TKI resistance in CML cell lines: Investigating resistance pathways

Carine Tang
The Melissa White Laboratory
Centre for Cancer Biology and
SA Pathology
&
The Faculty of Health Sciences
Department of Medicine
The University of Adelaide
South Australia

Thesis submitted to the University of Adelaide
in candidature for the degree of Doctor of Philosophy
2011

Supervisors: Prof. Timothy Hughes1,2 & A/Prof. Deborah White1,2

1 The Melissa White Laboratory, Division of Haematology, IMVS
2 Centre for Cancer Biology, Adelaide, Australia
Table of Contents

Declaration ... 12
Acknowledgements ... 13
Glossary .. 15
Abstract .. 18

Chapter 1: Introduction ... 20

1.1 Chronic myeloid leukaemia ... 21
1.2 The Philadelphia chromosome and BCR-ABL .. 21
1.2.1 BCR-ABL is sufficient to cause CML ... 21
1.3 CML treatment .. 25
1.3.1 Non-specific therapies .. 25
1.3.2 Imatinib mesylate .. 26
1.3.3 Nilotinib & Dasatinib ... 29
1.4 IC50 and Intracellular Uptake and Retention assay (IUR) .. 29
1.5 OCT-1 .. 32
1.6 ABCB1 and ABCG2 ... 35
1.6.1 TKI interaction with ABCB1 and ABCG2 ... 38
1.6.1.1 Imatinib ... 38
1.6.1.2 Nilotinib ... 39
1.6.1.3 Dasatinib .. 40
1.7 Haematopoietic Stem Cells .. 40
1.8 Mechanisms of resistance to TKIs .. 41
1.8.1 BCR-ABL expression induces genomic instability ... 41
1.8.2 BCR-ABL kinase domain mutations .. 44
1.8.3 Upregulation of TKI efflux proteins .. 49
1.8.4 BCR-ABL overexpression ... 50
1.8.4.1 Homogeneously staining regions and double minutes ... 51
1.8.5 BCR-ABL independent resistance ... 51
1.9 Generation of TKI resistance in vitro, and investigating the kinetics and interplay of resistance mechanism emergence .. 53
1.10 Hypothesis .. 55
1.11 Aims ... 55

Chapter 2: Materials and Methods .. 56

2.1 Commonly used reagents ... 57
2.2 Solutions, buffers and media ... 57
2.2.1 Cell culture media .. 57
2.2.2 Tyrosine kinase inhibitors ...58
 2.2.2.1 Imatinib mesylate ..58
 2.2.2.2 Nilotinib ..58
 2.2.2.3 Dasatinib ..58
 2.2.2.4 100µM 14C-Imatinib mixture (50%) ...58
 2.2.2.5 100µM 14C-Dasatinib mixture (50%)58
2.2.3 Prazosin hydrochloride – inhibits OCT-1 ...58
2.2.4 PSC833 – inhibits ABCB1 ...59
2.2.5 Ko143 – inhibits ABCG2 ..59
2.2.6 Flow cytometry Fixative (FACS Fix) ...59
2.2.7 Freeze Mix ...59
2.2.8 Laemmli’s Buffer ..59
2.2.9 Membrane blocking solution (2.5%) ..60
2.2.10 SDS-Polyacrylamide Gel ...60
2.2.11 1×TBS ...60
2.2.12 1×TBST ..60
2.2.13 dNTP set (N = A, C, G, T) ..60
2.2.14 Random Hexamer Primer ...61
2.3 Cell lines ..61
 2.3.1 K562 ..61
 2.3.2 K562 Dox ..61
 2.3.3 Ku812 ...61
2.4 General Techniques ...61
 2.4.1 Tissue culture ...61
 2.4.2 Cell counts ...62
 2.4.3 Cryopreservation of cells ..62
 2.4.4 Thawing cells ...62
2.5 Specialised Techniques ...62
 2.5.1 Generation of TKI resistant cell lines ..62
 2.5.1.1 Sampling intermediate lines for analysis63
 2.5.2 DNA extraction ..63
 2.5.3 Quantitative DNA PCR ...64
 2.5.4 mRNA extraction ...65
 2.5.5 cDNA synthesis ..65
 2.5.6 RQ-PCR: BCR-ABL transcript quantitation66
 2.5.7 Sequencing the BCR-ABL kinase domain67
 2.5.7.1 Conventional sequencing ...69
 2.5.7.2 MassARRAY sequencing (Sequenom)69
 2.5.8 RQ-PCR: Lyn transcript quantitation ...71
 2.5.9 IC50 assay and Western blot ..73
 2.5.10 Flow cytometry ..73
2.5.10.1 Measurement of ABCB1/ABCG2 cell-surface expression .. 73
2.5.10.2 Cell viability .. 74
2.5.11 Intracellular Uptake and Retention (IUR) assay .. 75
2.5.12 Cytophenetic analysis ... 75
 2.5.12.1 Fluorescence in situ hybridisation (FISH) .. 75
 2.5.12.2 Karyotyping .. 77
2.5.13 Statistics .. 77

Chapter 3: .. 78
Imatinib resistance in the K562 cell line is mediated by BCR-ABL overexpression 78
 3.1 Introduction .. 79
 3.1.1 Adherence and dose-interruptions .. 79
 3.1.2 Suboptimal kinase inhibition .. 79
 3.1.3 Generation of imatinib-resistant cell lines ... 80
 3.1.4 BCR-ABL overexpression .. 81
 3.1.5 The K562 cell line .. 82
 3.2 Approach .. 83
 3.2.1 Generation of imatinib-resistant cell lines .. 83
 3.2.2 Analysis of imatinib-resistant cell lines .. 88
 3.3 Results .. 90
 3.4 Discussion .. 107

Chapter 4: .. 111
Imatinib resistance in the K562 Dox cell line is mediated by ABCB1 overexpression 111
 4.1 Introduction .. 112
 4.1.1 The multidrug resistance protein, ABCB1 ... 112
 4.1.2 ABCB1 expression in CML ... 113
 4.1.3 The breast cancer resistance protein, ABCG2 ... 115
 4.1.4 The K562 Dox cell line .. 116
 4.2 Approach .. 117
 4.2.1 Generating imatinib resistance in the K562 Dox cell line ... 117
 4.2.2 Analysis of imatinib-resistant cell lines .. 118
 4.3 Results .. 119
 4.4 Discussion .. 134

Chapter 5: .. 137
BCR-ABL kinase domain mutations arise in the setting of BCR-ABL overexpression, in imatinib- and dasatinib-resistant cell lines ... 137
 5.1 Introduction .. 138
 5.1.1 BCR-ABL kinase domain mutations ... 138
 5.1.2 BCR-ABL expression and kinase domain mutations .. 139
5.1.3 Conventional sequencing and the MassARRAY technique .. 140
5.1.4 The KU812 cell line .. 141
5.2 Approach .. 143
5.2.1 Generating dasatinib resistance in the K562 and K562 Dox cell lines .. 143
5.2.2 Generating imatinib resistance in the KU812 cell line .. 145
5.2.3 Re-escalation of intermediates in imatinib, dasatinib or nilotinib .. 146
5.2.4 Analysis of dasatinib- and imatinib-resistant cell lines .. 147
5.3 Results .. 150
5.3.1 Dasatinib resistance in the K562 cell line .. 150
5.3.2 Dasatinib-resistance in K562 Dox cell lines .. 156
5.3.2.1 The K562 Dox 200nM DAS1 cell line ... 156
5.3.2.2 The K562 Dox 200nM DAS2 cell line ... 164
5.3.3 Imatinib-resistance in KU812 cell lines .. 172
5.3.3.1 The KU812 2µM IM1 cell line .. 172
5.3.3.2 The KU812 3µM IM2 cell line .. 176
5.3.3.3 The KU812 2µM IM3 cell line .. 182
5.4 Discussion ... 192
5.4.1 BCR-ABL overexpression precedes the emergence of KD mutations .. 192
5.4.2 BCR-ABL expression levels significantly decrease upon the emergence of KD mutations 194
5.4.3 Kinetics of DAS-resistance development in the K562 200nM DAS cell line 195
5.4.4 A V299L-carrying clone emerged early on in DAS exposure in the K562 Dox cell line 198
5.4.5 Multiple KD mutations emerged in imatinib-resistant KU812 cell cultures 199

Chapter 6: .. 202

TKI cross-resistance and differential resistance in imatinib- and dasatinib-resistant CML cell lines ... 202

6.1 Introduction ... 203
6.1.1 TKI cross-resistance and differential resistance ... 203
6.1.2 BCR-ABL independent resistance: Src family kinases .. 203
6.2 Approach ... 205
6.3 Results ... 206
6.3.1 TKI cross-resistance in the K562 200nM DAS cell line .. 206
6.3.2 Differential TKI resistance and cross-resistance in the K562 Dox 200nM DAS1 and 2 cell lines ... 206
6.3.3 ABCB1 overexpression confers TKI cross-resistance in the K562 Dox 2µM IM1, IM2 and IM3 cell lines .. 210
6.3.4 BCR-ABL overexpression and KD mutations in the KU812 2µM IM1, 3µM IM2 and 2µM IM3 cell lines conferred differential or cross-resistance to TKIs .. 213
6.3.5 BCR-ABL and Lyn overexpression in the K562 2µM IM1 and IM2 cell lines conferred differential or cross-resistance to TKIs .. 213
6.4 Discussion ... 222
6.4.1 TKI-cross resistance ... 222
6.4.2 Differential resistance ... 224
6.4.3 Lyn overexpression in the K562 2µM IM2 cell line: Is it really a BCR-ABL-independent resistance mechanism? ... 225

Chapter 7: .. 226
Discussion .. 226
7.1 Introduction .. 227
7.2 TKI resistance mechanisms .. 227
7.3 Studying the kinetics of TKI resistance mechanism emergence .. 228
7.4 Major findings of this study .. 229
 7.4.1 Kinase domain mutations arise in the setting of BCR-ABL overexpression 229
 7.4.2 Resistance mechanism emergence is stochastic .. 230
 7.4.3 Different TKIs may foster different resistance mechanisms .. 231
 7.4.4 Different cell lines responded differently to a given TKI ... 232
 7.4.5 TKIs share the same broad resistance susceptibilities ... 233
 7.4.6 Src kinase overexpression may not be a BCR-ABL independent resistance mechanism ..233
7.5 Future directions .. 234
7.6 Summary & Conclusion ... 234

Appendix I .. 236
AI.1 Quantitative DNA PCR setup sheet ... 237
AI.2 RQ-PCR for BCR-ABL quantitation setup sheet ... 238
AI.3 BCR-ABL mRNA quantitation setup sheet ... 239
AI.4 DNA sequence of the Abl gene ... 240
AI.5 Kinase domain mutations included in the MassARRAY sequencing screen 242
AI.6 Lyn quantitation setup sheet .. 243
AI.7 Western blots for Table 6.1: Dasatinib IC50s for the K562 Dox 200nM DAS1 cell line and intermediates ... 244
AI.8 Western blots for Table 6.1: Nilotinib IC50s for the K562 Dox 200nM DAS1 cell line and intermediates ... 245
AI.9 Western blots for Table 6.1: Imatinib IC50s for the K562 Dox 200nM DAS1 cell line and Naïve controls ... 246
AI.10 Western blots for Figure 6.4: Nilotinib IC50s for the K562 Dox 2µM IM1, IM2 and IM3 cell lines and Naïve controls ... 247
AI.11 Western blots for Figure 6.4: Nilotinib IC50s with PSC833 for the K562 Dox 2µM IM1, IM2 and IM3 cell lines and Naïve controls ... 248
AI.12 Western blots for Figure 6.4: Dasatinib IC50s for the K562 Dox 2µM IM1, IM2 and IM3 cell lines and Naïve controls ... 249
AI.13 Western blots for Figure 6.4: Dasatinib IC50s with PSC833 for the K562 Dox 2µM IM1, IM2 and IM3 cell lines and Naïve controls ... 250
Appendix II

Publication arising from this thesis ...258

References ..268
List of Figures and Tables

Figure 1.1: The Philadelphia Chromosome ... 22
Figure 1.2: The Philadelphia chromosome and the BCR-ABL oncoprotein 23
Figure 1.3: Signal transduction pathways affected by BCR-ABL 24
Figure 1.4: Molecular structure of imatinib mesylate .. 27
Figure 1.5: Mechanism of action of imatinib ... 28
Figure 1.6: Molecular structure of nilotinib .. 30
Figure 1.7: Molecular structure of dasatinib .. 31
Figure 1.8: Protein structure of OCT-1 (SLC22A1) .. 34
Figure 1.9: Protein structure of ABCB1 (MDR1; P-glycoprotein) 36
Figure 1.10: Protein structure of ABCG2 (BCRP) .. 37
Figure 1.11: Mechanisms of resistance to TKIs ... 42
Figure 1.12: The effects of BCR-ABL on mutagenesis .. 45
Figure 1.13: Map of BCR-ABL KD mutations ... 46
Figure 1.14: Nilotinib and dasatinib have different critical binding residues in the ABL kinase domain, compared to imatinib ... 47
Figure 1.15: Differential sensitivity of kinase domain mutations to the three TKIs – imatinib, nilotinib and dasatinib ... 48

Figure 3.1: The K562 Naïve cell line does not carry any BCR-ABL kinase domain mutations 84
Figure 3.2: ABCB1 cell-surface expression in the IM1 and IM2 resistant cell lines 86
Figure 3.3: ABCG2 cell-surface expression in the IM1 and IM2 resistant cell lines 87
Figure 3.4: Viability assay by trypan blue analysis: K562 Naïve versus K562 2µM IM1 & IM2 cell lines ... 91
Figure 3.5: Viability by Annexin V and 7AAD staining: K562 Naïve versus K562 2µM IM1 & IM2 cell lines ... 92
Figure 3.6: Example of a K562 Naïve IC50imatinib Western blot quantification 93
Figure 3.7: IC50imatinib of the K562 Naïve, K562 2µM IM1 and K562 2µM IM2 cell lines 95
Figure 3.8: Average IC50 imatinib for K562 Naïve, K562 2µM IM1 and K562 2µM IM2 96
Figure 3.9: Imatinib IUR assay: K562 Naïve cell line versus K562 2µM IM1 cell line 97
Figure 3.10: Imatinib IUR assay: K562 Naïve cell line versus K562 2µM IM2 cell line 98
Figure 3.11: Intermediate BCR-ABL expression in the IM1 and IM2 resistant cell lines 100
Figure 3.12: Interphase FISH to identify BCR-ABL fusion genes 101
Figure 3.13: Karyotype of the K562 Naïve cell line ... 102
Figure 3.14: Karyotype of K562 2µM IM1 and IM2 cell lines 103
Figure 3.15: Metaphase FISH to identify markers carrying Bcr-Abl 105
Figure 3.16: Bcr-Abl copy number in the IM1 and IM2 resistant cell lines 106
Figure 4.1: The development of a multidrug resistant (MDR) cancer .. 114
Figure 4.2: Intermediate BCR-ABL mRNA expression in the K562 Dox 2\mu M IM1, IM2 and IM3 cell lines .. 120
Figure 4.3: ABCG2 cell surface expression in IM-resistant K562 Dox cell lines .. 121
Figure 4.4: ABCB1 cell surface expression increased in the K562 Dox IM-resistant cell lines 122
Figure 4.5: K562 Dox IM-resistant cell lines have a reduced imatinib intracellular uptake and retention (IUR) compared to K562 Dox Naive control cells ... 123
Figure 4.6: Example of a K562 Dox Naive IC50\textsubscript{imatinib} Western blot quantification .. 127
Figure 4.7: K562 Dox IM-resistant cell lines have increased IC50\textsubscript{imatinib} compared to K562 Dox Naive control cells .. 129
Figure 4.8: In the presence of PSC833, K562 Dox IM-resistant cell lines have similar IC50\textsubscript{imatinib} values compared to K562 Dox Naive control cells ... 131
Figure 4.9: PSC833 removes the significant difference in IC50\textsubscript{imatinib} values between the three IM-resistant K562 Dox lines and Naive controls .. 133

Figure 5.1: Karyotype of KU812 cell line when first established .. 142
Figure 5.2: Src-mediated pathways contribute to cancer progression .. 144
Figure 5.3: K562 DMSO IC50\textsubscript{dasatinib} Western blot quantification ... 148
Figure 5.4: The K562 200nM DAS cell line has an increased IC50\textsubscript{DAS} compared to the K562 Naive and DMSO control cell lines .. 151
Figure 5.5: The average IC50\textsubscript{DAS} for K562 200nM DAS was significantly greater than that of the K562 Naive and DMSO control cell lines .. 152
Figure 5.6: The K562 200nM DAS cell line does not express ABCB1 or ABCG2 .. 153
Figure 5.7: Dasatinib IUR does not differ between the K562 200nM DAS cell line and the K562 Naive and DMSO control cell lines ... 154
Figure 5.8: BCR-ABL expression levels and KD mutation status in the K562 200nM DAS cell line 155
Figure 5.9: Bcr-Abl copy number in intermediates of the K562 200nM DAS cell line 157
Figure 5.10: Cell surface expression of ABCB1 or ABCG2 in the K562 Dox 200nM DAS1 cell line... 158
Figure 5.11: Dasatinib IUR does not differ between the K562 Dox 200nM DAS1 cell line and the K562 Dox Naive control cell line ... 160
Figure 5.12: BCR-ABL expression increased until the emergence of the V299L mutation in a DAS-resistant K562 Dox cell line .. 161
Figure 5.13: Bcr-Abl copy number in selected intermediates of the K562 Dox 200nM DAS1 cell line... 162
Figure 5.14: Interphase FISH to identify Bcr-Abl fusion genes .. 163
Figure 5.15: Cell surface expression of ABCB1 or ABCG2 in the K562 Dox 40nM and 55nM dasatinib re-escalation cell lines .. 165
Figure 5.16: The V299L mutation emerged when the K562 Dox 55nM DAS1 intermediate was re-escalated in dasatinib .. 166
Figure 5.17: The V299L mutation emerged when the K562 Dox 40nM DAS1 intermediate was re-escalated in dasatinib .. 167
Table 5.1: Summary of resistance mechanisms detected in three TKI-resistant cell lines exposed to IM or DAS, as well as those detected in the re-escalated cell cultures. 193
Figure 5.18: There was no change in cell surface expression of ABCB1 or ABCG2 in the K562 Dox 500nM NIL re-escalation cell lines ... 168
Figure 5.19: Re-escalation of the K562 Dox 55nM intermediate in NIL resulted in the emergence of the G250E mutation or increased BCR-ABL expression 169
Figure 5.20: Cell surface expression of ABCB1 or ABCG2 in the K562 Dox 200nM DAS2 cell line ... 170
Figure 5.21: Intermediate BCR-ABL expression levels in the K562 Dox 200nM DAS2 cell line 171
Figure 5.22: Cell surface expression of ABCB1 and ABCG2 in the KU812 2µM IM1 cell line 173
Figure 5.23: The imatinib IUR in the KU812 2µM IM1 cell line was not significantly different from the KU812 Naïve cell line, and was not affected by blocking ABCG2 ... 174
Figure 5.24: BCR-ABL expression increased until the emergence of three KD mutations in the KU812 2µM IM1 cell line .. 175
Figure 5.25: Bcr-Abl DNA copy number was significantly increased in the KU812 2µM IM1 cell line compared to the KU812 Naïve cell line .. 177
Figure 5.26: Karyotype of the KU812 Naïve cell line ... 178
Figure 5.27: Karyotypes of the heterogeneous KU812 2µM IM1 population 179
Figure 5.28: Interphase FISH to identify Bcr-Abl fusion genes ... 180
Figure 5.29: BCR-ABL expression and KD mutation status in the KU812 3µM IM2 cell line 181
Figure 5.30: Bcr-Abl DNA copy number was significantly increased in the KU812 3µM IM2 cell line compared to the KU812 Naïve cell line .. 183
Figure 5.31: Interphase FISH to identify Bcr-Abl fusion genes .. 184
Figure 5.32: Cell surface expression of ABCB1 and ABCG2 in the KU812 3µM IM2 cell line 185
Figure 5.33: Cell surface expression of ABCB1 and ABCG2 in the KU812 2µM IM3 cell line 186
Figure 5.34: BCR-ABL expression increased until the emergence of the F359C mutation KU812 2µM IM3 cell line .. 187
Figure 5.35: Bcr-Abl DNA copy number did not significantly change in the KU812 2µM IM3 intermediates or final cell line compared to the KU812 Naïve cell line .. 188
Figure 5.36: Interphase FISH to identify Bcr-Abl fusion genes .. 189
Figure 5.37: The F359C mutation emerged when the KU812 200nM IM3 intermediate was re-escalated in imatinib .. 191

Table 5.1: Summary of resistance mechanisms detected in three TKI-resistant cell lines exposed to IM or DAS, as well as those detected in the re-escalated cell cultures. 193
Figure 5.38: Representations of possible clonal kinetics of resistance emergence 196

Figure 6.1: The K562 200nM DAS cell line displayed overt resistance to imatinib and nilotinib despite previous exposure to dasatinib only .. 207
Figure 6.2: The average IC50^{IM} and IC50^{NIL} for K562 200nM DAS was significantly greater than that of the K562 Naïve and DMSO control cell lines .. 208
Table 6.1: The K562 Dox 200nM DAS1 cell line has differential resistance to DAS, NIL and IM 209
Figure 6.3: The K562 Dox 200nM DAS2 cell line displayed overt resistance to dasatinib, imatinib and nilotinib despite previous exposure to dasatinib only .. 211
Figure 6.4: ABCB1 inhibition ablates NIL and DAS resistance in the three IM-resistant K562 Dox cell lines ... 212

Table 6.2: The IC_{50}^{IM}, IC_{50}^{NIL} and IC_{50}^{DAS} of the KU812 2µM IM1 and 2µM IM2 cell lines compared to the KU812 Naïve cell line .. 214

Table 6.3: The KU812 2µM IM3 cell line exhibits differential resistance to IM, NIL and DAS 215

Figure 6.5: Nilotinib IC50 and viability of the K562 2µM IM1 and IM2 cell lines 216

Figure 6.6: Dasatinib IC50 and viability of the K562 2µM IM1 and IM2 cell lines 219

Figure 6.7: Lyn kinase expression was significantly increased in the K562 2µM IM2 cell line 221

Table 6.4: Summary of resistance mechanisms detected in the eleven imatinib- or dasatinib-resistant cell lines generated in this study ... 223
Declaration

I, Carine Tang, certify that this thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent for this copy of my thesis, when deposited in the University Library, to be available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Carine Tang

1st September 2011
Acknowledgements

Romans 13:7 *Render therefore to all their dues: tribute to whom tribute is due; custom to whom custom; fear to whom fear; honour to whom honour.*

The past three and a half years have gone surprisingly fast! Time flies when you’re having fun, and although I’m not sure ‘fun’ is the word I would use to describe doing a Phd, it has been a mostly enjoyable and incredibly rewarding experience.

Firstly I must thank Tim and Deb – my fantastic supervisors who have been consistently encouraging and supportive from day one. Your guidance, critique and ideas were essential for all of my achievements (exciting results, conference attendance, poster presentations and a publication……or two?).

Many thanks also to the tireless team that is the Melissa White Laboratory: Eva, Chung, Tamara, Verity, Amity, Phuong, Kelvin, Jarrad, Jenny, Stephanie Z. You have all taught me something, helped me in some way, and patiently answered my many questions. Thanks also to Bron, Ljiljana, Sasha and especially Steph A. for all your work behind the scenes. I must also thank all the MWL students, past and present: Devendra, Jane, Jackie, Laura, Dale, Lisa, Oi-Lin and Liu. Thanks for the support, advice, camaraderie, and for the laughs (you know who you are).

My many tireless hours down in Molecular Pathology would have been much more difficult (and dull) if it wasn’t for Susan Branford, Wendy, Jodi and Chani. Thank you so very much for teaching me many useful techniques, for being patient with me, and thanks to Sarah Moore for the incredibly useful karyotyping and FISH results!

Thanks to you Mum for getting me this far – for never giving up on my education, and for instilling in me a strong work ethic and drive for success.
What can I say about my darling Neptune? You have been there with me for many-a weekend tissue culture and late-night Western transfer, and you’ve never complained. I could not ask for anyone more encouraging, supportive and patient. Thank you for making me laugh whenever I needed it (which was all the time), and for just being you.

Lastly and most importantly, I thank the Lord Jesus Christ, my Creator and personal Saviour. To You belongs all the credit and glory.

Psalms 18:30 As for God, His way is perfect: the word of the LORD is tried: He is a buckler to all those that trust in Him.
Glossary

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCB1/ABCG2</td>
<td>ATP binding cassette (ABC) transporter proteins B1 and G2</td>
</tr>
<tr>
<td>ALL</td>
<td>Acute lymphoblastic leukaemia</td>
</tr>
<tr>
<td>AP</td>
<td>Accelerated phase</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium persulfate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BC</td>
<td>Blast crisis</td>
</tr>
<tr>
<td>BCR</td>
<td>Breakpoint cluster region</td>
</tr>
<tr>
<td>BCR-ABL</td>
<td>Breakpoint cluster region-Ableson kinase fusion transcript/protein</td>
</tr>
<tr>
<td>Bcr-Abl</td>
<td>Breakpoint cluster region-Ableson kinase fusion gene</td>
</tr>
<tr>
<td>C</td>
<td>Celcius</td>
</tr>
<tr>
<td>CCR</td>
<td>Complete cytogenetic response</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary</td>
</tr>
<tr>
<td>CHR</td>
<td>Complete haematologic response</td>
</tr>
<tr>
<td>CML</td>
<td>Chronic myeloid leukaemia</td>
</tr>
<tr>
<td>CP</td>
<td>Chronic phase</td>
</tr>
<tr>
<td>Crkl</td>
<td>CT10 regulator of kinase-like</td>
</tr>
<tr>
<td>DABCO</td>
<td>1,4-diazabicyclo[2.2.2]octane</td>
</tr>
<tr>
<td>DAS</td>
<td>Dasatinib</td>
</tr>
<tr>
<td>ddNTP</td>
<td>Dideoxynucleotide triphosphate</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethyl pyrocarbonate</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulphoxide</td>
</tr>
<tr>
<td>dmin</td>
<td>Double minutes</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleotide triphosphates</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence activated cell sorting</td>
</tr>
<tr>
<td>FISH</td>
<td>Fluorescent in situ hybridisation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>GUSB</td>
<td>Beta-glucuronidase</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hanks Balanced Salt Solution</td>
</tr>
<tr>
<td>Hck</td>
<td>Haemopoietic cell kinase</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HSR</td>
<td>Homogenously staining region</td>
</tr>
<tr>
<td>IC50</td>
<td>Inhibitory concentration 50%</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IM</td>
<td>Imatinib mesylate</td>
</tr>
<tr>
<td>JAK</td>
<td>Janus kinase</td>
</tr>
<tr>
<td>KD</td>
<td>Kinase domain</td>
</tr>
<tr>
<td>kD</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>KDR</td>
<td>Kinase insert domain protein receptor</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>Lyn</td>
<td>V-yes-1 Yamaguchi sarcoma viral related oncogene homolog</td>
</tr>
<tr>
<td>M</td>
<td>Molar (Moles per litre)</td>
</tr>
<tr>
<td>Mbq</td>
<td>Mega Becquerel (10^6 Becquerel)</td>
</tr>
<tr>
<td>MCR</td>
<td>Major cytogenetic response</td>
</tr>
<tr>
<td>MDR</td>
<td>Multidrug resistance</td>
</tr>
<tr>
<td>µCi</td>
<td>Micro Curie (10^6 Curie)</td>
</tr>
<tr>
<td>µg</td>
<td>Micro gram (10^{-6} gram)</td>
</tr>
<tr>
<td>µM</td>
<td>Micro molar (10^{-6} Molar)</td>
</tr>
<tr>
<td>MMR</td>
<td>Major molecular response</td>
</tr>
<tr>
<td>mM</td>
<td>Milli molar (10^{-3} Molar)</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>NHEJ</td>
<td>Non-homologous end-joining</td>
</tr>
<tr>
<td>NIL</td>
<td>Nilotinib</td>
</tr>
<tr>
<td>nM</td>
<td>Nano molar (10^{-9} Molar)</td>
</tr>
<tr>
<td>OCT-1</td>
<td>Organic cation transporter 1</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>Ph</td>
<td>Philadelphia chromosome</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PI3-K</td>
<td>Phosphatidylinositol – 3-kinase</td>
</tr>
<tr>
<td>P-loop</td>
<td>Phosphate binding loop</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene Fluoride</td>
</tr>
<tr>
<td>P-value</td>
<td>Probability value</td>
</tr>
<tr>
<td>RANKL</td>
<td>Receptor activator of nuclear factor kappa-b ligand</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver operating characteristic</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute (-1640 medium)</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>RQ-PCR</td>
<td>Real-time quantitative polymerase chain reaction</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SH</td>
<td>Src Homology domain</td>
</tr>
<tr>
<td>SN</td>
<td>Supernatant</td>
</tr>
<tr>
<td>Src</td>
<td>Sarcoma</td>
</tr>
<tr>
<td>SSC</td>
<td>Saline-Sodium Citrate buffer</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris buffered saline</td>
</tr>
<tr>
<td>TBST</td>
<td>Tris buffered saline with 0.1% Tween20</td>
</tr>
<tr>
<td>TKI</td>
<td>Tyrosine kinase inhibitor</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violet</td>
</tr>
</tbody>
</table>
Abstract

Chronic myeloid leukaemia (CML) is characterised by the presence of the Philadelphia chromosome which harbours the Bcr-Abl oncogene. BCR-ABL is a constitutively active tyrosine kinase that can be inhibited by rationally designed tyrosine kinase inhibitors (TKIs) such as imatinib, nilotinib and dasatinib. Although TKI therapy is an effective treatment for many patients, resistance can arise. There are currently four identified resistance mechanisms. These are 1) overexpression of drug-efflux proteins (ABCB1 and ABCG2), 2) BCR-ABL kinase domain (KD) mutations, 3) increased BCR-ABL expression and 4) BCR-ABL independent mechanisms such as Lyn kinase expression. In this study the interplay between these four recognised modes of TKI resistance is investigated.

Imatinib- and dasatinib-resistant cell lines were established and used to investigate TKI resistance in vitro. Viability and IC50 assays were used to demonstrate TKI sensitivity/resistance. Flow cytometry was used to screen for ABCB1 and ABCG2 cell surface expression, while conventional sequencing and the MassARRAY method were used to determine the mutation status of the BCR-ABL KD. Fluorescence in situ hybridisation (FISH) and quantitative DNA PCR were used to investigate Bcr-Abl DNA copy number, and RQ-PCR was used to investigate expression levels of BCR-ABL and Lyn mRNA.

These studies revealed that IM-resistant K562 cell lines exhibited increased BCR-ABL expression at the onset of resistance. Interestingly, these cell lines had increased viability and IC50s for IM and NIL, while the DAS IC50s were variable. Further investigation revealed Lyn overexpression in the cell line which was more sensitive to DAS. The development of a DAS-resistant K562 culture resulted in the emergence of the T315I mutation. Studies of the intermediate stages of resistance of this DAS-resistant cell line revealed that increased BCR-ABL expression occurred gradually, preceding the emergence of the mutation, at which time the BCR-ABL expression decreased and plateaued. Thus, it appears that increased BCR-ABL expression may be the initial mechanism of resistance, followed by the emergence of a KD mutation which has a clear selective advantage. This phenomenon was observed a further four times (in a DAS-resistant K562 Dox culture, and in three IM-resistant KU812 cultures) each time with the emergence of different KD mutations. Different KD mutations resulted in differential resistance to the three TKIs used in this study.
In contrast, three IM-resistant K562 Dox cell lines were not found to have any KD mutations, nor BCR-ABL overexpression. Instead, the primary cause of resistance in these lines appeared to be an increase in ABCB1 expression. The addition of PSC833 (an ABCB1 inhibitor) decreased the IM, NIL, and DAS IC50s for all three resistant lines to the level of the naïve control. This indicated that ABCB1 expression, facilitating active efflux of the drugs, is the primary mechanism of resistance in these lines.

This study demonstrates that KD emergence is a stochastic event, as the same mutation did not always occur twice when exposed to the same TKI. However, increased ABCB1 expression was more likely to arise recurrently in the predisposed K562 Dox cell line. Notably, different TKIs elicited different resistant mechanisms, and all but one (the Lyn overexpressing K562 cell line) were BCR-ABL dependent. Furthermore, all resistant cell lines showed cross-resistance (at least to some extent) to the three TKIs tested, suggesting that currently available TKIs share the same susceptibilities to drug resistance.