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Abstract

Since a cylindrical dielectric resonator antenna (DRA) was firstly proposed by Long et al.
in the 1980s, extensive research has been carried out on analyzing DRA shapes, char-
acterizing the resonant modes, improving their radiation characteristics with various
excitation schemes. Compared with conventional conductor-based antennas, DRAs
have attractive features such as small size, high radiation efficiency and versatility in

their shape and feeding mechanism.

Importantly, various orthogonal modes with diverse radiation characteristics can be
excited within a single DRA element. These modes can be utilized for various re-
quirements, which makes the DRA a suitable potential candidate for multifunction
applications. Based on this principle, this thesis presents different multifunction de-
signs: Firstly a cross-shaped DRA with separately fed broadside circularly polarized
(CP) and omnidirectional linearly polarized (LP) radiation patterns and, secondly, a
multifunction annular cylindrical DRA realizing simultaneously omnidirectional hori-
zontally and vertically polarized radiation patterns with low cross-coupling. The evo-
lution, design process and experimental validation of these two antennas are described

in details in the thesis.

The second part of the thesis dramatically scales down DRA to shorter wavelengths.
Inspired by the fact that DRA still exhibits high radiation efficiency (>90%) in the mil-
limetre wave range, while the efficiency of conventional metallic antenna degrades
rapidly with frequencies, this thesis proposes the concept of nanometer-scale DRA op-
erated in their fundamental mode as optical antennas. To validate the concept, opti-
cal DRA reflectarrays have been designed and fabricated. Although the zeroth-order
spatial harmonic reflection is observed in the measurement due to the imperfect nano-
fabrication, the power ratio of deflected beam to the specular component of reflection
amounts to 4.42, demonstrating the expected operation of the reflectarray. The results
strongly support the concept of optical DRA and proposes design methods and strate-
gies for their realization. This proof of concept is an essential step for future research

on nano-DRA as building block of emerging nano-structured optical components.
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