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Climate driver informed short-term drought risk evaluation

Benjamin J. Henley,1 Mark A. Thyer,2 and George Kuczera1

Received 8 November 2012; revised 25 March 2013; accepted 26 March 2013; published 2 May 2013.

[1] This study proposes a methodology for quantifying the impact of climate drivers on
water supply drought risk. Climate driver informed short-term drought risks are evaluated
for future time steps following conditioning on the initial state of climate drivers and initial
reservoir storage level. The methodology is demonstrated using a case study in eastern
Australia. Simulations of future rainfall are provided by the climate-informed multitime
scale stochastic (CIMSS) model, which is used to incorporate Pacific decadal variability
exhibited by the Pacific Decadal Oscillation-Interdecadal Pacific Oscillation. The climate
driver informed drought risks are compared to a traditional approach that evaluates long-
term drought risks using a nonclimate driver informed rainfall model. The case study
considers four scenarios describing a range of different climate driver initial conditions. For
the PDO-IPO positive initial state scenarios, the short-term risks are found to be higher than
traditional long-term risks by 20%–100%. Furthermore, the elevated short-term risks can
last up to 30 years with the CIMSS model but <10 years with the traditional model. The
implication of these results is that traditional approaches can significantly underestimate the
severity and duration of drought risk. The case study demonstrates a practical and general
approach for incorporating the influence of climate drivers and initial storage conditions
into drought risk analyses, which could be adapted to other regions and climate drivers. The
results prompt a recommendation to water resource planners to carefully integrate climate
variability over a range of time scales into water supply system planning and operation.

Citation: Henley, B. J., M. A. Thyer, and G. Kuczera (2013), Climate driver informed short-term drought risk evaluation, Water
Resour. Res., 49, 2317–2326, doi:10.1002/wrcr.20222.

1. Introduction

[2] The provision of adequate drought security is a key
responsibility for managers of water supply systems. Typi-
cally, simulations from stochastic hydrological models are
used as inputs to reservoir system models to estimate
drought risk, test management strategies, and optimize sys-
tem performance. Traditional approaches for the assess-
ment of water supply drought risk have relied on estimating
the long-term probability of storage levels falling below
specified thresholds. In this study, drought risk evaluated
over the full simulation period is referred to as the long-
term drought risk. Water managers, engineers, and system
operators have designed and operated reservoir systems
under the basis that there are known and stationary long-
term risks of particular thresholds being violated and that
these risks represent the key risks to water supply system
security.

[3] However, traditional approaches that rely on long-
term drought risk evaluation have a number of shortcom-
ings. Long-term drought risk approaches obscure the time
evolution of drought risk due to hydrological variability on
interannual to multidecadal timescales. Low long-term
risks of failure have little meaning and offer little comfort
to water managers at times when water supply systems are
significantly drawn down due to persistent drought condi-
tions. For example, from 1997 to 2010, water supply sys-
tems and natural ecosystems across much of Australia were
forced to endure a long and severe drought sequence,
termed the ‘‘Big Dry’’ [Sohn, 2007] or ‘‘Millennium
Drought’’ [Whitaker, 2005]. The drought led many Austra-
lian water authorities to commission desalination plants. At
such times, well-informed drought risk analysis methods
are crucial.

[4] A variety of methods have been proposed to improve
upon traditional methods for evaluating drought risk.
Examples of recent work include: the improved allowance
for streamflow persistence in estimating the average return
period [Douglas et al., 2002], clarifying the characteristics
of drought such as the duration, severity (magnitude or
intensity), spatial extent, and frequency or return period
[Cancelliere and Salas, 2004], improved identification of
significant drought episodes using the joint distribution of
drought duration and magnitude from paleoclimate data
[Biondi et al., 2005], the comparison of operating rules and
management procedures [Cancelliere et al., 1998; West-
phal et al., 2007], and the direct simulation of drought
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characteristics [Bonaccorso et al., 2003; Cancelliere and
Salas, 2010].

[5] Although drought risk is commonly evaluated by cal-
culating long-term probabilities, conditional methods have
also been widely employed. For example, position analysis
[Hirsch, 1978] is a tool used by water managers to forecast
risks associated with a specific operating plan over a future
period, conditioned on current storage levels and antici-
pated inflows [Tasker and Dunne, 1997]. Hirsch [1978]
presented a risk analysis model to investigate the long-term
marginal probabilities of entering emergency restrictions in
any year and also the risk in a given year conditional on
emergency restrictions being imposed in the previous year.
Tasker and Dunne [1997] used position analysis to investi-
gate a streamflow simulation scheme that used bootstrap-
ping of the residuals from a stochastic model.

[6] Position analysis can use as its input a single trace of
projected inflows, inflow prediction procedures and/or rep-
licates of inflows generated from a stochastic model to pro-
vide drought risk estimates in the short-term (for example,
the next 1–10 years). One method is to project forward
using the lowest observed inflow series on record. While
this method is generally considered to be a conservative
approach, it does not quantify the likelihood of such a sce-
nario, nor does it allow for the possibility of drought condi-
tions more severe than those which have occurred in the
observed record. In this paper, conditional methods will be
extended to include conditioning on scenarios that explic-
itly incorporate variability from climate drivers.

[7] Although water supply drought risk is most com-
monly assessed using a long-term approach, large-scale cli-
mate drivers, such as the El Ni~no Southern Oscillation
(ENSO), Indian Ocean dipole (IOD), and the Interdecadal
Pacific Oscillation and the closely related Pacific Decadal
Oscillation (PDO-IPO), are known to influence rainfall and
streamflow patterns in Australia, and similar ocean-atmos-
phere circulation mechanisms affect other regions around
the world.

[8] The study by Henley et al. [2011] showed that the
PDO-IPO negative state coincides with higher annual rain-
fall over a large area of the coast of NSW, around 1000 km
in length and extending inland around 100 km. A number
of studies have shown the influence of the PDO-IPO on
Australian hydrological regimes, particularly in this region,
including Power et al. [1999], Arblaster et al. [2002], Kiem
and Franks [2004], Micevski et al. [2006], Westra and
Sharma [2009], and Speer et al. [2011]. Meinke et al.
[2005] identified decadal and interdecadal variability as
important components of rainfall variability globally.

[9] As climate drivers oscillate, water supply drought
risk also fluctuates. Traditional long-term drought risk eval-
uation could therefore be viewed as an overall marginal
probability, integrating out, or less kindly, being ignorant
of, the time-varying influence of climate drivers.

[10] The studies by Kiem and Franks [2004], Verdon
and Franks [2007], and Verdon-Kidd and Kiem [2010]
investigated the impact of climate drivers on long-term
drought risk; however, these studies did not investigate
conditional drought risk using position analysis. Of the
studies that have investigated conditional position analysis,
none to date have explicitly investigated the conditional
impacts of climate drivers on drought risk.

[11] This study therefore proposes a methodology for
investigating the impact of climate drivers on water supply
systems. Termed ‘‘climate driver informed short-term
drought risk,’’ the method evaluates the conditional water
supply drought risk at each time step, given an initial stor-
age level and the current state of one or more climate driv-
ers. To demonstrate the method, this study uses the CIMSS
model developed by Henley et al. [2011] to investigate the
influence of the PDO-IPO on climate driver informed
short-term drought risk at a site on the east coast of Aus-
tralia. The PDO-IPO is chosen as the climate driver for this
study due to its predictability several years into the future
and its known impact in this region.

[12] This study is organized as follows. Section 2
describes the methodology, including the two rainfall mod-
els used in this study, the climate driver informed multitime
scale stochastic (CIMSS) model of Henley et al. [2011],
and the nonclimate driver informed lag-one autoregressive
model (section 2.2), as well as the reservoir simulation
approach (section 2.3). The climate driver informed short-
term drought risk methodology is introduced in section 2.4,
including a range of initial climate driver state scenarios
and time-based drought risk thresholds. Section 2.5 outlines
the traditional long-term drought risk approaches. Section 3
presents the results, including the comparison of short and
long-term drought risk and the CIMSS model against tradi-
tional nonclimate informed stochastic rainfall models. Sec-
tion 4 assesses the sensitivities of the results to the initial
storage, capacity, and yield. The study concludes with a
discussion in section 5 of the implications of the heightened
drought risk evident during the PDO-IPO positive state and
the significance of a highly variable and changing climate
on the future reliability and security of water supply sys-
tems, and a statement of the key findings in section 6.

2. Methodology

2.1. Overview

[13] The general approach for performing climate driver
informed drought risk evaluation is outlined in Figure 1.
The key differences from traditional drought risk simula-
tion are as follows: (1) development of stochastic model
for the hydrological inputs includes a stochastic model for
the climate driver(s) and their relationship with hydrologi-
cal inputs, (2) stochastic simulations of hydrological inputs
are conditioned on the initial state of the climate driver(s),
(3) simulations of water supply system behavior are condi-
tioned on initial reservoir conditions, and (4) drought risk
evaluation is undertaken on a short-term basis in each year
following initialization. The following sections provide a
detailed description of each component of the approach and
its specific application to the case study.

2.2. Stochastic Models

[14] The CIMSS model of Henley et al. [2011] utilizes a
Bayesian hierarchical approach for incorporating climate
mechanisms and their impacts on hydrological data. In gen-
eral, physical phenomena operating at multiple timescales
are simulated with stochastic models. In the Henley et al.
[2011] study, a two-level hierarchy was adopted and is also
used in this study. The upper level simulates the positive/
negative states of the PDO-IPO with a gamma distribution
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calibrated to paleoclimate PDO-IPO data. The paleo
data used here is the combined paleo IPO (CPIPO)
index, which merges seven paleo sources from around
the Pacific and dates back around 440 years prior to
instrumental IPO records [Henley et al., 2011]. The
lower level of the CIMSS model simulates rainfall
using two seasonal lag-one autoregressive models with
Box-Cox transformation (AR(1)-BC) with parameters
conditioned on the upper level PDO-IPO model. The
nonclimate driver informed lag-one autoregressive
model with Box-Cox transformation (AR(1)-BC model)
was described by Frost et al. [2007].

2.3. Reservoir System

[15] The reservoir model used here is a simple water
balance model at the annual time step. The simplicity
in its configuration is such that the ensuing drought
risk assessment is not clouded by idiosyncracies of a
particular water supply system configuration. In doing
so, it is suggested that this analysis maintains a broader
applicability.

[16] The reservoir’s inflow is represented by the variable
qi, with the reservoir’s outflows, such as the restricted
demand (supply), evaporation, and other losses represented
by the variable di. System storage proportion si at time i is
therefore computed by

si ¼
stemp if 0 < stemp < 1;
1 if stemp >¼ 1;
0 if stemp <¼ 0;

8<
: (1)

where

stemp ¼
si�1 � C þ qi � di

C
; (2)

and C is the reservoir capacity. Water restrictions are simu-
lated with a 5% reduction in demand for every 10% reduc-
tion in storage below 50%, down to a 20% reduction in
demand at storage levels of 20% and below.

[17] Reservoir inflow simulations are obtained by non-
parametric sampling from the observed streamflow record,
conditioned on the stochastic rainfall simulated by the
models described in section 2.2. A k-nearest neighbor
(kNN) approach is used to conditionally sample annual res-
ervoir inflow from the observed distribution using simu-
lated annual rainfall as the predictor with k ¼ ffiffiffi

n
p

. Detailed
investigations of this method have been presented previ-
ously by Lall and Sharma [1996], Sharma et al. [1997],
and Mehrotra and Sharma [2006].

[18] In this study, a range of different storage capacities
and demands are trialed, based on the dimensionless ratios,
C=Qav , and D=Qav , where Qav is the annual average inflow
and D is the reservoir yield (the annual supply level that
satisfies the drought risk criteria). This provides insight into
how the short-term drought risk compares for different
water supply system characteristics.

2.4. Climate Informed Short-Term Drought Risk

2.4.1. Definition
[19] An approach for evaluating short-term drought risk

based on stochastic rainfall simulations conditioned on cli-
mate and initial storage is described here. The short-term
drought risk ri;st is the proportion of replicates in which the
system storage si;j falls below a threshold, � , in time step i :

ri;st ¼

Xnreps

j¼1
ci;j

nreps
; (3)

ci;j ¼
1 if si;j <¼ �
0 if si;j > �

;

�
(4)

where i ranges from 1 to ndata and j is a Monte Carlo inflow
replicate ranging from 1 to nreps .
2.4.2. A Time-Based Drought Risk Threshold

[20] Traditional drought risk analyses typically use arbitra-
rily chosen thresholds (�) such as 5% for the drought security
threshold, and around 40%–60% for reliability thresholds.
However, absolute thresholds do not take into account the
system yield relative to the inflow (qi) or capacity (C), nor
the time taken for storage levels to deplete.

[21] For a large reservoir system, 5% storage could rep-
resent several months of remaining water supply; however,
for a small system, complete failure could be imminent.
Emergency drought management plans that include, for
example, the commissioning of desalination or wastewater
recycling plants, are often limited by planning approval
and construction time lines, as highlighted by Berghout
[2008]. Such timelines are unlikely to be any faster in the
case of smaller storage systems nearing depletion. A more
useful criterion would be the risk of triggering such an
emergency drought management plan, where the threshold
is a function of time instead of storage.

[22] It is therefore proposed in this study that the thresh-
old � for the drought risk determination be equal to 1 year’s
yield (D) expressed as a proportion of the reservoir storage
capacity (C), so � ¼ D=C. The risk ri;st can therefore be
interpreted as the conditional probability that the reservoir
will be within 1 year of a fully depleted (0%) storage,
assuming no intervening inflows. This time-based approach
to setting the drought risk threshold is more informative

Figure 1. Major components of the climate driver
informed drought risk approach.

HENLEY ET AL.: IMPACT OF CLIMATE DRIVERS ON DROUGHT RISK

2319



and more amenable to assisting planning decisions which
are time dependent.
2.4.3. PDO-IPO Scenarios of Initial Climate Driver
State

[23] The choice of initial climate driver state can be
based either on the current state of the climate drivers or on
likely scenarios from historical information. For this case
study, the initial climate driver states were based on four
PDO-IPO scenarios (Figure 2). For scenarios 1 and 2 the
CIMSS model is initialized so that the first PDO-IPO state
in each replicate is a negative or positive state, representing
the PDO-IPO state in 1945 and 1976, respectively. For sce-
nario 3, the model is initialized 10 years into a positive
PDO-IPO state, as was the case in 1987. Similarly, scenario
4 is initialized 12 years into a negative PDO-IPO state, rep-
resenting the best estimate of the PDO-IPO condition at the
time of writing (2013). Along with the PDO-IPO state initi-
alization, the rainfall models are initialized to the rainfall in
the prior year y1

obs ;t�1 for each of the four scenarios. These
initial rainfall values were 1524, 958, 1621, and 1373 mm
for scenarios 1–4, respectively.

[24] The aim here is to investigate a broad spectrum of
initial climate driver state scenarios, including both at the
commencement and at around a decade (approximately
midway) into each PDO-IPO state. Scenarios 1 and 2 repre-
sent examples of the commencement of their respective
PDO-IPO states. Scenario 3 starts at a relatively wet year
(at the Stroud case study site) approximately 10 years into
a PDO-IPO positive state. This combination enables a thor-
ough comparison of the CIMSS and AR(1)-BC models.
Scenario 4 represents the situation at the time of writing,
and therefore has relevant practical significance.

2.5. Long-Term Drought Risk

[25] The performance of water supply systems is tradi-
tionally assessed based on the long-term probability of the
storage level falling below specified thresholds. These
probabilities are evaluated using Monte Carlo simulation of
the modeled system, with the warm-up period discarded to
remove the effect of initial conditions. The long-term
drought risk rLt is defined here as

rLt ¼

Xnndata

i¼1
ri;st

ndata
: (5)

2.6. Case Study

[26] A long-term rainfall record on the east coast of New
South Wales (NSW), Australia, is selected here as a case
study. The site (Stroud Post Office) is part of the Australian
Bureau of Meteorology’s high quality (HQ) rainfall gage
network [Lavery et al., 1997]. Reservoir inflow data (1931–
2007) is from Tillegra, NSW. This site is chosen because it
is close to the rainfall data site and has previously been pro-
posed as a major dam site for the Lower Hunter Region.
The July-June water year is used in order to align with
impact seasons of the CIMSS model of Henley et al.
[2011].

[27] The rainfall and inflow transformation models are
evaluated by comparing the simulated and observed annual
distribution, autocorrelation, and scatterplots of rainfall and
inflow. As the observed data is within the 90% limits of the
simulated data, both models are deemed satisfactory.

3. Results

[28] The short-term drought risks are compared here for
the CIMSS and AR(1)-BC rainfall models for two reservoir
storage capacities of C=Qav of 1.75 and 4.0. The simula-
tions use an initial storage of 70%, an annual yield of
0:75Qav , and 50,000 Monte Carlo replicates for each model
run. Figure 3 shows the expected value of the short-term
risks. The results are summarized in the following sections.

3.1. Short-Term Versus Long-Term Risks

[29] For the short-term drought risk, the results show an
initial transient period due to the effect of initial conditions.
During the initial period, the short-term risk is significantly
higher (PDO-IPO-positive scenario) or lower (PDO-IPO-neg-
ative scenario) than the long-term risk for up to 20 years. Fol-
lowing this is a steady-state period where the short-term
drought risk asymptotically approaches the long-term risk.

3.2. Differences Between Climate Driver Informed
and Nonclimate Driver Informed Rainfall Models

[30] Whilst the long-term risks are similar for the CIMSS
and AR(1)-BC models, the short-term risks are markedly
different. The climate driver informed (CIMSS) model
risks are highly dependent on the PDO-IPO scenario,
whereas the nonclimate driver informed (AR(1)-BC) model
risks do not change significantly between scenarios. For the

Figure 2. PDO-IPO scenarios used in conditional simulations.
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smaller reservoir capacity (C=Qav ¼ 1:75), the highest
short-term risks for the CIMSS model (19%) occur at
approximately 5 years into the PDO-IPO positive state of
scenario 2, and stay well above the long-term risk for

almost 20 years. In comparison, for the AR(1)-BC model
the short-term risk only reaches 12% and persists above the
long-term risk for only 5 years. For scenario 3, which starts
when the PDO-IPO is 10 years into a positive state, the

Figure 3. Short-term drought risks for two reservoir capacities (a, C=Qav ¼ 1:75 and b, C/Qav = 4.0),
four PDO-IPO scenarios, s0 ¼ 70%;D=Qav ¼ 0:75; � ¼ D=C, and 50,000 model replicates.

HENLEY ET AL.: IMPACT OF CLIMATE DRIVERS ON DROUGHT RISK

2321



CIMSS model exhibits almost as high a short-term risk as
scenario 2. For the AR(1)-BC model, the higher than aver-
age rainfall value in 1986 results in virtually no peak in the
risk, despite a positive PDO-IPO state producing drier than
average conditions. For scenarios 1 and 4, the CIMSS
model short-term risk rises initially due to the initial condi-
tions, then falls due to the higher inflows in the PDO-IPO
negative state, before rising to the long-term risk. The
slightly higher initial peak for scenario 4 is due to it having
a lower initial rainfall (1373 mm) than scenario 1 (1524
mm). The AR(1)-BC model does not show any significant
change between scenarios, except for slightly higher peak
risk for scenario 2, which has the lowest initial rainfall of
958 mm.

[31] Since the CIMSS model takes into account the state
and persistence of PDO-IPO Pacific decadal variability and
the AR(1)-BC model does not, it is apparent that system
simulations that utilize nonclimate driver informed models,
such as the annual AR(1)-BC rainfall model will overesti-
mate short-term drought risk at the commencement of an
PDO-IPO negative state (scenario 1) and underestimate
short-term drought risk at the commencement of an PDO-
IPO positive state (scenario 2). The clear propensity for the
AR(1)-BC model, in particular, to underestimate risk in
this situation provides a strong impetus for utilizing climate
driver informed models.

3.3. Reservoir Capacity Effects

[32] Qualitatively similar results are obtained for the
larger reservoir (C=Qav ¼ 4:0, Figure 3b), with the key dif-
ference being that the drought risks are more than 1 order
of magnitude lower and the peak short-term risks are
delayed several years due to the buffering effect of the
larger reservoir. This is further investigated in section 4.2.

3.4. Conditional Reservoir Level Distributions

[33] Given that the four scenarios used in Figure 3 are
based on the joint occurrence of a particular PDO-IPO state
and a specific initial storage (70%), it is worthwhile evalu-
ating the probability of switching from a PDO-IPO nega-
tive to positive state if si � 70%, and similarly for a switch
from PDO-IPO positive to negative state.

[34] The probabilities are computed using Bayes’ theo-
rem from the Monte Carlo simulations, as described by
Henley [2012]. The results are

P Y i� 1ð Þ < 0jsi � 70%; Y ið Þ > 0ð Þ ¼ 0:40;

P Y i� 1ð Þ > 0jsi � 70%; Y ið Þ < 0ð Þ ¼ 0:60;

where Y ið Þ is the simulated PDO-IPO value at time step i.
[35] There is a higher probability that the previous PDO-

IPO state was positive (a switch to negative state occurred)
if the reservoir storage level is at or below 70%. It is how-
ever still relatively likely that the reservoir is at or below
70% storage at the time of a crossing from PDO-IPO nega-
tive to positive conditions. This shows that while the condi-
tional simulation scenario 2 is less likely than scenario 1,
the initialization of the storage level (s0) at 70% coincident
with the commencement of a PDO-IPO positive state is still
a likely scenario.

4. Sensitivity to Capacity, Yield, and Initial
Storage Level

4.1. Sensitivity to Capacity and Yield

[36] The sensitivity of short-term drought risks to reser-
voir capacity and yield is examined here for PDO-IPO sce-
nario 2 using � ¼ D=C and a range of D=Qav and C=Qav .
The results are shown in Figure 4.

[37] The short-term drought risks are highly sensitive to
both yield and capacity, with an apparent exponential rela-
tionship between the capacity/yield and the peak short-term
drought risk. The low C=Qav and high D=Qav combina-
tions exhibit very high peak short-term drought risks. The
peak is reached earlier in time for the smaller storage (after
1–2 years for C=Qav ¼ 1:5) than the larger storage (after
10–15 years for C=Qav ¼ 4:0). The peak is sooner and
much more pronounced for high D=Qav and low C=Qav

combinations. The buffering effect of the larger storage
against the persistent lower inflows during the PDO-IPO
positive state is evident in the strong reduction in peak
short-term risks for higher C=Qav . For example, increasing
C=Qav from 1.5 to 2.0 has the effect of reducing short-term
peak risk from 20% to 9% for the D=Qav ¼ 0:7 case. A
similar reduction in short-term peak risk is obtainable by
reducing yield from D=Qav ¼ 0:7 to 0.6.

4.2. Sensitivity to Initial Storage Level

[38] The sensitivity of short-term drought risks to the ini-
tial storage level is examined here for PDO-IPO scenario 2.
The CIMSS and AR(1)-BC models are compared. Initial
storage levels range between 1.0 and 2.2 times annual yield
(D). This range equates to 41.3% to 90.8% of the capacity
of the reservoir. The results are shown in Figure 5.

[39] The short-term drought risks are highly sensitive to
the initial storage conditions. The CIMSS model produces
higher drought risks for essentially all of the timeframe and
initial storages (for scenario 2). The risks are >20% for ini-
tial storages of <1.5D within 6 years of the simulation
commencing for the CIMSS model, but reach >20% for
only the first 1–3 years for the AR(1)-BC model. The
CIMSS model risks show that this PDO-IPO scenario
results in a severe exacerbation of the stress on the reser-
voir that would be produced by low initial storage volumes.
However, this intensification of short-term drought risk
from the commencement of a PDO-IPO positive state is
much less for the AR(1)-BC model.

5. Discussion

5.1. Comparing Long-Term and Climate-Informed
Short-Term Risks

[40] The two stochastic rainfall models produce similar
results for the long-term drought risks. This is because the
impacts of the two oscillating PDO-IPO states in the
CIMSS model tend to average out over the long-term. The
marginal distributions and lag-one autocorrelations of the
rainfall simulations from both models are similar, which
gives rise to similar long-term risks.

[41] For the positive PDO-IPO scenarios for the CIMSS
model, the short-term drought risks are significantly higher
than the long-term risks. The peak short-term drought risk
over the 5–20 years following the crossing to the PDO-IPO
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positive state in scenario 2 was found to be 19% using
D=Qav ¼ 0:75;C=Qav ¼ 1:7 and an initial storage of 70%.
In comparison, the long-term drought risk approached only
around 10%� 11%. A qualitatively similar peak in the
short-term risks was observed for the larger reservoir
(C=Qav ¼ 4:0).

[42] These results show that whilst a traditional long-
term drought risk analysis might reveal relatively low
drought risks, the short-term (e.g., 5–20 year) risk of being
within 1 year of reservoir depletion can be much higher
than what might otherwise be expected. This comparison
brings into question the usefulness of evaluating long-term

drought risk. For a water resource planner who has a reser-
voir level at, say, 50%–60% of capacity (1:2� 1:4D in Fig-
ure 5), it is little comfort knowing that the long-term risk of
the storage falling below 5% capacity is less than 0.1% (as
drought risk is traditionally expressed) or that the long-
term risk of the storage falling below 1 year’s demand is
less than 10% (from Figure 3), if the short-term risk of fall-
ing below 1 year’s demand in the next5 years is actually
20%–30% (Figure 5).

[43] The climate driver informed short-term drought risk
approach therefore arguably provides a more meaningful
estimate of current system risks in the short-term than

Figure 4. Short-term drought risks for scenario 2 with a range of capacities (C) and yields (D) as a pro-
portion of the annual average inflow (Qav ) using � ¼ D=C; s0 ¼ 70%.
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either the long-term risk approach or the short-term risk
conditioned only on initial storage.

5.2. Comparing CIMSS and AR(1)-BC Rainfall
Models

[44] The CIMSS rainfall model produced significantly
different short-term drought risks to the AR(1)-BC model
with all other parameters kept the same. For scenario 1, the
PDO-IPO entering a negative state, the CIMSS-modeled
short-term risk is significantly lower than that for the
AR(1)-BC model for the transient period. The simulated
higher inflows in the PDO-IPO negative state result in
reduced drought risk in the short term. For scenario 2, the
PDO-IPO entering a positive state, the CIMSS-modeled
risks are significantly higher than those for the AR(1)-BC
model. The AR(1)-BC model has no explicit mechanism to
incorporate climate driver information. It is therefore sug-
gested that the CIMSS model better depicts hydrological
impacts of Pacific decadal-scale climate variability. It fol-
lows that the widely used AR(1)-BC model overestimates
drought risk during the PDO-IPO negative state and under-
estimates drought risk during the positive state.

5.3. Sensitivity of Short-Term Risk to Capacity, Yield,
and Initial Storage

[45] For the CIMSS model for scenario 2, the short-term
drought risk generally increases with time until it reaches a
peak, before decreasing beyond 15–30 years. The rise and
fall is due to the cumulative effects of the stress on the sup-
ply system. The lower than average inflow in the positive
PDO-IPO state, coincident with moderately high annual
yield of D=Qav ¼ 0:75, produces the peaking effect. The
peak is reached earlier in time for the smaller storage (after
1–2 years for C=Qav ¼ 1:5) than the larger storage (after
10–15 years for C=Qav ¼ 4:0). The peak is sooner and
much more pronounced for high D=Qav and low C=Qav

combinations. To achieve short-term risks of lower than

1%, C=Qav ¼ 3:5 is required for a demand of D=Qav ¼ 0:7
and C=Qav ¼ 4:0 is required for D=Qav ¼ 0:75. The buf-
fering effect of the larger storages against the persistent
lower inflows during the PDO-IPO positive state is evident.

[46] The effects of initial storage were investigated
for the PDO-IPO scenario 2 for the CIMSS and AR(1)-
BC models. Initial storage is found to have a very
strong effect on the short-term drought risks. The
CIMSS model results show that this PDO-IPO scenario
greatly exacerbates the stress on the reservoir that is
produced by low initial storage volumes alone. How-
ever, this intensification of short-term drought risk from
the commencement of a PDO-IPO positive state is not
reproduced by the AR(1)-BC model.

6. Conclusion

[47] This study has introduced a new methodology
for evaluating drought risk. The climate driver informed
short-term drought risk methodology conditions simula-
tions on climate information and reservoir initial stor-
age. Climate informed simulations were provided by
CIMSS model of Henley et al. [2011], which explicitly
incorporates the impact of Pacific decadal-scale variabil-
ity characterized by the PDO-IPO on hydrological sim-
ulations. This represents an advance on previous
approaches that only considered the impact of initial
reservoir conditions on short-term drought risk or the
influence of decadal-scale climate variability on long-
term drought risk.

[48] To demonstrate this new climate driver informed
approach, rainfall and inflow data from a case study site on
the east coast of Australia was used in a reservoir simula-
tion to compare various drought risk scenarios. Drought
risk from the climate driver informed short-term approach
was compared with the traditional long-term approach and
drought risk from a climate informed stochastic model

Figure 5. Short-term drought risks for the CIMSS model for scenario 2 with a range of initial storage
levels expressed as a proportion of the annual yield D;C=Qav ¼ 1:75;D=Qav ¼ 0:75; � ¼ D=C ; note
that the 70% initial storage used in Figures 3 and 4 equates to 1.70D.
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(CIMSS) was compared with a traditional nonclimate
driver informed model (AR(1)-BC). The PDO-IPO was
chosen as the climate driver for this study due to its predict-
ability several years into the future and its known impact in
this region.

[49] The short-term drought risk exhibits transient
behavior, where the initial conditions of the simulations are
affecting the drought risk, followed by a steady state in
which the initial conditions are forgotten and the short-term
risk approaches the long-term risk. For PDO-IPO positive
scenarios, the increased short-term drought risk was consid-
erably higher (up to 20%–100%) than the long-term
drought risk for the case study region in eastern Australia.
For water resource planners, this emphasizes the impor-
tance of analyzing short-term drought risks in undertaking
water supply security assessments.

[50] The CIMSS model produced short-term drought
risks that were significantly higher than the AR(1)-BC
model for the PDO-IPO positive scenarios. Furthermore,
the short-term risks from CIMSS were higher than the
long-term risks for up to 20 years, whereas for the
AR(1)-BC model the period of increased risk lasted
only 5 years. This is despite the long-term risks being
very similar. It is concluded that traditional long-term
drought risks obscure the impact of decadal-scale vari-
ability because the drought risk is averaged in time
over wet and dry periods. Furthermore, traditional non-
climate driver informed models, such as the AR(1)-BC
model, can significantly underestimate the short-term
drought risk. In contrast, the CIMSS model and the
short-term climate driver informed drought risk
approach provides an opportunity to better quantify the
impact of decadal-scale climate variability on water
supply drought risk. These results demonstrate the prac-
tical significance of the improved characterization of
Pacific decadal-scale variability and the climate driver
informed stochastic rainfall model developed by Henley
et al. [2011].

[51] Furthermore, the effects of changing the nondimen-
sional capacity (C=Qav ) and demand (D=Qav ) ratios and
initial storage level on the short-term drought risk were
investigated. The short-term risks were found to be highly
sensitive to lower C=Qav and higher D=Qav combinations,
as well as low initial storages. The increases in the short-
term drought risks for PDO-IPO positive scenarios were
exacerbated by low C=Qav , high D=Qav combinations and
low initial storage. The severe impacts due to low initial
storage were not reproduced by the AR(1)-BC model.

[52] In summary, the outcomes of this study present an
opportunity for water resource planners to better quantify
the risks due to decadal-scale hydrological variability. It is
proposed that the climate driver informed short-term
drought risk approach is a useful operational and strategic
planning tool for water resource planners. It provides a
more relevant and informative estimation of drought risk
than traditional long-term approaches. The methodology
demonstrated in this study is general and can be applied to
other climate drivers and regions. Since current drought
risk evaluation approaches do not routinely incorporate
knowledge of climate mechanisms explicitly, they could be
significantly underestimating the short-term risks of water
supply system failure.
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