) < f(X;0)

1o ‘{ F+Rand(F, - F),if f(U,o)> f(X,o)

(5)

R {CR,G, it f(UDs (X0

CGR Rangd CR-CR),if f(U,5)> f(X,o)

where Rand and Rand, are independently generated random numbers in the range of

[0, 1].

As can be seen from Equations (1) to (5), Fhand CR values are applied at the
individual level and adjusted by means of evolution in the proposed SADE algorithm. It
should be noted that neither the population $eatid mutation strategy have not been
included in the self-adaptation of the proposed SADE algorithm. For the population size
(N), a sensitivity study has been undertaken to investigate its impact on the proposed

SADE'’s performance in terms of WDS optimization. For the mutation strategy, it has
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been demonstrated that the mutation strategy given in Equation (2) is most effective
among a number of various mutation strategies introduced by Storn and Price 1995
(Zheng et al. 2011). Thus, the mutation strategy given in Equation (2) is used for the
proposed SADE algorithm.

Convergence criterion
In the proposed SADE algorithm, the coefficient of variati@) () of the objective

function values for the current DE population of solutions is used as the convergence
criterion. The coefficient of variation is a concept commonly used in hydrology (Haan
1977). That is:

y \/ Z(OBJ,G ~0BJ,)’
=2.(

6
|OBJ | = 0BJ,| : ©

whereC, . is the coefficient of variation of the objective function value based on all

individuals at generatios; s, is the standard deviation for ti (population size)

objective function values at populatiGh OBJ; is the average objective function value

at generation ofs; The C,; value reflects the convergence property of the SADE
algorithm that has been run as whgnapproaches zero then all individuals of the
population are similar in objective function values. The coefficient of variation is used to
effectively non-dimensionalize the standard deviation with respect to the mean so that
values are comparable across different case studies. This is an important advantage of the
proposed new convergence criterion.

If C,;<Tol (where Tol is an appropriately small value, say) 1 indicates that all the

individuals in the current population at generatibhave already located final solutions
(usually they will all be identical) and no further improvement can be ma@g, ¥Tol,

it is likely that not all individuals have converged on the same final solution and that
better solutions may be able to be found as the SADE algorithm continues to explore the

search space.
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This proposed convergence criterion is new and motivated by the fact that all individuals
in the DE tend to converge at the same final solution (Price et al. 2005). This
convergence criterion significantly differs to the method of using the objective function
values between two consecutive generations to terminate the EA evolution (Deb 2001).
In the proposed convergence criterion approach, the search of SADE is terminated when
all the individuals in the DE locate the same or extremely close final solutions, rather
than using the differences of objective function values between two consecutive

generations.

Self-adaptive differential evolution applied to the WDS
optimization

The basic SADE algorithm is a continuous global optimization search algorithm.
Therefore, the algorithm must be modified to solve the discrete WDS optimization
problem. In this study, the decision variables included in the proposed SADE are the
integers that represent the set of discrete pipe diameters. However, real continuous values
are created in the mutation process in the proposed SADE algorithm. In the proposed
method, these real values are truncated to the nearest integer number and hence mapped

to the corresponding pipe diameters for the hydraulic analysis.

A network solver is used to compute the hydraulic balance in the proposed SADE
method. For each individual, the network solver is called to perform the hydraulic
simulation based on the pipe diameters decoded from integer string of this individual. As
such, the head at each node of the WDS that is being optimized is obtained for each
individual of the SADE, which, in turn, is used to assess the feasibility of each individual
solution (a minimum allowable head requirement at each node usually needs to be

satisfied when designing a WDS).

Constraint tournament selection is used in the proposed SADE to handle the constraints
and determine the individuals survived in the next generation (Deb 2000). The algorithm

when comparing two solutions (one is the trial vector solution and the other is the target
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vector solution in the proposed SADE) in constraint tournament selection is given as

follows:
1 The feasible solution is selected when compared with an infeasible solution;

2 The solution with a smaller value of objective function value (if cost is being

minimized) is preferred between two feasible solutions;

3 The solution with less constraint violation is preferred between two infeasible

solutions.

With this method, the comparison between the solutions in a tournament never happens
in terms of both objective function and penalty function. In the first case, the solution
with no head violation is preferred to the one with head violation and does not take the
value of objective function into account. In the second case, the two solutions are
compared based on the objective values and the one with a smaller value is selected as
both solutions satisfy the constraints. In the last case, the solution with less head violation
is selected and the value of the objective function is not considered. Thus, unlike
traditional tournament selection, there is no need to specify a penalty multiplier in this

proposed method.

CASE STUDIES

The SADE algorithm was developed in C++ and combined with the EPANET2 network
solver (Rossman 2000). Four WDS case studies have been used to investigate the
effectiveness of the proposed algorithm. These include the New York Tunnels Problem
(NYTP) (Dandy et al. 1996), the Hanoi Problem (HP) (Fujiwara and Khang 1990), the
Double New York Tunnels Problem (NYTP2) (Zecchin et al. 2005) and the Balerma
network (BN) (Reca and Martinez 2006). The number of decision variables and the

search space size for each case study is given in Table 1.

The ranges for thE andCR are generally between 0 and 1 (Storn and Price 1995). The
recommended range fbris [0.5, 1.0] and fo€Ris [0.8, 1.0] (Price et al. 2005; Liu and
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Lampinen 2005) based on testing on numerical optimization problems. In order to

demonstrate the effectiveness of the self-adaptive algorithm, relatively larger ranges for
theF and CR values were used in the proposed SADE algorithm FBatldCR values

in the range of [0.1, 0.9] were utilized for each case study. For the SADE algorithm

applied to the WDS optimization, convergence is taken to have occurr€gfeiol.

For the computer runs presented in this research the Tol was set t be 10

Table 1 Summary of case study characteristics

WDS case Number of decision  Number of total available tunnel or pipe Search space

study variables diameters that can be used size
NYTP 21 16 1.934%10%
HP 34 6 2.865% 107
NYTP2 42 16 3.741%10*¢

BN 454 10 10%

CONVERGENCE CRITERION ANALYSIS

The C, , values at each generation for three SADE algorithm runs with different starting

random number seeds applied to the NYTP case study is illustrated in Figure 3.

0.16 A:C,; =0.023 at G =152, best solution = $38.64 million at Eval. = 4,557
01s + B:C,; =0.034 at G =154, best solution = $39.06 million at Eval. = 4,618

va id o NOANA e ANVL i o | B IO LA I e T £ ATO

b6 u W‘Lj Tl SADE-1 —— SADE-Z weeees SADE-3

Cya

1] 25 50 75 100 125 150 175 200 225 250 275 300

Generations

Figure3The C, valuesin each generation for three different SADE algorithm
runsapplied tothe NY TP case study. Points A, B, and C reflect the points at which
the best solution was found within each run.
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When the SADE algorithm is run, as can be seen from Figure 3, the valyg ofverall

reduces as the number of generations increases. This shows that individuals in the SADE
algorithm tend to be converging by means of evolution. The current best solution for the
NYTP case study was first reported by Maier et al. (2003) with a cost of $38.64 million.
This best solution was initially found by SADE-2 run wr@p,=0.023 at generation

152 (at 4,557 evaluations). Then all the individuals converged at this current best
solution at generation 17%€(; <Tol). The SADE-1 run first arrived at the current best
solution whenC, ; =0.004 at generation 216 (at 6,478 evaluations) and finally converged

at C,;<Tol at generation 244. The SADE-3 run initially reached an optimal solution
with a cost of $39.06 million whe@, ;=0.034 at generation 154 (at 4,618 evaluations)

and finally converged at this solution at generation 196. The SADE-3 was unable to
reach the current best solution by the time the search was termin@tgg<atol.

From Figure 3, it can be seen that the SADE algorithm runs with different starting
random number seeds consistently converge@ at<Tol, although they require a
different computational overhead. The search process varies for SADE runs starting with
different random number seeds and hence each run may require different computational
overheads to reach the same final solution. This is reflected by the fact that SADE-1
needed 244 generations for all individuals converge to the solution with a cost of $38.64
million, while SADE-2 required 152 generations for all individuals to finally locate this
solution. In this case, if a fixed computational budget is used to terminate the evolutions
of EA runs, it is impossible to avoid the computational excess or insufficiency since each
EA run with different starting random number seed requires different computational
overhead. The proposed convergence criterion is able to overcome this disadvantage as
convergence occurs based on the evolution feedback for each SADE run rather than
specifying a fixed computational budget in advance. This allows SADE runs starting
with different random number seeds to terminate their exploration at different numbers

of generations purely based on the convergence criterion being satisfied.
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It is also difficult to guarantee that each EA run with various starting random number
seeds will find the same final solution. For the three different SADE runs given in Figure
3, SADE-1 and SADE-2 found the current best known solution ($38.64 million) for the
NYTP case study, while the best solution found by SADE-3 was $39.06 million. The
proposed convergence approach is able to indicate that no further improvement on the
solution quality can be expected for the SADE-3 run although it has not arrived the
current best known solution. This is because that all the individuals for the SADE-3 have
converged at the identical final solution with a cost of $39.06 million véhgr<Tol.

Thus, providing a larger computational budget for the SADE-3 run for this particular
random number seed would make no difference. Starting another SADE run with other

starting random number seeds should be carried out if better solutions are required.
The convergence properties of the SADE algorithm in tern@, gfapplied to the other

three case studies produced results similar to those exhibited by the NYTP case study
and are therefore not given. From this study, it can be concluded that the proposed
termination criterion withC,; <Tol (see Equation (6)) for WDS optimization

successfully avoids computation excess and insufficiency.

POPULATION SIZE STUDY

Table 2 gives the results of the proposed SADE applied to the four case studies with
different population sizes. Multiple SADE runs with different random number seeds

were performed for each case study in order to enable a reliable comparison.

The current best known solutions for the NYTP, HP and NYTP2 case studies were first
reported by Maier et al. (2003), Reca and Martinez (2006) and Zecchin et al. (2005) with
costs of $38.64 million, $6.081 million and $77.28 million respectively. These current
best known solutions were also found by the proposed SADE with different population
sizes. The best solution found by the proposed SADE for BN case study was €1.983

million.
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As shown in Table 2, in terms of percent with the best solution found and the average
cost solution based dR runs with different starting random number seeds, the SADE
algorithm with a larger population size performed better for each case study. However,
the evaluations required to find optimal solutions and to converge using the proposed
criterion (C,;<Tol: see Equation (6)) for the SADE with a larger population size are
increased significantly as can be seen from Table 2. In considering both the solution
quality and efficiency, population sizes of 50, 200, 100 and 500 were selected for the
NYTP, HP, NYTP2 and BN case studies respectively. Note that for these population
sizes selected that (i) the SADE algorithms exhibited good performance in solution
quality and require a reasonably small computational overhead; and (ii) a further increase
in population size for each case study only slightly improves the solution quality at the
expense of a significantly increased computational overhead.

Table 2 Results of the SADE with different population sizes

Percent Average
. Best with the Average number of Average number
Case Population - ) .
stud size (N) solution best cost evaluations to of evaluations to
y found? solution  solutiorf  find the final converge
found (%) solutions
30 38.64 64 38.94 4,069 5,375
('\Flegg) 50 38.64 92 38.64 6,584 9,227
100 38.64 98 38.64 12,874 19,270
100 6.081 56 6.145 38,210 45,848
(REEO) 200 6.081 84 6.090 60,532 74,876
300 6.081 84 6.090 125,454 170,724
100 77.28 90 77.28 33,810 40,812
NYTP2
(R=50) 200 77.28 98 77.28 70,196 87,592
300 77.28 100 77.28 109,446 167,472
500 1.983 10 1.995 1.2x30 1.3x16
BN 1000 1.983 10 1.986 4150 4.2x16
(R=10)
2000 1.983 10 1.985 8.5X10 8.7x16

R=number of runs using different starting random number s&bdscost unit for the NYTP and HP case
studies is $ million and the cost unit for the BN case study is € million.

By comparing the number of decision variables (given in Table 1) and the selected
population sizes for each case study (50 for the NYTP, 200 for the HP, 100 for the
NYTP2: and 500 for the BN), an approximate heuristic guideline for the population size
of the SADE algorithm applied to a WDS case study is witiin§D], whereD is the
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number of decision variables for the WDS. This differs with the rule of thumb for the
GAs in that the population size should be withi® [50D]. The results of the SADE
algorithm with population sizes of 50, 200, 100 and 500 for the NYTP, HP, NYTP2 and
BN respectively are now used to compare results with other optimization techniques that

have been previously applied to these four case studies.

SADE ALGORITHM PERFORMANCE COMPARISON AND
DISCUSSION

Case study 1: New York Tunnels Problem (NYTP: 21 decision
variables)

Table 3 gives the results of the proposed SADE and other previously published results
for the NYTP case study. The results including the best solution found, the percentage of
different runs with the best known solution found, the average cost solution and the
average number of evaluations. The results in Table 3 are ranked based on the percent of
trials with best solution found (the column 4).

Table 3 Summary of SADE and other EAsapplied to the NY TP case study

1) ) ®) (4) ®) (6) Q)

Percent of Average Maximum
Algorithm® No. Best trials with  Average  evaluations to allowable
of  solution best cost find first evaluations or
runs (M) solution ($M) occurrence of the evaluations for
found best solution convergence
SADE! 50 38.64 92% 38.64 6,598 9,227
GHEST 60 38.64 92% 38.64 11,464 -
HD-DDS® 50 38.64 86% 38.64 47,000 50,000
Suribabu DE 300 38.64 71% NA 5,492 10,000
Scatter 55 3564 65% NA 57,583 ;
Search
MMAS® 20 38.64 60% 38.84 30,700 50,000
PSO variart 2000 38.64 30% NA NA 80,000

'Results from this studyBolognesi et al. (2010jTolson et al. (2009Suribabu (2010YLin et al. (2007).
6Zecchin et al. (2007)YMontalvo et al. (2008)°Average evaluations to final convergeniResults are
ranked based on column (4).

As can be seen from Table 3, the proposed SADE algorithm was able to locate the

current best solution with a frequency of 92%, which is the same or higher than other
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EAs reported in Table 3. It should be highlighted that the proposed SADE algorithm is
significantly more efficient than the majority of other EAs to find the optimal solutions in
terms of average number of evaluations. As clearly shown in Table 3, the average
number of evaluations required to find the first occurrence of optimal solutions based on
50 different SADE algorithm runs was 6,598, which is less than those required by the
majority of other EAs given in Table 3. More importantly, the average number of
evaluations required for final convergence of the SADE algorithm (@h)grTol) was

9,227, which is significantly less than the maximum number of allowable evaluations

used for other EAs given in the last column of Table 3.

Case study 2: Hanoi Problem (HP: 34 decision variables)

Table 4 gives a performance summary of the proposed SADE algorithm and other
optimization techniques applied to the HP case study. The proposed SADE algorithm
found the current best solution for the HP case study with a success rate of 84%, which is
an improvement compared to other EAs given in Table 4. The SADE algorithm also

produced the lowest average cost solution over the 50 different runs as shown in Table 4

with a cost of $6.090 million, which deviates only 0.15% from the known best solution.

Table4 Summary of SADE and other EAs applied to the HP case study

1) ) ®) (4) ®) (6) @)

Percent of Average Maximum
Algorithm™  No. Best trials with  Average  evaluations to allowable
of solution best cost find first evaluations or
runs  ($M) solution ($M) occurrence of the evaluations for
found best solution convergence
SADE! 50 6.081 84% 6.090 60,532 74,8769
S“['r)'gé"b” 300  6.081 80% NA 48,724 100,000
Scatter 150 6081 64% NA 43,149 -
Search
GHEST 60 6.081 38% 6.175 50,134 -
GENOMP 10 6.081 10% 6.248 NA 150,000
HD-DDS® 50 6.081 8% 6.252 100,000 100,000
PSO variarit 2000  6.081 5% 6.310 NA 500,000
MMAS?® 20 6.134 0% 6.386 85,600 100,000

"Results from this studySuribabu (2010Y.Lin et al. (2007)*Bolognesi et al. (2010Reca and Martinez
(2006).°Tolson et al. (2009YMontalvo et al. (2008fZecchin et al. (2007JAverage evaluations to final
convergence Results are ranked based on column (4).
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In terms of efficiency, the proposed SADE algorithm with an average number of
evaluations of 60,532 did not perform as well as the DE (Suribabu 2010), Scatter Search
algorithm (Lin et al. 2007) and GHEST (Bolognesi 2010). However, in terms of
comparing the total computational overhead for each run, the average number of
evaluations required for convergence (wi@&p <Tol) of the proposed SADE algorithm

was 74,876, which is less than the maximum number of evaluations used of the other

EAs.

It should be highlighted that the results of other EAs in Table 4 were based on fine-
tuning parameter values and only the final results with the calibrated parameter values
are reported. In reality, adjusting the parameter values for these EAs by trial-and-error
method required a large computational overhead. In contrast, for the proposed SADE,
ranges of thé= [0.1, 0.9] andCR [0.1, 0.9] were used for the HP case study and no

tuning was conducted for these two parameters.

Case study 3: Double New York Tunnels Problem (NYTP2: 42
decision variables)

In order to enable a comparison with the proposed SADE, the traditional DE algorithm
was also applied to the NYTP2 case study. The population size of 100 was also used in
the traditional DE algorithm. Values BE0.5 andCR=0.6 were found to be appropriate

for the NYTP2 case study based on trials of different parameter values. The newly
proposed convergence criteria was also used for the traditional DE. The results of the
proposed SADE algorithm, the traditional DE algorithm and other optimization

techniques that have been previously applied to the NYTP2 are given in Table 5.

The proposed SADE algorithm outperformed the traditional DE algorithm, the HD-DDS
(Tolson et al. 2009) and MMAS (Zecchin et al. 2007) in terms of the percentage of trials
with the best solution found. This is reflected from Table 5 that the proposed SADE
found the current best solution for the NYTP2 case study with a frequency of 90%,

which is higher than all the other EAs given in Table 5.
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For the NYTP2 case study, the proposed SADE exhibited a notably better performance
in terms of efficiency than other EAs presented in Table 5, as it required a significantly

lesser average number of evaluations (33,810) to find the first occurrence of optimal

solutions. The average evaluations required for convergence of 50 different SADE runs
applied to the NYTP case study was 40,812. This shows the computational overhead for
each proposed SADE run was significantly reduced compared with other EAs that

terminated the run using a maximum number of allowable evaluations. A convergence
comparison between the proposed SADE algorithm run and a traditional DE algorithm

run with the same starting number seeds is illustrated in Figure 4.

Table 5 Summary of SADE and other EAsapplied to the NYTP2 case study

(1) (2) 3) 4) (5) (6) )
Percent of Average Maximum
Algorithm® No. Best trials with  Average evaluations to allowable
of  solution best cost find first evaluations or
runs  ($M) solution ($™M) occurrence of evaluations for
found the best solution  convergenck
SADE! 50 77.28 90% 77.28 33,810 408,124
Traditional
DE1 (F=0.5, 50 77.28 86% 77.28 70,104 874,574
CR=0.6}
HD-DDS 20 77.28 85% 77.28 310,000 300,000
MMAS?® 20 77.28 5% 78.20 238,300 300,000

'Results from this study’Tolson et al. 2009°Zecchin et al. 2007 Average evaluations to final
convergenceResults are ranked based on column (4).

,_
=
o

The average cost solution of the SADE

o
=]

. The best solution found at Eval =81,525

I-'"i -
e T .
The best solution of ety e )

the traditional DE
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¥s]
o

]
o

Cost of the best solution

Figure 4 Convergence propertiesof the SADE and thetraditional DE for the
NYTP2 case study with the same random number seed of 100.
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As can be seen from Figure 4, at evaluation numbers smaller than 30,000, the traditional
DE algorithm found the best solution slightly faster than the proposed SADE algorithm
when starting with the same random number seeds. In terms of comparing the average
cost solution obtained at each generation, the traditional DE algorithm performed better
than the proposed SADE algorithm at evaluation numbers smaller than 30,000 as it
generated a lower average cost solution than the SADE algorithm. This is due to the fact
that theF andCR values for the traditional DE algorithm have been fine-tuned, while the

F andCRvalues in the SADE algorithm are initially randomly generated and in the early

stages of generation have not yet self-adapted.

As clearly shown in Figure 4, the SADE algorithm was able to converge faster than the
traditional DE algorithm in later generations (that is after 35,000 evaluations) in terms of
finding the best solution as well as the best average cost solution. This is bec&use the
and CR parameter values have been maturely evolved. Thus, the proposed SADE
algorithm exhibits an improved performance for later generations. The proposed SADE
algorithm found the current best solution at evaluation number 46,131 and converged at
54,100 evaluations based on the convergence criterion in Equati@yp, 6Tol), while

the traditional DE algorithm found the current best solution for the NYTP2 case study

with 81,525 evaluations and finally converged at 94,382 evaluations.

Case study 4: Balerma Network (BN: 454 decision variables)

In comparison, a traditional DE algorithm with a population size of B60,3 and
CR=0.5 (these two values were selected after a number of fine-tuning trials) was
performed for the BN case study. The newly proposed convergence criteria was used for
the traditional DE applied to the BN case study. Table 6 outlines the performance
comparison of the SADE algorithm with differe@R ranges, the traditional DE
algorithm with tuned parameter values and other optimization techniques that have been

previously applied to the BN case study.

As shown in Table 6, the best solution found by the proposed SADE algorithm for the
BN case study was €1.983 million, which is higher than the best known solution (€1.940
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million) reported by Tolson et al. (2009) using HD-DDS method, but lower than
solutions reported by other EAs given in Table 6. However, the HD-DDS (Tolson et al.
2009) yielded the best solution of €1.940 million requiring 30 million evaluations, while

the SADE algorithm used only 1.3 million average evaluations to finally converge.

The average number of evaluation required for the SADE algorithm to first reach the
optimal solutions was 1.2 million, which is less than those required by most of the EAs
given in Table 6. While GHEST (Bolognesi et al. 2009) converged more quickly, the
quality of the final solution was worse than that produced by the proposed SADE.

Table 6 Summary of SADE and other EAs applied to the BN case study

(1) (2) (3) (4) (4) (5) (6)
Percent Average Maximum
6 with the evaluations to
Algorithm No. Best best Average find first allowable
of  solution solution cost occurrence of evaluations or
runs (€M) found (EM) the best evaluations for
%) solution convergence
HD-DDS? 1 1.940 - NA NA 30x19
SADE 10 1.983 10 1.995 1.2x40 1.3x16
Traditional a
DE(F=0.3,CR=0.5) 10 1.998 10 2.031 2.3x40 2.4x16
GHEST 10 2.002 10 2.055 2.5x30 NA
HS NA  2.018 NA NA 14 10x16
GENOMP® 10 2.302 10 2.334 NA 10x40

'Results from this studyTolson et al. 2009Bolognesi et al. (2010fGeem (2009FReca and Martinez
(2006).°Results are ranked based on column (3). NA means not avd#elgimge evaluations to final
convergence.

Table 7 Summary of computational effort of the SADE for each case study

Average number of  Average number of evaluations

WDS Number of evaluations required required to terminate the SADE  Percent

case different

study runs to fin_d the best runs based on _the_proposed (AE1/AE2)
solution (AE1) convergence criterion (AE2)
NYTP 50 6,584 9,227 71.4%
HP 50 60,532 74,876 80.8%
NYTP2 50 33,810 40,812 82.8%
BN 10 1.2x106 1.3x106 92.3%

Table 7 gives an analysis of the computational effort required to find the best solutions
and the computational effort used to terminate the SADE run (@pgrTol) based on

the proposed convergence criterion (see Equation (6)). It was found that the average
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number of evaluations required to find the first occurrence of the best solution was
around 80% of that required for final convergenCeg4<Tol ) of the SADE runs.

CONCLUSION

The performance of all EAs is sensitive to the parameters used. Determining effective
parameter values for each WDS optimization problem, therefore, requires a number of
trials with different parameter values. This results in a significant increase in
computational overhead and hence reduces the attractiveness of EAs being used in

engineering practice.

The proposed self-adaptive DE algorithm (SADE) method overcomes the challenge
mentioned above. A total of five contributions are presented in this paper in terms of
novelty and the computational advantage of the proposed SADE algorithm, which are

given as follows:

(1) The proposed SADE encodes the parameteranfl CR) onto the strings to be
automatically adjusted by means of evolution. Consequently, it reduces the effort
required for the trial-and—error process normally used to determine the effective

parameters for use in the DE algorithm.

(2) TheF andCR values of the proposed SADE algorithm are applied at the individual
level rather than the generation level, which differs with the traditional DE algorithm

applied to the WDS optimization design.

(3) A new convergence criterion has been proposed in the SADE algorithm to avoid pre-
specifying convergence conditions. This convergence criterion is based on the coefficient
of variation such tha€, ; <Tol. It has been successfully implemented as the termination
condition for the SADE algorithm applied to the WDS optimization. This represents a
significant advantage compared to other EAs, where the maximum number of allowable

evaluations is required to be pre-specified.
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(4) The only parameter value that needs to be provided for the proposed SADE is the
population size. The population size is a relatively easy parameter to adjust since a slight
variation of its value does not significantly impact the performance of the SADE. In
addition, it has been derived in this study that a population size wilhin6[l] is an
approximate heuristic for the proposed SADE applied to WDS case studies, which
differs to the rule of thumb for the GAs in that the population size should be within [5
10D] (Deb 2001), wher® is the number of decision variables for the WDS that is being

optimized.

(5) A total of four WDS case studies with the number of decision variable ranging from
21 to 454 have been used to verify the effectiveness of the proposed SADE algorithm.
For the NYTP, HP and NYTP2 case studies, the SADE performed the best in terms of
the percent of the best solution found and exhibited improved performance in
convergence speed compared to the majority of other reported EAs. For the large BN
case study, the proposed SADE also exhibited a comparable performance to other EAs. It
should be highlighted that the resultsotier EAs (excluding the new SADE algorithm

as proposed in this paper) in Table 3 to 6 were based on fine-tuning parameter values and
only the final results with the calibrated parameter values are reported. In reality,
adjusting the parameter values for these EAs by trial-and-error required a large
computational overhead. In contrast, for the proposed SADE, rangesFofGtie 0.9]

and CR [0.1, 0.9] were used for each case study and no tuning was needed to be
conducted for these two parameters. Given this fact, it may be fair to draw a conclusion
that the proposed SADE was able to yield optimal solutions with greater efficiency than
other EAs.

The proposed SADE provides a robust optimization tool for the optimization of the

design of WDSs (or rehabilitation of an existing WDS). This is because (i) the proposed
SADE algorithm does not require as much fine-tuning of parameter values nor pre-
specification of a computational budget; and (2) the proposed SADE algorithm is able to

find optimal solutions with good quality and great efficiency. In addition, the proposed
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SADE algorithm can also be used to tackle other water network management problems
such as leakage hotpot detection (Wu and Sage 2000), optimal valve operation (Kang
and Lansey 2010) and contaminant detection (Weickgenannt et al. 2010). The potential
benefit of the proposed SADE algorithm compared to other EAs that have been used to
deal with these water network management optimization problems is that it would need
significantly less effort to adjust the parameter values. This is a huge advantage
especially dealing with the real-time optimization problems for WDSs (Kang and Lansey

2010), in which decisions have to be made in extremely limited time.

The utility of the proposed SADE algorithm has been demonstrated using the least-cost
single objective WDS optimization problems in this paper. A natural extension of this
proposed self-adaptation algorithm is to extend it to deal with the multi-objective WDS
optimization problems, for which in addition to the cost, other objectives such as the
reliability or greenhouse gases are considered in order to provide more practical solutions

for WDS design. This extension is the focus of future work.
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Chapter 6. Journal Paper 4-Combined NLP-DE Method for WDS
Optimization
6.1 Synopsis

A combined NL P-differential evolution algorithm approach for the optimization of
looped water distribution systems

In Chapters 3, 4 and 5, improving the performance of the evolutionary algorithms (EAs)
(genetic algorithms and differential evolution) in terms of optimizing the design for water
distribution systems (WDSs) is the main focus, which is the first aim of the research
presented in this thesis (see Section 1.1 of Chapter 1). Another promising approach to
enhance the effectiveness of the EAs is combining them with traditional deterministic
optimization methods, such as linear programming (LP) and nonlinear programming
(NLP). This idea is not new and a few hybrid optimization approaches that couple EAs
with deterministic optimization methods have been proposed to tackle the optimal design
problems for WDSs. The review of these hybrid optimization methods was presented in
Section 2.4 of Chapter 2. However, the majority of currently available hybrid
optimization techniques remain in the research domain due to their limitations. These
limitations include the inclusion of impractical pipe solutions (split pipe solutions or
continuous diameter pipe solutions), unacceptable computational budgets and the high
likelihood of premature convergence. These therefore lead to a limited application for
these hybrid algorithms to deal with real-world sized WDS design problems (see the

discussion in Section 2.4.3 of Chapter 2).

This research aims to develop more sophisticated hybrid optimization techniques
compared to the existing hybrid optimization approaches for WDS design. The hybrid

optimization methods developed in this research aim to optimally design real-world sized
water networks, which is the second objective of this study (see Section 1.1 of Chapter
1).

During this research, two advanced hybrid optimization techniques have been developed

to deal with the WDS optimization problems, which are presented in Chapters 6 and 7
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respectively. In Chapter 6 (this Chapter), a combined NLP-differential evolution
optimization method is introduced. Three distinct steps are involved in the proposed
optimization approach. In the first step, the shortest-distance tree within the looped water
network is identified using the Dijkstra graph theory algorithm. In the second step, an
NLP solver is employed to optimize the pipe diameters for the shortest-distance tree
(chords of the shortest-distance tree are allocated the minimum allowable pipe sizes).
Finally, in the third step, the original looped water network is optimized using a
differential evolution (DE) algorithm seeded with diameters in the proximity of the
continuous pipe sizes obtained in step two. As such, the proposed optimization approach
combines the traditional deterministic optimization technique of NLP and with the

emerging evolutionary algorithm DE via the proposed network decomposition.

Traditionally, in hybrid optimization methods, EAs have been normally used to
determine the regions of optimal solutions, whereas deterministic optimization methods
(such as LP or NLP) have been used to further explore the interior of these regions
identified by EAs. In contrast, the new proposed NLP-DE combination model here
differs from the traditional combination models in that an NLP is used first to identify the
approximate region of the optimal solution, while an EA is employed to further search

the interior of the region.

A total of four WDS case studies with the number of decision variables ranging from 21
to 454 are used to verify the effectiveness of the proposed NLP-DE method, in which
two of them are real-world sized water networks. This work has been publisihatem

Resources Researand the paper is provided here.

It should be noted that the standard differential evolution (SDE), rather than the self-
adaptive differential evolution (SADE) algorithm described in Chapter 5, was used in
Chapters 6 to 9. This is because that the experimental runs for Chapters 6 to 9 were
completed before the publication of the SADE algorithm (Zheng et al. (2012a) in the
Journal of Computing in Civil Engineering). It also should be highlighted that the

optimization methods described in Chapters 6 to 9 are new optimization frameworks, by
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which evolutionary algorithms, deterministic optimization approaches and graph
decomposition techniques are combined. The SDE algorithm was used in this research in
order to demonstrate the effectiveness of the proposed optimization frameworks,
although other evolutionary algorithms also can be used in these developed optimization
frameworks given in Chapters 6 to 9. The excellent performance of these optimization
methods is predominately due to the decomposition the full optimization problem to sub-
problems by using the graph decomposition techniques. Thus, it is believed that the
performance of these developed methods will not be significantly affected by the

underlying evolutionary algorithms that are adopted.

The parameter values for the SDE algorithm applied to case studies in Chapters 6 to 9
have been tuned based on trying a number of different combinations. The SADE
algorithm developed in this thesis (Chapter 5) has been demonstrated to exhibit a similar
performance, if not better, than the SDE with tuned parameter values. Thus, the authors
recommend that the SDE algorithm used in the developed optimization frameworks can
be replaced by the SADE algorithm for future applications. This will remove the need to
tune the parameter values of the DE algorithms and can further improve the

attractiveness of the optimization approaches proposed in this thesis.

It is noted that the results from Tolson et al. (2009) in the thesis were obtained from Dr
Tolson based on personal communication, which are slightly different with what has
been published in Tolson et al. (2009). However, this does not affect the conclusion of

this work.
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6.2 Journal Paper 4. A combined NLP-differential evolution
algorithm approach for the optimization of looped water distribution
systems (Published in Water Resources Research)

Feifei Zheng, Angus R. Simpson and Aaron C. Zecchin

Abstract

This paper proposes a novel optimization approach for the least cost design of looped
water distribution systems (WDSs). Three distinct steps are involved in the proposed
optimization approach. In the first step, the shortest-distance tree within the looped
network is identified using the Dijkstra graph theory algorithm, for which an extension is
proposed to find the shortest-distance tree for multi-source WDSs. In the second step, a
non-linear programming (NLP) solver is employed to optimize the pipe diameters for the
shortest-distance tree (chords of the shortest-distance tree are allocated the minimum
allowable pipe sizes). Finally, in the third step, the original looped water network is
optimized using a differential evolution (DE) algorithm seeded with diameters in the
proximity of the continuous pipe sizes obtained in step two. As such, the proposed
optimization approach combines the traditional deterministic optimization technique of
NLP and with the emerging evolutionary algorithm DE via the proposed network
decomposition. The proposed methodology has been tested on four looped WDSs with
the number of decision variables ranging from 21 to 454. Results obtained show the
proposed approach is able to find optimal solutions with significantly less computational

effort than other optimization techniques.

1. Introduction

In most cases, the design and construction of water distribution systems (WDSSs) is
costly, often in the order of millions of dollars for larger capital works. Thus, the
optimization of WDSs has historically been investigated by many researchers in order to
potentially save significant costs. The nonlinear relationship between pipe head loss and
discharge, plus the discrete nature of pipe sizes that can be used, bring about many

complexities for optimally designing WDSs. This is increasingly difficult for looped
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WDSs, in which pipe flows and nodal heads are unknown quantities. Two aspects
contribute to the nonsmoothness properties of the WDS optimization problems. These
include: (1) the pipe diameter choices being composed of discrete sizes rather than being
continuous decision variables; and (2) the nonlinear value term involving the velocity
within the head loss equations. Generally, there are two different types of WDS
optimization problems. One is the completely new WDS design problem, while the other
one is the expansion of the existing WDSs (such as the optimal rehabilitation of WDSs

where there are some already existing pipes).

Historically, a number of traditional optimization techniques have previously been
applied to water network optimal design, including linear programming Alpgrovits

and Shamil977;Fujiwara et al.1987;Bhave and Sona992;Sonak and BhaviE993]

and non-linear programming (NLPLgnsey and May4989; Fujiwara and Khang

1990]. These methods are deterministic and exhibit fast convergence. Often convergence
to local optimal solutions occurs due to the nonsmoothness properties of the WDS
optimization problem. In addition, the final solution is usually given in terms of
continuous pipe sizes or split pipe sizes, which represents a significant practical

limitation.

In the last two decades, considerable research has been undertaken into the optimization
of WDSs using evolutionary algorithms (EAs). EAs are able to handle discrete search
spaces directly and are less likely to be trapped at local optima. The search strategy of
EAs differs compared with traditional optimization techniques (such as LP or NLP) in
that they explore the search space broadly based on stochastic evolution rather than on
gradient information. Genetic algorithms (GAs) were one of the first EAs applied to the
optimal design of WDSsMurphy and Simpsoth992; Simpson et al. 1994%avic and

Walters 1997; Montesinos et al1999]. Other applications have includégiinha and
Sousq2001] who employed simulated anneali@gem et al[2002] who developed a
harmony search moddfusuff and Lansej2003] who proposed a shuffled frog leaping

algorithm (SFLA); Maier et al [2003] who applied an Ant Colony Optimization
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approach; andSuribabu and Neelakantaff006] who introduced particle swarm
optimization (PSO). These techniques have been successfully applied to a number of
WDS optimization problems, and have been demonstrated to be more effective in

finding optimal solutions compared with traditional optimization techniques.

More recently, Tolson et al. [2009] developed a hybrid discrete dynamically
dimensioned search (HD-DDS) algorithm for WDS optimization and concluded that
HD-DDS was as good as, if not better, than other EAs in terms of search ability, while
being significantly more computationally efficient. The differential evolution (DE)
algorithm is a relatively new optimization technique that has received attention recently
within WDS optimization researcNWasan and Simonovi2010] andSuribabu[2010]
applied DE to the optimization of WDSs and concluded that the search ability of DE was
found to be better than other EAs, such as GAs and Ant Colony Optimization. Generally,
EAs have been demonstrated to be robust in finding optimal design solutions for WDSs.
However, they are computationally expensive, especially when dealing with large scale
WDSs.

In order to overcome the limitations of each optimization method (the deterministic and
the EA approaches), a new optimization approach that incorporates both types of
optimization techniques has been previously proposed by reseaRéisrst al [2006]
proposed a GA-LP model to obtain the optimized operation of reservoir sysisire.

et al [2009] developed a hybrid two stage GA-LP algorithm to optimize the design and
operation of a nonlinear, nonconvex and large-scale cycle storage system. In terms of
WDS design optimizationKrapivka and Ostfeld2009] proposed a coupled GA-LP
scheme for the least-cost pipe sizing of water networks. In this method, the optimization
problem was decomposed into an “inner” and an “outer” problem. The “inner” LP was
formulated and solved for a fixed set of flows, while the flows were altered in the “outer”
using a GA. In their proposed optimization approach, an enumeration approach was
initially used to identify all possible spanning trees for a looped water network. Then a

LP solver was employed to optimize the pipe diameter sizes for each spanning tree to
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allow the least-cost spanning tree to be determined. Lastly, the spanning tree chords were
locked into the minimum permissible pipe diameters and the least-cost spanning tree was
further optimized using the proposed coupled GA-LP technique. The main advantage of
this approach is that the search space handled by the GA-LP is reduced as the chords of
the spanning tree are set to be the minimum allowable pipe sizes and removed as
decision variables. However, this approach is computationally expensive for finding the
least-cost spanning tree since all the possible spanning trees need to be evaluated. This
method is therefore limited in practical applications by the fact that it is impossible to
evaluate all the spanning trees for a relatively large water network, and the global
optimal solution for the original water network could be missed as the spanning tree
chords are fixed by the minimum allowable pipe sizes in this method. An additional
criticism is that a split-pipe approach is used in their proposed optimization technique.
The new coupled optimization approach proposed in this paper overcomes the problems

associated with earlier approaches.

The research presented in this paper employs a graph theory decomposition method to
effectively combine the EA (DE) and NLP. Typically, graph theory has been frequently
used to analyze network connectivity properties and reliabiliYesd et al 1996;
Shinstine et al2002;Davidson et al2005,Deuerlein2006], whilst little effort has been

made to use graph decomposition in the optimization of WDSs.

The objective of this paper is to introduce a novel approach for dealing with two different
types of WDS optimization problems (either a completely new design or the expansion
of the existing WDS). Features of this new methodology include the use of an efficient
graph theory algorithm in determining the shortest-distance tree for a looped water
network, and the combination of a deterministic optimization technique (NLP) and an
evolutionary optimization algorithm (DE). It is observed that, in most of the traditional
combinations of optimization modeRgis et al2006;Afshar et al 2009;Krapivka and
Ostfeld 2009], EAs have been used to determine the regions of optimal solutions,

whereas deterministic methods (such as LP) have been used to further explore the
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interior of these regions identified by EAs. The new proposed combination model here
differs with the traditional combination models in that an NLP is used to identify the
approximate region of the optimal solution, while an EA is employed to further search
the interior of the region. In this proposed approach, an NLP solver is used to optimize
the pipe diameters for the shortest-distance tree within a continuous pipe diameter search
space (as opposed to a discrete diameter search space). This continuous solution,
complemented by the chords of the shortest-distance tree with minimum allowable pipe
sizes, forms an approximately optimal solution for the original water network. A DE is
then seeded in the vicinity of this approximately optimal solution, thereby allowing the
DE search to concentrate only on promising regions of the search space. As a result,
better quality solutions are expected to be reached more efficiently, and with a higher
likelihood. A total of four WDS case studies, including an expansion of an existing WDS
and three new designs where they are no existing pipes, have been used to verify the

effectiveness of the proposed optimization approach.

2. Methodology

The three steps involved within the proposed methodology are outlined below.

2.1. Step 1-Shortest-distance tree

A WDS can be described as a grdphin which, vertices of the graph represent the
nodes of the WDS, and edges of the graph represent links between nodes. In graph

theory, a connected graph without any loops is referred as ®&e&974].

For a looped WDS, a demand nodeay have a number of alternative paths to receive
water from the source node Of these paths betwesrand nodd, the path with the
shortest total length of edges is denoted as the shortest path far Hode take the
shortest path from the source nede each of the other demand nodes, then the union of
these paths will be a tr8erooted at source nodeEvery path ifll fromsis the shortest

path in the original grap®. Such a tree is called the shortest-distance Dee 1974].
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The remaining edges @ that are not traversed by any shortest paths are termed as

chords.

For a looped WDS, when a demand node has two or more alternative paths receiving
flow from a source node, the assumption is that an effective way of delivering demand
(for the optimal design) is along the shortest petd[ et al 2008]. Thus, the shortest-
distance tree is considered to be an optimal tree of the looped WDS, in that each demand
node has one and only one shortest path to the source node. An example of shortest-

distance tree and chord for a looped water network is given in Fig. 1.

500 399 400 Chord
1] 400 [1] > ©) -~
(2] (2]
[5] | 180
[3](150  [5]/180 [3]{150
200 300 3200 7y 300 5
S e 2 IRCATRS,
(a) A looped water network®) (b) Shortest-distance tree and chord

Figure 1 An example of shortest-distancetree and chord for alooped water
network ((a) A looped water network (G), (b) Shortest-distance tree and chord)

The looped water network in Fig. 1(a) consists of five demand nodes labeled from 1 to 5,
six links (with lengths in meters) and one source oB@ch node has one, or more than
one, path to the source nodeldentification of the shortest-distance tree for such a
simple looped water network can be carried out by visual inspection. All the paths from
each demand node back to the source sadehis simple looped network are given in

the third column of Table 1.

Table 1 Deter mination of shortest-distancetree (bold indicates shortest path)

Source node Node number Paths Lengths (meters) Shortest path
1 1-s 500 1-s
2-1-s 900
2 2435 1030 2-1-s
3-1-s 650
s 3 3421s 1280 31
4-2-1-s 1080
4 4-3-1-s 850 4-3-1-s
5 5-4-2-1-s 1380 5.4-3-1-5

5-4-3-1-s 1150
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As can be seen from Table 1, node § bas only one path, and hence this is the shortest
path from node 1 te. For node 2, there are two alternative paths including path 2-1-
and 2-4-3sto s. The path 2-khas the shorter length with value of 900 meters. Thus, the
path of 2-1s is the shortest path from node 2storhe shortest path for each node is
identified as shown in the fifth column of Table 1. As a result, the shortest-distance tree
is formed with these shortest paths as shown in Fig. 1(b). The remaining link 5 is the

chord of the shortest-distance tree.

For this looped water network with limited alternative paths, a complete enumeration
approach can be used to compute the sum of lengths of each alternative path for a node,
thereby directly identifying the shortest path. However, the complete enumeration

approach becomes intractable for larger water networks.

2.1.1. The Dijkstra algorithm

An efficient graph theory algorithm, called the Dijkstra algorithDed 1974], is
employed to identify the shortest-distance tree for complex water networks. The Dijkstra
algorithm works by iteratively assigning and updating labels for each node indicating to
the shortest path found so far for that particular node. For the source, a permanent label O
is assigned. A permanent label is given to a vertex once the shortest path from this vertex
to source vertex has been determined. The value of the permanent label is made equal to
the sum of lengths of the shortest path. In contrast, a temporary label is given to a vertex
for which the shortest path has not yet been identified. The value of this temporary label
is set to be equal to the sum of lengths of the shortest path in the current iteration and this
value is to be updated in later iterations. The Dijkstra algorithm is efficient in finding the
shortest-distance tree for a looped network, especially for large and complex networks
[Deo 1974]. The computational complexity (a proxy for execution time for the
algorithm) for the Dijkstra algorithm implementation on a general graphvivrtices

and E edges, iSO(V?+E). The graph representing a WDS is sparse, thus the Dijkstra
algorithm can be implemented more efficiently by storing the graph in the form of linked

lists. In this case, the computational complexity tin@({&+V)log(V)) [Deo 1974].
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2.1.2. An extension of the Dijkstra algorithm

The Dijkstra algorithm is formulated for a single source node graph. In this paper, a
supersource approach is used to extend the Dijkstra algorithm to handle systems with
multi-source nodes. Variants of the supersource approach have been previously used to
generate a treed network based on a looped netMiditgrs and LohbecH 993;

Walters and Smith 1995The details on extension of the Dijkstra algorithm to deal with

the multi-source WDS are given below.

For a multi-source WDS ok sources (reservoirs), an artificial supersource node is
created to connect all the source nodes. Note that the lengths of the artificial links are set
to be zero. The Dijkstra algorithm starts the search from the supersource node which is
given a permanent label of zero (0). In the following step, each source of the WDS is also
given a permanent label of zero. In the third step, all successors lofstheces are

labeled as temporary with a value equal to the length between the successor and its
corresponding source node. For each successor connected to more than one source, all
the distances between this successor and its connecting sources are evaluated and the
smallest value is given to this successor as the temporary label. Then, the Dijkstra
algorithm is implemented to determine only one permanent label in the third step and the
subsequent iterations. With this method, a complex WDSkngthurces is decomposed

into k different sub-networks connected via an artificial supersource nodeaatifttial

links.
2.2. Step 2-Non-linear programming optimization

In Step 2, the objective is to find the lowest cost design for the shortest-distance tree
network determined in Step 1, while satisfying the nodal head constraints. The objective
functionF is given by
F=a) DL, 1)
i=1
whereD;=diameter of pipe, Li=length of pipd, a, b=specified coefficients ancktotal

number of pipes in the network.
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Typically, the constraints for optimization of water networks include flow continuity at
each node, energy conservation in each primary loop and the minimum allowable head
requirement at each node. Since a tree network is optimized in this step, the discharges
for each pipe of the tree network can be determined to satisfy continuity at each node.
Two alternative methods are proposed in this study to determine the discharges of the
shortest-distance tree for a WDS. The application of these two methods is dependent on
the types of WDSs being optimized. The description of these two methods is given as

follows:

Method 1: For the shortest-distance tree of the optimization problem of a completely new
WDS, the flows in the chords of this WDS are assumed to be zero. Thus, the discharges

for the pipes in the shortest-distance tree network are determined accordingly.

Method 2: For the shortest-distance tree of an expansion WDS optimization problem, an
alternative method is proposed where flows in the chords are taken to be equal to that
from the hydraulic analysis for the original WDS. The flows in the treed network pipes

are then determined as the flows in the chords have assumed values.

In this study, for the expansion WDS optimization problem, the two methods mentioned
above are tested to determine the most effective one. For the shortest-distance tree,
energy conservation does not need to be considered in the formulation of the NLP as
there are no loops involved in a treed network. Thus, the number of constraints for NLP
in Step 2 is reduced significantly for the optimization of the shortest-distance tree

produced in Step 1.

For the formulation of the NLP for optimizing the shortest-distance tree, the remaining
constraints are the head constraint at each node and the diameter sizes that can be used.
Since each node has a path to the source node, the head loss along this path should be
less than a specified value that is equal to the head provided at source node minus the
head required at this node. Two of the most frequently used formulas for head loss

calculation in pipes are the Hazen-Wililams (H-W) and Darcy-Weisbach (D-W)
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equations \Ialski 1984]. The constraint for each nodg gnd these two formulas are

given by
he <H -H™
; fk (2)
Hazen-Williams:h, = Q°

azen-Williams: f—wCaDﬁQ 3)

2
Darcy-Weisbach h, = f LV (4)

D 29

where, h, =head loss in pipe Ki ,=head at source nodel™ =head requirement at

nodei, m=total pipes involved from nodeto source nodee =numerical conversion
constant which depends on the unts, g =coefficients,L= length of pipe (m),
C=Hazen-Williams coefficienfD=diameter of pipe (m) an@=pipe flow rates (ifis). In

this study,a =1.852 andB=4.871 are used. For Sl unitg, the units oL, D, in meters,
and Q in m*/s,..=10.667 is used. In Equation (45D-W friction factor for the pipe

(dimensionless) and=water velocity (m/s).

For the NLP formulated in this study, the diameters of pipes are treated as continuous

variables, and the constraint for the diameters are given by

D, <D<D,, ®)

WhereD,,, and D, are the minimum and maximum allowable pipe sizes respectively.

The continuous solution for the shortest-distance tree network, complemented by the
chords of the shortest-distance tree set to the minimum allowable pipe diameters, is an
approximately optimal solution for the original looped water network. For the final step,
this approximately optimal solution needs to be replaced using commercially available
discrete pipe sizes, and cannot be guaranteed to be the global optimal solution based on
the assumption that was made in Step 1. To obtain the global optimal solution using
commercially available pipe diameters based on the current solution achieved in Step 2, a

DE algorithm is applied and the optimization is moved to Step 3.
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2.3. Step 3-Thedifferential evolution algorithm

The differential evolution (DE) algorithm, introduced Byorn and Price[1995], is

found to be a relatively simple but powerful EA for global optimization. There are three
important operators involved in the DE algorithm including the mutation operator,
crossover operator and selection operator, which is quite similar to GAs. Several
parameters that need to be determined in the use of the DE include populatibi, size (
mutation weighting factorK) and crossover rateCR). A DE differs significantly
compared to a GA in the mutation process such that the mutant solution is generated by
adding the weighted differenc€)(between two random population members to third

member. The process of DE is given as follows.

2.3.1. Initialization

The DE is a population based stochastic search technique. Thus, a set of members of the

initial population is required to initialize the DE search. Normally, each initial population
X o= X o, Xoyeeeeennn X"} is generated by randomizing individuals from a uniform

distribution within the search space, that is

Xo = % + rand(0,1) (X.n — Xhi) =1, 2,...N,j=1, 2, ...,.D (6)
where X/, =the initial value of thg™ parameter for thé" individual in the initial
population,x! andx! = the minimum and maximum bounds of fffeparameter
respectivelyrand(0, 1) represents a uniform distributed random variable in the range [0,
1], while N and D =population size and dimension of the vector respectively. The
population size is not changed during the DE evolution process.

2.3.2. Mutation

The DE is mainly driven by its mutation strategy compared with GAs. A mutant vector
Vi with respect to each individuX| s is produced by adding the weighted difference

(F) between two random population members to a third member from the current
population. Each individuaf; associated with a mutant vector is denoted as the target

vector. A frequently used mutation strategy in DE is given as follows:
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Ve = Xrli,e + F(Xr;,e - Xr3i,G) ()

whereV;c = the mutant vector with respect to the target vectof; @fat generation G,

Xicr Xyar X, are three vectors randomly selected from the current population (

r; #r, #1;). These three indexes are randomly generated for each mutant Festor.
the mutation weighting factor.

2.3.3. Crossover

After the mutation, a trial vectdy;gis generated though selecting solution component
values of either fronX; s or V. In the basic DE version (Storn and Price 1995), uniform

crossover is employed as:

-
Uic =

vl. ,if rand(0,1) < CR
{ ° ' ®)

X/, otherwis
whereu/, v/s, x); =thej™ parameter for thé” trial vector, mutant vector and target
vector respectivelyCR s the crossover rate within the range of [0,rahd(0,1);is a
random number between O and 1 generated for each pargméteand(0,1); is
smaller thanCR the parametev’; in the mutant vector is copied to the trial vector,

otherwise, the paramenq"rG in the target vector is copied to the trial vector.
2.3.4. Selection

After crossover, all the trial vectors are evaluated using the objective fuffctighand

are compared with their corresponding trial vector objective funt{fi9g). The vector
with a lower objective function value (given a minimization problem) survives for the
next generation. That is

N Uie if F(Uid= (X0
"7 X, o otherwise

)

Where X .., is thei” individual at the generation G+1.

Mutation, crossover and selection are repeatedly applied generation by generation until
the stopping criterion is satisfied. It is observed that the basic DE is a continuous global

optimization search algorithm. As a result, DE should be modified to solve discrete WDS
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optimization problems. A new approach to deal with the truncation of the continuous
variables to the available discrete pipe sizes is proposed. The continuous pipe sizes are
rounded to the nearest commercially available pipe diameter after application of the
mutation operator given in Equation (7). Each vector element is checked after application
of the mutation operator. If its value is smaller or larger than the minimum or maximum
allowable pipe size, then the minimum or maximum allowable pipe size is assigned. If its
value is between two sequentially discrete pipe diameters, the discrete pipe diameter that
is closest is assigned. In addition, constraint tournament selection is used in the DE to

handle head constrain3¢b2000].

The NLP continuous pipe diameter solution obtained in Step 2 is used to initialize or
seed the population for DE optimization. In this study, the initial population of the DE
was generated by randomly selecting pipe diameters for each decision variable from a set
of limited options based on the NLP optimal solution instead of all available pipe
diameters. The set of limited pipe diameter options is referred to as a seeding table for its
corresponding pipe. Two different initial seeding tables are created for the continuous
pipe size solution of the shortest-distance tree network. One seeding table consists of two
adjacent pipe diameters, one having a discrete diameter that is immediately larger than
the NLP continuous pipe size and the other having a discrete diameter that is
immediately smaller. The other seeding table is composed of four adjacent pipe
diameters, two having discrete diameters that are larger than the NLP continuous pipe
size and the other two having discrete diameters that are smaller. The DE that is seeded
with two pipe diameters is denoted as NLP-DE1, while the DE that is seeded with four
pipe diameters is denoted as NLP-DE2. These two DEs that are seeded with different
sizes from initial tables are applied to the four case studies. For the initial DE population,
pipe diameters in the range of initial seeding tables are randomly selected. For each
chord of the shortest-distance tree, the two and four adjacent minimum permissible pipe
sizes are randomly selected for the NLP-DE1 and NLP-DE2 initial population
respectively. It is noted that, with this approach, each decision variable has only two or

four tailored optional pipe sizes to be randomly selected for starting the DE exploration.
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Thus the initial solutions that need to be evolved are scattered in the region around the
approximate-optimal solution produced in Step 2, rather than randomly distributed
throughout the entire search space. It should be highlighted that the tailored seeding table
obtained in Step 2 is used only to initialize the DE’s search, and it does not necessarily
specify a limited search space for the DE exploration. That is, in Step 3 the DE is not
limited to only explore the interior region of the search space defined by the initial
seeding table, but the search can expand to the region that is outside the initial seeding
table. Hence the finally selected pipe diameters for some pipes may be outside those

contained in the initial seeding table.

3. Case study resultsand discussion

The Dijkstra algorithm that is used in Step 1 and the DE that is used in Step 3 has been
coded in C++. The NLP formulated in Step 2 is solved by software LingdliD>O
Systems In¢c 2009]. The DE application in Step 3 combines the EPANET2.0 solver
[RossmarR000]. Four case studies are used to verify the effectiveness of the proposed
optimization approach including New York Tunnels Problem (NYTP), Hanoi Problem
(HP), ZJ network (ZJ) and Balerma network (BN). The Hazen-Williams formula is used

to calculate the head loss for the NYTP, HP and ZJ case studies and the Darcy-Weisbach
formula is used for the BN case stu@torn and Price[1995] recommended the
parameter ranges for the DE of ¥IN < 10D, 0.3F<0.9, 0.5CR<1.0 as the DE with

these parameter ranges showed generally favorable performance in terms of convergence
properties. For each case study in this paper, a preliminary sensitivity analysis was
performed to determine the effectiXe F andCR values based on the range given by

Storn and Pricg1995] for each parameter.

3.1. Casestudy 1: New York TunnelsProblem (NYTP)

A schematic of the NYTP system is given as Fig. 2. The network has 21 existing tunnels
and 20 nodes fed by a fixed-head reservoir. The details of this network, including the

head constraints, pipe costs and water demands are gin@anbly et al [1996]. The

133



CHAPTERG6. JOURNAL PAPER4-COMBINED NLP-DEMETHOD FORWDS OPTIMIZATION

objective is to determine which pipe should be installed in parallel with the existing pipes
such that the cost is minimized while satisfying the minimum head requirement at all
nodes. There are 15 pipe diameters that can be selected for the NYTP. In addition, a zero
pipe size provides a total of 16 options (15 actual pipe diameters plus a zero pipe size) for

each link. Thus the total search space S (Hpproximately 1.93410%).

Figure 2 Thelayout of the New York Tunnés

In Step 1, the Dijkstra algorithm is applied for the NYTP network to identify the shortest-
distance tree. The identified shortest-distance tree is given in Fig. 3. As shown in Fig. 3,
pipes 10 and 20 are identified as the chords and all the other pipes form the shortest-
distance tree. Since the NYTP is an existing water network and the diameters of chords
(pipes 10 and 20) are known, the two proposed methods (see section 2.2) are used to

determine the flow distribution for the shortest-distance tree. The flow results for the
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shortest-distance tree determined by methods 1 and 2 described in section 2.2 are given

in the second and third columns of Table 2.

[18]

< chord

[20]

Figure 3 Thelayout of the shortest-distance tree of the NY TP networ k

In Step 2, two separate NLPs are formulated for the shortest-distance tree with two sets
of different flow distributions and solved. The two NLP continuous solutions as shown in
the fourth and fifth columns of Table 2 complemented by chords of the shortest-distance
tree with minimum pipe sizes (0 inch for the NYTP case study) produced optimal
solutions with a cost of $55.12 million and $34.78 million respectively. Thus, the optimal
solution produced by the assumption that flows in the chords are taken to be equal to that
from the hydraulic analysis for the original water network (Method 2 in section 2.2), is

better than that produced based on the assumption that no flows exist in these chords
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(Method 1 in section 2.2). This indicates that Method 2 is more effective for a WDS
optimization that includes existing pipes. The NLP solution based on the Method 2
(mentioned in section 2.2) is adopted for further analysis in this study. The final best
solution obtained by the combined NLP-DE approach for the NYTP case study is given
in the last column of Table 2. It is observed that the design of the solution obtained in

Step 2 (in the fifth column) is close to the final best solution as it has 15 pipes with the

same diameter of zero.

Table 2 Initial seeding tablesfor the NY TP case study and the combined NL P-

DE results
Flows[1] Flows[2] Pipe diameters ( inches)
in the inthe  The NLP The NLP Initial Combined
Links Shortest- shortest- solutio”!  solutio  seeding  Initial seeding NLP-DE
distance distance produced produced table for  table for NLP- final
tree tree in in NLP- DE2 solution
(m3/s)  (m3/s)  Step2 Step 2 DE1 (inches)
1 29.00 24.48 157.16 0.00 0, 36 0, 36, 48, 60 0
2 26.39 21.86 138.78 0.00 0, 36 0, 36, 48, 60 0
3 23.77 19.24 0.00 0.00 0, 36 0, 36, 48, 60 0
4 21.27 16.75 0.00 0.00 0, 36 0, 36, 48, 60 0
5 18.77 14.25 0.00 0.00 0, 36 0, 36, 48, 60 0
6 16.28 11.75 0.00 0.00 0, 36 0, 36, 48, 60 0
7 13.78 9.25 144.93 111.31 108, 120 96, 108, 120, 144 144
8 11.28 6.76 124.58 0.00 0, 36 0, 36, 48, 60 0
9 1.65 1.66 0.00 0.00 0, 36 0, 36, 48, 60 0
10° 0.00 4.86 0.00 0.00 0, 36 0, 36, 48, 60 0
11 9.63 14.16 0.00 0.00 0, 36 0, 36, 48, 60 0
12 19.58 24.10 0.00 0.00 0, 36 0, 36, 48, 60 0
13 22.89 27.42 0.00 0.00 0, 36 0, 36, 48, 60 0
14 25,51 30.04 0.00 0.00 0, 36 0, 36, 48, 60 0
15 28.12 32.65 0.00 0.00 0, 36 0, 36, 48, 60 0
16 1.63 1.63 67.13 72.94 72,84 60, 72, 84,96 96
17 6.63 6.63 91.50 100.39 96, 108 84, 96, 108,120 96
18 3.31 3.32 72.53 80.01 72,84 60, 72, 84, 96 84
19 4.81 4.48 53.68 59.31 48, 60 36, 48, 60, 72 72
20° 0.00 0.33 0.00 0.00 0, 36 0, 36, 48, 60 0
21 4.81 5.15 71.55 76.03 72,84 60, 72, 84, 96 72
(%‘K/T)t . 5512 34.78 . . 38.64

"=chords of the NYTP network! Flows and NLP solution are determined based on the assumption that
there are no flows in chords (pipes 10 and 20Flows and NLP solution are determined based on the
assumption that flows in chords (pipes 10 and 20) are the same with that of performing the hydraulic

analysis for the original water network.
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Based on the continuous pipe diameter solution obtained in Step 2, two different initial
seeding tables are created including seeding tables for NLP-DE1 and seeding tables for

NLP-DE2 as shown in Table 2 (column 6 and 7).

Both DE applications were assumed to have identical parameters including population
size (N), maximum allowable number of evaluatiofdAE), mutation weighting factor

(F) and crossover rat€R), while seeded with different initial pipe diameters. For the
NYTP case studyiN=50, MAE=20,000,F=0.7 andCR=0.8 were used. A total of 100
different DE runs using different starting random number seeds were performed for each

of these two DE applications.

The statistics of the results for the NYTP case study are given in Table 3. These include
the best solution found, percentage of trials for which the current best solution was
found, the average cost solution, the worst solution found and the average number of
evaluations to find the best cost solution based on the different runs. For comparison,
Table 3 also lists the results of other optimization techniques that have previously been
used to optimize the NYTP case study.

Table 3 Algorithm performance for the NY TP case study

. Average
Percentage Maximum
Best . Averag number of
Number of . of trials Worst  number of -
) . solution . e cost ] evaluation
Algorithm different with best . solution allowable -
found - solution X s to find
runs ($M) solution ($M) ($M)  evaluation best
found (%) s ;
solutions
NLP-DE1 100 38.64 99 38.64 38.80 20,000 8,277
NLP-DE2 100 38.64 99 38.64 38.80 20,000 10,631
HD-DDS! 50 38.64 86 38.65 38.77 50,000 13,000
DE-Dandy 30 38.64 70 40.33 51.16 100,000 -
MMAS-
ACO? 20 38.64 60 - - 50,000 30,711
Stgrﬁard 1000 38.64 45 39.00 - 100,000 49,950
PSCG 30 38.64 33 38.93 - 100,000 -
PSO variarit 2000 38.64 30 38.83 - 80,000 -

Tolson et al. [2009fDandy et al. [2010f.Zecchin et al. [2006]Zheng et al. [2010].
NLP-DE1: DE seeded with 2 tailored pipe diameters based on NLP solution obtained in Step 2.
NLP-DE2: DE seeded with 4 tailored pipe diameters based on NLP solution obtained in Step2.
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The best known solution for the NYTP case study is $38.64 million first found by Maier
et al. (2003) with the Ant Colony Optimization technique. This best known solution was
also found by the proposed combined NLP-DE optimization technique. As shown in
Table 3, NLP-DE1 and NLP-DE2 exhibited similar performance in terms of percentage
of the best known solutions found. NLP-DE1 was only slightly better than NLP-DEZ2 in
terms of convergence speed. For the NYTP case study, the proposed optimization
algorithm variants located the current best solution with a frequency of 99%, which is
higher than that of other optimization techniques including HD-DD&sén et al
2009], DE pandy et al.2010), MMAS-ACO Fecchin et al2006], GA Eheng et al.
2010], PSODandy et al 2010] and PSO variant¢lson et al2009] as shown in Table

3.

In terms of efficiency, the proposed new algorithm exhibited the best performance on the

NYTP case study as it was able to locate the best known solution faster than other
algorithms as shown in Table 3. The maximum allowable evaluations for the NYTP case

study was 20,000 and the average number of evaluations required to find the best
solution for NYTP case study were 8,277 for NLP-DE1 and 10,631 for NLP-DE2. Both

values are far less than those of other optimization techniques.

3.2. Case study 2: Hanoi Problem (HP)

The Hanoi Problem (HP) is a network design where all new pipes are to be selected. The
layout of HP network is given in Fig. 4. The network is comprised of 34 pipes and 32
nodes which are fed by a single reservoir with a head of 100 meters. The minimum head
requirement of the other nodes is 30 meters. A total of six pipe diameters of {12, 16, 20,
24, 30, 40} inches can be selected for each new pipe. The total search space is
6>2.8651x10°°. The Hazen-Williams coefficient for each new pipe is 130. Details of
this network and the formulation of the cost for pipes are givéujimara and Khang

[1990].
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Figure4 Thelayout of the Hanoi Problem network

In Step 1, the shortest-distance tree for the HP network is shown in Fig. 5 based on the
Dijkstra algorithm. As can be seen from Fig. 5, pipes 13, 26 and 31 are identified to be
the chords. All the discharges in links can be determined based on Method 2 described in

section 2.2 for this shortest-distance tree as shown in the second column of Table 4.

An NLP is formulated for the shortest-distance tree of the HP network and solved in Step
2. The continuous pipe diameters solution is given in the third column of Table 4. This
solution, complemented by chords with minimum pipe sizes (12 inches for the HP case
study), produced an approximately optimal solution with a cost of $5.924 million. . The
final best solution produced by the combined NLP-DE approach, for the HP case study

applied in Step 3, is given in the last column of Table 4.
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Figure5 Thelayout of the shortest-distance tree of the HP networ k

It is observed from Table 4 that the NLP continuous pipe diameters solution is close to
the final best solution design as many continuous pipes diameters fall in the proximity of
pipe diameters of the final best solution. Based on the continuous pipe diameters solution
achieved in Step 2, the tailored seeding tables that were created for each pipe for NLP-

DE1 and NLP-DE2 are given in the fourth and fifth columns of Table 4 respectively.

For the HP case study, the parameters includi#&f), MAE=80,000,F=0.7 andCR=0.8

were used for NLP-DE1 and NLP-DE2. A total of 100 DE runs with different starting
random number seeds have been implemented for each DE application. Table 5 gives the
results of the proposed method applied to the HP case study. Results obtained by other

optimization techniques for the HP case study are also included in Table 5 to enable

performance comparison.

140



CHAPTERG6. JOURNAL PAPER4-COMBINED NLP-DEMETHOD FORWDS OPTIMIZATION

Table4 Initial seeding tablesfor the HP case study and the combined NL P-DE
results

Pipe diameters (inches)

: Flows in_the The NLP Initial seeding Initial seeding Combin(_ed NLP-
Links  shortest-distance  solution DE final
tree (m3/s) produced in table for NLP- table for NLP- solution
Step 2 DE1 DE2 (inches)
1 5.54 40.00 30, 40 20, 24, 30, 40 40
2 5.29 40.00 30, 40 20, 24, 30, 40 40
3 1.89 39.81 30, 40 20, 24, 30, 40 40
4 1.86 39.59 30, 40 20, 24, 30, 40 40
5 1.65 38.29 30, 40 20, 24, 30, 40 40
6 1.38 36.29 30, 40 20, 24, 30, 40 40
7 1.00 33.08 30, 40 20, 24, 30, 40 40
8 0.85 31.52 30, 40 20, 24, 30, 40 40
9 0.70 29.84 24, 30 20, 24, 30, 40 40
10 0.56 27.88 24, 30 20, 24, 30, 40 30
11 0.42 25.65 24, 30 20, 24, 30, 40 24
12 0.26 19.28 16, 20 12, 16, 20, 24 24
13 0.00 12.00 12,16 12, 16, 20, 24 20
14 0.17 15.70 12,16 12, 16, 20, 24 16
15 0.25 17.51 16, 20 12, 16, 20, 24 12
16 0.69 26.79 24, 30 20, 24, 30, 40 12
17 0.93 29.22 24, 30 20, 24, 30, 40 16
18 1.30 32.24 30, 40 20, 24, 30, 40 24
19 1.32 32.36 30, 40 20, 24, 30, 40 20
20 1.85 39.11 30, 40 20, 24, 30, 40 40
21 0.39 17.37 16, 20 12, 16, 20, 30 20
22 0.13 12.72 12,16 12, 16, 20, 30 12
23 1.10 33.08 30, 40 20, 24, 30, 40 40
24 0.63 26.66 24, 30 20, 24, 30, 40 30
25 0.40 23.38 20, 24 16, 20, 24, 30 30
26" 0.00 12.00 12,16 12, 16, 20, 24 20
27 0.25 18.23 16, 20 12, 16, 20, 24 12
28 0.35 20.15 20, 24 16, 20, 24, 30 12
29 0.18 16.10 16, 20 12, 16, 20, 24 16
30 0.10 13.56 12,16 12, 16, 20, 24 12
37 0.00 12.00 12, 16 12, 16, 20, 24 12
32 0.10 15.63 12,16 12, 16, 20, 24 16
33 0.13 16.84 16, 20 12, 16, 20, 24 16
34 0.35 22.54 20, 24 16, 20, 24, 30 24

(%‘,f/f')t 5.924 : : 6.081

*=chords of the HP network.
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The current best known solution for the HP case study with value of $6.081 million was
first found byReca and Marhez[2006] using a GA variant (GENOME). This solution
has been also found by the proposed optimization approach.

Table 5 Algorithm performance for the HP case study

Number  Best Percgntage Average Maximum Average
X of trials Worst number of
. of solution . cost . number of .
Algorithm . with best . solution evaluations
different  found . solution allowable .
runs ($M) solution ($M) (M) evaluations to fmd. best
found (%) solutions
NLP-DE1 100 6.081 97 6.082 6.108 80,000 34,609
NLP-DE2 100 6.081 98 6.081 6.100 80,000 42,782
DE-
Surbabd 50 6.081 80 - - 100,000 48,724
GENOMPE 10 6.081 10 6.248 6.450 150,000 -
HD-DDS? 50 6.081 8 6.252 6.408 100,000 <100,000
PSO 2000  6.081 5 6310 6550 80,000 -
variant
Stgﬁard 30 6.126 0 6.214  6.368 500,000 -
MMAS{ 20 6.134 0 6.394 6.635 100,000 85,571
ACO
pPsd 30 6.373 0 6.483 6.801 500,000 -

'Suribabu [2010]°Reca and Mairiez [2006].Tolson et al. [2009fDandy et al. [2010]°Zecchin et al.
[2006].

As can be seen from Table 5, NLP-DE1 and NLP-DE2 show a similar performance in
finding the best known solution, while NLP-DE1 was found to show slightly better
performance than NLP-DE2 in terms of convergence speed. The proposed new
optimization models achieved the best performance in terms of percentage of trials with
which the best solution was found amongst all the algorithms mentioned in Table 5. As
shown in Table 5, NLP-DE1 and NLP-DEZ2 located the best known solution for the HP
case study in 97% and 98% of the optimization trials compared to 80% of DE used in
Suribabu[2010], 10% of GENOME GA proposed Reca and Marez[2006], 8% of
HD-DDS proposed byolson et al[2009] and 5% of PSO variant usedliolson et al.
[2009]. The worst solutions produced NLP-DE1 and NLP-DE2 in the 100 different
optimization trials were $6.108 million and $6.100 million respectively, which deviates

only 0.444% and 0.312% from the current best known solution. The standard GA
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[Dandy et al 2010], MMAS-ACO Eecchin et al. 2006] and PSO4dndy et al 2010]
were unable to locate the current best solution for the HP case study. The average
number of evaluations required by NLP-DE1 and NLP-DE2 were 34,609 and 42,782

respectively, which are less than those reported for any other algorithm.

3.3. Case study 3: ZJ network

The ZJ network, taken from eastern province of China, is an actual water network with a
single reservoir. The reservoir has a fixed head of 45 meters. There are 164 pipes, 113
demand nodes and 50 primary loops (as shown in Fig. 6). At each demand node, a
minimum pressure of 22 meters is required for the design of this water network. All the
pipes are assumed to have an identical Hazen-Williams coeff€i#B0. The objective

is to determine the least-cost design of this water network, while satisfying the pressure
constraints. A total of 14 commercial available pipe diameters ranging from 150 mm up
to 1000 mm can be selected for each pipe. Thus, the total search spa¥e92258 %

10",

The shortest-distance tree of the ZJ network determined in Step 1 is shown in Fig. 7. The
NLP continuous pipe diameters solution obtained in Step 2, plus the chords with
minimum allowable pipe sizes (150 mm for the ZJ network case study) provide an
approximately optimal solution with a cost of $6.970 million. Since this is a new case
study that has not been investigated previously, a DE algorithm is applied to optimize

this water network directly in order to enable comparison of results.

A total of three DE applications have been performed for the ZJ network optimization

including a DE seeded with two tailored pipe diameters for each pipe (NLP-DE1), a DE

seeded with four tailored pipe diameters for each pipe (NLP-DE2) and a DE seeded with
all 14 available pipe diameters. For each DE application, the parameters including,
N=500,MAE=2,000,000F=0.3 andCR=0.8 were used based on a few trials. A total of

10 DE runs with different starting random number seeds have been implemented for

each DE application.
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Figure 6 Thelayout of the ZJ network

Reservoir

Figure 7 Thelayout of the shortest-distancetree of the ZJ networ k
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The solutions obtained by the three DE variants and statistics of the results are given in
Fig. 8 and Table 6 respectively. It is clearly seen from Fig. 8 that NLP-DE1 converged
the fastest and the DE3 converged the slowest. Although NLP-DE2 converged slower
than NLP-DE1, NLP-DE2 was able to produce lower cost solutions. It is noted that the
solutions obtained by NLP-DE1 and NLP-DE?2 are less scattered by those found by DE3.
This shows that the solutions of NLP-DE1 and NLP-DE2 are less dependent on the

starting random number seeds.

750 r
7.42

7.34
Solutions found by DE3
726 | Solutions found by NLP-DEI

718 | Vaa o) Solutions found by NLP-DE2 !

7.10 | ﬁ:ﬁ- ]

7.02

The best solution found for each run ($million)
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Thousands of evaluations

Figure 8 Solution distributionsfor the ZJ case study

Table 6 Algorithm performance for the ZJ case study

Number  Best Perce_ntage Average Worst  Maximum Average
. of trials . number of
. of solution : cost solution number of .
Algorithm . with best . evaluations
different  found - solution  found allowable .
runs ($M) solution ($M) (M) evaluations to fmo[ best
found (%) solutions
NLP-DE1 10 7.167 0 7.170 7.175 2,000,000 69,300
NLPDE2 10 7.08% 10 7.093 7.105 2,000,000 400,853
DE3 10 7.112 0 7.136 7.220 2,000,000 820,657

The current best solution for the ZJ case study.

As observed from Table 6, different NLP-DE1 runs are significantly more

computationally efficient than DE3. This is evidenced by the fact that NLP-DE1 only
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required a total of 8.44% of the computation overhead required by that of DE3. This
shows that the DE seeded with 2 tailored pipe diameters derived from the approximately
optimal solution obtained from NLP in Step 2 is able to find optimal solutions with

significantly enhanced computational efficiency.

As can be seen from Table 6, the NLP-DE2 found the current best solution for this case
study with a cost of $7.082 million, 0.42% cheaper than the best solution found by DE3.
Additionally, the worst solution found by the 10 NLP-DE2 runs was lower than the best
solution found by DE3. It is noted that NLP-DE2 converged quicker than DE3 as the
average number of evaluations required to converge by 10 different NLP-DE2 runs is
only 48.84% of that required by DE3.

3.4. Case study 4: Balerma network (BN)

The Balerma network (BN), an irrigation water distribution network located in the
province of Almeria (Spain), was first investigated Rgca and Maftez [2006]. It

consists of 4 reservoirs, 8 loops, 454 pipes and 443 demand nodes as shown in Fig. 9. A
total of 10 PVC commercial pipes with nominal diameters from 125 mm to 600 mm are

to be selected for this network. Thus, the search spacé>fs hich is significantly

larger than the previous three case studies in this paper. All the pipes are assumed to have
an absolute roughness heiggh0.0025 mm and the minimum required pressure at each

node is 20 meters. Pipe costs are giveRaoa and Marmez[2006].

Since there are four reservoirs involved in the Balerma network, the proposed extension
to the Dijkstra algorithm described in section 2.1.2 is employed to find the shortest-
distance tree for this multi-source WDS. The shortest-distance tree for the Balerma
network identified, based on the proposed extension of the Dijkstra algorithm, is given in
Fig. 10. It is seen from Fig. 10, the original Balerma network has been decomposed into
four sub-networks connected via an artificial node and four artificial links. An NLP is
formulated for this tree network and solved in Step 2, producing an approximately

optimal solution with a cost o€ 2.114 million (all the chords are assumed to be the
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smallest pipe size). Note that the artificial node and artificial links are not included in the
NLP.

For the BN case study, like the ZJ case study, a total of three DE applications are carried
out. These include a DE seeded with two tailored pipe diameters for each pipe (NLP-
DE1), a DE seeded with four tailored pipe diameters for each pipe (NLP-DE2) and a DE
seeded with all 10 available pipe diameters. For each DE application, the parameters
used wereN=500, MAE=10,000,000F=0.3 andCR=0.8. A total of 10 DE runs with
different starting random number seeds have been implemented for each DE application.
The solution distribution and a summary of results are given in Fig. 11 and Table 7

respectively.

f

=

Figure 9 Thelayout of the Baler ma networ k
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@ Artificial Node

- - Artificial link

Figure 10 Thelayout of the shortest-distance tree of the Baler ma networ k

As can be seen from Fig. 11, the NLP-DE1 and NLP-DE2 runs located overall lower
cost solutions for the BN case study compared to the DE3 runs with significantly less
computational effort. NLP-DE2 converged slightly slower than NLP-DE1, while being
able to find better quality solutions as shown in Fig. 11. It is seen from Table 7, the
average number of evaluations required to find the better quality solutions for NLP-DE1
and NLP-DE2 are only 4.47% and 15.50% of that required by DE3. This shows that a
DE with initial estimates provided by an NLP run in the proposed optimization approach
is able to locate better quality solutions with a significantly faster convergence speed than
a DE without initial estimates. In addition, the solutions produced by NLP-DE1 and

NLP-DE2 are less scattered than those of DE3 for the BN case study. The NLP-DE2
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produced a new currently lowest cost solution with a valte 023 million for the BN

case study.
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Figure 11 Solution distributionsfor the BN case study
Table 7 Algorithm performance for the BN case study
Number  Best Perce_ntage Average Worst  Maximum Average
- of trials ) number of
. of solution . cost solution number of .
Algorithm . with best . evaluations
different  found X solution  found allowable .
runs ($M) solution ($M) ($M)  evaluations to find best
found (%) solutions
NLP-DE1 10 1.956 0 1.957 1.959 1,000,000 412,000
NLP-DE2 10 1.92%3 10 1.927 1.934 2,000,000 1,427,850
DE3 10 1.982 0 1.986 1.989 10,000,000 9,210,143
HD-DDS-1* 1 1.941 0 - - 30,000,000 -
HD-DDS-2* 10 1.956 0 - - 10,000,000 -
GHEST - 2.002 2.055 - 10,000,000 254,400
GEC';\'EME 10 2.302 0 2334 2350 10,000,000 -

Tolson et al[2009].’Reca and Marhez[2006].°Bolognesi et al[2010]* A new current best solution for
the BN case study.HD-DDS-1 and HD-DDS-2 are HD-DDS approach with maximum number of allowable

evaluations of 30,000,000 and 10,000,000 respectively.

On comparing the algorithmic performance with other optimization techniques, the

proposed new optimization approach (NLP-DE1 and NLP-DE?2) performed the best in

terms of quality of the best solution found and efficiency as shown in Table 7. NLP-DE1
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found the same best cost solution with a valu&adf956 as that found by HD-DDS
[Tolson et al 2009] in a total of 10 different runs. However, it is noted that the
computational budget for the NLP-DE1 was only 10% of that for HD-DDS-2 [Tolson et
al. 2009]. The HD-DDS-1 [Tolson et al. 2009] found the previous best solution with a
value of €1.941 million using 30 million evaluations, while the NLP-DE2 located a new
lower cost solution with a cost of €1.923 million using only 2 million evaluations (6.67%
of the computational budget required by HD-DDS-1). In addition, the worst solution
produced by 10 different NLP-DE2 runs w&sl.934 million, which is still lower that

the best solution found by HD-DD$dlson et al2009], GHESTBolognesi et al 2010]

and GENOME GA Reca and Marez 2006]. This implies that the proposed
optimization approach is able to locate better quality solutions with significantly

improved computational efficiency when dealing with such large scale water networks.
3.5. Summary of results

It has been shown that the new proposed NLP-DE algorithm has outperformed all the
other optimization algorithms in terms of efficiently finding optimal solutions for the
four case studies. The dominance of the proposed method is more clearly shown for the
larger networks including the ZJ and BN case studies. In terms of solution quality, NLP-
DE1 yielded a similar performance to NLP-DE2 for relatively small water networks
(such as the NYTP and HP case studies). However, for relatively larger water networks
(such as the ZJ and BN cases studies), NLP-DE1 was able to converge faster than NLP-
DE2 while NLP-DE2 found lower cost solutions than NLP-DEL. This is explained by
the fact that NLP-DE2 was seeded with an initial seeding table with four different pipe
diameters, while NLP-DE1 was initialized with a seeding table consisting of only two
different pipe diameters. Consequently, NLP-DE2 explored a relatively larger search
space than NLP-DE1 and hence resulted in a greater search time but with better quality
solutions being found. Based on the observation of this study, a DE seeded with two
tailored pipe diameters based on the NLP solution (NLP-DE1) is recommended for
relatively small water network optimization. For relatively large WDS case studies, DE

seeded with four tailored pipe diameters based on the NLP solution (NLP-DEZ2) is
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recommended. For a WDS case study with a larger number of pipes and loops, the
continuous diameter solution obtained in Step 2 with the NLP may be more of an
approximation to the actually global optimum as more pipes are removed as chords. In
such a case, the initial seeding table based on this continuous diameter solution can be
further increased in size (for example-to say six successive pipes diameters to be
included in the seeding table for each pipe). As a result, this should lead to a more

effective seeding of the DE exploration.

It has also been found from this study that, for the optimization problem of designing a
completely new WDS, the flows in the shortest-distance tree determined by the
assumption that there is no discharge in the chords (Method 1 in section 2.2) is effective.
For the expansion of an existing WDS optimization problem (such as the NYTP case
study), the flows in the shortest-distance tree determined by the assumption that the
discharges in the chords are set to be equal to that from the hydraulic calculation for the

original existing WDS (Method 2 in section 2.2) is the most effective.

In the proposed method, the shortest path is used as a surrogate indicator of the main
flow paths within the network (the network tree). It is considered that the accuracy of this
assumption will be reduced in situations where there are significant differences in nodal
elevations. However, the NLP solution based on the assumed tree is simply used to
identify an initial seeding table for seeding the DE optimization. Minor changes in the
NLP solution may not necessarily vary the initial seeding table components as the two or
four adjacent discrete pipe sizes based on the continuous diameter pipe solution from the
NLP are included in the seeding table for each pipe. In addition, our experiments have
shown that a moderate change to the initial seeding table components does not influence
the performance of DE significantly as the DE is able to progress the search outside of
the bounds of the seeding table. The BN case study involved in this study is a network
having significant nodal elevation differences, however, the proposed method was
observed to exhibit satisfactory performance on this case study in terms of solution

quality and efficiency (See Table 7).

151



CHAPTERG6. JOURNAL PAPER4-COMBINED NLP-DEMETHOD FORWDS OPTIMIZATION

An analysis of the computational effort required in Step 1 and Step 2 in the proposed
optimization approach has been undertaken. The computational time required to find the
shortest-distance tree and to run the NLP solver for each case study is converted to an
equivalent number of case study evaluations respectively. Note all these tests were
performed in the same computer (Pentium PC at 3.0 GHz). The results are given in Table
8. It can be seen from Table 8 that the computational effort required to find the shortest-
distance tree in Step 1 and to run the NLP solver in Step 2 is negligible compared to that
required in Step 3. Thus, the computational effort in running the Dijkstra algorithm and
NLP for each case study has not been included in the total computational overhead. For
example, the computational overhead of running the Dijkstra algorithm and NLP for the
ZJ case study is only 0.19%, 0.033% and 0.014% of that required by the NLP-DEL1,
NLP-DE2 and DE3 respectively. This implies that it is computationally efficient to find
the shortest-distance tree and solve the NLP for the shortest-distance tree for a given
WDS. This further improves the attractiveness of the proposed approach for optimization

of WDSs.

Table 8 Computational effort analysisfor finding shortest-distancetree and
running the NL P solver for each case study

Computational Computational Average Average
Number putat effort required to number of number of
effort required to . .
Case of . solve the NLP for  evaluations evaluations
p find the shortest- : ;
study  decision distance tree the shortest- required by required by
variables (Step 1) distance tree NLP-DE1 NLP-DE2
P (Step 2) (Step 3) (Step 3)
NYTP 21 11 10 8,277 10,631
HP 34 10 26 34,609 42,782
Z] 164 6 125 69,300 400,853
BN 454 8 2,133 412,000 1,427,850

Note: The computational effort in Steps 1 and 2 has been converted to an eqoivalesit of evaluations
for its corresponding case study. One simulation for the NYTP, HP, ZJ and BN case study on Pentium PC
at 3.0GHz was 0.001, 0.001, 0.016 and 0.015 seconds respectively.

4. Conclusions

A new optimization approach aimed at optimizing the design of WDSs has been
presented in this paper. This new approach divides the optimization process into three

steps. These include:
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1. Find the shortest-distance tree for the looped WDS that is being optimized.
2. Carry out an NLP optimization of the shortest-distance tree.

3. Optimize the original water network using the DE seeded based on pipe sizes in the

proximity of those found in Step 2.

The shortest-distance tree is identified in Step 1 using the Dijkstra algorithm. The
shortest-distance tree is viewed as an optimal tree based on the assumption that
delivering demand along the shortest path for each node is the most effective mode. A
NLP is then formulated for optimizing the design of the shortest-distance tree in Step 2
and has been solved by an NLP solver in this study. For each case study, a range of
different initial starting points have been used for solving the NLP applied to the
optimization of the shortest-distance tree. It was found that the final solution is identical
for all the different initial starting points. The continuous pipe diameter solution
produced in Step 2 complemented by the shortest-distance tree chords with the minimum
allowable pipe sizes are used to create the initial seeding tables for the differential
evolution (DE) optimization process. The DE optimization for finding the optimal
discrete pipe size solution in Step 3 is seeded with the tailored pipe diameters seeding

tables created in Step 2.

Results for four cases studies show that the proposed new combined NLP-DE
optimization approach has superior convergence properties. For the NYTP and HP case
studies, the proposed optimization technique reached the current best known solution for
each network more frequently and more efficiently compared with other optimization
techniques. For the ZJ and BN case studies, the proposed new optimization approach
found the new lowest cost solutions with a cost of $7.082 million&h®23 million
respectively. In addition, the new method produced optimal solutions with an extremely
fast convergence speed. The consistent superior performance of the proposed
optimization approach on four case studies illustrates that the proposed methodology is

well suited for the least-cost design of WDSs.
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The utility of the proposed method is that it provides an efficient and effective approach
for seeding the optimization of the full combinatorial problem using near optimal
solutions (achieved by solving an approximated continuous problem with NLP). A
natural extension of this method to find an approximate Pareto front for multi-objective
problems (to seed a full multi-objective combinatorial search) could be achieved by
incorporating one of the many approaches to map multi-objective problems to a series of
single objective problemdpnak et al.2006]. This approximate front would then be

used to seed a multi-objective combinatorial optimizer (i.e. NSG&R:et al[2002]) to
determine the actual front. This extension should be the focus of future research. Another
issue that needs to be addressed is that the decision variables in this paper are only pipe
diameters for the case studies, whereas the real WDS design problems may be more
complex. Since the proposed methodology has shown to be effective for the pipes-only
WDS design problems, future work should be focus on applying the proposed
methodology to deal with the real-world WDS problems that may include pumps, valves,
storage facilities and pipes.
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Chapter 7. Journal Paper 5-Coupled BLP-DE Method for WDS
Optimization

7.1 Synopsis

A coupled binary linear programming-differential evolution algorithm approach

for optimizing water distribution system optimization

In Chapter 6, a combined NLP-DE method is presented, in which NLP is employed to
optimize the entire water network in order to obtain an approximate optimal solution.
Then this approximate optimal solution is used to initialize the DE search. As such, the
DE focuses on exploring only the promising regions specified by the approximate
optimal solution obtained by NLP optimization rather than the original whole search
space. As a result, better quality solutions for the water network are reached more

efficiently, and with a higher likelihood.

In the NLP-DE method presented in Chapter 6, the deterministic optimization technique
NLP is used to provide a good estimate for the DE exploration. Another novel hybrid
optimization technique is developed in this Chapter based on a binary linear
programming coupled with a DE (BLP-DE) for the water network optimization. This

proposed optimization technique is presented in this Chapter (Chapter 7).

Three stages are involved in the proposed BLP-DE optimization method. In the first
stage, the WDS that is being optimized is decomposed into trees and the core using a
graph algorithm. BLP is then used to optimize the design of the trees during the second
stage. In the third stage, a DE algorithm is utilized to deal with the core design while
incorporating the optimal solutions for the trees obtained in the second stage, thereby
yielding optimal solutions for the original whole WDS. The proposed method takes
advantage of both BLP and DE algorithms: BLP is capable of providing a global optimal
solution for the trees (no loops involved) with great efficiency, while a DE is able to
efficiently generate good quality solutions for the core (where loops are involved) with a

reduced search space compared to the original full network.
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Three main differences exist when comparing the BLP-DE method outlined in this
Chapter with the NLP-DE approach presented in Chapter 6, which are (i) for the BLP-
DE method, the deterministic BLP method is used to optimize the design for the trees of
the water network rather than providing the estimates for the evolutionary algorithms as
for the NLP-DE method; (ii) BLP is able to provide discrete diameter solutions while the
NLP only generated continuous diameter solutions and (iii) the DE in the BLP-DE is
only utilized to deal with the core of the original whole network, in contrast, the DE in

the NLP-DE is used to tackle the whole network.

Another novelty of the proposed BLP-DE method is that a solution choice table method
has been proposed to incorporate the optimal solutions for the trees when the core of the
water network is being optimized. As such, the final optimal solutions obtained by the

DE applied to the core are actually the optimal solutions for the original entire network.

In the proposed BLP-DE method, different components of the whole water network are
optimized by different optimization techniques, in which the trees are optimized by BLP
and the core is handled by the DE. This proposed approach makes good use of the
advantages of both the deterministic optimization techniques and the evolutionary
algorithms, i.e., deterministic optimization techniques are suitable for the tree
optimization as no loops are involved and the evolutionary algorithms are able to
efficiently explore the relatively small search space effectively (only the core rather than

the whole network is optimized by the DE in the proposed BLP-DE method).

This work has been submitteddournal of Water Resources Planning and Management
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7.2 Journal Paper 5. A coupled binary linear programming and
differential evolution approach for water distribution system
optimization (Submitted to the Journal of Water Resources Planning
and Management)

Feifei Zheng, Angus R. Simpson and Aaron C. Zecchin

ABSTRACT

A coupled binary linear programming-differential evolution (BLP-DE) approach is
proposed in this paper to optimize the design of water distribution systems (WDSSs).
Three stages are involved in the proposed BLP-DE optimization method. In the first
stage, the WDS that is being optimized is decomposed into trees and the core using a
graph algorithm. Binary linear programming (BLP) is then used to optimize the design of
the trees during the second stage. In the third stage, a differential evolution (DE)
algorithm is utilized to deal with the core design while incorporating the optimal
solutions for the trees obtained in the second stage, thereby yielding optimal solutions for
the original whole WDS. The proposed method takes advantage of both BLP and DE
algorithms: BLP is capable of providing global optimal solution for the trees (no loops
involved) with great efficiency, while a DE is able to efficiently generate good quality
solutions for the core (loops involved) with a reduced search space compared to the
original full network. Two benchmark WDS case studies and one real-world case study
(with multiple demand loading cases) with a number of decision variables ranging from
21 to 96 are used to verify the effectiveness of the proposed BLP-DE optimization
approach. Results show that the proposed BLP-DE algorithm significantly outperforms

other optimization algorithms in terms of both solution quality and efficiency

INTRODUCTION

A number of deterministic optimization techniques have previously been applied to
the optimization design problem of water distribution systems (WDSs). These
include a complete enumeration approach (Gessler 1985); linear programming (LP)
(Alperovits and Shami977; Sonak and Bhav&993; Guercio and Xu 1997); and
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non-linear programming (NLP) (Lansey and Mays 1989; Fujiwara and Khang 1990).
Each deterministic method offers advantages, but also has disadvantages in terms of
optimizing WDS design. The complete enumeration approach guarantees that the
global optimal solution will be found, for example, but the computational overhead is
extremely intensive as this method evaluates every possible combination of discrete
pipe diameters for a WDS. In most cases, this is an impossible task. LP and NLP
converge quickly, on the other hand, but only a local optimum is located. In addition,
split pipe sizes are usually allowed by a LP solution and continuous pipe diameters
are normally included in a NLP solution, neither of which is practical from an

engineering perspective.

Samani and Mottaghi (2006) proposed a binary linear programming (BLP) approach
for WDS design optimization, in which the objective function and constraints were
linearized using zero-one variables. Four steps are involved for their BLP method,
which are step 1: each pipe in the water network to be optimized is initially assigned
a commercially available pipe diameter; step 2: a hydraulic solver is performed for
the known network configuration to obtain water flows for each pipe; step 3: a BLP
model is formulated and solved for the water network based on the known flows at
each pipe and solved while satisfying the head constraints at each node and step 4:
the resulting pipe sizes obtained in step 3 are compared with the assumed pipe
diameters in step 1. If they are the same, the optimization process has converged and
the resulting pipe sizes are the final solution, otherwise, the resulting pipes sizes are
assigned to the water network and steps 2, 3 and 4 are repeatedly performed until the
convergence (where resulting pipe sizes in step 3 are the same as the those used in

step 2) is achieved.

Samani and Mottaghi (2006) used two relatively small WDS case studies to verify
the effectiveness of their proposed BLP method, and reported that the performance of
the BLP method was satisfactory in terms of accuracy and convergence based on

results of two WDS case studies.
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The advantage of the BLP developed by Samani and Mottaghi (2006) over LP and
NLP is that it is able to handle the discrete search space, thereby providing discrete
pipe diameter solutions. However, the BLP approach is compromised by extreme
inefficiency when dealing with relatively large WDS case studies (Savic and Cunha

2008). In addition, the global optimum for a looped WDS cannot be guaranteed as
the final solution reached by this BLP approach is dependent on the initially assumed

pipe diameters (Martinez 2008).

In addition to deterministic optimization techniques (LP, NLP and BLP),
evolutionary algorithms (EAs), as stochastic approaches, have also been employed to
optimize the design for WDSs. Simpson et al. (1994) first applied a genetic algorithm
(GA) to tackle the water network optimization problem. Afterwards, a number of
other evolutionary algorithms were developed and applied to WDS design. These
include simulated annealing (Cunha and Sousa 2001); harmony search (Geem et al.
2002); the shuffled frog leaping algorithm (Eusuff and Lansey 2003); Ant Colony
Optimization (Maier et al. 2003); the modified GA (Vairavamoorthy and2A05);

particle swarm optimization (Suribabu and Neelakantan 2006); cross entropy
(Perelman and Ostfeld, 2007); scatter search (Lin et al. 2007); HD-DDS (Tolson et al
2009) and differential evolution (Suribabu 2010). These EAs have been applied to a
number of WDS case studies and exhibit good performance in terms of finding

optimal solutions.

The advantages of EAs over deterministic optimization methods are (i) EAs are able
to deal with the discrete search space directly and (ii) EAs explore the search space
broadly and are therefore more likely to provide good quality solutions. However, a
major issue pertaining to the application of EAs for WDS design is the computational
intensity. This is a severe limitation for EAs dealing with real-world WDS
optimization, for which, a large number of pipes are normally involved. Zheng et al.
(2011a) reported that EAs perform well on relatively small case studies in terms of

solution quality, whereas solution quality deteriorates for EAs when dealing with
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larger networks. Thus, it is desirable to develop advanced optimization techniques to
overcome these limitations to enable a more generic application of optimization
techniques for WDS design. The development of hybrid optimization methods is a

way of overcoming the problems outlined above.

Recently, EAs have been combined with deterministic optimization methods in
attempts to overcome the disadvantages of both optimization techniques when
optimizing the design of WDSs. Krapivka and Ostfeld (2009), for example, proposed
a coupled GA-LP method for the WDS optimization. In their technique, all possible
spanning trees for a looped water network are first evaluated to identify the least-cost
spanning tree. The chords of the tree are assigned with the minimum allowable pipe
diameters. The coupled GA-LP technique is then used to further polish the optimal
solution of the least-cost spanning tree, in which a GA is used to update the flow
distribution, while LP is employed to optimize the tree for a given flow distribution.
However, this GA-LP method is limited by the fact that split pipe sizes are allowed in
the final solution and it is computationally expensive to evaluate all possible

spanning trees for a large WDS.

Tolson et al. (2009) developed a hybrid discrete dynamically dimensioned search
algorithm (HD-DDS) for WDS design optimization. In the HD-DDS, a stochastic
algorithm is combined with two local search methods (one-pipe search and two pipes
search algorithms). These two local search methods are carried out using complete
enumeration. Efficiency improvements were reported by Tolson et al. (2009) when
this method was compared to other optimization algorithms in terms of optimizing
WDSs.

Zheng et al. (2011b) developed a combined NLP-DE approach to deal with WDS
optimization problems. In the NLP-DE method, graph decomposition is first

employed to identify the shortest-distance tree for a looped WDS. NLP is then used
to optimize the shortest-distance tree and an approximately optimal solution is

obtained for the original full network. Finally, a DE is seeded in the vicinity of the

165



CHAPTER 7. JOURNAL PAPER5-COUPLEDBLP-DEMETHOD FORWDS OPTIMIZATION

approximately optimal solution rather than the whole search space in order to
optimize the original full network. It was reported by Zheng et al. (2011b) that the
combined NLP-DE method was able to find good quality solutions for the WDSs

with great efficiency based on four case studies.

Haghighi et al. (2011) combined a simple GA with BLP for WDS optimization
design. In this GA-BLP method, a water network is first converted to a tree by
removing one pipe from each primary loop and hence a totdLopipes are
removed, wherdL is the number of loops in the water network. Then a sé&t of
diameter combinations for théL pipes are randomly generated using commercially
available pipe diameters to form the initial population of the GA, wheis the
population size of the GA. For each GA individual with different diameter
combinations for théNL pipes, an iterative procedure using BLP combined with a
hydraulic solver (EAPNET) is utilized to optimize the remaining tree Kthepipes

are not included in the BLP optimization).

The optimum pipe diameters obtained from the iterative BLP optimization for the
tree are returned to the GA along with corresponding cost. This cost in combination
with the cost of théL pipes handled by the GA provides the total cost of the original
water network. This total cost is used to calculate the fitness of the GA individual.
Subsequently, the GA operators (selection, crossover and mutation) are performed to

evolve the initial solutions to achieve the final optimal solutions.

In the GA-BLP method (Haghighi et al. 2011), the GA was only used to deal with the
NL pipes, while BLP was employed to tackle the optimization of the tree that was
obtained by removinglL pipes. Thus, efficiency of the GA optimization is expected
to be improved as the GA only handles e pipes rather than the total number
pipes in the original whole networlNKL is normally significantly smaller than the
total number pipes). However, the computational effort for iterative BLP

optimization in this GA-BLP approach is massive when dealing with large water
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networks since BLP has been found to be extremely inefficient when tackling large

optimization problems (Savic and Cunha 2008; Martinez 2008).

In the current paper, a novel hybrid optimization approach that combines BLP and
DE is proposed for optimizing the design of WDSs. Three stages are proposed in the
BLP-DE method. In the first stage, the full water network that is being optimized is
decomposed into trees and the core using a graph decomposition algorithm. In the
second stage, the trees of the original full network are individually optimized by
BLP. In the third stage, the core of the original full network is optimized by a DE
algorithm and the optimal solutions for the trees obtained in the second stage are
incorporated during the DE optimization. The proposed BLP-DE method has been
verified by two benchmark case studies each with a single demand loading case and a
larger real-world network with multiple loading cases. The details of the proposed

BLP-DE method are given in the next section.

THE PROPOSED BLP-DE METHOD

Thefirst stage: water networ k decomposition

Deuerlein (2008) introduced the novel idea of decomposing a water network based on its
connectivity properties, using terms and concepts drawn from graph theory; and describe
how a full WDS could be decomposed into forests, blocks and bridges. This
decomposition allowed various types of systems analysis to be conducted on water
supply networks. In the first stage of the proposed method, the full water network is
decomposed into two main components, rather than the forest, blocks and bridges. These
two components are trees and the core, where trees are the outer component of the

network, while the core is the inner component of the network (Deuerlein 2008).

Figure 1 represents the network layout of the New York tunnels problem (NYTP), a case
study often used to test methods of WDS optimization. The NYTP is a pipe duplication

optimization problem, the details of which are given by Dandy et al. (1996).
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[18]

Figure 1 The network layout of the New York Tunnels problem

Normally, a WDS can be described as a g@aphE), in which, vertices\() of the graph
represent the nodes of the WDS, and edgeof the graph represent links between
nodes. For the NYTP netwofk(V,E) given in Figure 1V={1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20} &xd[1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21]}.

In graph theory, a connected graph without any loops is referred as§ (i2eq 1974).
Based on the decomposition method proposed by Deuerlein (2008), théJraed (he

core C) of the NYTP network G(V,E) (see Figure 1) are obtained and shown in Figure
2, whereG(V,E)= TsUC.
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Figure 2 The decomposition results of the New York Tunnels problem

As shown in Figure 2, two trees are identified after decomposition, incllight0, 17,

[9], [16]} and T,={18, 19, [17], [18]}, where 10, 17, 18 and 19 are nodes, and [9], [16],
[17] and [18] are links in Figure 1. The remaining nodes and pipes form theCyare (

the NYTP network, wher€={1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 20, [1], [2],

[3], [4], [5], [6], [7], [8], [10], [11], [12], [13], [14], [15], [19], [20], [21]}. As can be seen

from Figure 2, the trees and the cdzg gverlap at the nodes 9 and 12, iTe/;) C=9 and

T, N C =12. The nodes that connect the core and the trees in the original water networks
are defined as root nodes r (Deuerlein 2008). Thus, for the NYTP network given in

Figure 1, nodes 9 and 12 are root nodes, i)~ and r{,)=12, as shown in Figure 2.
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The second stage: BL P optimization for thetrees

In the proposed method, binary linear programming (BLP) is employed in the second
stage to optimize the design of the trees obtained at the end of the first stage. Since the
WDS optimization problem is mathematically nonlinear due to the nonlinearity of the
head loss equation, during BLP, zero-one variables are used as decision variables in
order to convert the optimization problem from a nonlinear to a binary linear system. The
trees of the original full network are individually optimized by BLP in the proposed

method. The BLP formulation for tree optimization is given as follows.

Objective function of BLP

The objective function involved for the least-cost WDS design is normally the sum of the
construction cost of each pipe in the WDS. The objective funktion a tree in BLP is
given by:
N P
F=;§thC(Dj) @)
whereN is the total number of pipes that needs to be optimRéslthe total number
of commercially discrete pipe diameters that can be usad;the length of pip&

C(Dj) is the unit length cost of the pipe diamddgandX; is the zero-one variable.

In Equation (1)X;=1 indicates that the diamet®y is selected for pipewhile X;=0
indicates that the diameté; is not selected for pipe No nonlinear terms are

involved in the objective functioR.

Constraints of BLP

Normally, when designing a WDS the hydraulic balance for the water network
(including a continuity equation at each node and the energy conservation for each
primary loop and required path) and the head requirement for each node are usually
constraints that need to be satisfied. In the proposed method, however, BLP is only
employed to deal with the trees of the original full network. Therefore, the hydraulic

balance does not need to be considered as a constraint since no loops are involved in
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the trees and the flows at each pipe in the trees can be determined for each demand

loading case before BLP optimization is carried out.

The head requirement for each node still needs to be considered as a constraint for
the BLP optimization in the second stage of the proposed method. The Hazen-
Williams or Darcy-Weisbach formula may be used during the BLP to determine the
head loss for each pipe. For the Hazen-Williams formulation,

P X, _
h;‘i:Za) Djﬂ (dY nOTN,iOT
j j

L
(o (2)
wherehg is the frictional head loss for pipdor demand loading casein the tree
(T) that is being optimizedg"=flows in pipei for demand loading case TN= total
number of demand loading casés;total number of available pipe diametets;

=numerical conversion constant which depends on the units of flows and diameters;
a , B=coefficients;C, =Hazen-Williams coefficient of pipe diametey.

As can be seen from Equation (2), for pipeach pipe diametdd; is considered as
its potential option. The final diameter for pipis selected by usinyg; (the zero-one
variables), wheré&;=1 implies that diametd; is used for pipe and then theh; is
based on the selected diamefgr a value ofX;=0 means that diameté; is not

selected for pipeand no head loss is involved for the diameter
The only unknown in Equation (2) }§ (the zero-one variables) singg is already
determined for each link in the tree and each commercially available pipe diameter is

known. Consequently, by utilizing the zero-one decision variakjethe nonlinear

Hazen-Williams formula is converted to a linear formula.

In the proposed BLP, the constraint for each nowdethat the total head loss used by
the pipes involved in the water supply path from source Rottenodek should be
less than the value of the head at the source node minus the head requirement at node

k for each demand loading case, which is given by:
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Wicr

> Bs R-HY KOT.mMIW, 3)

where H, is the available head provided by the source n&lef the tree that is

being optimized by BLPH/" is the minimum head requirement for ndde the

tree ) for demand loading case Wir is the water supply path from source néte
to nodek (only one path is available for each ndd® receive water demand from
Wicr

the source nodR in a tree).z hg, is total head loss involved in water supply path

m

Wk.r for demand loading case 1 TN.

An additional constraint in BLP is that the sumXgffor each linki must be equal 1

as only one pipe diameter is selected for each link, which is given by:

2% =1 @

BLP optimization for the trees

It is noted that no supply sourceR) (are available for trees that are obtained by
decomposing the original whole network and hehkicgis unknown in Equation (3).

For the tree§; andT, given in Figure 2, no supply source is available for these two
trees obtained by decomposition. For the purposes of the proposed optimization
method, however, the root nodesire assumed as the supply source nodes for the
trees. This is because the root nodes are the connection of the trees and the core and
all the water demands required by a particular tree are delivered via its corresponding
root node. As such, the supply source nodedf@andT, in Figure (2) are(T1)=9

andr(T,)=12 respectively.

The water demands at the root nodes are not considered when conducting the tree
optimization using BLP. A series of assumidg values are used for each root node

to enable BLP optimization of the corresponding tree. In the proposed méthod,

values are selected from a pre-specified head range with a particular interval (of say 1

foot or 0.1 meters). The lower boundary of the head range is the maximum value of

172



CHAPTER 7. JOURNAL PAPER5-COUPLEDBLP-DEMETHOD FORWDS OPTIMIZATION

the head requirement across the whole tiég$ maxH,"")), while the upper

boundary of the head range is the head provided by the supply source node of the
original full network Hma=Hs). T1 of the NYTP network given in Figure 2 is used to
illustrate the proposed BLP optimization algorithm. For the NYTP case study, a
single demand loading case was specified as per the original paper (Schaake and Lai
1969).

For T1, Hmin=272.8 ft andHmax=300 ft, where 272.8 ft is the maximum value of the
minimum allowable head requirement of all nodes contained with{nodes 10 and
17 as shown in Figure 2) and 300 ft is the allowable head provided by the reservoir

given in Figure 1 (the head information is given by Dandy et al. 1996).

A series of values oH, (H, O [2728300]) with an increment of 1 ft is used for
root noder(T,). BLP is formulated (see Equations (1), (2) and (3)) for ddghvalue
and solved. The final solutions fdr; with different H, assigned fom(T;) are
presented in Table 1.

Table 1 Optimal solutionsfor T; of the NYTP

Cost of Optimal Duplicate pipe Minimum

Hr a]EtR(Tl) solutions from BLP  diameter’ pressure head He=He—H,
(1) $) (inches) excessKle) (ft) (fr)
272.8 Infeasible solution - - -
273.8 8,337,060 (0, 96) 0.09 273.71
274.8 7,0648,50 (0, 84) 0.64 274.16
275.8 5,835,646 0, 72) 0.96 274.84
276.8 4,654,834 (0, 60) 1.00 275.80
277.8 3,529,683 (0, 48) 0.77 277.03
278.8 2,470,653 (0, 36) 0.47 278.33
279.8 2,470,653 (0, 36) 1.47 278.33
280.¢ 0 (0, 0) 0.71 280.09

"The first diameter is for link 9 and the second diameter is for link 16 in Figdfiehé.solution is
zero in cost as no pipe needs to be duplicated wheHhighe greater than 280.8 ft and hence these
solutions are not given in Table 1.

As can be seen from Table 1, a lower cost solution was found by BLP when a higher
head was assigned fofT1). WhenH is equal to or larger than 280.8 ft, no pipes

need to be duplicated and hence the solution is zero in cost since NYTP is a pipe
duplication optimization problem. The fourth column of Table 1 displays the

minimum pressure head excé$sacross the tree for each optimal solution obtained
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by BLP. For each optimal solution, the correspondihigcan be further reduced by
its correspondindHe while still maintaining its feasibility. For example, there is a
minimum pressure excess of 0.09H (=0.09 ft) for the optimal solution withi
=273.8 ft atr(T1) (as shown in the third row of Table 1). Thik, value can be
reduced to 273.71 ft while still guaranteeing the feasibility of the optimal solution.
The reducedH value is denoted ad ., which is the minimum head required at
r(T,) to maintain the feasibility of its corresponding optimal solutibi£H,—H, ).

H, values for all the optimal solutions fdk are provided in the fifth column of
Table 1. It should be noted that for each optimal solutionHhealue varies for

different demand loading cases and thg value is therefore different for each

loading case.

A solution choice table is developed for (denoted asyT;)) including theH,,
values, the optimal solution costs and the pipe diameters of the optimal solutions. In
YT1), each uniqueH is associated with a unique optimal solution (including the

cost and the pipe diameters for each linkTef. In addition, H, in the solution

choice table is sorted from the smallest to the largest, while the optimal solution cost
is sorted from the largest to the smallest. For each tree of the original full network, a
solution choice table is constituted during the second stage of the proposed
optimization method. For a water network having a totalfNf demand loading
cases, the solution choice table is composed of the optimal costs, pipe diameters for

each optimal solution anHl ;Yn (NOJTN) values for each demand loading case. In the

solution choice table, each demand loading case is associated with a different set of
Hy, values but the same optimal costs and the pipe diameters for the tree.

Thethird stage: DE optimization for the core

During the third stage of the proposed optimization method, a differential evolution
(DE) algorithm is employed to optimize the design for the core of the original full
network. The water demands at the root nodes in the core have to be increased by the

total water demands of their corresponding trees before DE optimization. For the
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example given in Figure 2, the water demand$;&ndT, are added to the demands

at noder(T1)=9 andr(T,)=12 in the cores respectively. Furthermore, during the DE
optimization of the core, the optimal solutions obtained for the trees during the
second stage are incorporated. The proposed DE optimization algorithm for the core

is given as follows.

(1) A total of N solutions (pipe diameter combinations for the core) are randomly
generated for the core to initialize the DE search, where the population
size of the DE algorithm. It should be noted here that only the pipes in the core
are handled by the DE algorithm in the third stage of the proposed method.

(2) For each individual solution, a hydraulic solver (EPANET2.0 [Rossman 2000])
was used in this study) is used to obtain the head at each node for each demand
loading case. The head at each root node in the core for demand loading case
is tracked (denote ald ).

(3) The total pipe cost of the cofeC) is computed for each individual solution of
the DE algorithm. In addition, a penalty c@BE) is computed for the solution
has head deficits at the nodes in the core.

(4) The optimal solutions for the trees during in the second stage are now
incorporated into the DE process. The optimal solutions of trees are selected
from their corresponding solution choice tables based on the head at the root
nodes. The selection of the optimal solution for each tree from its
corresponding solution choice table is guided by one of two possible sets of

circumstances:
(i) If any head value at a root node for loading a@s@N (H7,) in the core

obtained by a hydraulic solver is smaller than the minin‘rtu*m1 value

associated with its corresponding demand loading nasethe solution

choice table of its corresponding tree, the optimal solution cost associated
with the minimumH;,n is added to th®C. Additionally, a penalty cost is

added to thé’E for this individual solution as no feasible solution is found

for this tree to satisfy the head constraints for all demand loading cases.
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(i) If all HE, values in the core are greater than the minirhijm values of

their corresponding demand loading cases in the solution choice table, the
minimum optimal solution in terms of cost in the choice table that has all
Hy, values smaller than their correspondidg, values is selected and

added tdPC.

The total pipe cost is obtained, therefore, by combining the selected optimal
solution cost for each tree and the cost for the core. The total penalty cost is
achieved by adding the penalty cost for each tree (if applicable) and the penalty

cost of the core (if applicable).

(5) The objective function value is obtained for each individual solution of the DE
by adding the total pipe cost and the total penalty cost. Then the mutation,
crossover and selection operators of the DE are carried out to generate the
offspring.

(6) Steps (2) to (5) are performed iteratively until the convergence criterion is
satisfied.

During the DE optimization, real continuous values for the pipe diameter are created
in the mutation process although discrete pipe diameters are used to initialize the
search. In the proposed method, the real diameter values are rounded to the nearest
commercially discrete pipe diameters after the mutation operator of the DE is
performed. Since the optimal solutions for the trees are included when the DE is
optimizing the core, the final solution obtained is actually the optimal solution for the
whole original network. However, the decision variables handled by the DE are only
the pipes in the core as the solutions for the trees are selected from their existing
solution choice tables. The DE, therefore, has a significantly reduced search space to
explore, as defined by the core, while optimal solutions are provided for the whole

network. This is the great benefit of the proposed optimization method.
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CASE STUDIES

Two benchmark WDS case studies each with a single demand loading case are used
to demonstrate the effectiveness of the proposed coupled BLP-DE method. These
studies are the New York Tunnels problem (NYTP) and the Hanoi Problem (HP). A
real-world WDS case study with multiple demand loading cases is then used to
further verify the effectiveness of the BLP-DE method in terms of dealing with a
relatively large and more complex case study. The DE algorithm and the BLP
formulation were coded using Matlab 7.5 and the BLP was solved by the ‘bintprog’
function in the Matlab 7.5. It is noted that the EPANET2.0 was used in this paper to
enable the hydraulic simulation. The Hazen-Williams equation (Equation (2)) was
used. The coefficients of Hazen-Williams equation used in this paper according to
those used in EPANET 2Were «.=10.670 (SI units used in this study); =1.852

and £=4.871. For the NYTP and HP benchmark case studies, all the previously
published results presented in this paper have used EPANET2.0 as the hydraulic
simulation model and hence utilized the same coefficients of Hazen-Williams
equation as those used in the proposed method. This therefore enables a fair
comparison between the proposed BLP-DE method and other previously published

algorithms.

Case study 1: New York Tunnels Problem (21 decision variables)

The layout of the NYTP and the decomposition results of the NYTP were given in

Figure 1 and 2 respectively. Two trees were identified for the NYTP network and a
series of values oH, (H; [ [2728300Q ) with an increment of 1 foot was used for

r(T1)=9 to enable the BLP optimization fdi. For T,, a series of values dfi; (
H, O [255300) with an increment of 1 foot was used f¢f,)=12 to conduct BLP

optimization. A solution choice table was generated for each tree of the NYTP case
study in the second stage of the proposed BLP-DE approach. Figure 3 givs the

value versus the optimal solution cost in the solution choice table for each tree.
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Figure3The H versustheoptimal costsin the solution choice tables of two
treesfor the NYTP case study.

As shown in Figure 3, only seven different optimal solutions were fount feith a

large range of assumed heads at root mOb¢, while 23 different optimal solutions

can be located fof,. For each tree, the optimal solution cost decreases as the head
value at the root node increases. These optimal solutions are used to generate solution

choice tables that are used during the third stage of the proposed method

The number of decision variables in the core is 17, compared to 21 decision variables
in the original full NYTP, as four pipes are located in the trees. A populatiomN\§ize (

of 50, a weighing factorH) of 0.5 and a crossover rat€r] of 0.5 are used for the

DE applied to the core optimization in the third stage of the proposed method. The
number of maximum allowable evaluationdMAE) is 7,500 and 100 runs with
different starting random number seeds are performed for the DE applied to the core.
The results of the proposed BLP-DE method and other optimization algorithms that

have previously been applied to the NYTP case study are presented in Table 2.

The current best known solution for the NYTP case study is $38.64 million (Maier et
al. 2003). In the current study, this best solution was found with a 100% success rate

by the proposed BLP-DE method over 100 different runs. The rate at which the best

178



CHAPTER 7. JOURNAL PAPER5-COUPLEDBLP-DEMETHOD FORWDS OPTIMIZATION

known solution is found by the new BLP-DE method is higher than all the other

optimization algorithms in Table 2.

The most noticeable advantage of the proposed BLP-DE method over other
optimization algorithms is the efficiency improvement. The proposed BLP-DE
approach required only an average of 3,486 evaluations over 100 different runs to
find the optimal solutions, which is significantly less than those required by all the
other algorithms given in Table 2. It can be concluded that, for the NYTP case study,
the proposed BLP-DE outperformed all the other optimization algorithms given in
Table 2 in terms of percentage with the current best solution found and efficiency.

Table 2 Summary of theresults of the proposed method and other EAs
applied to the NYTP case study

@) (2 ®3) (4) ®) (6) ()

Percent of Average Maximum
. 10 No. Best . . Average evaluations to allowable
Algorithm - trials with - .
of solution . cost find first evaluations or
best solution .
runs (M) f ($™m) occurrence of  evaluations for
ound X
the best solution  convergence
BLP-DE 100 38.64 100% 38.64 3,486 7,500
NLP-DF? 100 38.64 99% 38.64 8,277 20,000
GHEST 60 38.64 92% 38.64 11,464 -
HD-DDS’ 50 38.64 86% 38.64 13,000 50,000
SUSES‘b“ 300 38.64 71% NA 5,492 10,000
gg::;%r 100  38.64 65% NA 57,583 ;
MMAS’ 20 38.64 60% 38.84 30,700 50,000
V:rig? 2000 38.64 30% 38.83 - 80,000

'Results from this studyZheng et al. (2011¥Bolognesi et al. (2010jTolson et al. (2009¥Suribabu
(2010).°Lin et al. (2007).”Zecchin et al. (2007fMontalvo et al. (2008)’The total computational
overhead required by proposed BLP-DE method has been converted to the equivalent number of full
NYTP evaluationst’Results are ranked based on column (4).

It should be noted that all the computational overhead of the proposed BLP-DE
method (including the BLP optimization for the trees and the DE optimization for the
core) was converted to the equivalent number of full NYTP network evaluations
using the same computer configuration. In particular, the full network was run 1000
times with randomly selected pipe configurations using the Matlab code developed

for this proposed method. The average computational time for each full network
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simulation was obtained. Then the total computational time used by the core
optimization and the BLP optimization applied to the trees was converted to the
equivalent time for full network simulations. This allows a fair comparison between
the proposed BLP-DE method and other optimization algorithms in terms of
efficiency. This computational analysis approach has been used for each case study

investigated in this paper.

Case study 2: Hanoi Problem (34 decision variables)

The Hanoi Problem (HP) (Fujiwara and Khang 1990) has frequently been used as a
benchmark WDS case study to test the performance of various optimization
algorithms. The layout of the HP is given in Figure 4. The details of the HP, the
available pipe diameters and the cost of these diameters are given by Fujiwara and
Khang (1990).
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Figure 4 The networ k layout of the HP case study
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The decomposition results for the HP network in the first stage of the proposed BLP-
DE method are given in Figure 5. As shown in Figure 5, two trees were identified for
the HP network including;={11, 12, 13, [10], [11], [12]} andl,={21, 22, [21],

[22]}, where 11, 12, 13, 21 and 22 are nodes, and [10], [11], [12], [21] and [22] are
links. r(T1)=10 andr(T,)=20 are root nodes of thE and T, respectively ad; N
C=10andT, N C =20 C is the core of the HP network as shown in Figure 5).

13 12
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Figure 5 The decomposition results of the HP case study

For the HP case study, the head provided by the reservoir is 100 meters and the

minimum head requirement for each node is 30 meters (Fujiwara and Khang 1990).
In this study, a series dfl; (H; [ [30100]) with an increment of 0.1 meter was

used forr(T;) andr(T,) to enable the BLP optimization % and T, in the second

stage, thereby generating a solution choice table for each of the trees. The values of
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H and the optimal solution costs from the solution choice table for each tree are

presented in Figure 6.

As shown in Figure 6, 18 different optimal solutions were found for each ofTpoth
andT, of the HP network, although 700 BLP runs with a range of heads between 30
and 100 meters at the root nodes (0.1 meter interval) were performed for each tree.
This indicates that a larger interval (of say 0.5 meter or 1 meter) may be enough to
obtain these 18 optimal solutions for each tree. However, due to the extreme
efficiency for the BLP applied to the tree optimization, a relatively small interval (0.1
meter) was used in this study to improve the likelihood of including all possible
optimal solutions. These optimal solutions are used to form solution choice tables for

the trees, which are used for the DE optimization in the third stage of the proposed

method.
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Figure6 The H versustheoptimal costsin the solution choice tables of two
treesfor the HP case study.

In the third stage, a DE witi=80,F=0.7,Cr=0.8, andNMAE=40,000 was applied to

the core of the HP network. The number of decision variables to be considered is 29
since five pipes of the 34 pipes in the HP network are consigned to the two trees.
Based on the heads at the root nodes, the DE algorithm chooses the optimal solutions

for the trees from their corresponding solution choice tables while also exploring the
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search space of the core. As such, the optimal solutions for the tree are used in
conjunction with solutions from the core to yield optimal solutions for the whole HP

network.

Table 3 provides the final results of the proposed BLP-DE approach applied to the
HP case study. The other previously published results for the HP case study are also
included in Table 3 to enable the performance comparison. The current best known
solution for the HP case study, with a cost of $6.081 million, was first found by Reca
and Martinez (2006). As shown in Table 3, the proposed BLP-DE performs the best
in terms of the percentage of the current best solution found for the HP case study.
This is reflected by the fact that the proposed BLP-DE found the current best solution
for the HP case study 98% of the time over 100 runs using different starting random
number seeds, which is higher than all the other algorithms given in Table 3.

Table 3 Summary of theresults of the proposed BL P-DE method and other
EAsapplied to the HP case study

1) (2) 3) (4) (5) (6) (7)
Percent of Average Maximum
Algorithm®  No. of Best trials with  Average evaluations to allowable
9 ruﬁs solution best cost find first evaluations or
($M) solution ($M) occurrence of evaluations for
found the best solution convergence
BLP-DE" 100 6.081 98% 6.085 33,148 40,000
NLP-DFE? 100 6.081 97% 6.082 34,609 80,000
S“é'g?b” 300  6.081 80% NA 48,724 100,000
St 100 6.081 64% NA 43,149 .
GHEST 60 6.081 38% 6.175 50,134 -
GENOMP 10 6.081 10% 6.248 NA 150,000
HD-DDS’ 50 6.081 8% 6.252 100,000 100,000
LSO, 2000 6.081 5% 6.310 NA 500,000
MMAS® 20 6.134 0% 6.386 85,600 100,000

'Results from this studyZheng et al. (2011)Suribabu (2010)‘Lin et al. (2007)>Bolognesi et al.
(2010).°Reca and Martinez (2006§Tolson et al. (2009)*Montalvo et al. (2008)?Zecchin et al.
(2007).*°The total computational overhead required by proposed BLP-DE method has been converted
to the equivalent number of full HP evaluatioHResults are ranked based on column (4).

The total computational effort required by the proposed BLP-DE method, including
the BLP optimization for the trees and the DE optimization for the core, has been

converted to the equivalent number of full HP network evaluations. As displayed in
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Table 3, the proposed BLP-DE used an average number of 33,148 evaluations to find
the optimal solutions, which is fewer than all the other algorithms shown in Table 3.
This indicates that the proposed BLP-DE is able to find optimal solutions more

quickly than other algorithms.

Case study 3: Real-world network case study (96 decision variables)

The real-world network case study (denoted as RN case study) was taken from a
small town in the south of China. This is a completely new case study and has not
been previously studied. The RN network has 96 pipes, 85 demand nodes and one
reservoir with a fixed head of 50 meters. Three demands loading cases have been
considered for this network including a peak hour demand loading case and two fire

loading cases. The layout of RN case study and the two fire loading positions are

/‘\/\/
T

shown in Figure 7.

Demand position for fire loading case 2

Demand position for fire loading case 1

Figure 7 The network layout of the RN case study
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The objective of this case study is to determine the least-cost design of this water
network, while satisfying a minimum pressure of 15 meters at each demand node for
all demand loading cases and 10 meters only at the fire demand loading nodes during
the two separate fire loading cases. All the pipes have an identical Hazen-Williams
coefficientof 130. A total of 14 commercially available pipe diameters ranging from
150 mm up to 1000 mm are available for selection for each pipe and the cost of each

pipe is given by Kadu et al. (2008).

The graph decomposition algorithm was applied to RN case study in the first stage of
the proposed method in order to identify the trees and the core. The decomposition
results are given in Figure 8. As shown in Figure 8, a total of eight trees are

determined and 43 pipes are assigned to these trees.

/\(‘l'\" fT

<+—— Root node §
o
Root node
Root nob‘\,\—_\
T
'l‘\‘

Demand position for fire loading case 2

Root node

Figure 8 The decomposition results of the RN case study

In the second stage of the proposed method, eight solutions choice tables were

generated for the trees. The number of pipes involved in the core of RN case study is
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53 since 43 pipes are assigned to trees (96 pipes exist in the full RN case study).
Thus, only the 53 pipes rather than the 96 pipes are handled by the DE in the third
stage of the proposed method. For the DE applied to the core optimization of the RN
case studyiN=150,F=0.4 andCr=0.8 were selected based on a few parameter trials.

The maximum number of allowable evaluations was set 75NIRIRAE=75,000).

In order to enable a performance comparison, a standard DE (SDE) was also applied
to the original full RN case study (96 pipes). For the SB¥E300,F=0.3,Cr=0.8 and
NMAE=600,000 were selected based on a detailed preliminary analysis. Ten runs
with different starting random number seeds were performed for the DE applied to
the core in the third stage of the proposed method and the SDE applied to the original
full network (the proposed method and the SDE used the same random number
seeds). It is not necessary to perform multiple runs for the tree optimization in the
second stage of the proposed method. This is because that the same solutions are
found for the trees using the deterministic BLP method. The solutions of the
proposed BLP-DE method and the SDE algorithm applied to the BN case study are
provided in Figure 9.
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Figure 9 Solution distributions of two algorithms applied to the RN case study
(10 runsfor each)
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It is clearly shown in Figure 9 that the proposed BLP-DE method significantly
outperformed the standard different evolution (SDE) with calibrated parameter values
for the RN case study in terms of solution quality and efficiency. In addition, it is
observed that the solutions produced by the proposed BLP-DE are less scattered than
those generated by the SDE based on ten different runs. This indicates that the
performance the proposed BLP-DE approach is less affected by the random number
seeds than that of the SDE. The proposed method is therefore able to yield good

quality optimal solutions with a higher confidence level.

The results of the proposed BLP-DE and the SDE applied to the RN case study are
provided in Table 4. As shown in Table 4, the proposed BLP-DE found a best
solution for the RN case study with a cost of $6.16 million. The best solution found
by the SDE was $6.24 million, which is 1.3% higher than the best solution produced
by the proposed BLP-DE method. The average cost solution over 10 runs found by
the BLP-DE method was $6.18 million, which is only 0.3% higher than the best
solution ($6.16 million found by the proposed BLP-DE method in this study) while
2.1% lower than that generated by the SDE.

Table 4 Summary of theresults of the proposed BL P-DE method and the SDE
applied to the RN case study

Average .
Percent evaluations to Total execution
Algorithm No. Best of trials  Average find first Maximum  time (hours) for
9 of solution with best cost occurrence of allowable 10 runs to find
runs  ($M) solution ($M) evaluations optimal solutions
the best
found . on Matlab 7.8
solution
BLP-DE' 10 6.16 10 6.18 73,092 75,000 2.2
SDE 10 6.24 0 6.31 405,330 600,000 12.4

'Results from this studyThe total computational overhead required by proposed BLP-DE method has
been converted to the equivalent number of full RN evaluatfde computer configuration is a 3.0

GHz Pentium PC (Inter R).

In terms of efficiency, the proposed BLP-DE was approximately 4.5 times more
efficiently in terms of average numbers of evaluations than the SDE in finding
optimal solutions for this case study. This is evidenced by the fact that the average

number of equivalent full network evaluations required by the proposed BLP-DE
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method for convergence was 73,092, which is only 18% of the number of evaluations
required by the SDE. The average number of 73,092 was obtained by converting the
total computational overhead of the proposed method to the equivalent number of full
RN network evaluations. In terms of comparing the execution time in Matlab 7.5, the
proposed method required a total of 2.2 hours to find optimal solutions for ten
optimization runs, while the SDE needed a total of 12.4 hours to arrive at optimal
solutions for ten runs. For the proposed method, the total execution time for the BLP
optimization was 0.48 hours, which is 21% of that required by the total execution
time of the proposed BLP-DE method. Note that the graph decomposition process is

extremely efficient and hence its computational overhead is not included.

CONCLUSIONS

In this paper, a novel coupled binary linear programming and differential evolution
(BLP-DE) optimization approach based on network decomposition is proposed for
dealing with WDS optimization problems. Three stages are involved in the proposed
BLP-DE optimization method. These are (i) the full water network is decomposed
into trees and the core using a graph decomposition algorithm; (ii) the trees are
individually optimized by BLP and a solution choice table is constituted for each tree
and (iii) a DE is employed to optimize the core of the original full network while
incorporating the optimal solutions for any tree. Different components of the original

full network are, therefore, optimized by different optimization algorithms.

The proposed BLP-DE method has been applied to three case studies and the results
compared with those of other algorithms. For the NYTP and HP case studies, the
proposed BLP-DE method found the current best known solutions for both of them
with a higher success rate and a significantly improved efficiency compared to other
algorithms given in Tables 2 and 3. For the relatively larger and more complex case
study (RN case study with three demand loading cases: 96 decision variables), the
proposed BLP-DE was able to find better quality optimal solutions than a standard

differential evolution (SDE) with approximately 4.5 times faster convergence speed.
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Thus, the proposed method shows substantial promise as a tool for finding good

quality solutions for relatively large water networks.

It should be noted that the proposed BLP-DE method is not appropriate to optimize
the types of water networks having only loops or only trees. However, it is very
common for a water network to have loops and multiple trees in practice and the
proposed BLP-DE method has advantages in efficiently finding good quality optimal
solutions for this common type of network over other optimization methods as
demonstrated in this paper. It has been also found in this study that the computational
overhead increases significantly when the number of decision variables in the tree
handled by the BLP increases. Thus, the proposed method would need to be further
developed when dealing with the water network having very large trees to be
optimized by the BLP. Other future studies on this research line may include (i) the
application of the proposed BLP-DE method to deal with the optimization of
complex water networks, which may have pumps, valves and tanks involved, and (ii)
the extension of the proposed BLP-DE method to tackle the multi-objective

optimization problem for WDSs.
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Chapter 8. Journal Paper 6-Decomposition Optimization of WDS
with Multiple Sour ces

8.1 Synopsis

A decomposition and multi-stage optimization approach applied to the optimization
of water distribution systemswith multiple supply sour ces

Chapters 3, 4 and 5 have outlined the research outcomes based on the first objective of
this study (see Section 1.1 in Chapter 1). Chapters 6 and 7 have introduced two new
hybrid optimization approaches for optimizing water distribution systems (WDSSs)
developed in this research, which is the second objective of this study. These two
methods have been demonstrated to be effective in terms of efficiently finding good

quality optimal solutions based on testing real-world sized water distribution systems.

For the third and fourth objectives presented in Section 1.1 of Chapter 1, two advanced
optimization methods that incorporate graph decomposition techniques during the
optimization process have been developed in this research, which are outlined in
Chapters 8 and 9. Two new water network decomposition concepts have been developed
to facilitate network optimization, which are optimal source partitioning technique and
the sub-network identification approach. These two network decomposition methods are

presented in Chapters 8 and 9 respectively.

In this Chapter, a decomposition and multi-stage optimization method developed in this
research is introduced. For a WDS, a multiple source of supply strategy is normally
adopted in addition to the presence of loops in the WDS in order to improve supply
reliability. For such a complex WDS with multiple supply sources (WDS-MSS), existing

algorithms normally tackle the system as a whole in order to find optimal design
solutions. In contrast, a decomposition and multi-stage optimization approach is

developed in this research to deal with the optimization for the WDS-MSS design.

In the proposed decomposition and multi-stage optimization method, an algorithm is

developed to identify the optimal source partitioning cut-set for a WDSKnghpply
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sources. As such, the whole original WDS is decomposeld sub-networks by
removing the optimal source partitioning cut-set. For each sub-network, one and only
one supply source is assigned. Each sub-network is then optimized by a DE algorithm
independently, which is the first stage optimization phase. It is expected that the optimal
solution for each sub-network will be achieved with great efficiency as a significantly
reduced search space (compared with the original search space of the entire network) is

explored by the DE algorithm.

The optimal solutions for all sub-networks are then combined to provide an approximate
optimal solution for the whole original network. However, this approximate optimal
solution needs to be further improved as the pipes within the optimal source partitioning
cut-set are not included during the sub-network optimization (first stage optimization).
Thus, a second phase DE is used to explore the search space in the region around the
obtained approximate optimal solution and better quality solutions for the whole WDS
are expected to be found with significant reduced computational effort. This is the

second stage of the optimization process.

The concept of multi-stage optimization is based on the decomposition of large-scale and
complex systems into independent subsystems (although these sub-systems are actually
interconnected and are not truly independent of one another). Each subsystem is
optimized independently, and the optimal solutions for each subsystem are then
combined together to derive the optimal solution for the whole system. This is the first

known work to undertake the multi-stage optimization technique for designing WDS.

This work has been published\idater Resources Researahd the paper is presented

here.
Citation of Paper

Zheng, F., A. R. Simpson, and A. C. Zecchin (2012d). “A decomposition and multi-
stage optimization approach applied to optimization of water distribution systems with
multiple sources.Water Resources Researdbj:10.1029/2012WR013160.
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82 Journal Paper 6: A decomposition and multi-stage
optimization approach applied to the optimization of water
distribution systems with multiple supply sources (Published in
Water Resources Research)

Feifei Zheng, Aaron C. Zecchin and Angus R. Simpson

Abstract

The aim of this paper is to present a decomposition and multi-stage approach for
optimizing the design of water distribution systems with multiple supply sources (WDS-
MSS). An algorithm is first proposed to identify the optimal source partitioning cut-set
for a WDS-MSS. A WDS withK supply sources is therefore decomposeto
disconnected sub-networks by the removal of the determined cut-set. Then aKotal of
separate differential evolution (DE) algorithms are used to optimize the designskor the
sub-networks respectively. This is the first optimization stage. The optimal solutions for
theK sub-networks plus the optimal cut-set being the minimum allowable pipe sizes are
used to create a tailored seeding table. This table is used to initialize a second stage DE
algorithm to optimize the whole of the original WDS, which is the second stage of the
optimization process. Four WDS-MSS case studies are used to demonstrate the
effectiveness of the proposed method. A standard DE algorithm (SDE) seeded by the
total choice table rather than the tailored seeding table is applied to the entire network for
each case study and the results are compared with those of the proposed method in terms
of efficiency and solution quality. The comparison demonstrates that the proposed
method (i.e., decomposition followed by multi-stage optimization) shows better
performance than results from a whole of network optimization. Additionally, the
proposed method also exhibits significantly improved performance compared with the

optimization technigques that have been previously used to optimize these case studies.

1. Introduction

Over the last four decades, significant research has been undertaken to develop

techniques to optimize the design of water distribution systems (WDSs). Various
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optimization techniques including traditional optimization methods and evolutionary
algorithms (EAs) have been applied to WDS optimization and these are summarized
in Table 1 (it should be noted that only the first significant paper for each
optimization technique applied to WDS optimization is provided in Table 1).
Traditional optimization techniques such as linear programming (LP) and nonlinear
programming (NLP) often converge at local optimal solutions due to the
nonsmoothness properties of the WDS optimization probiegef et al.1994]. EAs

given in Table 1 have been demonstrated to be able to find better quality solutions
than traditional optimization methods based on testing on a number of WDS case
studies. One major drawback with using EAs, however, is that they require a large
number of network evaluations to find optimal solutions, resulting in an expensive
computational overhead, especially for relatively large case studies. Thus, it is
difficult for these EAs to find good quality optimal solutions for real-world sized
WDSs, as these systems are generally complex, with large numbers of decision
variables.

Table 1 Types of previously used optimization techniques applied to WDS
optimization

First reference
Alperovits and Sham|l977]
Fujiwara and Khandg1990]
Simpson et a[1994]

Dandy et al[1996]
Loganathan et al[1995]
Lippai et al.[1999]
Geem et al[2002]

Algorithm®
Linear programming (LP)
Nonlinear programming (NLP)
Standard genetic algorithm (SGA)
Modified genetic algorithm (MGA)
Simulated annealing (SA)
Tabu search (TS)
Harmony search (HS)

Shuffled frog leaping algorithm (SFLA)
Ant colony optimization (ACO)

ANN metamodels

Particle swarm optimization (PSO)
Scatter search (SS)

Cross-entropy algorithm (CE)

Eusuff and Lansej2003]

Maier et al.[2003)

Broad et al.[2005)

Suribabu and Neelakant4d2006]
Lin et al.[2007]

Perelman and Ostfelf2007]

Hybrid discrete dynamically dimensione
search (HD-DDS) algorithm
Differential evolution (DE)
Honey-Bee Mating Optimization (HB)  Mohan and Bab{2010]
Genetic Heritage Evolution by Stochasti .
Transmission (GHEST) CBoIogneS| et al[2010]
'Only the first significant paper for each optimization technique applied to WDS optimization is
provided.

dI'olson et al[2009]
Suribabu[2010]

197



CHAPTER8. JOURNAL PAPER 6-DECOMPOSITIONOPTIMIZATION OF WDSWITH MULTIPLE SOURCES

Much research has been done in an attempt to improve the efficiency of EAs applied
to large WDS optimization problem®dlognesi et al.2010]. Decomposing the
original WDS using graph theory to facilitate the optimization process is one of these

research lines.

2. Decomposition of WDSs

Normally, decomposition of a water network is used to carry out an analysis of
network connectivity, reliability and management strategi€stfeld [2005]
employed graph theory to undertake a connectivity analysis for WD&serlein
[2008] decomposed complex water networks into forests, blocks and bridges using
graph theory. Based on the decomposition algorithm propos&kbgrlein[2008],

the original whole network can be simplified to several parts that are able to improve
the understanding of the interaction among different network components, thereby
enabling a network vulnerability analysis and improved management of the network.
Yazdani and Jeffrej2010] used graph theory and complex network principles to
conduct a robustness analysis for WDSs wiliie Nardo and Di Natle [2010]
proposed a design support methodology for district metering of WDSs using graph

decomposition.

Few attempts have been made to utilize graph decomposition to facilitate the WDS
design optimizationKrapivka and Ostfeld2009] proposed a network decomposition

based GA-LP scheme for the least-cost pipe sizing of WDSs. In their work, the
looped water network was first decomposed into a number of spanning trees and
chords. Then an LP was utilized to optimize each spanning tree, allowing the
identification of the least-cost spanning tree. Finally a GA was used to alter the flows
for the least-cost spanning tree (referred to the “outer” problem) and the LP was

employed to optimize the tree network with the updated flows (the “inner” problem).

Cisty [2010] proposed another network decomposition based GA-LP model for
solving WDS design problems. In this proposed GA-LP method, a GA was used to
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generate various trees for a complex looped network, and LP was used to optimize
each tree networkdaghighi et al.[2011] developed a hybrid model incorporating a
GA and integer linear programming (GA-ILP) to optimize the design of WDSs. As
for the GA-LP method proposed lfisty [2010], the GA in the GA-ILP model
proposed byHaghighi et al.[2011] randomly generated tree networks for the original

looped WDS and the ILP was utilized to optimize each tree network.

Zheng et al.[2011a] proposed a combined NLP-DE method for optimizing WDS
design. In the proposed NLP-DE approach, the original WDS was decomposed into a
shortest-distance tree and chords. Then an NLP was employed to arrive at an
approximate optimal solution for the decomposed WDS. The approximate optimal
solution obtained from the NLP was then used to seed a DE in order to generate

improved quality solutions for the original full WDS.

3. The proposed decomposition and multi-stage optimization method

The above analysis indicates that graph theory is normally used to find various trees
for the looped WDS in previously proposed decomposition based optimization
methods. This is motivated by the fact that optimal solutions for trees can be obtained
by deterministic optimization methods such as LP, NLP or ILP with great efficiency.
In contrast in this paper, a novel decomposition method is proposed to alternatively
decompose the original complex WDS into sub-networks rather than into trees in

order to facilitate network design optimization.

For a real-world WDS, multiple sources of supply (that is - multiple tanks) are
normally incorporated into the system in addition to having loops in order to improve
the reliability of supply. For such a complex WDS with multiple supply sources
(WDS-MSS), existing optimization algorithms normally tackle the system as a whole
in order to find optimal design solutions. Normally, design of a large scale water
network with multiple sources is computationally very rigorous. This is due to the

size of the search space as well as the time for hydraulic simulation of the network.
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The method proposed here has (i) developed a graph decomposition method to
partition the larger optimization problems into smaller ones that in turn reduces the
computational overhead for optimizing the design of the WDS-MSS, and has (ii)
developed a multi-stage DE method to optimize the design of the sub-networks
obtained by decomposing the WDS-MSS and then the original whole network. The
outcome is a significantly more efficient and effective method for the optimization of

the design of water networks with multiple sources.

In the proposed decomposition and multi-stage optimization method, an algorithm is
developed to identify the optimal source partitioning cut-set for a WDS Kyith
supply sources. By removing the optimal source partitioning cut-set, the whole
original WDS is decomposed kKosub-networks. For each sub-network, one and only
one supply source is assigned. Each sub-network is then optimized by a DE

algorithm independently, which is the first stage of optimization.

The optimal solutions for all sub-networks are then combined to provide an
approximate optimal solution for the whole original network. However, this
approximate optimal solution needs to be further improved because the pipes within
the optimal source partitioning cut-set were not included during the first stage of the
sub-network optimization. A second phase DE is therefore used to explore the search
space around the obtained approximate optimal solution and better quality solutions
for the whole WDS are expected to be found with significantly reduced

computational effort. This is the second stage of the optimization process.

The concept of multi-stage optimization is based on the decomposition of large-scale
and complex systems into independent subsystems (although these sub-systems are
actually interconnected and are not truly independent of one another). Each
subsystem is optimized independently, and the optimal solutions for each subsystem
are then combined together to derive the optimal solution for the whole system.
Although a multi-stage optimization approach has been used to control the pollution

of water resource systemddgdss 1970, Haimes 1971], optimize urban water
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managementzhu et al 2005] and deal with the reservoir operation probl€anjon
et al. 2009], the method proposed here is the first time that multi-stage optimization

method has been used to optimize the design of a WDS.

Although the DE algorithm is used in this study, other EAs such as a GA could also
be implemented in the proposed optimization framework. However, the performance
comparison of the DE algorithm with other optimization algorithms has not been
carried out in this study. The methodology of the proposed decomposition and multi-

stage method are given later.

4. Formulation of the WDS-M SS optimization problem

Typically, single-objective optimization of a WDS is the minimization of system total
life cycle costs (pipes, tanks and other components) while satisfying head constraints at
each node. In this paper, the proposed decomposition and multi-stage optimization
method is verified using WDS-MSS case studies with pipes only for a single demand

load case. Thus, the formulation of the WDS-MSS optimization problem can be given

by:

Minimize F= aZpl DL, (1)
Subject to:

H"™< H< H™ k=12....n] @)

G(Hy, D)=0 3)

D A ”

whereF=network cost that is to be minimizeSifnpson et all994]; Di=diameter of the
pipei; Li=length of the pip& a, b=specified coefficients for the cost functiong=total
number of pipes in the networkij=total number of nodes in the netwoi®(Hy,

D)=nodal mass balance and loop (path) energy balance equations for the whole network,
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which is solved by a hydraulic simulation package (EPANET2.0 in this stdgdshead
at the nodé&=1,2....nj; H;""and H™ are the minimum and maximum allowable head

limits at the nodes; arl= a set of commercially available pipe diameters.

5. Methodology of the proposed method

The flowchart in Figure 1 outlines the features of each step of the proposed

decomposition and multi-stage optimization approach.

Decomposition The original WDS withK supply source§

Graph theory algorithm

.

Identification and removal of the optimal source partitioning cut2set

T ST

Sub-networlG; Sub-networlG, | e, Sub-networlGy_, Sub-networlGg

Multi-stage optimization

DE, DE, DEx; DEL

A 4 A 4 A 4 A,

Optimal solution 1 Optimal solution 2~ ... Optimal solutiorK-1 Optimal solutiorkK

\\ / Minimum allowable pipe

diameter for the
optimal source partitioning
cut-setQ

Creation of the initial seeding tabl

DEy+1

\4

Final optimal solution for the original WDS wifasupply sources

Figure 1 Flowchart of the proposed optimization approach

5.1. Decomposition of the WDS-M SS

5.1.1. Sour ce partitioning cut-set of the WDS-M SS

In a connected grapB(V,E), a cut-set is a set of edges whose removal feomsults
in G being disconnectedfo 1974], whereV is a set of vertices ard is a set of

edges. In this paper, a source partitioning cut@etqr a WDS-MSS is a set of pipes

whose removal from the system results in the WDS-MSS being separated in such a
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way that each sub-network is attached to one and only one unique supply source.
That is, the original WDS witK supply sources is decomposed iKtalisconnected
sub-networks after removal of the source partitioning cut-set. For a WDS-MSS with
two supply sources (reservoirs) (see Figure 2(a)), all source partitioning cutkets (
and their corresponding two sub-networks after removal of the cut-set are given in
Figure 2 (b, c, d).

[1] D (2] ) [6] [1] @iﬂ
(3] [4] [3g [4]
OO, B @
(a) A two reservoirs water network (b) Source partitioning cut-set (pipes 2 and 3)
a1 R1
= L = = =]
Hive omul L@i@ﬂ
3 4 R
@ @

(c) Optimal source partitioning cut-set (pipes 2 and(a) Source partitioning cut-set (pipes 2 and 4)
and sub-networks and sub-networks

Figure 2 An example of cut-setsand the sub-networksfor atwo reservoir WDS
(a: thetwo reservoirswater network; (b): Source partitioning cut-set (pipes 2
and 5) and sub-networks, (c): Optimal source partitioning cut-set (pipes 2 and 3)
and sub-networ ks and (d): Sour ce partitioning cut-set (pipes (2 and 4) and sub-
networ ks))

As shown in Figure 2 (a), the original WBRV,E), whereV={R1, R2, 1, 2, 3, 4}
andE={1, 2, 3, 4, 5, 6}, has two reservoirRl andR2), 6 links and 4 nodes. An
arbitrarily selected source partitioning cut-8e{2, 5} is shown in Figure 2 (b). The
original two-reservoir WDS is decomposed to two sub-netwGiKg;,E;), Go(V2,Ey)
after removal of the cut-sé&={2, 5}, whereV,={R1, 1, 3},E:={1, 3}, V.={R2, 2, 4},

E,={4, 6}. It can be observed that a total of three cut-sets exist in this two-reservoir
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WDS, which enable the network disconnection. In the proposed decomposition and
multi-stage optimization method, an optimal source partitioning cuiseis
proposed to decompose the WDS-MSS. The definition ofXhend the algorithm

that has been developed in this study to identify®héor a WDS-MSS are outlined

in the next section.

5.1.2. Identification of the optimal source partitioning cut-set © of the WDS-
MSS

For a WDS-MSS withK supply sources, each nodén the water network hak
different potential water supply sources and a number of potential supply paths from
each supply source. For a given supply sokraed the demanid there exists a finite

set of independent paths joining these two nodes, symbolized hBe Ber each

supply pati.O R, , the available friction slope is calculated as:
Si(A) = sz—LHll (5)
104
where §;(4) is the available friction slope from sourketo nodei based on the
supply pathAOP,, H, is the head of the sourde and H™ is the minimum
allowable head requirement at nadd, is the length of link (I0X). Amongst the

different paths\O P, , the path that has tHargest available friction slope A, ) is

considered to be the most economic supply path for thisinooe sourcek [Zheng

et al. 2011a], which is given as:

Aq = argmaxs, (1) (6)

AOR

Then for a given node the available friction slope for the economic paths from each
source can be constructed to form the&et{ S (4;), S,(A,;) OIS, (A )} . Given

this, the sourck with the greatest available friction slogg for nodei is taken to be

the supply source for nodeThis is based on heuristic reasoning that it is economical
overall for a demand node receive flows from a supply source having a relatively

high available head and/or a relatively short distance to this demand node. As such,
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each node is assumed to receive flows from one and only one supply source in the

proposed method according to this heuristic approximation.

By assigning demand nodes to different supply source nodes, a demand Mdde set
can be constructed for each supply source rodehich consists of all nodes for
which k is the supply source. Then links that have different supply sources for two

nodes on each side are obtained, which is defined as:

Q={(i, ):O N, ON,, kg mkm=1I[[ K} (7)
where (i, j) is the link having node andj on each side. This set of links is defined

as the optimal source partitioning cut-setfor the WDS-MSS and the removal of

the optimal cut-set leaves the original WDS-MSS decomposed into several sub-

networks. Each sub-network is composed of one and only one supply source and a
particular number of nodes and pipes. Each supply source only provides water to
specific nodes established when the optimal source partitioning cut-set is removed.
Thus, the optimal source partitioning cut-set is actually the estimated optimal supply

boundary of different supply sources in a WDS.

The two-reservoir WDS presented in Figure 2(a) is used to explain the praposed

to decompose the network. The data, including the length of each link, the elevation
of each node and reservoir, and the minimum head requirement for each node is
given in Table 2.

Table 2 Networ k data of the WDS with two reservoirs

Nodes Elevation Head requirement Links Length

(m) (m) (m)
R1 54 - 5 550
R2 56 - 6 400
1 27 20 1 800
2 29 20 2 800
3 31 20 3 650
4 33 20 4 700

Each supply path for each nodg énd the available friction slope for each path (
S(A)) are provided in Table 3. The path having the largest available friction slope

has been highlighted for each node in Table 3.
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Table 3 Supplying paths and the available friction slope for each node

; Available
Nodes Length  Available head ( S
: Path min friction slope (

(i) O Tm) H-H) (M) o)
R1-1 800 7 0.0088

1 R2-6-2 1200 9 0.0075
R2-6-4-5-3 2300 9 0.0039

R1-1-2 1600 5 0.0031

2 R1-1-3-5-4 2700 5 0.0019
R2-6 400 7 0.0175

R1-1-3 1450 3 0.0021

3 R2-6-2-3 1850 5 0.0027
R2-6-4-5 1650 5 0.0030
R1-1-2-4 2000 1 0.0005

4 R1-1-3-5 2300 1 0.0004
R2-6-4 1100 3 0.0027

As shown in Table 3Nri={1} as Ari-1is the most economical path that has the
largest available friction slope for node Nr= {2, 3, 4} as these nodes have the
largest available friction slopes froR2. Thus the optimal source partitioning cut set

is given asQ ={2, 3} as the nodes on each side of these two links are assigned to
different reservoirs. The optimal partitioning cut-setand the sub-networks after

removal of theQ are given in Figure 2 (c).

For a relatively small WDS-MSS, th@ can be determined using complete
enumeration. However, it is impossible to enumerate all the paths for a relatively
large WDS-MSS. An algorithm that is used to efficiently identify the optimal source
partitioning cut-seQ for a large WDS-MSS has been developed in this research.

The proposed approach is motivated by the fact that the shortest-distané péth

all the available paths from the same supply source to a particular node always has
the largest available friction slopg, . This is reflected in Equation (5), which shows

that the available head for a particular node to a particular supply source is constant.

Therefore, the shortest path between a node and a particular supply source has the
largest available friction slopége., P, =A,. The Dijkstra algorithmeo 1974] is

employed in this study to find the shortest-distance path for each node to different

supply sources. The details of Dijkstra algorittide§ 1974] are given as follows.
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In the Dijkstra algorithm, either a permanent label or temporary label is assigned to
each node. A permanent label is given to a node once the shortest path from this node
to source node has been determined. The value of the permanent label is made equal
to the sum of lengths of the shortest path. In contrast, a temporary label is given to a
node for which the shortest path has not yet been identified. The value of this
temporary label is set to be equal to the sum of lengths of the shortest path in the

current iteration and this value will be updated in later iterations.

The Dijkstra algorithm begins by assigning a permanent label 0 to the starting node
(supply source node) and a temporary labe{this is replaced by a large number in

the computer algorithm) to the remaining nodes (demand nodes in a WDS-MSS). In
the search procedure, at each iteration, another node gets a permanent label according

to the following rulesPeo 1974]:

Rule 1. Every nodgthat has not yet permanently been labeled is updated with

a new temporary label whose value is given by
min [old labelj, old labeli + dj]

wherei is the latest node permanently labeled in the previous iteration.
d; is the direct length from nodeto nodej. If nodesi andj are not

directly connected, theaf=o.

Rule 2. At each iteration, the smallest value amongst all temporary labels is
found and the corresponding node is permanently labeled with this
value. Thus a new permanently labeled node is produced in this
iteration. If more than one temporary label has the same value, then

any one of the candidates for permanent labelling is selected.

Rules 1 and 2 are repeated until all the nodes are permanently labeled. An example
illustration of the Dijkstra algorithm performed fB1 to other demand nodes in the
looped water network of Figure 2(a) is given in Table 4. The shortest-distance path

for source nod&1to other demand nodes is presented in the last column of Table 4.
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Table 4 The Dijkstra algorithm for identifying the shortest-distance tree

_ ) Length to Node* o Shortest
iteration R1 1 > 3 4 Description path R«
Starting at the source nod&l It is
1 0 oo oo % oo labeled 0 and all the other nodes are R1-R1
labeledoo.
All successors oR1 are labeled using
2 0 800 o= oo oo Rule 1. The smallest label (node 1) is 1-R1

permanently labeled (Rule 2).

All successors of 1 are labeled using
3 0O 800 1600 1450 oo Rule 1. The smallest label (node 3) is 3-1-R1
permanently labeled (Rule 2).

All successors of 3 are labeled using
4 0 800 1600 1450 2000 Rule 1. The smallest label (node 2) is 2-1R1
permanently labeled (Rule 2).

All successors of 2 are labeled using
5 0 800 1600 14502000 Rule 1. The smallest label (node 4) is 4-3-1R1
permanently labeled (Rule 2).

*The bold values are the succession of assignment of permanent labels. The valuewaitl be
designated as a large number in a computer implementation.

The details of the proposed algorithm to identify the optimal source partitioning cut-
setQ for a WDS withK supply sources are given in Figure 3. As can be seen from
Figure 3, three steps are involved in this proposed algorithm to identify the optimal
source partitioning cut-seR . In Step 1, the Djikstra algorithm is performed to

identify the shortest-distance pa)=A4,, for each supply source nok¢o each node

i within the WDS. Then the available friction slope for the shortest distance path
S.(A,) is computed using Equation (5). As such, a totaKofdlifferent S (4,,)

values are obtained for each nadé Step 2, nodé=1, ..... n is assigned to the set

N« if S,(A,) is the largest value from th¢ total available friction slope values,
indicating thatk is the supply source node for nadén Step 3, all the linkg,(j) that

have the nodes on each side assigned to different supply source nodes are identified

and form the optimal source partitioning cut-€et

It is observed from Figure 3 that the Djikstra algorithm is perforietimes to
determine the optimal source partitioning cut-set for a WDS MWilupply sources.
The computational time required to identify the optimal source partitioning cut-set

for each WDS-MSS case study is analyzed in later discussion. The sub-networks are
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obtained after removal of the optimal source partitioning cut-set. These sub-networks

are independent and can be optimized separately.

For a WDS with grapis(V, E), with K supply sources) nodes andl links.
Step 1:
FORk=1,....K
Perform the Dijkstra algorithm for the supply soukc® identify the shortest

distance pattR, = A, to each node=1,.....n as illustrated in Table 4.
Compute theS, (4,,) for each nodéusing Equation (5).
END FOR
Step 2:
FORi=1,....n
Selectk such that§ (4;) > S; (4;) for allj=1, ...,K, j#k using Equation (6)
Nodei is assigned to setl, for whichk is the supply source for node
END FOR
Step 3:
FOR all(i, )OE
IF ON,QON,, k#mkm=21I[[ILK ie., the link with nodes at either end
assigned to different sources. ’
Link (i, j) is assigned to the source partitioning cut@e(Equation (7))
END IF
END FOR

Figure 3 Optimal source partitioning cut-set identification algorithm.

5.1.3. Summary of the proposed decomposed method for WDS-M SS

The proposed decomposition method partitions the whole water distribution system

with K supply sources intl sub-networks. This differs significantly to the majority

of the previously used decomposition approaches. These previous approaches

identified a tree network as an approximation for the original full netwérkpivka
and Ostfeld 2009; Kadu et al 2008; Zheng et al 201l1a]. In the proposed

decomposition method, the shortest-distance path only is used to assign the nodes to

different supply sources and each node may receive flows via various paths from the
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assigned supply source (not only the shortest-distance path). This is due to the fact
that loops are retained withirach sub-network obtained by the proposed
decomposition method. However, Kmapivka and Ostfeld2009], Kadu et al [2008]

and Zheng et al[2011a], each node has one and only one path to receive flows to

meet the demands from the source node.

The available friction slope for each node is used in the proposed decomposition
method to determine the optimal source partitioning cufsédr a WDS-MSS and

the magnitude of the demands at each node are not considered during the
decomposition. It is assumed to be cost effective overall for a demand node to receive
the flows to meet the demands from a source having a relatively large available head
and/or the shortest distance to this node. Thus, an approximate supply boundary is
produced using the proposed decomposition method since each demand node
receives the flows from one and only one supply source. However, it should be
acknowledged that the supply boundary obtained by the proposed decomposition is
an approximation to that of the real supply system as some nodes (especially nodes at
the supply boundary) in the real WDS may receive the flows to supply demands from

multiple supply sources.

The available friction slope concept has also been usddabdy et al.[2008] to
identify a tree for a looped WDS. Thus, it is necessary to clarify the differences
between the method used Kpdu et al.[2008] and the approach proposed here in
terms of decomposing the WDS. The proposed decomposition method aims to
specify a particular supply source for each demand node, for which this supply
source has thiargestavailable friction slope to this demand node, wHigdu et al.
[2008] used thesmallestavailable friction slope to identify the critical path for the
original WDS. In addition, disconnected sub-networks are obtained using the
proposed decomposition method, within which loops are involved, while a tree

network is finally obtained using the method propose#dgyu et al.[2008].
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It is also useful to highlight the difference between the proposed decomposition
method and the network aggregation method propose®dsgman and Ostfeld
[2008]. The main differences include: (i) in the new method presented here, the
whole network is decomposed into several disconnected sub-networks, while the
aggregation method keeps the general topology of the original system and only
removes some nodes and links from the original system; (ii) in the proposed
decomposed method, the decomposition results for a WDS are based on the number
of different supply sources, while the aggregation result is dependent on the
connectivity properties of the original system (such as the location of the monitor
stations); and (iii) the demand distribution and link properties (such as link length and
conductance) are not varied in the proposed decomposition approach, while they are
changed in the aggregation network RPéreman and Ostfel¢?008] in order to

resemble the hydraulics and water quality performance of the original system.

5.2. Multi-stage optimization for the WDS-M SS

5.2.1. Differential evolution algorithm applied to each sub-network (first stage
optimization)

The differential evolution (DE) algorithm, introduced 8torn and Pricg1995] has
performed well when used to find optimal solutions in a number of numerical
optimization case studie¥/¢sterstrom and Thoms&®04]. Vasan and Simonovic
[2010] and Suribabu[2010] first applied DE to the optimization of WDSs, and
concluded that the performance of the algorithms was at least as good as, if not
better, than other EAs such as GAs and Ant Colony Optimizaiibeng et al.
[2011a, 2011b] further investigated the performance of DE algorithms and reported
that DE was effective in finding optimal solutions for WDS. Three operators
including mutation, crossover and selection operators are involved in the application
of DE in an optimization problem. Three parameters need to be pre-specified: the
population sizeN), mutation weighting factor) and the crossover rat€R). The

general ranges of these three parametersreNI<10D (whereD is the number of
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decision variables) 0.¥ F < 1.0 and 0.& CR < 1.0 [Storn and Pricel995]. The

pseudo-code for the DE algorithm applied to WDS optimization is given in Figure 4.

Step 0. Specify following inputs of the differential evolution (DE): the population si¥e ihe
crossover rate R), the mutation weighting factorF), the maximum allowable number of
generationsNIG), and the number of decision variablB3 (

Step 1. Randomly generatd initial solutionsX;c ={ )glG XiZ’G, ......... X ch i=1,.....N, G=0.
Step 2: Evaluate the objective function of thiinitial solutionsf(X;g).

Count=1
REPEAT

UNTIL Countz MG
Step 3: Perform the DE mutation operator to geneft@utant solution®; ¢ ={ \/il’G , \/iz’G feeneeeen

Vg =X+ F(X 6~ X,36), Wherer 1#£r 2#r3 and they are randomly generated for

eachi.
END FOR
2

Step 4: Perform the DE crossover operator to generate trial solutipps{ uil’G, U

U} i=1,....N

IF Rand(0,1) < CR where Rand(0,1) is a uniformly distributed random number
between 0 and 1.

q],e = Vi],G
ELSE
We =xg
END IF
END FOR
END FOR

Step 5: Alter the continuous pipe diameter solution to the nearest discrete diameter fgr each
decision variable and then evalubtérial solutionsf (U, ) -

Step 6: Select the next generatioX, ., ={ X,-1’G+1, Xiz’Gﬂ, ......... )Q?G+1} i=1,....N

IF f(Xic) <fUe)
>(i.G+1: Xi,G
ELSE
Xi.G+1:
END IF
END FOR

U

i,G

Count=Count+1

Figure 4 Pseudo-code for the differential evolution (DE) algorithm.
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The basic DE algorithm is a continuous global optimization search algo/@tom|

and Price 1995], and requires modification when used to solve discrete WDS
optimization problems. In this study, the modification made to the DE algorithm was
based on the approach usedSaribabu[2010]. To handle the head constraints,

constraint tournament selectidddb2001] was used in the DE algorithm.

During the first stage of the optimization process, each sub-network is optimized by a
separate DE. The sub-network optimization problem formulation is similar to that for
the original whole network [Equations (1) to (4)]. Only the pipes (the objective
function) and nodes (head constraints) in the sub-network are handled by each
individual DE algorithm. Because the dimensionality of each sub-network is
significantly reduced compared to the original network, the DE algorithm is expected
to be able to more efficiently find optimal solutions for each sub-network than for the

whole network.

For the water network given in Figure 2, 14 pipe diameters including {150, 200, 250,
300, 350, 400, 450, 500, 600, 700, 750, 800, 900, 1000} mm can be selected for each
pipe and all the pipes are assigned to have an identical Hazen-Williams coefficient
130. The unit costs for each pipe diameter are giveKdnu et al.[2008]. Two
separate DEs were employed to optimize the two sub-netwarkR1, 1, [1]}, S={

R2, 2, 3, 4, [4], [5], [6]}) as shown in Figure 2(c) obtained by removing the optimal
source partitioning cut-sé€ ={2, 3}. The DE optimal solutions fo, andS, were
$37,910 and $166,896 respectively and the pipe diameters for the optimal solutions
are [1]=250 mm, [4]=450 mm, [5]=300 mm and [6]=500 mm. It is noted that the
optimal cut-setQ ={2, 3} was not included in the first stage of the proposed multi-

stage optimization method.

5.2.2. Creation of the seeding table

In the proposed method, the optimal solutionski@ub-networks are obtained after
the first stage optimization, and an optimal pipe diameter is assigned for each link in

all sub-networks. As the optimal source partitioning cutQetof the original

213



CHAPTER8. JOURNAL PAPER 6-DECOMPOSITIONOPTIMIZATION OF WDSWITH MULTIPLE SOURCES

complete network is not included during the first stage optimization, the minimum

allowable pipe diameters are therefore assigned to all the links @ thethis study.

Each link of the complete network is given a pipe diameter by combining the optimal
solutions of the sub-networks and assigning the minimum allowable pipe diameters
for the Q. This therefore creates an approximate optimal solution (or a near optimal
in a topological sense) for the complete network. For the example given in Figure 2,
the approximate optimal solutions were $240,374 and the corresponding network
configuration is [1]=250 mm, [2]=150mm, [3]=150 mm, [4]=450 mm, [5]=300 mm

and [6]=500 mm (note 150 mm is the minimum allowable pipe diameter).

The approximate optimal solution is now used to create a tailored seeding table to
enable the second stage of the optimization. For each link in this seeding table, three
pipe diameters are included, namely (i) the pipe diameter from the approximate
optimal solution of the whole network, (i) and the pipe diameters that are
immediately smaller, and (iii) the pipe diameters that are immediately larger than the
diameter provided by the approximate optimal solution. For a pipe that is already the
minimum or maximum allowable diameters, the three adjacent smallest or largest

pipe diameters are assigned to the seeding table for this pipe.

Table 5 is used to illustrate the process of the creation of the seeding table based on
the approximate optimal solution of the water network given in Figure 2. The pipe
diameters of the approximate optimal solution obtained after the first stage
optimization are given in column 2 of Table 5. As shown in Table 5, for links 1, 4, 5
and 6, three adjacent pipe diameters are included in the seeding table and the middle
one is the pipe diameter for the approximate optimal solution (column 2 of Table 5).
For links 2, and 3, three adjacent smallest pipe diameters are assigned to the seeding
table as the diameter of links 2 and 3 given in column 2 of Table 5 are already the
minimum allowable diameter (150mm). This proposed method for the creation of the

seeding table is applied to each case study in this paper.
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Table 5 The processfor creating the seeding table (applies to any sized networ k)

Diameters for Pipe diameters in

. the approximate Link . Pipe diameters in the total
Links optimal membership the seeding table choice table (mm)
solutions (mm) (mm)
1 400 Belongs to R 300, 400, 450 200, 300, 400, 450, 500, 600
2 200 Cut-set 200, 300, 400 200, 300, 400, 450, 500, 600
3 200 Cut-set 200, 300, 400 200, 300, 400, 450, 500, 600
4 450 Belongs to R 400, 450, 500 200, 300, 400, 450, 500, 600
5 200 Belongs to R 200, 300, 400 200, 300, 400, 450, 500, 600
6 600 Belongs to R 450, 500, 600 200, 300, 400, 450, 500, 600

5.2.3. Final optimal solution for the original WDSMSS (second stage
optimization)

In the proposed decomposition and multi-stage optimization method, another DE
algorithm (denoted the final DE algorithm) is used in the second stage of
optimization in order to find the optimal solutions for the original WDS with multiple
supply sources. It is noted that the first stage optimization does not include the pipes
in the optimal source partitioning cut-s€t . In the proposed approach, an
approximate optimal solution was generated by combining the sub-network optimal
solutions and setting the pipes in deto be the minimum allowable pipe diameters.
However, this approximate optimal solution is not acceptable for the original whole
network. This is because (i) the network reliability will be reduced by simply
assigning the pipes in th@ to be the minimum allowable diameter size as these
pipes are the connections between sub-networks; and (ii) the approximate optimal
solution produced in the first stage optimization may be infeasible for the original
whole network with the inclusion of the minimum diameter pipes incth& hus, the
approximate optimal solution obtained in the first stage optimization need to be
further polished. This is achieved by applying the DE at the second stage

optimization of the proposed method.

During the second stage optimization phase [the formulation is given by Equations
(1) to (4)], the final DE algorithm is seeded by a tailored seeding table (column 4 of
Table 5) rather than the total choice table (14 pipe diameter options). Thus, the initial

solutions of the final DE algorithm are randomly located in the search space specified
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by the tailored seeding table rather than the whole search space. The final DE
algorithm therefore focuses on exploring promising regions specified by the tailored
seeding table and hence avoids wasting computational effort investigating infeasible
or unnecessarily high cost regions within the search space. It is expected therefore
that the final DE algorithm is able to locate better quality solutions for the original
WDS-MSS with great efficiency and reliability as it has been seeded with good initial
estimatesGrefenstettdd 987;Harik and Goldberg2000].

The second stage DE was applied to the original full water network as shown in
Figure 2 (a) but it is initialized by the seeding table in the column 4 of Table 5. A

further better optimal solution with a cost of $239,034 was obtained after the second
stage optimization and this optimal solution was feasible when determined by
EPANET2.0.

6. Case studies

The algorithms for identifying the optimal source partitioning cut-set, creating the
seeding table and the DE algorithm were all coded in C++ using MinGW Developer
Studio 2.05. The program EPANET2Rdssmar2000] was used as a network solver

in this study. Four case studies have been used to verify the effectiveness of the
proposed decomposition and multi-stage optimization approach: two artificial
double-reservoir WDSs; a real-world three-reservoir WDS; and a realistic four-
reservoir WDS. It should be noted that the water network layout for each case study
is drawn at different scales. In addition the cost for each diameter used for each case

study is the sum of the pipe material cost and the pipe construction cost.

6.1. Casestudy 1: Two-reservoir WDS
The layout of the two-reservoir WDS is given in Figure 2 and the network data is
included in Table 2. The global optimal solution for this small network was $239,034

by using the full enumeration approach. In order to investigate the impact of the

different decomposition strategies on the final solution, this water network
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decomposed by all cut-sets obtained by the full enumeration were optimized by the
proposed multi-stage DE method. A DE algorithm (SDE) seeded by the total choice
table (14 pipe options) was also applied to this network in order to enable the
performance comparison with the proposed approach. Table 6 presents the statistical
results of different algorithms. It is noted that the parameters of theNZBO(
F=CR=0.5) were fine-tuned. A maximum number of allowable evaluations was set to

be 6,000 for this case study.
Table 6 Algorithm performance for the two-reservoir WDS (F=CR=0.5)

Number Best Percentage of Average number of

Methods of trial solution trials with equivalent full two-
runs found ($) best solution reservoir WDS evaluations
found (%) to find best solution
Proposed cut-set based
CS1 on friction slope method 100 239,034 100 376
with 0 ={2, 3}
Alternative  cut-set 1
Cs2 with C,={2, 4} 100 239,034 54 1,568
Alternative cut-set 2
Cs3 with C,={2, 5} 100 239,034 14 658
- SDE 100 239,034 98 792

As shown in Table 6, for this small network, all the algorithms are able to find the
global optimal solution with a cost of $239,034. The proposed multi-stage DE
method withQ ={2, 3} (denoted as CS1) significantly outperformed the proposed
multi-stage DE but with the cut-se®3={2, 4} (CS2) andC,={2, 5} (CS3) in terms

of the solution quality and the efficiency. This is proven by the fact that CS1 found
the global optimal solution with a success rate of 100%, which is significantly higher
than CS2(54%) andCS3(14%). In addition, the proposed multi-stage DE method
with Q ={2, 3} performed slightly better than the SDE in terms of the percent with

the best solution found.

The computational overhead for a hydraulic evaluation of one sub-network with
EPANET 2.0 is different from the computational effort required to evaluate the
original whole network because of the smaller size of the sub-network. In order to
enable a fair comparison, the computational overhead for the evaluation of each sub-

network has been converted to the equivalent number of evaluations for the whole

217



CHAPTER8. JOURNAL PAPER 6-DECOMPOSITIONOPTIMIZATION OF WDSWITH MULTIPLE SOURCES

network. Each sub-network and the full network were run 1000 times with randomly
selected pipe configurations using the code developed for this proposed method.
Then the average computational time for one sub-network simulation was converted
to the equivalent number of corresponding full network simulations. This approach
has been used for each case study investigated in this paper. The code was developed
in C++ (linked to EPANET2.0 through the Tookit) and run on a Pentium PC (Inter R)

at 3.0 GHz.

In terms of comparing the efficiency, CS1 performed the best as it only required an
average of 376 equivalent full network evaluations to find the optimal solutions. This

is only 24%, 57%, and 47% of those required by CS2, CS3, and SDE respectively.

6.2. Case study 2: Double-reservoir WDS

The double-reservoir network (DRN) was first presente&kégu et al.[2008]. The

DRN consists of 24 demand nodes, 34 pipes and 9 loops, and is fed by two reservoirs
with 100 and 95 meters of fixed head respectively. The layout of the DRN is given in
Figure 4.

Figure5 Layout, the optimal sour ce partitioning cut-set (Q) and the sub-
networ ks (DRN; and DRN,) of the two-reservoir network (DRN)
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A total of 14 pipe diameters are available in the DRN case study and hence the total
choice table includes 14 pipe diameters for each pipe. The search space is therefore
14%%9.2972x 10°®. Details of this network and the cost of the pipes are given by
Kadu et al.[2008]. The optimal source partitioning cut-set for the DRN identified
through the developed graph decomposition approach (Figure 5), included pipes 5,
15, 22 and 32Q ={5, 15, 22, 32}). The original DRN was therefore partitioned into

two sub-networks (as shown in Figure 5): sub-network one @DBRMNI sub-network

two (DRN,). DRN; included reservoir 1, 13 nodes and 15 pipes on the left side of the
optimal source partitioning cut-set. DRMWas composed of reservoir 2, with 11

nodes and 15 pipes on the right side of the optimal source partitioning cut-set.

In order to enable a performance comparison, the runs of the standard DE algorithm
(SDE) seeded by the total choice table (14 pipe diameters) with different starting
random number seeds were also conducted for the DRN case study. Table 7 provides
the parameter values used for the DE algorithm applied to the DRN case study. As
shown in Table 7, a population si¢)(of 50 and a maximum number of allowable
evaluations of 30,000 were used for the DE applied to sub-networks &RNDRN

(the first stage optimization of the proposed method). For the DE algorithm used in
the second stage optimization phase and the SDE applied to the original whole DRN,
a population size of 100 and a maximum number of allowable evaluations of 400,000
were used. Values =0.6 andCR=0.5 were utilized for all DE used in the proposed
method and the SDE applied to the DRN case study. These values were selected
based on trials of a number of different parameter values.

Table 7 The DE algorithm parameter values applied to different sub-networ ks
and thewhole DRN (F=0.6, CR=0.5)

No. of decision

Population Maximum number of

Network Vfg:gggs size ()  allowable evaluations
DRN; 15 50 30,000
DRN; 15 50 30,000
DRN (the second phase DE algorithm) 34 100 400,000
DRN (the SDE) 34 100 400,000
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A total of 100 runs of the proposed method with different starting random number
seeds were performed for the DRN case study. A typical run of the proposed method

is illustrated in Table 8.

As shown in Table 8, DRNand DRN were optimized by DE algorithm during the

first optimization stage of the proposed method and hence optimal solutions with
costs of $1.405 million and $1.191 million were obtained for PRNd DRN
respectively (see columns 2 and 3 of Table 8). By assigning the optimal source
partitioning cut-set with the minimum allowable pipe diameters (150 mm for the
DRN case study), an approximate optimal solution was produced for the original full
DRN with a cost of $2.752 million, which is given in the column 4 of Table 8. A
seeding table was constituted based on the obtained approximate optimal solution
(column 5 of Table 8) and this seeding table was used to initialize the DE for the

second stage optimization of the proposed method.

The final solution yielded by the proposed method after the second phase
optimization was $2.750 million (column 6 of Table 8), which is lower than the

approximate optimal solution obtained after the first optimization stage. It should be
highlighted here that the approximate optimal solution with a cost of $2.752 million

was slightly infeasible as determined by EPANET2.0 with the maximum head deficit
of 0.5 meters. This is because that (i) the water flow distribution was slightly changed
after combining the sub-networks; and (ii) the optimal source partitioning cut-set was

simply assigned the minimum allowable pipe diameters.

However, this slightly infeasible solution was located at the vicinity of the final
optimal solution. This is reflected by the fact that 28 out of a total of 34 pipes had the
same diameters for the approximate optimal solution and the final optimal solution
(as shown in Table 8). In addition, the pipe diameters for each link of the final
optimal solution are located in the seeding table that was created based on the

approximate optimal solution.
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Table 8 A typical run of the proposed method for DRN case study

Sub-network

Final optimization

Links optimizgtion results Apporg;?rrr?aalltely Cre_ation of results (the_sec_ond
(the first stage . choice table  stage optimization)
optimization) (mm) solution (mm) (mm)’
Networks DRN  DRN, DRNi#DRNo* - DRN
cut-set pipes
1 1000 - 1000 800, 900, 1000 900
2 900 - 900 800, 900, 1000 900
3 350 - 350 300, 350,400 350
4 300 - 300 250, 300, 350 300
5 - 150 150, 200, 250 150
6 250 250 200, 250, 300 250
7 800 - 800 750, 800,900 800
8 150 - 150 150, 200, 250 150
9 450 450 400, 450, 500 450
10 500 500 450, 500, 600 500
11 800 800 750, 800, 900 750
12 700 - 700 600, 700, 750 700
13 500 - 500 450, 500, 600 500
14 450 - 450 400, 450, 500 500
15 - 150 150, 200, 250 150
16 450 - 450 400, 450, 500 500
17 350 - 350 300, 350,400 350
18 400 - 400 350, 400, 450 400
19 150 150 150, 200, 250 150
20 150 150 150, 200, 250 150
21 700 700 600, 700, 750 700
22 - 150 150, 200, 250 150
23 450 450 400, 450, 500 450
24 350 350 300, 350,400 350
25 700 700 600, 700, 750 700
26 200 - 200 150, 200, 250 250
27 300 - 300 250, 300, 350 250
28 300 300 250, 300, 350 300
29 200 200 150, 200, 250 200
30 300 300 250, 300, 350 300
31 150 - 150 150, 200, 250 150
327 - 150 150, 200, 250 150
33 150 150 150, 200, 250 150
34 150 150 150, 200, 250 150
Cost ($ million) 1.405  1.191 2.752 . 2.750
Minimum pressure 0.08 0.42 050 0.15
e e, Close (ot (uode29 (roce 12

%ptimal source partitioning cut-set pipes for the DRMfeasible solution‘The cost of the
solution is the sum of the unit cost for each selected pipe multiplied by the length of this pipe.
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The statistical results of the proposed method, the SDE and other previously reported

feasible solutions (determined by EPANET2.0) for the DRN case study are given in

Table 9.
Table 9 Algorithm performance for the DRN case study
Averade Average
Percentagd Y number of
Best . Average| number of .
Number solution of trials cost original equivalent
Row Algorithm of trial with best . gine full DRN
runs found solution solution | evaluations evaluations
M) | tound o) | M) | tofind besti  far4pest
solution .
solution
1 DRN; 100 1.405 85 1.410 10,765 2,702
2 Proposed DRN; 100 1.191 80 1.206 7,955 2,991
method DRN,+
3 | usingQ) | DRNy+cut-| 100 2.752 80 2.772 18,720 5,693
(This set piped
4 study) DRN 100 | 2.750 75 2.755 66,740 66,740
5 Total 100 - - - - 72,433°
6 SDE (This study) 100 2.750 32 2.76p 201,457 201,457
7 GA [Kadu et al.2008] 10 2.847 0 NA NA NA
GA-ILP
8 | [Haghighi etal2o11y | NA | 2839 0 NA NA NA
9 Proposed method | 15, | 5 ggg 0 2.901 - 78,965
using G
Proposed method
10 using G° 100 2.755 0 2.783 - 156,620
®The cost of the cut-set pipes is $0.156 million by assigning them with the minimum pipe diameters
(150 mm).

P|nfeasible solution determined by EPANET2.0 with the maximum head deficit of 0.5 meters.

“The total computational overhead required by the proposed method has been converted to the
equivalent number of the whole network evaluations (PHENRN,+DRNs+cut-set+DRN).

“The proposed method applied to the DRN decomposed by cut=dt €2, 31}.

°The proposed method applied to the DRN decomposed by cui=dét €5, 19, 23, 33}.

The best solution based on the new method proposed in this paper.

In this study, a new best solution (feasible when verified by EPANET2.0) was
produced at a cost of $2.750 milliddadu et al.[2008] andHaghighi et al.[2011]

found the previous best solutions for this case study with costs of $2.847 million and
$2.839 million respectively. The new best known solution with a cost of $2.750
million was found with a success rate of 75% by the proposed method, whereas the

SDE only returned a success rate of 32%.

As shown in Table 9, the current best solutions for PRMI DRN found by the

first stage optimization of the proposed method were $1.405 million and $1.191

222



CHAPTER8. JOURNAL PAPER 6-DECOMPOSITIONOPTIMIZATION OF WDSWITH MULTIPLE SOURCES

million. These two optimal solutions for DRMind DRN were found with success

rates of 85% and 80% respectively. The approximate optimal solutions for the
original whole DRN were obtained by combining the optimal solutions for both sub-
network and assigning the minimum pipe diameters for the optimal source
partitioning cut-set. As can be seen from Table 9, the best approximate optimal
solution provided after the first optimization stage was $2.752 million and this

solution was found with a success rate of 80%.

The average computational time of one evaluation for the ;D& DRN was
equivalent to 0.251 and 0.376 evaluations for the whole DRN network respectively.
Since the original average number of evaluations for D&id DRN during the first
stage optimization were 10,756 and 7,955 (column 7 of Table 9), the equivalent
number of full DRN evaluations was, therefore, 2,702 and 2,991 respectively
(column 8 of Table 9).

The computational time required to find the optimal source partitioning cut-set was
also converted to the equivalent number of whole network evaluations. For the DRN
case study, the computational time required to find the optimal source partitioning

cut-set was equivalent to 19 evaluations of the whole DRN network.

As shown in Table 9, the total equivalent average number of evaluations required to
find the optimal solutions using the proposed approach was 72,433, which is only
36% of the number of evaluations required by the SDE algorithm. This shows that
the proposed method significantly outperforms the SDE algorithm in terms of
efficiency. It was observed that the first optimization stage found the approximate
optimal solutions that are extremely close to the final best solution ($2.750 million)

using only 5,693 equivalent full DRN evaluations.

A convergence comparison between a DE algorithm seeded with the initial seeding
table (the proposed method) and a SDE algorithm is given in Figure 6. It is evident
that that the proposed algorithm converges significantly faster than the SDE

algorithm.
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Figure 6 A convergence comparison between DE algorithm seeded with tailored
seeding table and the DE algorithm seeded with total choicetable

In order to further investigate the impact of the different decomposition strategies on
the final solution, the proposed method was also applied to the DRN case study
decomposed b¥;={4, 12, 31} andC,={6, 15, 19, 23, 33} respectivelyC(is the
source partitioning cut-set), and the results are included in Table 9. As shown in
Table 9, the best solutions found by the proposed method with decomposition cut-
setsCy={4, 12, 31} andC,={6, 15, 19, 23, 33} were $2.898 million and $2.755
million respectively, which are both larger than the current best known solution of

the DRN case study.

In contrast, the proposed method using the optimal source partitioning €ut=§et

15, 22, 32} was able to find the current best known solution with a success rate of
75% (see Row 4 of Table 9). In addition, the proposed methodtb, 15, 22,

32} used fewer average equivalent full DRN evaluations (72,433 in Row 5 of Table
9) to find optimal solutions than the proposed method With{4, 12, 31} (78,965 in

Row 9 of Table 9) an@,={6, 15, 19, 23, 33}(156,620 in Row 10 of Tablg 9

Based on the results of case study 1 (Table 6) and case study 2 (Table 9), it can be

concluded that (i) the search performance of the proposed method in terms of both
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solution quality and efficiency is significantly affected by the decomposition strategy
used; and (ii) the proposed optimal source partitioning cuRseds developed in
this paper, is effective in terms of decomposing the water network for design

optimization.
6.3. Casestudy 3: Three-reservoir WDS

The three-reservoir network (TRN) is an actual water network supplied by three
reservoirs located in an eastern province of China. This case study is the first time
that it has been investigated. The three reservoirs are denoted RsdRd R as

shown in Figure 7, and have fixed heads of 44, 45 and 47 meters respectively. The
TRN has 287 pipes, 199 demand nodes and 86 primary loops. At each demand node,
a minimum pressure of 20 meters is required. All the pipes are assigned to have an
identical Hazen-Williams coefficieraf 130. The objective of this case study is to
determine the least-cost design of this water network, while satisfying the pressure
constraints. A total of 14 commercially available pipe diameters ranging from 150
mm up to 1000 mm are available for selection for each pipe (as in case study 1).
Thus, the total search space i§®18.6845x 10°%

Utilizing the proposed algorithm, 14 links were identified to form the optimal source
partitioning cut-set for the TRN case study. Hence, the original TRN was
disassembled into three sub-networks, denoted;TRRN, and TRN as shown in
Figure 7. Reservoir 1 (R with 73 demand nodes and 91 pipes, was assigned to
TRN;. Reservoir 2 (B, with 65 demand nodes and 98 pipes, was assigned tg. TRN
The remaining reservoir @R with 61 demand nodes and 84 pipes was given to

TRNs. These three sub-networks are shown in Figure 7 in different shades of grey.

The computational time required to identify the optimal source partitioning cut-set
for the TRN case study was the equivalent of 15 evaluations of the original TRN
(using EPANET 2.0). As for the same method used for the DRN case study, the
evaluations of TRN TRN, and TRN were found to be the equivalent of 0.11, 0.10

225



CHAPTER8. JOURNAL PAPER 6-DECOMPOSITIONOPTIMIZATION OF WDSWITH MULTIPLE SOURCES

and 0.091 of the whole TRN evaluation in terms of average computational time based

on 1000 runs with randomly selected pipe configuration.

Figure 7 Layout, the optimal sour ce partitioning cut-set and the sub-networks
(TRN;, TRN, and TRN3) of the three-reservoir networ k (TRN).

For the TRN case study, ten runs of the proposed method and ten SDE algorithm runs
with different starting number seeds were performed in order to compare the
performance of the two methods. Table 10 provides the parameter values used for the

DE algorithm applied to the TRN case study.

As displayed in Table 10, for sub-network optimization, the population Kigef(

the DE algorithms was 150 and the maximum number of allowable evaluations used
was 150,000. A population size BE200 was used for the DE algorithm in the
second stage of the proposed method and two population si2&s200 and 500

were used for the SDE algorithm. The maximum number of allowable evaluations for

DE algorithms applied to optimize the complete TRN (including the SDE and the DE
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used in the second phase optimization of the proposed method) was 2.5 million.
Values ofF=0.3 andCR=0.5 were used for all DE algorithm runs for this case study

based on a few parameter trials.

Table 10 The DE algorithm parameter values applied to different sub-networ ks
and thewhole TRN (F=0.3, CR=0.5)

No. of decision Population  Maximum number of

Network var!ables size (N) allowable evaluations
(Pipes)
TRN; 91 150 150,000
TRN, 98 150 150,000
TRN; 84 150 150,000
TRN (the second stage DE algorithm) 287 200 2,500,000
TRN (the SDE) 287 200/500 2,500,000

The solution distribution obtained by the proposed method and the SDE algorithm

applied to the TRN case study is given in Figure 8. It should be noted that the number
of evaluations of the proposed method shown in Figure 8 has been converted to the
equivalent number of evaluations for the complete TRN using the same approach as

for the DRN case study.

7.05 - = Solutions found by the proposed method
Solutions found by the SDE with N=500
’8‘7,00 . * Solutions found by the SDE with N=200
E
L6095 -
c X
2 X X
5 x
'R 6.90 - M
k]
2
O 685 7 :r-
6.80

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000 2250000 2500000
Evaluations

Figure 8 Solution distributions of proposed method and the SDE applied to the
TRN case study.

As can be seen from Figure 8, the proposed method exhibits superior performance

when compared with the SDE algorithm in term of solution quality and efficiency.
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The SDE algorithm witiN=500 was able to find better quality solutions than the
SDE algorithm withN=200, but at expense of significantly more evaluations. The
final solutions found by the SDE algorithm trial runs with different starting random
number seeds are more scattered in distribution than those found by the proposed
method. This demonstrates that the performance of the proposed method is less
sensitive to the randomized starting points of the search. The statistical results for this
case study are shown in Table 11.

Table 11 Algorithm performancefor the TRN case study

Average
Average
Percentags number of
Best : Average| number of .
Number solution of trials cost oriainal equivalent
Algorithm of trial with best ' gine full TRN
runs found solution solution | evaluations evaluations
OM) | found (96) | M) | tofind best| e pest
solution .
solution
TRN; 10 2.311 10 2.322 101,190 11,131
TRN; 10 2.291 10 2.294 76,535 7,654
TRN; 10 2.050 10 2.058 61,820 5,626
Propose
method $§H1:
(This 2 10 6.874 10 6.883 239,545 24,411
TRNs+cut-
study) .
set piped
TRN 10 6.823 10 6.844 245,76( 245,760
Total 10 - - - - 270,171°
SDE N=500,this 10 | 6.874 0 6.904| 1,737,300 1,737,300
study)
SDE (=200 this 10 | 6.902 0 6.923| 559,860 550,860
study)
®The cost of the cut-set pipes is $0.211 million by assigning them with the minimum pipe diameters
(150 mm).

P|nfeasible solution determined by EPANET2.0 with the maximum head deficit of 0.2 meters.

‘The total computational overhead required by the proposed method has been converted to the
equivalent number of the whole network evaluations (FRIRN,+TRNs+cut-set+TRN).

As shown in Table 11, the proposed method found the current best solution for the
TRN case study with a cost of $6.823 million. The best solutions found by the SDE
algorithms with N=500 and N=200 were $6.874 million and $6.902 million
respectively, which are 0.73% and 1.17% higher than the current best solution found
by the proposed method. It was also found that the proposed method performed better
than the SDE algorithm in terms of the average cost of solution quality based on ten

different runs. The most noticeable advantage of the proposed method was that it
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converged to the optimal solutions with significantly greater speed than the SDE
algorithm. This is reflected by the fact that the proposed method required an average
270,171 total equivalent full TRN evaluations to find the optimal solutions, while the
SDE algorithm with N=200 andN=500 used average 559,860 and 1,737,300

evaluations respectively as shown in Table 11.

The best and the average approximate optimal solution obtained by the first stage
optimization were $6.874 million and $6.883 million, which is only 0.75% and
0.88% larger than the current best solution found by the proposed method after the
second stage optimization ($6.823 million). In addition, these approximate optimal
solutions were located extremely quickly since they only required an average number

of 24,411 equivalent full TRN evaluations as presented in Table 11.

For this case study, a sensitivity analysis for variations in the nodal demands and
Hazen-Williams coefficientsHWS9 has been conducted to investigate the impact on
the final solution. A nodal demand multiplid®)(was used to adjust the demands for
each node. For example=0.9 indicates the new demands of each node are 0.9 times
the current demand. In this study, value®e0.9 and 1.1 were used to undertake the
sensitivity analysis on the nodal demands, while maintaining a consistent Hazen-
Williams coefficients valueH{\W=130).

Additionally, the values oW of 100 and 115 were used to analyze the sensitivity of
the final solution on the Hazen-Williams coefficiert\W) for the TRN case study.

The nodal demandsr each node were kept constart{.0). Finally, each node was
randomly assigned a valueRfin the range of [0.9, 1.1] and each link was assigned a
value ofHW in the range of [100, 130] for the TRN case study. The results of the
proposed decomposition and multi-stage method applied to the TRN case study with
the variation of demands and Hazen-Williams coefficient values are presented in
Table 12.

As shown in Table 12, for ldW=130, the cost of the final optimal solutions obtained

by the proposed method increases foRaralue that is greater. The cost of the best
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solution and the average cost solution for the TRN case studyRwitl) increases
by 4.3% and 4.5% respectively compared to those R#h 9, while it decreases by
4.0% and 3.8% compared to those Wathl.1. When the nodal demand was constant
(R=1), the proposed method found the lower cost solutions as the valdgVof
increases as displayed in Table 12. This is to be expected as aH&Ygealue

reflects a smoother pipe.

Tablel2 Sensitivity analysisfor the TRN case study (HW: Hazen-Williams
coefficient. R=nodal demand multiplier)

Average number

Best Average :
Number solution cost of equivalent full
Values ofHW andR of trial . TRN evaluations
runs found solution to find best
($M) ($M) solution
R=0.9 10 6.542 6.549 279,985
HW=130 R=1.0 10 6.823 6.844 270,171
R=1.1 10 7.100 7.107 315,700
HW=100 10 7.629 7.637 280,720
R=1.0 HW=115 10 7.177 7.182 303,600
HW=130 10 6.823 6.844 270,171
R=[0.9, 1.1],HW=[100,130] 10 7.176 7.186 288,520

The best solution obtained for the TRN wikiv=100 is $7.629 millionR=1), which

is 6.3% and 11.8% higher than those found for the TRN MMK115 andHW=130
respectively. The best solution found by the proposed method for the TRN with
randomly assigne® values (in the range of [0.9, 1.1]) for each node and randomly
assignedHW values (in the range of [100, 130]) for each link is $7.176 million,

which is 5.2% higher than the best solution found for the original TRN RwthO
andHW=130 ($6.823 million).

The average number of equivalent full TRN evaluations required by the proposed
method applied to each network with variations of demandsHiWdvalues are
similar. This shows that the search efficiency of the proposed method is not

significantly affected by network parameter variations (demandsisdalues).
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6.4. Case study 4: Four-reservoir WDS (Baler ma networ k)

The four-reservoir network (FRN) is the Balerma network, which was first
investigated byReca and Marhez[2006]. It consists of 4 reservoirs, 8 loops, 454
pipes and 443 demand nodes as shown in Figure 9. Ten PVC commercial pipes with
nominal diameters from 125 mm to 600 mm are to be selected for this network and
hence the search space is™®10All the pipes are assumed to have an absolute
roughness height &=0.0025 mm and the minimum required pressure at each node is
20 meters. Pipe costs are givenRygca and Marhez[2006]. For this case study, the

total choice table is composed of 10 pipe diameters for each pipe.
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Figure 9 Layout, the optimal sour ce partitioning cut-set and the sub-networks
(FRN3, FRN,, FRN3 and FRNy) of the four-reservoir network (FRN)

The optimal source partitioning cut-set for the FRN case study was identified to be
composed of five pipes using the proposed method given in Figure 3. The whole

FRN was partitioned into four sub-networks after removal of the optimal source
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partitioning cut-set. These include FRNRN,, FRN; and FRN as shown in Figure

9. There were 45 demand nodes and 45 pipes in;FR30 demand nodes and 132
pipes in FRN,; 41 demand nodes and 41 pipes in ERid 227 demand nodes and
231 pipes in FRN For the FRN case study, the computational time to identify the
optimal source partitioning cut-set was equivalent to 32 whole FRN evaluations. The
average computational time for one evaluation of FHRN,, FRN; and FRN was
equivalent to 0.031, 0.20, 0.031 and 0.52 whole FRN evaluations respectively based
on 1000 runs using the same method as for the DRN case study. The pipe
configuration for each sub-network and the full network was randomly generated for
the 1000 runs.

For the FRN case study, because the size of the sub-networks varies significantly, the
population size N) and the maximum number of allowable evaluations of DE
algorithms applied to different sub-network optimizations need to be slightly tuned.
Table 13 gives the parameter values used for the DE algorithms run for the
optimization of each sub-network and for the whole FRN optimization. These
parameters values were selected based on a few trials. As can be seen from Table 13,
the larger sub-network was given a larger population size and the maximum number
of allowable evaluations. Two SDE algorithms with population sizdd=&00 and
N=2000 were applied to the FRN case study. Valués0f3 andCR=0.5 were used

for all the DE algorithms in this case study. The statistical results for these different
algorithms and the published results for this case study are provided in Table 14.

Table 13 The DE algorithm parameter values applied to different sub-networ ks
and the whole FRN (Baler ma networ k)

No. of_decision Population Maximum number
Network var!ables size () of aIIowabIe
(Pipes) evaluations
FRN; 45 100 20,000
FRN, 132 200 200,000
FRN; 41 100 20,000
FRN, 231 300 800,000
FRN (the second phase DE algorithm) 454 200 10,000,000
FRN (the SDE) 454 500/2000 10,000,000
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As displayed in Table 14, the current best known solution for the FRN case study
was first reported b¥heng et al[2011a] with a cost of €1.923 million using a NLP-

DE method. This best solution was also found by the proposed method in this paper,
however, using only an average of 639,960 total equivalent full FRN evaluations
based on ten different runs, compared to 1,427,850 evaluations required by the NLP-
DE method Zheng et al2011a]. The best solution found by HD-DDB[son et al.

2009] were €1.940 million using 30 million evaluations budget. The SDE algorithm
with N=500 produced the best solution of €1.988 million spending 2,042,000
evaluations and the SDE algorithm whi=2000 yielded the best solution of €1.982
million with 9,230,000 evaluations.

Table 14 Algorithm performance for the FRN case study (Baler ma network)

Average
Average ber of
NuUmb Best | Average| Worst number of num |
. UMBET| solution| cost | solution original equivalent
Algorithm of trial found | solution | found - full FRN
runs evgluatlons evaluations
(EM) (€M) (EM) | tofind best| "o 4poct
solution .
solution
FRN; 10 0.182 0.182 0.182 14,867 461
FRN, 10 0.710 0.712 0.714 122,889 24,578
FRN; 10 0.133 0.133 0.133 15,400 477
Proposed FRN, 10 0.883 0.884 0.884 567,366 295,030
rf(leLhOd FRN+FRN+
This | FRNg+ FRN,
study) rout-set 10 1.930 | 1.931 | 1.931 720,522 320,546
pipes
FRN 10 1.923 1.931 1.935 319,360 319,360
Total 10 - - - - 639,906
NLP-DE [Zhengetal. | 14 | 1953 | 1027 1934 1427850 1,427,850
2011a]
HD-DDS [Tolson et al.
2000] 1 1.940 - - NA 30,000,000
SDE (N=2000,this study) 10 1.982 1.984 1.987 9,294,666 9,294,666
SDE (N=500,this study) 10 1.988 2.208 2.050 1,814,700 1,814,700
HS [Geem2009] 1 2.018 - - 10,000,000 10,000,000
GANOME GA [Recaand) 2302 | 2.334| 2350 10,000,000 10,000,000
Martinez2006]

®The cost of the cut-set pipes is $19,674 by assigning them with the minimum pipe diameters.
P|nfeasible solution determined by EPANET2.0 with the maximum head deficit of 2.2 meters.

“The total computational overhead required by the proposed method has been converted to the
equivalent number of the whole network evaluations (FFRIRN,+FRN;+FRN,+cut-set+FRN).
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Reca and Marhez[2006] andGeem[2009] employed the GANOME GA and HS to

find the best solutions of €2.302 million and €2.018 million for this case study
respectively running a total of 10 million evaluations. As shown in Table 14, the
worst solution found by the proposed method based on the ten different runs is
€1.935 million, which is still lower than the best solutions found by the majority of
other algorithms presented in Table 14. From these results, it is concluded that the
proposed method is able to find better solutions for this case study with higher

reliability than the majority of other optimization techniques.

In terms of efficiency (total equivalent number of evaluations), the proposed method
found the best solution 1.23 times faster than the NLP-DE method; 44.8 times faster
than the HD-DDS; 13.6 times faster than the SDE algorithm with population size of
N=2000; 1.83 times faster than the SDE algorithm with population six&=500;

and 14.3 times faster than GANOME GA and HS. This implies that the proposed
decomposition and multi-stage optimization approach is able to find optimal
solutions for such a relatively large case study (454 decision variables) with
substantially improved efficiency compared to all other algorithms presented in Table
14.

It is interesting to note that the best approximate optimal solution generated by the
first stage optimization of the proposed method was €1.930 million, which is only
0.7% higher than the current best solution for the FRN case study produced by the
proposed method after the second stage optimization. The average cost of the ten
approximate optimal solutions was €1.931 million, which is also extremely close to
the current best solution. In addition, these approximate optimal solutions were found
with extremely good efficiency as shown in Table 14. Although these approximate
optimal solutions were infeasible when determined by EPANET2.0, they are able to
specify promising regions for the second stage optimization of the proposed method,
thereby allowing the good quality solutions for the whole FRN to be found

efficiently.
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6.5. Sub-networ k optimization analysis (fir st stage optimization)

Table 15 summarizes the number of pipes for which the diameters in the approximate
optimal solutions (produced by the sub-network optimization during the first stage
optimization) are different from the current best known solutions for each case study.

Table 15 Summary of the number of different pipe diametersfor the
approximate optimal solutions and the current best known solutionsfor each
case study

Number of pipes different
in diameters between the

approximate solution and
the current best known

Number of pipes Number
Number in optimal source of

Casestudy pipes partitioning cut-  different

set Q) runs solution
Two-reservoir
WDS 6 2 100 1to 2
TRN 287 14 10 29 to 35
FRN 454 5 10 52 to 61

As can be seen from Table 15, the number of different pipes diameters range from
only 1 to 2 for the two-reservoir WDS case study (6 total pipes), 6 to 8 for the DRN
case study (34 total pipes) based on 100 different runs, from only 29 to 35 for the
TRN case study (287 total pipes) and from only 52-61 for the FRN case study (454
total pipes) based on ten different runs. Thus the majority of the pipes in the
approximate optimal solution obtained in the first stage optimization have the same
diameters as for those in the current best known solution for each case study. This
demonstrates that the proposed source partitioning approach for a WDS with multiple
supply sources is effective in terms of providing good initial estimates for the whole-
of-network optimization. This is proven in that the network configuration obtained by
combining each sub-network’s design is extremely close to that provided by the final

optimal solution as shown in Table 15.

Thus, it can be concluded that during the first stage optimization phase of the
proposed decomposition and multi-stage optimization approach, the approximate
optimal solutions for the whole network were efficiently found with very satisfactory

quality in terms of both cost and network configuration compared to the current best

known solution for each case study. The benefits are attributed to two factors
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including: (i) each DE algorithm is used to deal with a portion of the whole network
and hence explore a significantly reduced search space in the proposed method. This
allows good quality solutions for each sub-network to be located with substantially
improved efficiency; and (i) the sum of computational overhead for each sub-

network’s hydraulic evaluation is smaller than that of one whole network evaluation.

7. Conclusions and futurework

A novel decomposition and multi-stage optimization method is proposed to optimize
the design of water distribution systems with multiple supply sources. The proposed
method begins by identifying an optimal source partitioning cut-set for a given water
network withK supply sources based on the available friction slopes at each node.
The whole water network is then partitioned iKta@isconnected sub-networks after

the removal of the optimal source partitioning cut-set. A totdd afidependent DE
algorithms are used to optimize tKesub-networks individually during the first stage
optimization. The optimal solutions for each sub-network plus the optimal source
partitioning cut-set with the minimum allowable pipe diameter are used to create a
tailored seeding table. Another DE algorithm is seeded with this given seeding table
to optimize the design of the original whole network during the second stage

optimization.

The proposed method was applied to four case studies and the results were compared
with those of standard DE algorithms seeded with the total choice table also applied
to these three case studies. It was found that the proposed method (decomposition
followed by two-stage optimization) significantly outperforms the SDE algorithms in
terms of solution quality and efficiency. Based on the results of the proposed method

applied to the three case studies, the following observations can be made.

(1) The proposed patrtitioning approach for a WDS with multiple supply sources
based on the available friction slopes at each node is effective. This is reflected by

the fact that (i) the approximate optimal solutions obtained from the sub-network
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optimizations were extremely close to the current best solution for each case study in
terms of both solution costs and network configurations and (ii) the good quality
solutions for each case study were found efficiently by a DE seeded by the tailored

seeding table obtained from sub-network optimization.

(2) The computational overhead required to find the optimal source partitioning
cut-set for a given WDS with multiple supply sources is negligible compared with
that required by the whole optimization process (smaller than 0.01% of the total
time). This indicates that the proposed algorithm given in Figure 3 used to identify
the optimal source partitioning cut-set for a WDS with multiple supply sources is

extremely efficient.

(3) The DE algorithm seeded with the tailored seeding table based on the
approximate optimal solution efficiently produces better quality solutions than the

standard DE algorithm seeded with the total choice table.

(4) The proposed method found the new current best solution for the DRN with a
cost of $1.750 million and the current best known solution for the FRN case study
with the best known efficiency. The proposed method produced a current best
solution for the TRN case study, with a value of $6.823 milli&1(0 and
HW=130).

The performance of the proposed method has been compared with other previously
reported optimization techniques based on the three case studies. It was found that
the newly proposed method (decomposition followed by two-stage optimization)

yielded better optimal solutions than other optimization techniques such as GAs and

the HD-DDS with an extremely faster convergence speed.

It is important to note that the computational time for each sub-network optimization
was added to the total computational time for the whole proposed optimization
process in this study. This is due to the fact that sub-network optimization is

individually completed in a predetermined sequence. However, sub-network
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optimization using this proposed method can actually be undertaken utilizing parallel
computing technology or multiple computers. In this case, all the sub-network
optimizations could be started simultaneously, therefore further improving the
efficiency of the whole optimization process. Thus, the proposed method provides an
opportunity to exploit parallel computing techniques for the design optimization of a

WDS with multiple supply sources.

The proposed decomposition and multi-stage optimization method presented in this
paper has been demonstrated to be effective in finding the least-cost design (single
objective optimization) for water distribution systems with multiple supply sources
(WDS-MSS). A further future extension to the proposed method would be to deal
with multi-objective optimization problems for WDS-MSS, in which say both the
network cost and reliability will be considered. For the purpose of multi-objective
optimization for WDS-MSS, a multi-objective optimization technique (such as
NSGA-II: Deb et al.[2002] or Borg:Hadka and Reef2012]) could be used to deal

with sub-networks separately during the first stage optimization phase. Then another
multi-objective optimization run would be seeded by the results obtained from the
first stage optimization in order to generate multi-objective optimal solutions for the

original whole WDS-MSS. This extension could be a focus of future work.

It should be noted that in this study the proposed decomposition and multi-stage
optimization method aims to optimize a regional water supply system with multiple
supply sources (WDS-MSS). The proposed method may not be transferred directly to
deal with the optimization of a local supply system. For example if pressure reducing
valves are used to partition a local water supply system into different zones, then
application of the proposed method will require significant modification. Again,
another future focus will be to extend the proposed method to deal with the
optimization design of more complex networks (local water supply systems), for

which the pumps, valves, tanks and multiple demand loading cases may be involved.
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Although the proposed decomposition and multi-stage optimization method has been
applied to find the optimal design for water distribution systems with multiple supply
sources (WDS-MSS) in this paper, this concept (i.e., decomposition followed by
multi-stage optimization) could be also transferred or extended to deal with other
optimization problems, such as leakage hotpot detecWdn And Sage2006],
contaminant detectionWeickgenannt et al2010] and the real-time optimization
problems for WDSsHang and Lanse2010].
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Chapter 9. Journal Paper 7-Graph Decomposition Optimization of
WDS

9.1 Synopsis

A graph decompostion based approach for water distribution network

optimization

Normally, a water network can be viewed as a connected G@&HE), whereV is a set

of links andE is a set of nodes in the WDN. Thus, it is natural to introduce graph theory
algorithms to facilitate WDN analysis. Traditionally, graph theory was used for water
network connectivity and reliability analysis. This thesis develops a number of graph
decomposition concepts for water networks in order to facilitate the optimization of the
design. These decomposition concepts include (i) the determination of the shortest-
distance tree for the water network presented in Chapter 6; (ii) the identification of the
trees and core for the water network outlined in Chapter 7; (iii) the optimal source
partitioning cut-set approach presented in Chapter 8, and (iv) the sub-network

identification for the whole network which is given in Chapter 9.

The shortest-distance tree shown in Chapter 6 is used to decompose the original looped
water network into a tree and chords. Consequently, non-linear programming (NLP) is
used to obtain the optimal solution for the shortest-distance tree, which in turn is utilized

to seed a differential evolution (DE) algorithm to optimize the original whole network.

The full water network is decomposed into trees and core in Chapter 7, where no loops
are involved in the trees and loops are only included in the core. Then binary linear
programming (BLP) is used to exclusively optimize the design for the trees and a DE is
employed to find the optimal design for the core. Using this decomposition method,
different components of the water network are optimized by different optimization

techniques.

The optimal source partitioning concept proposed in Chapter 8 is used to decompose a
complex water network with multiple supply sources into sub-networks based on the
number of supply sources. One and only one supply source and a set of nodes and links

are assigned to each sub-network. Rather than optimizing the full water network, the sub-
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networks are optimized separately and the solutions from all sub-networks are combined
to form an approximate optimal solution for the full network. This approximate optimal
solution is used to initialize a DE in order to find further better solution for the original
full network.

The sub-network identification concept presented in this Chapter differs from those in
Chapters 6, 7 and 8. In this Chapter, a complete water network is decomposed into sub-
networks based on the connectivity of the network’s components. Each resulting sub-
network contains a single block, bridges and trees if applicable. It should be highlighted
here that the sub-network definition in this Chapter differs to the sub-network definition

in Chapter 8. The differences include: (i) the sub-network identification in this Chapter is
based on network’s connectivity properties while the sub-network identification in
Chapter 8 is based on the number of supply sources and (ii) no pipes are removed to
identify the sub-networks in this Chapter while the source partitioning cut-set has to be

removed in order to constitute the sub-networks in Chapter 8.

In the proposed decomposition based optimization approach in this Chapter, the original
whole network is simplified to a directed augmented tree after the sub-network
identification, in which the sub-networks are substituted by augmented nodes and
directed links are created to connect them. A DE is then employed to optimize the design
for each sub-network based on the sequence specified by the assigned directed links in
the augmented tree. Rather than optimizing the original network as a whole, therefore,

the sub-networks are sequentially optimized by the DE algorithm.

In the proposed graph decomposition based optimization method, a solution choice table
is established for each sub-network (except for the root sub-network that includes the
reservoir) and the optimal solution of the original whole network is finally obtained by
use of the solution choice tables. Furthermore, in order to improve the efficiency of the
optimization process, a pre-conditioning algorithm is developed to optimize the sub-

networks, thereby producing an approximately optimal solution for the original whole
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network. This solution specifies promising regions for the final optimization algorithm to

further optimize the sub-networks, allowing better quality solutions to be found.

The proposed approach takes advantage of the fact that the evolutionary algorithm (DE
in this research) is effective in exploring a relatively small search space. As the number
of decision variables for each sub-network is significantly less than the original whole
network, the DE is able to exploit the substantially reduced search space effectively and
quickly. This allows good quality optimal solutions for each sub-network to be found
with great efficiency. Another substantial benefit of the proposed method is that it
provides a way to exploit parallel computing techniques for the design optimization of a
WDS

This work has been submitted Water Resources Researahd the paper and the

algorithm details are given as follows.
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9.2 Journal Paper 7: A graph decomposition based approach for
water distribution network optimization (Submitted to Water
Resources Research)

Feifei Zheng, Angus R. Simpson, Aaron C. Zecchin and Jochen Deuerlein

Abstract

A novel optimization approach for water distribution network design is proposed in
this paper. Using graph theory algorithms, a full water network is first decomposed
into different sub-networks based on the connectivity of the network’s components.
The original whole network is simplified to a directed augmented tree, in which the
sub-networks are substituted by augmented nodes and directed links are created to
connect them. Differential evolution (DE) is then employed to optimize each sub-
network based on the sequence specified by the assigned directed links in the
augmented tree. Rather than optimizing the original network as a whole, the sub-
networks are sequentially optimized by the DE algorithm. A solution choice table is
established for each sub-network (except for the sub-network that includes a supply
node) and the optimal solution of the original whole network is finally obtained by
use of the solution choice tables. Furthermore, a pre-conditioning algorithm is
applied to the sub-networks to produce an approximately optimal solution for the
original whole network. This solution specifies promising regions for the final
optimization algorithm to further optimize the sub-networks. Five water network case
studies are used to demonstrate the effectiveness of the proposed optimization
method. A standard DE algorithm (SDE) and a genetic algorithm (GA) are applied to
each case study without network decomposition to enable a comparison with the
proposed method. The results show that the proposed method consistently
outperforms the SDE and GA (both with tuned parameters) in terms of both the

solution quality and efficiency.

248



CHAPTER9. JOURNAL PAPER 7-GRAPH DECOMPOSITIONOPTIMIZATION OF WDS

1. Introduction

The optimization of water distribution network (WDN) design has been investigated
over the past few decades, and a number of optimization techniques have been
developed to tackle WDN optimization problem. These include linear programming
(LP) [Alperovits and Shamil977], nonlinear programming (NLPFudjiwara and
Khang1990], and evolutionary algorithmSimpson et al1994;Dandy et al.1996;
Montesinoset al. 1999; Reca and Marhez 2006; Geem et al2002; Maier et al

2003; Suribabu and Neelakanta?006; Tolson et al. 2009; Suribabu 2010].
However, it has been found that each optimization algorithm has its own advantages

and disadvantages.

For LP and NLP, optimal solutions can be located efficiently, while only local
minimums are provided. Evolutionary algorithms (EAs) are able to find good quality
solutions but are computationally expensive. A number of advanced methods have
been proposed to reduce the computational intensity required by EAs in terms of
WDN optimization yan Zyl et al2004;Tu et al 2005;Keedwell and Kh2006;Reis

et al. 2006]. Combining optimization techniques with water network decomposition

is one of those advanced methods.

Normally, a WDN can be viewed as a connected g@hE), whereV is a set of

links andE is a set of nodes in the WDN. Thus, it is natural to introduce graph theory
algorithms to facilitate WDN analysis. Traditionally, graph theory was used for water
network connectivity and reliability analysi@upta and Prasad2000] used linear
graph theory for the analysis of the pipe netwoiBsuerlein [2008] proposed a
graph theory algorithm to decompose a WDN into forests, bridges and blocks. This
method provides a tool to simplify complex WDNs and provides a better

understanding of the interactions between their different parts of the network.

In terms of WDN optimizationKessler et al[1990] developed a graph theory based

algorithm to optimize the design of WDNSs. In their work, the design process
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consisted of three distinct stages. In the first stage alternative paths were allocated
using graph theory algorithms. In the second stage the minimum hydraulic capacity
(diameters) of each path was determined using an LP model. In the third stage the
obtained solution from the second stage was tested by a network solver for various

demand patterns.

Sonak and Bhavf993] introduced a combined graph decomposition-LP algorithm
for WDN design. In this combined algorithm, all the trees of the looped WDN were
first identified by a graph theory algorithm and optimized by a LP, allowing the
global optimum tree solution to be located. The final optimal solution for the original
WDN was then determined by assigning the chords of the global optimum tree the
minimum allowable pipe diameteiSavic et al[1995] used graph theory to partition

a water network into ‘tree’ and ‘co-tree’ to enable an optimization problem that

involved minimizing the heads by setting regulation valves.

Kadu et al.[2008] proposed a genetic algorithm (GA) combined with a graph theory
algorithm to optimize water distribution systems. In their method, graph theory is
used to identify the critical path for each node in order to reduce the search space for
the genetic algorithmKrapivka and Ostfeld2009] proposed a coupled GA-LP
scheme for the least-cost pipe sizing of water networks. A spanning tree
identification algorithm was introduced in their wodheng et al[2011] proposed a
combined NLP-DE algorithm to optimize WDNSs. In this algorithm, a graph theory
algorithm was first used to identify the shortest-distance tree for the original whole
WDN. Then an NLP was implemented to optimize the tree network. The optimal
solution obtained from the NLP optimization was finally utilized to seed a DE to

optimize the original whole network.

Improvements in terms of efficiency and solution quality have consistently been
reported by researchers when these optimization techniques are combined with graph
theory algorithms and applied to WDN case studies. It was observed that, for the

existing graph theory based optimization techniques, graph theory is normally used to
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identify the critical path or the spanning tree for the WDN in order to facilitate the

optimization.

For the proposed method here, a complete WDN is decomposed into sub-networks
(rather than spanning trees) based on the connectivity of the network’s components.
The resulting sub-network may consist of a single block, bridges to this block and
trees connected to this block if applicable. For relatively simple networks, (such as
networks that have only one block and multiple trees attached to this block (case
studies 2 and 3 in this paper)), the trees can be viewed as sub-networks. The sub-
network containing the water supply node (reservoir) is designated the root sub-
network. The definitions of block, bridge and tree for the water network are given by
Deuerlein [2008], who described a block in a WDN as a maximal biconnected
subgraph; a bridge is a link joining two disconnected parts of a graph; and a tree is a

connected subgraph without any circuits or loops.

After the sub-networks have been identified, each one is represented as an augmented
node and these augmented nodes are connected disgoged linksto form a
directed augmented treAT), in which the directed links are used to specify the sub-
network optimization sequence. In order to improve the efficiency of the
optimization process, a pre-conditioning approach is developed to approximately
optimize the sub-networks in order to produces an approximate optimal solution for
the original full network. The obtained approximate solution is able to specify
promising regions within the entire search space. A final optimization method is then
used to exploit these promising regions in order to generate further improved
solutions for the original full network. The details of the proposed methodology are

given later.

2. Formulation of water distribution networ k optimization problem

Typically, a single-objective optimization of a WDN is the minimization of system costs

(pipes, tanks and other components) while satisfying head constraints at each node. In
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this paper, the proposed graph decomposition based optimization method is verified
using WDN case studies with pipes only. Thus, the formulation of the WDS optimization

problem can be given by:

np
Minimize F= az_l: DL, 1)

Subject to:
H™< H< H™ k=12....,nj @
G(Hx, D)=0 3)

DA "

whereF=network cost that is to be minimizeSifnpson et all994]; Di=diameter of the

pipei; Li=length of the pip& a, b=specified coefficients for the cost functiong=total

number of pipes in the networkij=total number of nodes in the netwoilf(Hy,
D)=nodal mass balance and loop (path) energy balance equations for the whole network,
which is solved by a hydraulic simulation package (EPANET2.0 in this stutiyhead

at the nodé=1,2....nj; H""and H,"> are the lower and upper head limits at the nodes;

A = a set of commercially available pipe diameters.

3. Methodology

Four steps are involved in the proposed method for optimizing a WDN.

Step 1 The sub-networks for the full WDN that is being optimized are identified

using a graph decomposition algorithm.

Step 2 A directed augmented treel) is built for the original full WDN. In the
AT, the sub-networks appear as augmented nodes connected by directed
links. The direction of the directed links in tWd determines the sub-

network optimization sequence in the proposed method.
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Step 3 The sub-networks are then preconditioned using a DE algorithm to produce

an approximate optimal solution for the original full network.

Step 4 The sub-networks are further optimized by a DE algorithm based on the

approximate optimal solution obtained in Step 3.
The details of each step are as follows.

3.1. Sub-network identification for the full water network (Step 1)

Deuerlein[2008] proposed a graph theory algorithm to decompose a water network
graph @) into forest, blocks and bridges according to its connectivity properties. In
the method proposed here, however, the original network g@pls decomposed

into a series of sub-networkS)( Each of the sub-networks may consist of one block,
bridges to this block and trees attached to this block if applicable, or purely trees (if
blocks are not applicable). Figure 1 illustrates the decomposition results of a water

network using the proposed new method.

p 22

(@) A water network®) (b) sub-networksS)

Figure 1 An example of 27-pipe water networ k decomposition. (a): the
original water network; (b) the proposed decomposition results.
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For the water distribution networlG] given in Figure 1(a), six sub-networks are
identified specified as follows by a set of nodes and pipes, incl&t#{g, b, c, d, v,
1,2, 3, 4,55={ef, 6,7 8}%={g,hi,j,09 10, 11, 12, 13}S={k, |, m n, 14, 15,
16, 17, 18},S={0, p, g, 19, 20, 21, 22} an&={r, s t, U, 23, 24, 25, 26, 27}S, is
denoted as root sub-network as it includes the supply sourcevradéne original

water network.

As shown in Figure 1(b), each sub-network contains one and only one block, bridges
to this block if applicable, and the trees attached to this block if applicable. The sub-
networks overlap at some nodes as can be seen from Figure§,N.&=c, SN

S=f, SN §=e, N S=MandS; N S=n. In this study, nodes, f, e,m andn are
denoted as sub-network cut nodé&j, (i.e. C={c, f, e, m, n}. A depth first search
(DFS) is employed to identify sub-network cut nodBsrjan 1972; Deuerlein2008]

to enable the network decomposition.

3.2. Directed augmented tree (AT) construction for the original WDN (Step 2)

In order to assist in visualizing the proposed optimization method, the decomposed
water networkG is reconstructed as directed augmented tre@T) by imagining

each of the sub-networks asamgmented nodand connecting the augmented nodes
using directed links. The directed augmented &&eof water networkG given in

Figure 1(a) is presented in Figure 2.

As shown in Figure 2, reflecting graph theory terminoldgyis the root augmented
node in theAT since sub-network; is the root sub network in Figure&.and$; are

located in the middle of th&T, while S5, S andSs are located at the leaves of thé

The AT is now used to illustrate the two novel features of the proposed optimization
method, which are (ithe optimization is carried out for each sub-network separately
(rather than for the original full network as a whole) in a predetermined sequence
specified by thedirected links in the ATand (ii) each sub-network design

optimization incorporates the solutions for all the sub-networks that are immediately
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attached to this sub-network based on the direction of the directedinirike AT
Referring the novel feature (i), as specified by the directed links iAThgiven in
Figure 2,S;, S and & are first separately optimized, followed By, then S, and
finally is S;. That is, sub-network optimization takes place from the leaves to the root
of the AT, which is opposite to the flow direction of tAd (that is from the root to

the leaves as the supply source node is included in the root augmented node).

@Root augmented node

1
1
ol
1
1

O Augmented node

; ------ +» Directed links

, \

@ 9 S: Sub-networks

Figure2 Thedirected augmented tree (AT) of the water network G given in
Figure 1(a)
In order to facilitate the implementation of the novel feature (ii), for each sub-
network represented by an augmented node iThall the other sub-networks that

are immediately attached to this sub-network based on the direction of the directed
links are defined as its correlated sub-netwapksBased on this definition, the

correlated sub-networks for each sub-network given in FiguregdS§={S;}, ¢
(D)=S, S}, 9(S)=0, ¢(H={S, S}, ¢(S)=0 and ¢ (S)=0. Based on the

novel feature (ii) of the proposed method, each sub-network design optimization
needs to include the solutions for all the sub-networks ig its

By applying the two novel features to the water network given in Figure ATiis

presented in Figure 2%, S andS should be first individually optimized and they
do not consider other networks during optimization since teit]. Then& is
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optimized while incorporating the solutions f& and & since ¢ (S)={Ss, S}
Subsequently$; is optimized andss and$, are included during the optimizatiog (

(2)={Ss, &}). Finally, S is optimized and; is included ¢ (S)={S}).

As previously mentioned, two distinct optimization steps are utilized in the proposed
method when dealing with the optimization design for a WDN, which are
preconditioning optimization for the sub-networks (Step 3) and the final optimization
for the sub-networks (Step 4). The details of these two proposed optimization
algorithms are discussed in the later section. The water network given in Figure 1(a)
(denotedN;) is used to illustrate the proposed optimization approach. The water
demands for each node and the length for each pipe are given in Table 1.

Table 1 Nodal and pipe infor mation of N

. Length Water

Link m) Node demand
(L/s)

1 800 Y Reservoir

2 750 a 25

3 600 b 27

4 485 C 32

5 452 d 15

6 478 e 48

7 492 f 20

8 562 g 124

9 145 h 14

10 785 i 32

11 456 i 13

12 325 k 17

13 148 I 22

14 478 m 42

15 528 n 89

16 400 0] 26

17 258 p 23

18 547 q 11

19 500 r 19

20 200 s 17

21 200 t 16

22 900 u 32

23 654

24 698

25 250

26 700

27 254
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The elevation of all the demand nodes is 10 meters and the head provided by the
supply source nodev) is 45 meters. The minimum head requirement for each
demand node is 35 meters. The Hazen-Williams coefficient for each new pipe is 130.
A total of 14 diameters ranging from 150 mm to 1000 mm are used fby tthesign.

The pipe diameters and the cost for each diameter are giu€adoyet al.[2008].

3.3. Preconditioning optimization for the sub-networks (Step 3)

Three typical sub-networks can be defined for the decomposed network in the
proposed method, including the sub-networks at the le&ya3)j}, sub-networks in

the middle of the directed augmented tré#(AT)) and the root sub-network
(Rt(AT)). For the sub-networks represented by augmented nodes in Figurg & {S

Se} UL(AT), {S2, S} OM(AT) and SORHAT).

Sub-networks at the leaveS[L(AT)] differ from other sub-networks as thep="[1.

The root sub-networkJJR{(AT)] is characterized by its known available head, since

it includes the supply source node of the original WDN. The available heads of the
sub-networks in the middle of the directed augmented 8E&(AT)) are unknown

and theirg # [0, which are different fronSLIL(AT) andSCRY{AT). In the proposed

method, the optimization process for each type of the sub-network varies.

3.3.1 Optimization for the sub-network at the leaves of the AT

The sub-networks at the leaveSI{L(AT)) are first optimized in the proposed
method. Since no supply source node exists for 8atH{AT), each sub-networ&ut
node connecting theSLIL(AT) and theSLIM(AT) is assumed to be a supply source
node forSLIL(AT). Therefore, the sub-network cut nodesn and n represent the

supply source nodes &, S5, andSs respectively as shown in Figure 1 (b).

Since the available headH) at a sub-network cut node is unknown, a series of
sequential headH] betweenHni, and Hnax are assigned for the sub-network cut
node, whereéH,, is the maximum value of all minimum required nodal heads across

the whole sub-network that is being optimized atgyis the allowable head
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provided by the supply source node of the original network. The logic behind setting
the head range [i.e U (Hmin, Hmay] is that no feasible solution can be found if the
available head at the sub-network cut node is smaller than the maximum value of the
minimum head constraints at all sub-network nodes, and the maximum head of the
sub-network cut node cannot be greater than the head of the supply source node. A
series of differenH, HLU (Hmin, Hmay, With a particular interval (say one meter) are

used for the sub-network cut node in order to enable sub-network optimization.

For each value dfi assigned to a sub-network cut node, a differential evolution (DE)
algorithm combined with a hydraulic simulation model (EPANET2.0) is used to
optimize the sub-network design, while satisfying the head requirements for each
node within the sub-network. The minimum pressure head ekzess(Hexcese 0)

across the sub-network is obtained for each optimal solution associated with a
particular value oH at the sub-network cut node. This indicates that the head at the
sub-network cut node can be further reduced Hy.ess While maintaining the
feasibility of this optimal solution. The he&tl at the sub-network cut node is then
adjusted toH ", where H” =H-Hexcess Which is the minimum head requirement at the
sub-network cut node for the optimal solution associated with the minimum pressure

head excesdeycess

Consequently, a solution choice tab&T)(is constituted for the sub-network that is
being optimized by assigning a series of different valugs tf its assumed supply
source node, sub-network cut node. In 8% H', optimal solution costs and the
sub-network configurations (pipe diameters) of optimal solutions are included and
each uniqueH’ is associated with a unique optimal solution (including the cost and

the sub-network configuration).

The sub-networl& in N, is used to illustrate the proposed optimization method for
the SLIL(AT). The Hmin and Hpaxvalues forS are 35 and 45 meters respectively,
whereHnmin is the maximum head requirement for all the nodes a&o&5 m) and

the Hmax is the allowable head provided by the actual supply source node (45 m). A
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series of H ranging from 35 to 45 m with an increment of 1 m, i.e,,
H = {363738....... 45} is used for the sub-network cut nodeto optimize the
design forSs. Note that no feasible solution can be foun#i#35 m is assigned to
noden as the minimum head requirement &ris 35 m. Thus, the value /=35 m

is not included in the series Hfvalues assigned for the sub-network cut nedEhe
optimal solution for each value &f, the minimum pressure head excds$sd.s)} and

the H” value for each optimal solution f& are given in Table 2.

As can be seen from Table 2, with valuedHofiven at the sub-network cut node

from the smallest to the largest (the first column of Table 2), valué$ afe also
ordered from the smallest to the largest, while its corresponding optimal solution is
ordered from the largest to the smallest in terms of cost. This is due to the fact that a
lower cost solution is achieved if a higher head is provided at the sub-network cut
node. The solution choice table f& of N; includes theH  values, the cost of the
optimal solutions and the pipe diameters for optimal solutions as shown in the third,
fourth and fifth columns in Table 2. This solution choice table is denot8d,asnce

the sub-network cut nodeis the assumed supply source $gr

Table 2 Optimal solutionsfor Ss of Ny

H at sub- Minimum . Cost of

network cut pressure head H = optimal Pipe diameters for each
noden excesHeycess H-Hexcess solutions optimal solution (mnT)

(m) (m) (m) ®)
36 0.014 35.986 155,487 450, 250, 300, 150, 300
37 0.231 36.769 130,288 400, 200, 300, 150, 250
38 0.157 37.843 115,622 350, 200, 250, 150, 300
39 0.120 38.880 108,175 350, 150, 250, 150, 250
40 0.397 39.603 105,079 350, 150, 250, 150, 200
41 0.513 40.487 98,175 300, 150, 250, 150, 250
42 0.790 41.210 95,079 300, 150, 250, 150, 200
43 0.402
a4 1.402 42.598 92,032 300, 150, 200, 150, 200
45 0.160 44.840 89,168 250, 150, 200, 150, 250

The pipe diameters are for links 23 to 2Mgfnetwork (Figure 1 (a)) from the first to the last pipe
respectively. [Note that only one solution is recorded in the table for the identical solutions (having the
sameH " optimal cost and pipe diameter for links)].

It is found inST, that the value oH"  the cost and the pipe diameters for each link

are the same for the optimal solutions generated when the heads at the sub-network
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cut noden are 43 and 44 meters. This indicates that no further improved optimal
solutions are to be found when the head at the sub-network cut node increases from
43 to 44 meters. It should be noted here that the identical solutions (having the same

H” . optimal cost and the pipe diameters for links) are removed from the solutions

choice table (only one is left in the solution choice table).

EachSLIL(AT) is optimized using the same approach asSiadescribed above and
hence a solution choice table is constituted for each one after optimizatioN; For
case study, in addition 6, S and $ are also sub-networks at the leaves of the
directed augmented tree (see Figure 2). Foar®l 3, Hmirm=35m andHya=45m,

hence a series of values fAr= {36,3738....... 45} are used for the sub-network cut
nodesf andm to optimize the design for th& and 3 respectively. As previously
explained,H=35m is not assigned to the sub-network cut nodes as no feasible
solution can be found with this assumed head value (the minimum head requirement
is 35m for theN; case study). The obtained solution choice table&fand g are

presented in Table 3 (the identical solutions have been removed from solution choice

tables).
Table 3 Solution choicetablesfor S3 and S5 of Nj.
H at assumed H'= Cost of Pipe diameters for each
- supply source i

Sub-network v H-zar%cess < oPtimal @ Optimal solution (mm)
36 35.845 90,200 500, 150, 350, 200, 200
Solution Choice 37 36.939 73,900 400, 150, 300, 150, 200
table forS, [ST 38 37.765 67,620 400, 150, 250, 150, 200
(f)] where nodd 39 38.886 63,553 350, 150, 250, 150, 150
is the assumed 40 39.916 62,915 300, 150, 250, 150, 200
supply source 41 40.903 60,483 400, 150, 200, 150, 150
node fors, 42 41.547 57,995 350, 150, 200, 150, 200
43 42.575 57,357 300, 150, 200, 150, 200
44, 45 43.054 55,778 300, 150, 200, 150, 150

Solution Choice 36 35.995 74,686 350, 250, 150, 150

table forS [ST 37 36.864 64,603 300, 200, 150, 150

(m)] where node 38 37.925 62,469 300, 150, 150, 150

mis the assumed 39 38.649 57,717 250, 200, 150, 150

supply source
node fors

40, 41, 42, 43, 44

45

39.710
44.607

55,583

51,623

250, 150, 150, 150
200, 200, 150, 150

"The pipe diameters are for links 9 to 13\afnetwork (Figure 1 (a)) i and for links 19 to 22 of
N; network inS; from the first to the last respectively.
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As shown in Table 3, the solutions choice tabless§g6T(f)] and S [ST(m)] include

a total of nine and six various optimal solutions respectively. §othe optimal
solutions for the values ¢ at the assumed supply source nblleing 44 and 45 m

were the same obtained by the DE algorithm in terms of cost and network
configuration. WithH=40, 41, 42, 43 and 44 m at the assumed sourcemadoeS;,

the optimal solutions were the same and hence only one solution was included in the

solution choice tableTm)] as shown in Table 3.

3.3.2 Optimization for the sub-network in the middle of the AT

The optimization for th&LIM(AT) is carried out once the optimization fairIL(AT)

has been finished. For ea8hlM(AT), the water demands at each sub-network cut
node have to be increased by the flows in the directed links to this sub-network that is
being optimized (note the direction of the flows is opposite to the directed links). For
the example given in Figure 1(b), the water demands at sub-network cutfpodes
andn [fUS, {m, 1S, {S, S} LUIM(AT)] are increased by the flows in directed link

I3 1, and |5 respectively (see Figure 2), which are actually the demands of sub-
networksS;, S andSs respectively. The water demand at sub-network cut rage
added by the flows in directed limk which are the total demands of sub-netw&gk

Sand$;, as shown in Figure 2.

It is noted that eacBUL(AT) is connected to the original entire network via only one
sub-network cut node, while ea@iIM(AT) is attached to the whole system with
multiple sub-network cut nodes. For the example in Figuf®, 15 and $ belong to

L(AT) and each of them is connected to the whole network with only one sub-
network cut node, which are nodgsm and n respectively. In contrast, S, U

M(AT) are attached to the whole network with more than one sub-network cut nodes,
for which nodes m andn combine $ with other parts of the whole network, antl

ande are used to connect ® the original entire network.

Among these sub-network cut nodes attached to &atM(AT), the one that is

located at the upstream end based on the flow direction is assumed as supply source.
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Thus, sub-network cut nodesande are the assumed supply sourcesSpand$S,
respectively for the water network given in Figure 1. A series of diffetiertd (]

(Hmin» Hmay, With a particular interval (of again say one meter) are assigned to the
sub-network cut node for optimizing tl8&I1M(AT), which is the same approach as
for optimizingSLIL(AT) described in Section 2.3.1.

It is important to note that for ea@i/M(AT), at least one sub-network is located at

its immediately adjacent downward side based on the direction of the directed links
in the AT, i.e. 9 # [J. In the proposed method, the optimization of eS8CHM(AT)

needs to include all the sub-networks ingt@nd the solutions for the sub-networks
in its ¢ are selected from their corresponding solution choice tables during
optimization. The formulation of the optimization problem for e&hM(AT) is

given by:

Minimize = E$+). (4(9) SUM(AT) ()

Subject to:
H< Hg < HEE k=1..ns] ©)
G(H,,D,)=0 (7)
f¢( 90 STH(S) ()

where F'= total cost (to be optimized):(S)=cost of the sub-networg (SLIM(AT));
Z f(¢(S)) =total costs for all other sub-networks connected to the subneSi@rl

G(H g, ,D,)=nodal mass balance and loop (path) energy balance equations for the sub-

network S which is handled by a hydraulic simulation package (EPANET2.0 in this
study) ; Hg, =the nodal head of the nod#el,...nsj nsFnumber of nodes within the

sub-networks HZ and HZY* are the lower and upper head boundaries at the nodes of

S ST¢(S)) =the solution choice tables of sub-networks inghe

As shown from Equations (5) to (8), although the total costs &ti(AT) and all sub-
networks in itsg are to minimized, only the cost and the nodal head constraints of the
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SUM(AT) are explicitly handled by an optimization algorithm (DE used in this study).
This is because the optimal solutions for the sub-networks[denoted asf(¢(S))]

are selected from their corresponding solution choice tal8a8(S)) during

optimization [Equation (8)]. In addition, head constraints of sub-networks ig tre

also handled by their corresponding solution choice tables. This is one of the novel
aspects of the proposed optimization method. The details of the proposed method in
terms of selecting optimal solutions from solutions choice tables and handling constraints

during the optimization for th8LIM(AT) are given as follows.

The optimization ofS; in N; is now used to illustrate the proposed methods for

optimizing theSLUM(AT). For the water network given in Figure 1 andA®shown
in Figure 2,/ 9 ={ S, S} and henc& andS are included whe&, is optimized.

For § optimization, different values of = {36,3738....... 45} are used for the

assumed supply souree(Hmir=35m andHma.=45m) and then a DE is employed to

optimize the design fd8, for eachH value.

The total cost, including the cost 8f, the cost of$ and the cost 0§, is to be
minimized for the DE applied to optimiZ& [ 9 ={ S, S} ]. For each individual
solution in the DE algorithm, the head at the sub-network cut nodgst,) andn

(Hn) are tracked after the hydraulic simulation &I(EPANET2.0). Then the optimal
solution forSs and & are selected from their corresponding solution choice tables
ST, andST, based on assignirtg, andH, to the sub-network cut nodesandn. As

the H,, andH, may not equal precisely any particuldr values inST,, andST,, an
approach is proposed in this study to select the appropriate optimal solutions based
on the values ofl,, andH,. Figure 3 illustrates the details of this selection approach
and the values o versus the optimal solution costs in the solution choice table

ST, for & is presented in Figure 3 to facilitate the explanation.

For each individual solution of the DE applied to optintieH, (head at the sub-
network cut node) is obtained after hydraulic simulation f&. Based on the value

of Hy, three cases exist for selecting the optimal solutio&faas shown in Figure 3:
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Figure3 H” versusthe optimal solution cost for Ss of Ny

Case 1: iH, is smaller than the minimurd™ [H (A)] in ST,, the cost associated

with the minimumH~ (the cost of solutio’ in Figure 3) is added to the
total cost of this individual solution and the network configuration (pipe
diameters) associated wifiH (A)] is assigned forSs. In addition, a
penalty is applied to this individual solution as no feasible solution is
found forSs.

Case 2: iH, is greater than the maximuk™ (H"(B)) in ST, the cost associated

with the maximumH " (the cost of solutiomB in Figure 3) is added to the

total cost of this solution and the network configuration (pipe diameters)
associated witfiH"(B)] is assigned fo&s.

Case 3: ifH, is between two adjacemt” values inST,, the solution has thel”
immediately smaller than thd, is selected and its cost is added to the

total cost of this individual solution. As shown in Figure 3, the solu@ion
will be selected fof; if the individual solution has H, betweenH" (C)

and H™ (D), resulting in a pressure head excessigfH (C) for S. As

such, the solution selected frd&1, can be guaranteed to be feasible as

the solution with H® smaller thanH, is chosen. The network
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configuration (pipe diameters) associated With (C)] is assigned fo&

in this case.

The approach described above is also used to include the c8stvben a DE is
used to optimiz&,. As such, although only the pipesSpare handled by the DE, the
solutions in the DE actually include the total cosGgfS; andS. Once the DE has
converged to the final optimal solution f&, the minimum pressure head excess

HexcesdfOr this optimal solution is determined by:

F{excess:: rT]ir][gXCeSS ’(TL -rq &S:E )’Kin +_r 561; )] (S))

whereH_ __is the minimum pressure head excess across all the demand nodes for

excess

S, that is being optimizedH (ST,) and H (ST) are the values ofi” associated

with the solutions selected f& andS from ST, and ST, respectively based on the

approach illustrated in Figure 3. The hdddit the sub-network cut nodeis then

adjusted toH™, where H™ =H-Hexcess

For each different value &f assigned to the sub-network cut negdée optimal cost
solution forS,, S andS is obtained by the DE algorithm. In addition, tHgcessiS
obtained using Equation (9) and hence the valukl qfH =H- Heyxces) is Obtained
for each optimal solution. As such, a solution choice tabl&fa formed, in which,
H", optimal solution cost and sub-networks configuration (pipe diamete&;, 6y

and$) of the optimal solution are included, which is presented in Table 4.

As shown in Table 4, a total of nine different feasible optimal solutions were found
by the DE applied t&, optimization with the heads at the assumed source aode
being {36,3738....... 45} . No feasible solution was found withl=36 meters
assigned to node In the solution choice tab®Te) for S, the values oH™ across

the sub-networks d&, S andS;, the total cost o&, S andSs , the design for each

of these three sub-networks are included.
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Table 4 Solution choicetablefor S; of N¢

Hceut H' = Costof  Pipe diameters for each optimal solution (thin)the solution choice table
node H- optimal for S, [ST(e)]

€ Hexess SOlUtiONs

m $

m () () S s 5

36 infeasible

37 36.94 542,915 700, 600, 450, 600, 150 350, 250, 150, 150 450, 250, 300, 150, 300
38 37.94 484,396 600, 500, 400, 600, 150 350, 250, 150, 150 450, 250, 300, 150, 300
39 38.94 437,211 600, 500, 400, 500, 150 300, 200, 150, 150 400, 200, 300, 150, 250
40 39.76 414,439 600, 450, 350, 450, 150 300, 200, 150, 150 400, 200, 300, 150, 250
41 40.94 392,887 600, 450, 350, 450, 150 250, 200, 150, 150 350, 200, 250, 150, 300
42 41.86 380,809 500, 450, 350, 500, 150 300, 150, 150, 150 350, 200, 250, 150, 300
43 42.98 368,869 500, 500, 350, 400, 150 250, 200, 150, 150 350, 150, 250, 150, 250
44 43.78 348,862 500, 400, 300, 400, 150 250, 200, 150, 150 350, 200, 250, 150, 300
45 44.84 339,281 500, 400, 300, 400, 150 250, 150, 150, 150 350, 150, 250, 150, 250

'The pipe diameters are for links 14 to 27Nafnetwork from the first to the last respectively (see
Figure 1 (a)).

As shown in Figure 2 § ={ S, S,;}, thusS and & are included wher§; is

optimized in the proposed method. The sub-netvrik optimized befor&; as the
optimization sequence in the proposed method is from the leaves to the root based on
the directed augmented tree. The approach described in Figure 3 was used to select
the solutions fo5; and$, from their corresponding solution choice tables wheis
optimized. A similar method presented in Equation (9) was utilized to obtain the
Hexcess fOr each optimal solution 0%. Since Hyin=35m andHma=45m for S,

H = {363738....... 45} were used for the assumed supply source nad@®ptimize

S. In a similar way to that fo&,, a solution choice table is formed 8y after the
optimization, which is denoted &3(c) as the sub-network cut node c is the assumed
supply source node. The final solutions in 8igc) are the optimal solutions f&,
SandS;, which is actually the total optimal solutions & S5, S5, S and$ as the
solutions inS; have already included th® and &. The designs for the optimal
solutions ofS;, S, S;, S andSs are also included in tHeT(c).

The formulation of the optimization problem given from Equations (5) to (8) and the
approach used fo%, optimization [Figure 3 and Equation (9)] are employed to
optimize eaclBLIM(AT), thereby a solution choice table is constituted for each sub-

network in the middle of the directed augmented A€e
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3.3.3 Optimization for the sub-network at theroot of the AT

The root sub-network is the final one to be optimized in the proposed method. As the
supply source node in the original full WDN is included inF&(AT), the available

head is known when optimizir§R{(AT). For theSOR{AT), ¢ # I and hence the
approach used for the optimization $SfIM(AT) is also employed to deal with the
optimization of the sub-network at the root of tA& For the example given in

Figure 1,SURYAT) and ¢(S§)=S,, thus ST(c)is used to provide the optimal

solution forS, when§; is optimized.

An approximate optimal solution with a cost of $1.021 million is obtained afté; the
optimization, which is also the optimal solution for the whNlenetwork. This is
becausess and S were included wheis, was optimized,S and S; were included
when S, was optimized, an& was in turn included whe§, was optimized in the
proposed method. Thus, the final optimal solutions from the optimizati& ae

the optimization results for the original full netwadyk.

During the pre-conditioning optimization for the sub-networks in the proposed
method, a series &f with a relatively larger intervaHLI (Hmin, Hmay) is used for the
sub-network cut nodes (1 meter in this study). This aims to approximately explore the
search space of the original full network, thereby producing an approximate optimal
solution. This approximate optimal solution is used to specify promising regions for
the entire search space, allowing the next step (Step 4) of the final optimization for
the sub-networks to be conducted. The final optimization for the sub-networks

method is described in the next section.

3.4. Final optimization of the sub-networks (Step 4)

Based on the approximate optimal solution obtained by the preconditioning sub-

networks optimization, an optimal heaHl {) for each sub-network cut node can be
determined. An optimal head rang&H *) is created for each sub-network cut node
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through expansion of the obtained optimal head,[i@*)=[H*-J, H* +J]. In

this proposed method}=2 meters is used to obtain the optimal head range*) .

During the final optimization of the sub-networks, all the sub-networks are optimized
employing the same approach used for preconditioning optimization for sub-
networks, while the head assigned for the sub-network cut nodes is varied. For the
preconditioning optimization for sub-networks, a whole range of poskihlalues
betweerHni» andHnax at the sub-network cut nodes with a relatively large increment

(1 meter) was used, while a seriedHofalues within the optimal head ranggH *)

with a relatively small increment (e.g., 0.1 meter) was used for sub-network cut
nodes during the final optimization of the sub-networks. The optimization sequence
is also taken from the leaves to the root specified by the directed augmented tree in
the final optimization step. The solution choice table for each sub-network created

after the pre-conditioning optimization is updated during the final optimization step.

For the example given in Figure 1, the heads at the sub-network cutm=ia§.8
meters based on the approximately optimal solution obtained after the

preconditioning sub-networks optimization ($1.021 million). Thus the optimal heads
range for node is00 {H )= [34838.§. The H™ versus the optimal solution cost for

S using the head given by the obtained optimal head ram@ge”) with an

increment of 0.1 meter is given in Figure 4.

A total of 23 different optimal solutions were found &rof theN; case study with

the head given at nodewithin the optimal head range(H*), compared to only

nine different approximate optimal solutions generated during the pre-conditioning
optimization step fos. This shows that the proposed final optimization method is
able to further exploit the promising regions specified by the optimal head range in
the pre-conditioning phase, thereby allowing more optimal solutions to be located.
This is also shown by Figure 4 that a number of additional optimal solutions were
found by the final sub-network optimization process between two adjacent optimal

solutions found initially by pre-conditioning.
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All other sub-networks dfl; are optimized based on the obtained optimal head range
for each sub-network cut node during the final optimization step. The final optimal
solution for theN; case study obtained after the final optimization step was $1.016
million, a value lower than the optimal solution generated by the pre-conditioning
optimization for sub-networks (Step 3) with a cost of $1.021 million. This shows that
the proposed final optimization of the sub-networks approach is effective in
improving the quality of optimal solutions generated by the preconditioning

optimization step.
3.5. Summary of the proposed method

The proposed method does not need to know the actual head constraints at the sub-
network cut nodes, instead a series of assumed heads are assigned at sub-network cut
nodes. Then the DE optimization is used to seek the least-cost design of the sub-
network for each assumed head at the sub-network cut node, while satisfying the
specified head requirement at each node (such as 35 m fd\; thetwork). This

results in the development of a solution choice table for each sub-network (except the
root sub-network). For each solution choice table, ewryis associated with an

optimally feasible solution (determined by EPANET?2.0) for its corresponding sub-
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network. Therefore, the final optimal solutions can be guaranteed to be feasible for
the whole original WDN since all the selected optimal solutions from solution choice

tables are feasible (i.e., all the head constraints are satisfied).

The proposed method recognizes the fact that, although decomposed, sub-networks
in a WDN are in reality always interconnected and never truly independent of one

another. Thus, for each sub-network optimization, all the sub-networks gnaits

considered. Therefore, the optimal solution obtained for each sub-network is actually
the optimal solution as a whole of this sub-network and all the sub-networksgin its

As the optimization is carried oditom the leaves to the roatong the assigned
directed links in the directed augmented tree, the root sub-network contains all the
sub-network optimization results by use of solution choice tables. Consequently, the
optimal solution for the root sub-network is actually the final solution for the whole
WDN.

In the proposed method, each sub-network optimization also considers all the sub-
networks in its® , while the number of decision variables handled is the number of
pipes of the sub-network that is currently being optimized plus the number of
solution choice tables that are associated with the sub-networks #. tiibis is
because all the optimal solutions for the sub-networks irtlage already provided

by their corresponding solution choice tables.

4. Case study resultsand discussion

A total of five case studies are used to verify the effectiveness of the proposed
optimization approach, including one artificial water network, two benchmark case
studies and two real-world water networks. A DE combined with a hydraulic solver
(EPANET2.0) was employed to optimize each sub-network design. In addition to the
proposed graph decomposition optimization approach, a SDE and a GA with tuned
parameters were applied to each case study in order to enable a performance

comparison with the proposed method.
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4.1. Case study 1: Artificial network 1 (N,) (27 decision variables)

The layout and the network details of artificial networkNL) (were previously
provided in Figure 1(a) and Table 1 as examples of network decomposition. The
decomposition results (sub-netwoigsto S) and the directed augmented treeNef
(directed linkd; to Is) are provided in Figure 1(b) and Figure 2 respectively. Table 5
summarizes the DE parameter values used for optimizing theNfulind each
network into which it has been decomposed by the graph theory algorithm. In
addition, the computational times for running simulation on the wNgland each
sub-network &, S, S S, S andSs) are provided. A mutation weighting fact®t) (of

0.5 and a crossover rat€R) of 0.5 were selected based on the results of a few
parameter trials for the DE used in the proposed method, while the parameters of the
SDE and GA have been fine-tuned through extensive parameter calibration. The best
parameter values obtained weFe=0.6, CR=0.7 for the SDE, and crossover
probability Pc) with 0.9 and mutation probabilityPg) with 0.03 were selected for

the GA.

Table 5 Evolutionary algorithm parameter values and the hydraulic simulation
timefor each sub-network and the full Nj.

The computational

No. of decision Pooulation Maximum number time for 1000
EAs Network variables and the " oP of allowable . :
. size (N) . simulations
search space size evaluations
(seconds)
SDE N, 27 (8.82x10%) 100 500,000 0.765
GA N, 27 (8.82X10%) 200 800,000 0.765
S 5 (537,824) 20 2,000 0.105
DE used S 3(2,744) 20 2,000 0.081
in the S 5 (537,824) 20 2,000 0.110
proposed S 5 (537,824) 20 2,000 0.108
method S 4 (38,416) 20 2,000 0.095
S 5 (537,824) 20 2,000 0.098

11000 simulations were based on randomly selected network configuration and conducted on the
same computer configuration (Pentium PC (Inter R) at 3.0 GHz).

As previously mentioned, a total of 14 discrete diameters can be used fardhse
study, thus the total search space size ¥&842x10°. The search spaces for sub-

networks are significantly reduced compared to the original whole network as shown
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in Table 5, Hence the population siz¥) (and maximum number of allowable
evaluations assigned for the sub-network optimization are considerably less than

those used by the original full network optimization as shown in Table 5.

The results of the proposed method and SDE applied tdNihease study are
provided in Table 6. As shown in Table 6, the current best solution fo¥;tlbase

study is $1.016 million. This solution was found by the proposed method after the
final optimization step with a success rate of 100% based on 50 different runs using
different random number seeds, compared to 90% returned by the SDE. The best
solution found by the GA was $1.016 million, which is 0.3% higher than the current
best solution ($1.016 million) for this case study. In terms of average cost of
solutions based on 50 runs, the proposed method exhibits similar performance with

the SDE, but significantly outperformed the GA.
Table 6 Algorithm performance for the N; case study

Number Best Percentage Average Average number of
Algorithm _ of solution  of trials Wi_th cost equ_ivalent _
different  found best solution solution  evaluations to find
runs ($M) found ($M) best solution
Proposed methdd 50 1.021 0% 1.021 15,6b8
Proposed methdd 50 1.016 100% 1.016 78,039
SDF' 50 1.016 90% 1.017 152,854
GA* 50 1.019 0% 1.027 392,676

“The results of the proposed method after preconditioning sub-networks optimization (Stpe3).
results of the proposed method after final sub-network optimization (St&hd)total computational
overhead required by the proposed method has been converted to the equivalent number of the whole
network (\;) evaluations*Parameters were tuned.

In order to enable a fair comparison in terms of efficiency, all the computational
times required by the proposed method has been converted to the equivalent number
of full N; evaluations using the same computer configuration. These include the
computational time used for identifying the sub-networks (equivalent to nini;full
evaluations) and the computational time spent for the sub-networks optimization
(Step 3 and 4). This conversion was made for each case study to allow an efficiency

comparison between the proposed method and the SDE. As shown in Table 6, the
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proposed method required an average number oRfwdlvaluations of 78,039 to find

the best solutions after the final optimization step.

The most noticeable advantage of the proposed graph decomposition optimization
method is the significantly improved efficiency for finding the current best known
solutions compared to the SDE and GA. The proposed method only required an
average of 78,039 equivalent full network evaluations to find the optimal solutions,

which is only 51% and 20% of those used by the SDE and GA respectively.

The results of the proposed method after the preconditioning optimization for the
sub-networks optimization (Step 3) are also included in Table 6. An approximate
solution with a cost of $1.021 million was consistently located by the proposed
method after the preconditioning optimization step, which is only 0.5% higher than
the current best solution ($1.016 million). However, this approximate solution was
found only using 15,608 equivalent fiNh evaluations, which is only 10% of that

required by the SDE. This shows that the proposed preconditioning optimization for
the sub-networks (Step 3) is effective as it is able to specify promising regions for the

final optimization of the sub-networks (Step 4) with great efficiency.

4.2. Case studies 2 and 3: Benchmark case studies (N2 and N3)

Two benchmark case studies including the New York Tunnels problem (NNg)P:

and the Hanoi problem (HMs) have been used to demonstrate the effectiveness of
the proposed method. The details of NYTP and HP case studies, including the head
constraints, pipe costs and water demands are giveDabgy et al [1996] and
Fujiwara and Khang[1990] respectively. For the NYTP and HP case studies, the
trees are viewed to be the sub-networks since the blocks are not applicable and the
nodes connecting the trees with the other components of the network are viewed as
sub-network cut nodes. The sub-networks and the directed augmented tree for the
NYTP and HP case study are presented in Figure 5 and 6 respectively (the original

NYTP and HP networks can be founddheng et al[2011]).
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For the NYTP case study, the optimization sequence for sub-networks is indicated by
the directed augmented tree in Figure 5, with $hend S; being optimized first,
followed by the root sub-networ® (¢ (S)={S, Ss}). A series of heads with an
interval of one foot were used for the sub-network cut nodes 9 and 12 during the
preconditioning  optimization for the sub-networksS, and & (

H = {272273274.....,300} feet forS; andH = {255256257.....,300} feet for

$). The DE parameters used for the proposed method and computational simulation

time for each sub-network are given in Table 7.

Root node
it
Directed
\ &~ augmented tree

'
! \
H \
\
! \
! \

[18]

Figure5 Thefull network, sub-networ ks and the directed augmented tree of
the NYTP (N,) network
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Figure 6 Thefull network, sub-networ ks and the directed augmented tree of the
Hanoi (HP: Ns) networ k

Table 7 DE parameter valuesfor each sub-network of the NYTP and HP case

studies
No. of decision Maximum  The computational
Case N DE parameter  number of time for 1000
Network variables and the . ;
study : values allowable simulations
search space size )
evaluations (seconds)
Full 5
network 17 (1.94X10%) - - 0.95
NYTP S 17 (2.95%10%) N=50,F=CR=0.5 10,000 0.810
S 2 (256) N=10,F=CR=0.5 1,000 0.100
S 2 (256) N=10,F=CR=0.5 1,000 0.110
Full 34 (2.86X 10%°) - - 1.156
network
2 N=80,
HP S 29 (3.68x107) F=0.7CR0.8 50,000 0.908
S 2 (36) N=10,F=CR=0.5 1,000 0.140
S 3 (216) N=10,F=CR=0.5 1,000 0.141

11000 simulations were based on randomly selected network configuration and conducted on the
same computer configuration (Pentium PC (Inter R) at 3.0 GHz).
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The optimization results of the proposed graph decomposition optimization method
are presented in Table 8. The previously published results for this case study are also
included in Table 8 to enable a performance comparison with the proposed method.
The current best known solution for the NYTP case study is $38.64 milliaief et

al. 2003] and this best solution was found by the proposed method after the
preconditioning optimization step (Step 3) with a success rate of 100% based on 100
runs starting with different random number seeds. The total computational overhead
required by the proposed method has been converted to the equivalent number of full
NYTP evaluations to enable the efficiency performance with other algorithms. The
proposed method exhibits the best performance in terms of percent of trials with the
best solution found and the efficiency for the NYTP case study as can be seen from
Table 8. Based on 100 runs, the proposed method only required an average of 3,772
equivalent full network evaluations to find the current best known solution, which is
significantly lower than those used by other methods shown in Table 8.

Table 8 Summary of theresults of the proposed method and other algorithms
applied tothe NYTP (N,) case study

Average evaluations

Algorithm™® No. Best Percentof  Average to find first
of solution trlalslwnh best cost occurrence of the
runs ($™M) solution found  ($M) best solution
The proposed methdd 100 38.64 100% 38.64 3,772
NLP-DE? 100 38.64 99% 38.64 8,277
GHEST 60 38.64 92% 38.64 11,464
HD-DDS' 50 38.64 86% 38.64 47,000
Suribabu DE 300 38.64 71% NA 5,492
Scatter Searéh 100 38.64 65% NA 57,583
GA’ 100 38.64 45% 39.25 54,789

"The results of the proposed graph decomposition optimization method after preconditioning sub-
networks optimization (Step 3jZheng et al[2011].°Bolognesi et al[2010]. “Tolson et al[2009].
*Suribabu[2010].°Lin et al.[2007].’Zheng et al[2012].2The total computational overhead required
by proposed method has been converted to the equivalent number of full NYTP evaluations using the
simulation time presented in Table 7.

The optimization sequence for sub-networks of the HP case study is shown in the
directed augmented tree in Figure 6. Sub-netw8skandS; are optimized first and

then the root sub-netwoi® (¢ (S)={S, S3}) is optimized while incorporating the
optimal solutions folS; andSs. A series of heads in the range of [30, 100] meters

with an interval of one meter were used for the sub-network cut nodes 20 and 10
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during the preconditioning optimization f& andS;. The DE parameter values for

the proposed method applied to sub-networks of the HP case study and the
computational simulation time for each sub-network are shown in Table 7. Table 9
presents the optimization results of the proposed method applied to the HP case study

and also the results obtained by previously published algorithms.

The current best known solution for the HP case study was first reporiechyand
Martinez[2006], with a cost of $6.081 million. Similarly as for the NYTP case study,

the proposed graph decomposition optimization method found the current best known
solution for the HP case study after the preconditioning optimization step (Step 3).
As can be seen from Table 9, the proposed method was able to locate the current best
known solution for the HP case study 98% of the time based on 100 trials, which is
higher than all the other algorithms presented in Table 9. In terms of efficiency, the
proposed method also performed the best as it found the optimal solutions with an
average of 26,540 equivalent full network evaluations, which is fewer than other
algorithms in Table 9.

Table 9 Summary of theresults of the proposed method and other algorithms
applied to the HP (N3) case study

Percent of Average

Algorithm®® No. Best trials with ~ V€"39€  qyaiuations to find
of solution . cost .
runs (SM) best solution ($M) first occurrence of
found the best solution
The proposed methdd 100 6.081 98% 6.081 26,540
NLP-DF? 100 6.081 97% 6.082 34,609
Suribabu DE 300 6.081 80% NA 48,724
Scatter Searéh 100 6.081 64% NA 43,149
GHEST 60 6.081 38% 6.175 50,134
HD-DDS? 50 6.081 8% 6.252 100,000
GA’ 100 6.112 0% 6.287 384,942

"The results of the proposed graph decomposition optimization method after preconditioning sub-
networks optimization (Step 3}Zheng et al[2011].3Suribabu[2010]. “Lin et al.[2007]. °Bolognesi
et al.[2010]. ®Tolson et al[2009]. ‘Zheng et al[2012].®The total computational overhead required
by proposed method has been converted to the equivalent number of full HP evaluations using the
simulation time presented in Table 7.

Based on the results of two benchmark case studies (the N\,JB(d HP K3)), it
can be concluded that the proposed method produced the current best known

performance in terms of both the solution quality and efficiency.
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4.3. Case study 4: Network 4 (N4) (237 decision variables)

Network four (N;) was taken from a town in the southeast of ChHwdas 237 pipes,

one reservoir and 192 demand nodes. The head provided by the reservoir is 65
meters. The minimum pressure requirement for each demand node is 18 meters. The
Hazen-Williams coefficient for each pipe is 130. A total of 14 pipes ranging from
150 mm to 1000 mm are used for this network design and the cost of each diameter
was provided byKadu et al.[2008]. The original network layout &, is given in

Figure 7 and the sub-networks and the directed augmented tree obtained by the

proposed decomposition method are presented in Figure 8.

As shown in Figure 8, seven sub-networks were identified by the proposed method.
The optimization process has to be taken based on the direction from the leaves to the

root of the directed augmented tree (Figure 8(b)).

Figure7 Theoriginal full network of N4 case study
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S, Root node

(a) The sub-networks i, (b) Directed augmented tréd of N,

Figure 8 The sub-networ ks and the directed augmented tree of N4 (a): the sub-
networks. (b): the directed augmented tree

Table 10 presents the sizes of the networks (including the full network and sub-
networks), the population sizes of the DE and GA and the computational time for
simulating each network. Values B£0.3 andCR=0.7 were selected for the SDE,

and valuesP=0.9 andP,~=0.005 were selected for the GA based on an extensive
parameter calibration phase. ValuesFsf0.3 andCR=0.5 were used for the DE
applied to each sub-network in the proposed graph decomposition optimization
method based on a preliminary parameter analysis. It is interesting to note from Table
10 that the total computational running time for hydraulically simulating each sub-
network 1000 times is 8.75 seconds, which is only 31% of that required by 1000

original full network simulation.

The search space sizes for the origiNal case study and each sub-network are
included in Table 10. The original search space size for the whole network is
147%"~4.29x 107", while the search space for each sub-network is significantly
reduced. Thus, the DE optimization for the sub-network requires a lesser number of
population sizel) and the maximum number of allowable evaluations compared to

the optimization for the original fuM, network.
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TablelO Evolutionary algorithm parameter values and the hydraulic smulation
timefor each sub-network and the full N4

No. of decision Pooulation Maximum number The computational
EAs Network variables and the sige N of allowable time for 1000
search space size evaluations simulations (seconds)
SDE N, 237 (4.2 10°™) 500 5,000,000 28.20
GA N, 237 (4.2 10°™) 500 5,000,000 28.20
S 51 (2.83%10°%) 100 50,000 2.19
S 9 (2.07%X10") 50 5,000 0.32
DE Uhsed S 21 (1.17< 10%) 100 50,000 0.62
pr'ggoge g S 23 (2.30< 10%) 100 50,000 0.78
method S 18 (4.27<10°) 50 25,000 0.62
S 52 (3.97X 10°% 200 400,000 2.19
S 63 (1.61X 107 200 400,000 2.03

1000 simulations were based on randomly selected network configuration and conducted on the
same computer configuration (Pentium PC (Inter R) at 3.0 GHz).

Ten different runs with different starting random number seeds were performed for
the proposed method and the SDE appliedNfocase study. The solutions are
presented in Figure 9 and the statistical results of these solutions are given in Table
11. It should be noted that the number of evaluations given in Figure 9 for the
proposed method is the equivalent number ofNijlevaluations that was converted

by the total computational running time of the proposed method. The computational
time used for identifying the seven sub-networks is equivalent to 178Nfull

evaluations.

As shown in Figure 9, the proposed method is able to find significantly better
solutions than the SDE and GA after the final sub-network optimization (Step 4) with
fewer number of equivalent evaluations. In addition, the optimal solutions produced
by the proposed method are less scattered than those found by the SDE in terms of
distribution. This implies that the proposed method was capable of consistently
locating extremely similar or the same final optimal solutions with different starting
random number seeds. The optimal solutions found by the proposed method after
preconditioning optimization for the sub-networks (Step 3) were higher than those

yielded by the SDE and the GA as displayed in Figure 9.
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Figure 9 Solutions of the proposed method, the SDE and the GA applied to Ng4
case study

Table 11 Algorithm performancefor the N4 case study

Number Best Percentage Average Average number of
Algorithm _ of solution  of trials Wi_th cost equ_ivalent _
different  found best solution solution evaluations to find
runs ($M) found ($M) best solution
Proposed methdd 10 12.22 0% 12.23 1,208,324
Proposed methdd 10 11.37 30% 11.38 3,215,685
SDE' 10 11.45 0% 11.52 4,730,200
GA* 10 11.85 0% 11.99 4,654,000

The results of the proposed method after the preconditioning sub-network optimization (Stée 3).
results of the proposed method after the final sub-network optimization (Steffh4).total
computational overhead required by the proposed method has been converted to the equivalent number

of the whole networkN,) evaluations*Parameters were tuned.

As can be seen from Table 11, the proposed method after the final optimization of the
sub-networks (Step 4) found the current best solutiohNfamase study with a cost of
$11.37 million, which is 0.7% and 4.2% lower than the best solutions yielded by the
SDE and the GA respectively. The current best solution was found three times out of
a total of ten different runs by the proposed method after Step 4. The average cost
solution generated by the proposed method after Step 4 was $11.38 million, which is
only 0.09% higher than the current best solution while 1.2% and 5.4% lower than the

average cost solutions of the SDE and the GA.
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In terms of the average number of equivalent evaluations, the proposed method after
the preconditioning sub-network optimization (Step 3) required only 26% of that
used by the SDE. Although the solutions found by the proposed method after Step 3
were slightly worse than those located by the SDE and GA, they provided promising
regions quickly to allow the further exploitation by the final optimization step (Step
4). After the final sub-network optimization of the proposed method (Step 4), the
solution quality was substantially improved and the efficiency was still significantly
better than the SDE and GA as shown in Table 11.

4.4. Case study 5: Network 5 (Ns) (433 decision variables)

A network (Ns) having 433 pipes and 387 demand nodes has been used in order to
verify the effectiveness of the proposed method in terms of dealing with more large
and complex networks. The network topologyNsfwas taken from Battle of the
Water Networks Il (BWN-II) presented in Water Distribution Systems Analysis
Conference 2012. The pumps and valves in the original BWN-II network have been
replaced by pipes as the aim of this paper is to demonstrate the utility of the proposed
method in terms of optimizing the design for the pipes-only network. For this
network the head provided by the reservoir is 75 meterstla@dninimum pressure
requirement for each demand node is 25 meters. The Hazen-Williams coefficient for
each pipe is assumed to be 130. As the same for caseNstut pipe choices are
used for this network design. The layout of the orightais given in Figure 10, and

the decomposed sub-networks and the directed augmenteATjemd presented in

Figure 11.

A total of 12 sub-networks were identified using the proposed method fd¥sthe
network as shown in Figure 11 (a). The optimization sequence for the 12 sub-
networks is indicated by the directed augmented tree in Figure 11 (b). A SDE and a
GA were also applied to the flls and their parameter values have been fine-tuned.
Values ofF = 0.3 andCR=0.8 were selected for the SDE, and Fhe0.9 andP,~

0.003 were used for the GA.
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Figure 10 Theoriginal full network of N5 case study

Root node

(a) The sub-networks & (b) Directed augmented tréd of N

Figure 11. The sub-networ ks and the directed augmented tree of Ns (a): the sub-
networks. (b): the directed augmented tree
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The sizes of the networks, the population sizes of the DE (including the SDE and the
DE used in the proposed graph decomposition optimization method) and GA and the
computational time for simulating each network are presented in Table 12. Values of
F=0.5 andCR=0.5 were used for the DE applied to each sub-network in the proposed
method. As can be seen from Table 12, forNbhease study, the total computational
runtime for hydraulically simulating each sub-network 1000 times is 7.44 seconds,
which is only 18% of that used by 1000 full network simulation. This indicates that
the hydraulic simulation of the decomposed sub-networks is significantly faster than

simulating the full network as a whole in terms of computational running time.

Table 12 Evolutionary algorithm parameter values and the hydraulic smulation
timefor each sub-network and the full Ns

No_. of decision Population Maximum number The comput_ationa}l time
EAs Network variables and the = _. of allowable for 1000 simulations
search space size size (V) evaluations (seconds)

SDE Ns 433 (1.88<10%9 1000 10,000,000 42.06

GA Ns 433 (1.88<10%9 1000 10,000,000 42.06
S 49 (1.44%X10°) 200 200,000 0.72
S 40 (7.00X10%) 200 200,000 0.61
S 81 (6.86X10%) 200 500,000 2.13
S, 50 (2.02X 10°) 200 200,000 0.81
DEused S 28 (1.23x10%) 100 100,000 0.30
in the S 15 (1.56X10") 50 50,000 0.23
proposed S, 11 (4.05% 10" 50 50,000 0.14
method S 15 (1.56X 107 50 50,000 0.23
S 56 (1.52X 107 200 200,000 0.92
Swo 51 (2.83X10°%) 200 200,000 0.74
Su 16 (2.18X10'") 50 50,000 0.22
S 21 (1.17%10%) 100 100,000 0.27

11000 simulations were based on randomly selected network configuration and conducted on the
same computer configuration (Pentium PC (Inter R) at 3.0 GHz).

For theNs case study, a total of ten different runs with different starting random

number seeds were performed for the proposed method, the SDE and the GA. Figure
12 presents the solutions obtained by these three different optimization methods. The
computational run time for each run of the proposed method has been converted to

the equivalent number of fulls; evaluations based on network simulation time in
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Table 12. The computational time used for identifying the 12 sub-networks is

equivalent to 215 fulNsevaluations.

It may be clearly seen from Figure 12 that the proposed method after Step 4 was able
to find lower cost solutions with significantly fewer number of full network
evaluations compared to the SDE and GA. The optimal solutions found by the
proposed graph decomposition optimization method after Step 3 are better than those
obtained by the GA and comparable to those generated by the SDE, but with
significantly improved efficiency. Similarly to that for ti\a case study, the optimal
solutions yielded by the proposed methodMegrcase study are closer to each other
compared to the SDE and GA, showing greater robustness as similar cost solutions

were found with different starting random number seeds.
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Figure 12 Solutions of the proposed method, the SDE and the GA applied to Ns
case study

Table 13 presents the statistical results of the proposed method, the SDE and GA.

The current best solution was found by the proposed method after Step 4 with a cost
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of $4.57 million and this best solution was found eight times out of ten runs with
different random number seeds. The best solutions yielded by the SDE and GA were
$4.60 million and $4.72 million, which are 0.7% and 3.2% higher than the current
best known solutions provided by the proposed method after Step 4. The proposed
method exhibited the best performance in terms of comparing the efficiency to find
optimal solutions as shown in Table 13. The average computational run time required
by each run of the proposed method is equivalent to 2,720,668sfeNaluations,
which is 47% and 30% of those used by the SDE and GA.

Table 13 Algorithm performancefor the N5 case study

Number Best Percentage Average Average number of
Algorithm . of solution  of trials with co;t equ.ivalent .
different  found best solution solution  evaluations to find
runs ($M) found ($M) best solution
Proposed methdd 10 4.61 0% 4.61 1,220,924
Proposed methdd 10 4.57 80% 4.58 2,720,668
SDFE' 10 4.60 0% 4.61 5,786,300
GA* 10 4.72 0% 4.77 8,909,500

The results of the proposed graph decomposition optimization method after the preconditioning sub-
network optimization (Step 3fThe results of the proposed method after the final sub-network
optimization (Step 4fThe total computational overhead required by the proposed method has been

converted to the equivalent number of the whole netwsskdvaluationsParameters were tuned.
Interestingly, the proposed method after Step 3 was able to find lower cost solutions
than the GA but with approximately five times the convergence speed. The best
solutions found by the proposed method after Step 3 were only 0.2% higher than the
best solution given by the SDE (the average costs of ten solutions for both are the
same as shown in Table 13), while the average number of evaluations required by the

proposed method after Step 3 is only 21% of that used by the SDE.

4.5. Summary of results

Traditionally, WDNs are optimized as a whole when they are being designed. In the
proposed method, however, the WDN is treated as a graph and decomposed with a
graph theory algorithm into sub-networks. A directed augmented tree is built for the
decomposed network and used to specify the optimization sequence for the sub-

networks. Optimization takes place from the leaves to the root based on the directed
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augmented tree and is both sequential and cumulative. Therefore, when the
optimization algorithm runs through the root sub-network, which is the last to be
optimized, it brings with it all the best solutions from the sub-networks and hence

produces the optimal solution for the original full network.

The proposed approach takes advantage of the fact that the evolutionary algorithm
(DE in this paper) is effective in exploring a relatively small search space. As the
number of decision variables for each sub-network is significantly less than the
original whole network, the DE is able to exploit the substantially reduced search
space quickly and effectively. This allows good quality optimal solutions for each

sub-network to be found with great efficiency.

A pre-conditioning sub-network optimization step (Step 3) is used in the proposed
method to identify the optimal head range for the sub-network cut nodes. The final
sub-network optimization is then conducted using a series of heads within the
specified optimal head range with a relatively small interval (0.1 meters in the

proposed method) in order to find further better solutions. The results of the five case
studies show that the preconditioning sub-network optimization found the optimal

head range for each sub-network cut node effectively, and the final sub-network
optimization runs on the pre-conditioned sub-networks were able to generate

improved quality solutions.

In spite of conducting multiple DE runs on each sub-network, the total efficiency of
the proposed method is still better than the SDE and GA. This can be attributed to the
fact (i) the population size and the maximum allowable evaluations required by the
DE applied to the sub-network optimization were significantly smaller than the SDE
applied to the original whole network and (ii) the computational time for simulating

the sub-networks was considerably reduced compared to the original whole network.

An important advantage of the proposed method is that with multiple sub-networks in
place, optimization of the water distribution systems can be undertaken using parallel

computing technology. For the optimization of sub-networks at leaves and in the
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middle of the directed augmented tree, parallel computing technology can be
employed to conduct the optimization for different heads at the sub-network cut
nodes simultaneously. In addition, all the sub-networks at the leaves can also be
optimized separately and simultaneously by parallel computing technology. As such,
the efficiency of the whole optimization process can be massively improved in terms
of computation time. This is a significant benefit when designing a real-world WDS,

for which a large number of pipes and demand nodes are normally involved.

Another observation can be made in this study is that the SDE with the fine-tuned
parameter values consistently outperformed the GA with calibrated parameter values
for five case studies with the number of decision variables ranging from 21 to 433.
This agrees with the conclusion madedheng et al[2012] in that the DE algorithm
appears to be better suited for optimizing water network designs than the widely used

GA algorithm.

5. Conclusion and future wor k

A novel optimization approach for WDS design has been developed and described in
this paper. In the proposed method, a graph theory algorithm is employed to identify
the sub-networks for the original full water network. The sub-networks, rather than
the original full water network, are individually optimized by a DE in a
predetermined sequence. Five case studies have been used to verify the effectiveness
of the proposed method. A DE and a GA have also been applied to the full network
for each case study (SDE) to enable a performance comparison with the proposed

method.

The results show that the proposed method is able to find the same lowest cost
solution for the relatively small case study, while producing better optimal solutions
for the relatively larger case studies than the SDE and GA. It was also noted that the
proposed method was able to find extremely similar optimal solutions, if not

identical, for each run with different starting random number seeds. This
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demonstrates the great robustness of the proposed method. In terms of efficiency, the
proposed method significantly outperformed the SDE and GA for each case study. In
addition, the proposed method exhibits the current best known performance in terms
of efficiency in locating the best known solutions for the NYTP and HP case studies.
Another substantial benefit of the proposed method is that it provides a way to

exploit parallel computing techniques for the design optimization of a WDS.

It should be noted that the proposed method presented in this paper is not applicable
to the networks for which sub-network cut nodes do not exist (i.e. for networks that
cannot be decomposed). However, it is very common for a water network to have
multiple blocks and multiple trees in practice (in other words- that the network is
decomposable) and the proposed method has advantages in efficiently finding good
quality optimal solutions for this common type of network compared to other

optimization methods as demonstrated in this paper.

The future research scope of the proposed method includes (i) applying the proposed
method to more complex water networks that may include multiple reservoirs,
pumps, valves, storage facilities and pipes; and (ii) extending the proposed method

for multi-objective WDS optimization design.
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Chapter 10. Conclusons and Future Work

This thesis has proposed some advanced optimization techniques for water
distribution system (WDS) optimization. These novel techniques have been assessed
using both the benchmark case studies and real-world water networks, and the results
show that they are able to find good quality optimal solutions for WDSs with great
efficiency. Thus, this research provides advanced optimization approaches capable of
outperforming existing optimization techniques for use by practising water engineers
when designing new water systems or rehabilitating existing water distribution

systems.

10.1 Thesisoutcomes

The main contributions of this thesis are outlined in Section 1.3 of Chapter 1

(Introduction). The outcomes of this research are summarised below.

Chapter 2 presented aletailed review of the optimization techniques that have
previously been used to optimize WDSs. The analysis for each type of optimization
technique is outlined in Chapter 2 and the research gaps in terms of WDS

optimization are identified in Section 2.6 of Chapter 2.

Chapters 3 and 4 outlinedtwo new genetic algorithm (GA) variants for WDS
optimization. These include a dynamically expanding choice table GA (Chapter 3)
and a non-crossover dither creeping mutation GA (Chapter 4). These two GA
variants were demonstrated to be more effective than the traditional GAs in terms of
optimizing the design of WDSs. This is the first work to develop a non-crossover GA

for WDS optimization.

Chapter 5 introduced a newsdlf-adaptive differential evolution algorithm
(SADE) for WDS optimization. In addition to the self-adaption strategy, a new
convergence criterion is proposed in order to avoid the pre-specification of the
computational budget for the DE run. It has been demonstrated that the proposed
convergence criterion presented in Chapter 5 is able to avoid computational waste.
The SADE only needs to tune the population size parameter when optimizing the

design of a WDS. In addition, an approximate heuristic is described in Chapter 5 that
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is able to determine the appropriate population size for the SADE applied to a new
WDS case study. The proposed SADE provides a robust optimization tool for the

optimization of the design of WDSs (or rehabilitation of an existing WDS).

Chapters 6 and 7 presentaslo novel hybrid optimization models for WDS
optimization, which are the NLP-DE method (Chapter 6) and the BLP-DE approach
(Chapter 7). InChapter 6, a shortest-distance tree is proposed to decompose the
looped water network and an efficient graph theory algorithm is used to determine
the shortest-distance tree. The NLP-DE method proposed in Chapter 6 differs from
the traditional hybrid optimization models. In the traditional hybrid optimization
models, EAs have been used to determine the regions of optimal solutions, whereas
deterministic methods (such as LP) have been used to further explore the interior of
these regions identified by EAs. However, in the proposed NLP-DE model, NLP is
used to identify the approximate region of the optimal solution, while an EA is

employed to further search the interior of the region.

The utility of the NLP-DE method has been verified using four WDS case studies
with the number of decision variables ranging from 21 to 454 (two of them are real-
world WDSSs) in Chapter 6. The consistent superior performance of the proposed
optimization approach on four case studies illustrates that the proposed methodology

is well suited for the least-cost design of WDSs.

Chapter 7 outlined a completely new optimization methodology that applies
different optimization techniques to optimize different components of the water
network. In the proposed BLP-DE method given in Chapter 7, the deterministic
method BLP is only used to deal with the optimization of the trees (no loops) and DE
is employed to optimize the core (loops are involved). As such, the proposed BML-
DE method makes good use of both types of optimization techniques, which are
deterministic methods suitable for tree network optimization, and the EAs are
effective when exploring relatively small search spaces. (The search space of the core

is significantly smaller than that of the full network since the trees are removed.)

Chapter 8 presented aomplete new water network decomposition concept-
optimal source partitioning cut-set in which complex water networks with multiple

supply sources are decomposed into sub-networks based on the number of supply
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sources. A multi-stage optimization technique is developed to optimize the design for
WDSs, which is also the first known work in the field of WDS optimization. The
new methodology (i.e., decomposition followed by multi-stage optimization)
presented in Chapter 8 is demonstrated to be extremely efficient and effective in

finding optimal solutions for real-world sized water networks.

Chapter 9 outlined another completely novel methodology for water network
optimization, in which the original water network is not optimized as a vitubleéhe

whole is optimized by optimizing the separate parts. In Chapter 9, a new sub-
network identification concept is proposed to decompose the original full network
into sub-networks based on the connectivity of the network’s components. The sub-
networks are optimized separately and combined to form the final solution for the

whole water network by use of solution choice tables.

10.2 Recommendations of optimization algorithms

In this thesis, a total of four advanced optimization methods have been developed
including the NLP-DE methods (Chapter 6), the BLP-DE approach (Chapter 7), the
decomposition and multi-stage optimization method (Chapter 8) and a graph
decomposition based optimization method (Chapter 9). The three variants of the
evolutionary algorithms presented in Chapters 3 to 5 are modifications of the existing

algorithms.

It is noted that the standard differential evolution (SDE), rather than the self-adaptive
differential evolution (SADE) algorithm described in Chapter 5, was used in
Chapters 6 to 9, resulting in a need to tune the parameter values for the proposed
optimization algorithms. The use of SDE is primarily due to the fact that the
experimental runs for Chapters 6 to 9 were finished before the publication of the
paper on the SADE algorithm (Zheng et al. (2012a) in the Journal of Computing in
Civil Engineering). In addition, the focus of the methods described in Chapters 6 to 9
is the development the hybrid optimization techniques and graph decomposition

methods to facilitate the optimization for WDSs.
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However, for future applications it is recommended that the SADE algorithm be used
to replace the SDE algorithm in practice for the optimization frameworks presented
in Chapters 6 to 9. This is because: (i) the SADE algorithm developed in this research
has been demonstrated to perform similarly (if not better) with the SDE with fine-
tuned parameter values; and (ii) that is no need to tune parameter values for the
SADE algorithm and hence its uses will remove the need for an extensive parameter-

calibration process.

It is necessary to make a recommendation as to the best of the developed algorithms
to adopt when dealing with a given water network. The recommendation is
dependent on the property of the water network that is to be optimized, and is given

as follows:

(1) It is recommended that the NLP-SADE algorithm presented in Chapter 6 be

employed to deal with single reservoir water networks.

(2) For water networks having multiple trees (such as the trunk main distribution
system), it is recommended to use the BLP-SADE algorithm described in
Chapter 7. In addition, the BLP-SADE algorithm has been demonstrated to
effectively deal with water networks with multiple demand loadings, which is

normally the case for the trunk main distribution system.

(3) For multi-reservoir water networks, such as an irrigation network or a
regional supply system with multiple tanks, it is recommended to adopt the

decomposition and multi-stage optimization methods presented in Chapter 8.

(4) For single-reservoir water networks with a number of different blocks
connected by bridges (as for regional supply systems), the graph
decomposition based optimization framework described in Chapter 9 is

recommended to be used to conduct the design optimization.
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10.3 Scopefor futurework

Future work includes:

1. The optimization techniques developed in this research have been verified
using real-world water networks (100 pipes or more). However, these real-
world networks are relatively simple as only pipes are involved. Extension of
the proposed optimization techniques to deal with more complex water
networks that include pumps, valves and tanks should be conducted in the
future.

2. The optimization techniques proposed in this thesis have been demonstrated to
be effective for single objective optimization of WDSs. It would be appropriate
to extend these optimization techniques to deal with multi-objective
optimization for WDSs, for which, in addition to the network cost, reliability
or greenhouse gases should also be considered.

3. Several optimization techniques and water network decomposition concepts
were used to optimize the design of WDSs in the research described in this
thesis. Implementing these methods to tackle other water network management
problems, such as leakage hotspot detection, optimal valve operation,
contaminant detection and operational optimization problems for WDSs,
should also be considered in the future.

4. Although DE is used in two proposed hybrid optimization methods (Chapters 6
and 7) and two proposed advanced optimization techniques (Chapters 8 and 9) in
this research, other EAs, such as GAs, and Ant Colony Optimization (ACO),

could also be implemented in these proposed optimization frameworks.
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