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Probabilistic optimization for conceptual rainfall-runoff models: 
A comparison of the shuffled complex evolution and simulated 
annealing algorithms 

Mark Thyer and George Kuczera 
Department of Civil, Surveying and Environmental Engineering, University of Newcastle, Callaghan, 
New South Wales, Australia 

Bryson C. Bates 
Cooperative Research Centre for Catchment Hydrology and CSIRO Land and Water, Wembley, 
Western Australia, Australia 

Abstract. Automatic optimization algorithms are used routinely to calibrate conceptual 
rainfall-runoff (CRR) models. The goal of calibration is to estimate a feasible and unique 
(global) set of parameter estimates that best fit the observed runoff data. Most if not all 
optimization algorithms have difficulty in locating the global optimum because of response 
surfaces that contain multiple local optima with regions of attraction of differing size, 
discontinuities, and long ridges and valleys. Extensive research has been undertaken to 
develop efficient and robust global optimization algorithms over the last 10 years. This 
study compares the performance of two probabilistic global optimization methods: the 
shuffled complex evolution algorithm SCE-UA, and the three-phase simulated annealing 
algorithm SA-SX. Both algorithms are used to calibrate two parameter sets of a modified 
version of Boughton's [1984] SFB model using data from two Australian catchments that 
have low and high runoff yields. For the reduced, well-identified parameter set the 
algorithms have a similar efficiency for the low-yielding catchment, but SCE-UA is almost 
twice as robust. Although the robustness of the algorithms is similar for the high-yielding 
catchment, SCE-UA is six times more efficient than SA-SX. When fitting the full 
parameter set the performance of SA-SX deteriorated markedly for both catchments. 
These results indicated that SCE-UA's use of multiple complexes and shuffling provided a 
more effective search of the parameter space than SA-SX's single simplex with stochastic 
step acceptance criterion, especially when the level of parameterization is increased. 
Examination of the response surface for the low-yielding catchment revealed some reasons 
why SCE-UA outperformed SA-SX and why probabilistic optimization algorithms can 
experience difficulty in locating the global optimum. 

1. Introduction 

Conceptual rainfall-runoff (CRR) models simulate the phys- 
ical processes that comprise the land phase of the hydrologic 
cycle. The rainfall-runoff transformation is modeled by a set of 
transfer functions that links several interconnected conceptual 
water stores. In most instances, estimates for the model pa- 
rameters must be obtained by fitting computed to observed 
hydrographs as direct physical measurement is impossible. 

The calibration of CRR models has been researched exten- 

sively over the last two decades. Many studies have reported 
difficulties in finding unique (global) parameter estimates 
[Johnston and Pilgrim, 1976; Duan et al., 1992; Gan and Biftu, 
1996; Sorooshian et al., 1993]. Duan et al. [1992] argue that the 
majority of automatic calibration algorithms are affected by 
five key problems: (1) multiple regions of attraction, where the 
local optimum found depends on the parameter values used to 
start the algorithm (a region of attraction is a subregion of the 
parameter space surrounding a local minimum for which ap- 
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plication of a deterministic hill-climbing algorithm starting at 
any point in the subregion will lead to convergence at that 
minimum); (2) minor local optima, where there are small pits 
in the response surface (the map of the objective function in 
the parameter space) within each region of attraction; (3) 
roughness, when the response surface contains points with 
discontinuous derivatives; (4) sensitivity, where there is poor 
and varying model sensitivity to the parameters in the vicinity 
of an optimum and nonlinear interaction between parameters; 
and (5) shape, when the response surface is nonconvex and 
contains long curved ridges. 

Deterministic algorithms such as the simplex method of 
Nelder and Mead [1965] require manual intervention during 
the initialization and calibration stages to overcome these 
problems. This requires a good knowledge of the characteris- 
tics of the CRR model [Gan and Biftu, 1996]. These problems 
have led to the use and refinement of probabilistic search 
algorithms that reduce the need for manual intervention dur- 
ing parameter estimation. These methods can almost guaran- 
tee asymptotic convergence to the global optimum as the num- 
ber of sample points in the parameter space increases [Corana 
et al., 1987; Dekkers and Aarts, 1991]. 

This study compares the performances of two promising 
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probabilistic optimization algorithms on the basis of their ro- 
bustness and efficiency: the shuffled complex evolution algo- 
rithm (SCE-UA) ofDuan et al. [1992, 1994] and the simulated- 
annealing algorithm (SA-SX) developed by Bates [1994]. Duan 
et al. [1992] claim that SCE-UA produces reliable global esti- 
mates for large and complex optimization problems. Gan and 
Biftu [1996] compared the performances of SCE-UA, the 
Nelder-Mead simplex (SX), and the multistart simplex (MSX) 
methods. They found that MSX was computationally ineffi- 
cient and that although the SX method was robust enough, it 
required multiple runs to be effective. In contrast, SCE-UA 
could consistently locate the global optimum with synthetic 
"error-free" data, but this finding did not hold for real data. 
Kuczera [1997] found that SCE-UA was more robust and effi- 
cient than traditional genetic algorithms. SA-SX is based on 
the approach described by Press and Teukolsky [1991]. Bates 
[1994] showed that the performance of the SA-SX algorithm 
was superior to that of the MSX algorithm for both error-free 
and real data. Although Bates [1994] and Sumner et al. [1997] 
indicated that SA-SX showed promise, Bates [1994] cautioned 
that it had a high computational cost and that care was needed 
in the specification of the algorithmic parameters. 

The SCE-UA and SA-SX algorithms are compared by cali- 
brating the modified SFB model [Sumner et al., 1997] to the 
same data sets with the same objective function. The modified 
SFB model is a relatively simple CRR model with eight pa- 
rameters and has been applied to many Australian catchments 
[Sumner et al., 1997; Ye et al., 1997]. Despite the model's 
simplicity there is considerable evidence that its response sur- 
face contains multiple optima. The model is fitted to data for 
two Australian catchments: Scott Creek at Scott's Bottom 

(503502), and Allyn River at Halton (210022). These catch- 
ments have low and high runoff yields, respectively, and the 
performance of optimization algorithms will be assessed for 
both cases and contrasted with each other. Consideration of 

the search technique used by each of the algorithms will pro- 
vide possible reasons for any difference in performance. Inves- 
tigation of the response surface for Scott Creek will be under- 
taken to provide further insight into the problems faced by 
probabilistic optimization algorithms. 

found by uniform sampling from a hypercube that defines the 
feasible parameter space. Simulated annealing commences in 
the second phase with an initially large T that is reduced 
gradually according to a user-specified annealing schedule. 
When T is reduced by a factor of 3, an occasional restart occurs 
in which a vertex of the simplex is replaced by the best solution 
encountered when that solution is not in the simplex. Without 
this modification the algorithm tends to converge to local op- 
tima. As T decreases to its final value (generally T -• 0), the 
algorithm enters its third phase and reduces to the conven- 
tional simplex method to facilitate convergence. More detailed 
explanations of the SA-SX algorithm are given by Bates [1994] 
and Sumner et al. [1997]. 

2.2. Shuffled Complex Evolution Algorithm (SCE-UA) 

The SCE-UA algorithm of Duan e! al. [1992, 1994] is de- 
signed to deal with the peculiarities of parameter estimation in 
CRR models. SCE-UA is based on four main concepts: (1) a 
combination of deterministic and probabilistic approaches; (2) 
systematic evolution of a "complex" of points spanning the 
parameter space, in the direction of global improvement; (3) 
competitive evolution; and (4) complex shuffling. These four 
features represent a synthesis of the best features of several 
methods [Gan and Bifiu, 1996]. 

Initially a random set of points (a "population") is sampled 
from the parameter space and partitioned into a number of 
complexes. Each of these complexes is then allowed to evolve 
using competitive evolution techniques that are based largely 
on the simplex method. At periodic stages in the evolution, the 
entire set of points is shuffled and reassigned to new complexes 
to enable information sharing. As the search progresses, the 
entire population should move toward the neighborhood of the 
global optimum, provided the initial population size is suffi- 
ciently large. 

The combination of competitive evolution and complex 
shuffling ensures that the information on the parameter space 
gained by each of the individual complexes is shared through- 
out the entire population. This results in a robust optimization 
algorithm that conducts an efficient search of the parameter 
space. 

2. Probabilistic Optimization Algorithms 

2.1. Simulated-Annealing Algorithm (SA-SX) 

SA-SX is a three-phase algorithm that combines simulated 
annealing with the simplex method of Nelder and Mead [1965]. 
Simulated annealing was originally proposed by Kirkpatrick et 
al. [1983] as method for minimizing multivariate functions. 
SA-SX conducts a thorough exploration of the parameter 
space by randomly perturbing the objective function values at 
the simplex vertices, thereby enabling the acceptance of uphill 
steps on the response surface as well as downhill steps. The 
magnitude of the random perturbation and therefore the prob- 
ability of accepting an uphill step is determined by a control 
parameter, T (analogous to temperature in physical annealing 
processes). An annealing schedule controls the rate of decre- 
ment of T. By using a stochastic step acceptance criterion it is 
possible to escape from local minima when searching for a 
candidate global optimum. In the course of the optimization 
process T is decreased slowly, causing a gradual reduction in 
the probability of accepting an uphill move. 

During the first phase, starting values for the simplex are 

2.3. Comparison Issues 

The performance of an optimization algorithm can be mea- 
sured by its robustness and efficiency. Here robustness is in- 
terpreted as the probability of finding the same (and hopefully 
global) optimum from a series of independent trials. Efficiency 
is determined by the number of function evaluations (model 
runs per optimization trial) required by the algorithm to satisfy 
prescribed convergence criteria. It is important when under- 
taking a comparison that the basis be fair and equitable. 

SCE-UA and SA-SX have a number of algorithmic param- 
eters that must be tuned to ensure optimal robustness and 
efficiency. Duan et al. [1994] report recommended values for 
the SCE-UA algorithmic parameters, the most important be- 
ing the number of complexes that must be set according to the 
number of fitted parameters. The recommended values are 
used in this study. For the SA-SX algorithm it is important to 
choose an annealing schedule that enables the algorithm to 
make a broad search of the parameter space by accepting a 
large number of uphill steps but not so large as to produce a 
totally random walk. The annealing schedules reported by 
Sumner et al. [1997] were used for the model and data sets at 
hand. 
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The selection of convergence criteria also affects the fairness 
of the comparison. SA-SX uses two criteria that must be sat- 
isfied simultaneously: 

2Is(0)"- s(0)l 
< • (1) Is (0)1 + Is (0)"1 

and 

Io3")- 
< •r• j= l, ...,p; k= 1,---,p+ 1 (2) max (I 0)1,0) 

where S(0) denotes the objective function value associated 
with the p x 1 parameter vector 0, the superscripts H and L 
denote the vertices of the simplex with the highest and lowest 
S(0) values, 0• is the initial estimated for the jth parameter, 
03 k) is the jth parameter for the kth vertex, and e is the ma- 
chine epsilon (the smallest positive number such that 1 + e > 
1). Criterion (1) ensures that the vertices in the simplex have 
similar S(0) values, while criterion (2) ensures that all the 
vertices are in the same subregion of the parameter space. 
Thus (1) and (2) are relatively strict criteria. A single and 
commonly used convergence criterion is used for SCE-UA: 

[S(O)iL+l- S(o)iLI 
< tot (3) Is(0)/l 

Modified SFB Model 

.............. Original SFB Model ........... 

Rainfall Evapotranspiration, (E^) 
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Figure 1. Schematic of the modified SFB model structure. 

where i denotes the iteration number and "tot" is some spec- 
ified small value (generally 1 x 10-6). Thus criterion (3) is not 
as strict as criteria (1) and (2). 

It would be ideal to use the same convergence criteria for 
both algorithms. However, this presents some problems. Ap- 
plication of criteria (1) and (2) to SCE-UA is not practical. 
SA-SX has only one simplex whereas SCE-UA has a number of 
complexes, and to run SCE-UA until all complexes have 
reached a single optimum would greatly increase the number 
of function evaluations required and compromise the effi- 
ciency of the algorithm. Application of criterion (3) to SA-SX 
may cause the algorithm to stop prematurely during its second 
phase. Consequently, the comparison is based on the results 
obtained with the convergence criteria that provide the best 
performance for each algorithm as well as the results obtained 
from an exchange of convergence criteria. 

Five hundred independent trials were used to compare the 
performances of the algorithms. Empirical quantite plots of the 
S (0) values and the number of function evaluations required 
for convergence were used to assess robustness and efficiency. 

3. Modified SFB Model 

The CRR model used in this study is the modified SFB 
model described by Sumner et al. [1997]. This model, and the 
original SFB model developed by Boughton [1984], have been 
applied to many Australian catchments [e.g., Nathan and Mc- 
Mahon, 1990; Chiew et al., 1993; Sumner et al., 1997; Ye et al., 
1997]. Both models require daily rainfall and potential evapo- 
transpiration data to compute monthly streamflow. Eight pa- 
rameters require specification in the modified SFB model: the 
surface storage capacity (S); the daily infiltration capacity (F); 
the base flow factor (0 -< B -< 1), which determines the portion 
of the daily depletion of water in the lower store; the fraction 
of surface storage capacity that does not drain to the lower 
store (NDC); the maximum limiting rate of evapotranspiration 
(E•aAX); the lower store depletion factor (DPF); the base flow 

threshold for the lower store (SDRMAx); and a drainage co- 
efficient (C) to regulate the use of deep percotation to meet 
evapotranspirative demand in the nondrainage component of 
the surface store. A schematic of the model is given in Figure 
1. 

4. Model Calibration 

The study catchments were chosen to gauge the perfor- 
mance of the SCE-UA and SA-SX algorithms when different 
characteristics within the model structure are forced to varying 
degrees. A warm-up period of 3 months was used to minimize 
the effects of the initial store contents on the parameter esti- 
mates. The objective function used is defined by 

S(O) = min •z; (4) 
0 t=4 

where the disturbance z t is 

z t -- (Qt • - Ot •) - O(Qt•_•- Ot•_O )t 4:0 (5) 

in which Qt and Ot denote observed and computed monthly 
runoff at time t, X is a transformation constant [Box and Cox, 
1964], and O denotes the parameter of a first-order autoregres- 
sive process. 

Two sets of calibrations were considered herein: (1) estima- 
tion of the parameter subset used by Sumner et al. [1997] and 
(2) estimation of the entire parameter set. An F test was used 
to compare their residual sum of squares (RSSi, i - 1, 2). 
The test statistic for the null hypothesis that the second cali- 
bration contributes nothing to the model fit above that con- 
tributed by the first calibration is: 

(RSS•- RSS2) 
F = RSS2 (6) 

(8 - m) (N- 8 - 3) 
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Table 1. Parameter Hypercube Limits for the Modified 
SFB Model: Scott Creek at Scott's Bottom, Catchment 
5O35O2 

Parameter Lower Bound Upper Bound 

S * 40.0 100.0 
F* 4.0 10.0 

B* 0.0 0.5 
NDC 0.0 1.0 

EtvtAX 0.0 10.0 
DPF* 0.0 0.1 

SDR*•oc 0.0 100.0 
C* 0.0 2.0 

*Parameters estimated by Sumner et al. [1997]. 

where m is the number of parameters estimated by Sumner et 
al. [1997], N is the number of observations and F has an F 
distribution with 8 - m and N - 8 - 3 degrees of freedom. 
This is an approximate test in that the models are nonlinear in 
a statistical sense and are not nested. However, use of the test 
facilitated an assessment of the performance of the algorithms 
when different levels of parameterization are used. 

4.1. Scott Creek at Scott's Bottoln (503502) 

4.1.1. Description of catchlnent and data. Scott Creek is 
located within the Onkaparinga River Basin, some 20 km south 
east of Adelaide, South Australia. The data set covers the 
period from January 1970 to December 1985 [Chiew and Mc- 
Mahon, 1993]. The catchment has a drainage area of 27 km 2, 
mean annual rainfall of 950 mm, and mean annual runoff of 
130 mm. The rainfall/runoff ratio (14%) indicates a low runoff 
yield. This presents a real challenge in parameter estimation as 
such catchments have few streamflow events for a given period 
of record, and hence their data sets contain little information 
on CRR model parameters [Ye et al., 1997]. Previous studies by 
Sumner et al. [1997] and Bates [1994] found many different 
solutions with S(0) values close to a candidate global opti- 
mum. Initially, six model parameters (S, F, B, SDR•aAX, 
DPF, and C) were fitted with the remainder set to Boughton's 
[1984] default values (EMA x = 8.9 mm d -• and NDC = 0.5). 
For all trials O was estimated during the optimization process 
and X = 0.5 [Sumner et al., 1997, Table 1]. The hypercube limits 
for the feasible parameter space are reported in Table 1. 

4.1.2. Results. Figure 2 shows quantile plots of the S(0) 

values obtained from the SCE-UA and SA-SX runs for the 

parameter subset used by Sumner et al. [1997]. In 99.2% of the 
trials the SCE-UA algorithm converged to various optima with 
S(b) •- 700 where b denotes the estimated optimum parameter 
vector. The SA-SX algorithm converged to a far greater range 
of S(0) values, with 44% of the trials converging to optima 
with higher S(0) values than those found by SCE-UA. This 
indicates that SCE-UA is almost twice as likely to converge to 
a lower optimum than SA-SX. Thus SCE-UA is much more 
robust than SA-SX for the Scott Creek case. 

Figure 3 shows quantile plots for the number of function 
evaluations. In 99.2% of the trials SCE-UA required fewer 
than 3700 function evaluations to converge. By comparison 
SA-SX required up to 5900 function evaluations to achieve 
convergence in 99.2% of the trials. Thus SCE-UA is 37% more 
efficient than SA-SX for the Scott Creek case. 

When convergence criterion (3) was applied to SA-SX, there 
was little change in the spread of the S(0) values, and the 
number of function evaluations decreased by approximately 
20%. Thus, even when the convergence criterion is not as 
strict, SCE-UA remains more efficient and unequivocally more 
robust. When the stricter criteria (1) and (2) were applied to 
the SCE-UA method, 99.6% of the trials converged to optima 
with similar objective function values (S(b) in the range 699.6 
to 700.1). The lowest of these optima will hereafter be denoted 
by b+. A very small number of the trials located a lower 
optimum (denoted by b-) with S(b-) •- 693. The maximum 
number of evaluations (10,000) was reached when converging 
to b-. Overall the number of function evaluations increased by 
50%. Although the SA-SX was more efficient in this instance, 
SCE-UA was more robust in that it consistently located optima 
with lower S ( 0 ) values than those found by SA-SX in the 44% 
of its trials. 

The modified SFB model was calibrated using the entire 
parameter set. The increase in explained variance due to the 
use of the entire parameter set rather than the subset used by 
Sumner et al. [1997] is significant at the 0.05 level (p value - 
0.014). Thus Sumner et al.'s [1997] claim of parsimony is not 
convincing. Figure 4 shows the empirical quantile plots of the 
S(0 ) values. SCE-UA is undeniably more robust, converging 
to optima with S(0) < 680 in 94.5% of the trials, whereas 
SA-SX converged to optima with S(0) > 680 in 91.8% of its 
trials. SA-SX was approximately twice as efficient, though its 
lack of robustness overshadows any efficiency benefits. 

780 
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.B 

u. 720- 

.>_ 

o 690.. 

i I ..... SCE-UA I 
.......... t ,, s^-sx l .......... 

0 25 50 75 100 

% of Trials 

Figure 2. Empirical quantile plot of objective function values 
for parameter subset used by Sumner et al. [1997], Scott Creek 
catchment. 

8000- 

6000- 

4000- 

2000- 
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Figure 3. Empirical quantile plot of function evaluations for 
parameter subset used by Sumner et al. [1997], Scott Creek 
catchment. 
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Figure 4. Empirical quantile plot of objective function values 
for full parameter set, Scott Creek catchment. 

4.2. Allyn River at Halton (210022) 

4.2.1. Description of catchment and data. The Allyn 
River is a tributary of the Hunter River in eastern New South 
Wales, Australia. The upper 40% of the catchment is heavily 
timbered, with the balance open forest, cleared grazing land, 
and some arable land close to the river. The data set covers the 

period from January 1977 to December 1984 [Chiew and Mc- 
Mahon, 1993]. The catchment has an area of 205 km 2, mean 
annual rainfall of 1200 mm, and mean annual runoff of 350 
mm. The rainfall data had to be scaled by a factor of 1.2 
because of the position of the rainfall gauge and known rainfall 
gradients over the catchment. Although the Allyn River catch- 
ment has a much larger percentage runoff yield (runoff/rainfall 
ratio • 30%) than Scott Creek, Sumner et al. [1997] had to use 
significant intervention to arrive at a set of realistic parameter 
estimates. Initially, four model parameters (S, B, DPF, and C) 
were fitted and the remaining parameters were fixed: E M•x = 
8.9 mm d-l, F = 8.9 mm d-l, NDC = 0.2, and SDRM•x = 0 
mm. For all trials X - 1 and •b = 0 [Sumner et al., 1997, Table 
1]. The hypercube limits for the feasible parameter space are 
reported in Table 2. 

4.2.2. Results. Figure 5 shows quantile plots for the S (0) 
values obtained from the SCE-UA and SA-SX runs for the 

parameter subset used by Sumner e! al. [1997] There is little 
difference between the robustness of the algorithms, with 
SA-SX converging in 99.8% of the trials to the same optimum 
as SCE-UA in 97.6% of its trials. However, perusal of the 
function evaluation quantile plots in Figure 6 reveals a major 
difference in efficiency. In all of the trials SCE-UA required 
fewer than 1300 function evaluations to converge, whereas in 
99% of the SA-SX trials the number of function evaluations 

Table 2. Parameter Hypercube Limits for the Modified 
SFB Model: Allyn River at Halton, Catchment 210022 

Parameter Lower Bound Upper Bound 

S* 50.0 250.0 
F 3.0 20.0 
B* 0.2 0.8 
NDC 0.0 1.0 
Emax 0.0 10.0 
DPF* 0.0 0.4 
SDRmax 0.0 100.0 
C* 0.0 3.0 

*Parameters estimated by Sumner et al. [1997]. 

14080 .... • ............................................................ :--, 

• 14050 .................................................................. •-- 
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ß 13990- 

o ,: 

13960- "i ............................................ i ............... ::~- 

0 25 50 75 100 

% of Trials 

Figure 5. Empirical quantile plot of objective function values 
for parameter subset used by Sumner et al. [1997], Allyn River 
catchment. 

required for convergence ranged from 7100 to 7900. Thus the 
SA-SX algorithm required approximately six times the amount 
of computational effort as SCE-UA for roughly the same level 
of robustness for the Allyn River case. 

Applying the stricter convergence criteria (1) and (2) to 
SCE-UA resulted in convergence to the same optimum in 
every trial, but the number of function evaluations increased to 
between 1900 and 2500. This represents a marginal 2.4% in- 
crease in robustness and a halving of efficiency. When criterion 
(3) was applied to the SA-SX algorithm its reliability was 
comprised slightly, with only 91% of the trials converging to 
the same optimum. The efficiency increased slightly with all 
trials requiring fewer than 7400 function evaluations. However, 
in 1% of these trials SA-SX terminated prior to entering its 
third phase and the vertices of the final simplex were not in the 
vicinity of the candidate global optimum. Thus the stricter 
convergence criteria (1) and (2) were needed to maintain the 
robustness of SA-SX for the Allyn River case. 

The modified SFB model was calibrated using the entire 
parameter set. The increase in explained variance due to the 
use of the entire parameter set rather than the subset used by 
Sumner et al. [1997] is significant at the 0.05 level (p value = 
0.009). Thus Sumner et al's [1997] claim of parsimony is not 
convincing. Figure 7 shows the S (0) quantile plots. In 84% of 
the trials SCE-UA converged to optima with lower S (0) than 
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8000 - 

6000- ' --! ............... ':- ................ 
, 

4000- --J ................... ' .... SCE-UA SA-SX : 
, 

2000 - : 
, 

[ 
0 25 50 75 100 

% of Trials 

Figure 6. Empirical quantile plot of function evaluations for 
parameter subset used by Sumner et al. [1997], Allyn River 
catchment. 
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Figure 7. Empirical quantile plot of objective function values 
for full parameter set, Allyn River catchment. 

SA-SX could locate in any of its trials. Although the algorithms 
had similar efficiencies, comparison of Figures 5 and 7 indi- 
cates that the robustness of SA-SX deteriorated markedly 
when the level of parameterization was increased although the 
SA-SX was not tuned to the full parameter set. This result is 
consistent with that for Scott Creek. 

4.3. Response Surface Analysis: Scott Creek 
The Scott Creek case is examined further because of the 

problems experienced during calibration. The response surface 
plots provide insight into the reasons why both optimization 
algorithms were not able to consistently locate the global op- 
timum. Figure 8 shows a two-dimensional cross section of the 
response surface for Scott Creek in the vicinity of the estimates 
•- and •+. The C-SDRM•x plane was chosen as the estimates 
of these parameters varied the most between •- and •+. The 
remaining parameters were fixed at their •+ values. The plot 
reveals that the region of attraction for •+ is much larger than 
that for •-. Other obvious features are the presence of a high 
ridge with a narrow saddle that separates •- and •+. Consid- 
ering that the upper limit for SDRM•x was set to 100 (see 
Table 1), the region of attraction for •+ is exceptionally large. 

This explains why the SCE-UA converged to •+ in 99.6% of 
the trials when convergence criteria (1) and (2) were used. The 
other optimum •- is located on the edge of the feasible pa- 
rameter space. The relatively small attractor region explains 
why •- was found in only very few of the SCE-UA trials. The 
chance of selecting initial parameter estimates in the region of 
attraction for •- is low. If an initial simplex is not seeded with 
parameter estimates from this region, there is little chance of 
the simplex projecting into the region during a probabilistic 
search. 

Attention is also drawn to the multiple optima having S (0) 
very close to S (0 +) yet with distinctly different values of the C 
parameter. Such features highlight the need to focus on pa- 
rameter uncertainty rather than merely finding the global op- 
timum. 

5. Summary and Conclusions 
This paper has compared the robustness and efficiency of 

two probabilistic optimization algorithms (SA-SX and SCE- 
UA) using the same conceptual rainfall-runoff (CRR) model, 
the same data sets, and the same objective function. Two levels 
of parameterization were considered: subsets of the CRR 
model parameters that were deemed to be parsimonious in a 
previous study and the entire parameter set. The differences 
between the performances of the algorithms for the study 
catchments (Scott Creek and Allyn River) and the chosen 
parameterization levels are striking. The Allyn River catch- 
ment has a higher runoff yield, and the initial level of param- 
eterization of the CRR model was lower than that for the Scott 

Creek. For calibration to the reduced parameter set, both 
algorithms had a similar level of robustness for the Allyn River 
case, but the efficiency of SCE-UA was more than six times 
that of SA-SX. However, for the Scott Creek case SCE-UA 
was almost twice as robust as SA-SX even though it had a 
similar efficiency. 

When calibrating the full parameter set, the robustness of 
SA-SX deteriorated markedly relative to that of SCE-UA. This 
may be because the annealing schedule was not tuned for the 
larger parameter set. 

c 

/// 

0'4 

LOCATmN OF O- SDRM• 

Figure 8. Two dimensional cross section of the response surface in the vicinity of the apparent global 
optimum, Scott Creek catchment. 
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The superiority of the SCE-UA can be attributed to its use 
of multiple complexes rather than a single simplex. Although 
SA-SX's stochastic step acceptance criterion allows the simplex 
to escape from local optima, SCE-UA has more information 
about the response surface compared to SA-SX at any itera- 
tion during an optimization run. By sharing this information 
through complex shuffling SCE-UA conducts a far more ef- 
fective search of the entire parameter space. Implementation 
of SCE-UA is much simpler because the recommended values 
for its algorithmic parmneters are generic. In contrast, it ap- 
pears that the annealing schedule for SA-SX must be tuned for 
the catchment and the parameterization level at hand. 

Nevertheless, the results suggest that SCE-UA should not be 
viewed as a panacea capable of satisfactorily calibrating a poor 
CRR model with unrepresentative and error-laden data. Even 
the most powerful optimization algorithm will experience dif- 
ficulties under such circumstances. If a candidate global opti- 
mum cannot be found consistently, emphasis would be better 
placed on assessing parameter feasibility and uncertainty and 
on evaluating the precision of the model predictions. 
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