Time to Event Analysis of Arthroplasty Registry Data

Marianne Knarberg Hansen Gillam
MBBS, MBiostats

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy, January 2013

Discipline of Public Health
School of Population Health
Faculty of Health Sciences
The University of Adelaide
Australia
Table of Contents

Table of Contents .. i
List of Tables ... v
List of Figures ... vii
ABSTRACT .. ix
Declaration .. xi
Manuscripts Contributing to this Thesis .. xii
Presentations Arising from this Thesis ... xiii
Acknowledgments .. xvi
Abbreviations ... xvii

1 Introduction ... 1
 1.1 Background ... 1
 1.1.1 Arthroplasty registries ... 2
 1.1.2 Time to event analysis ... 2
 1.1.3 Regression models ... 4
 1.1.4 Arthroplasty histories .. 5
 1.2 Thesis aim ... 6
 1.3 Thesis outline ... 7

2 Analysis of time to event data ... 9
 2.1 Non-parametric methods ... 11
 2.2 The Cox proportional hazards model ... 11
 2.2.1 Time-dependent covariates ... 13
 2.2.2 Time- varying coefficients .. 13
 2.3 The additive Aalen model ... 14
2.4 Multiple events ... 15
 2.4.1 Multi-state models .. 16
 2.4.2 Competing risks .. 18
 2.4.3 Regression models for competing risks .. 20

2.5 Analysis of joint replacement registry data .. 22

3 Data sources ... 24
 3.1 The Australian Orthopaedic Association National Joint Replacement Registry 24
 3.2 The Norwegian Arthroplasty Register ... 26
 3.3 Ethical considerations ... 26

4 Competing risks survival analysis applied to data from the Australian Orthopaedic Association National Joint Replacement Registry 28
 4.1 Preface .. 28
 4.2 Statement of Authorship .. 29
 4.3 Article ... 31
 4.3.1 Abstract ... 31
 4.3.2 Introduction ... 32
 4.3.3 Materials and methods .. 34
 4.3.4 Results ... 35
 4.3.5 Discussion .. 44
 4.4 Additional Discussion ... 48

5 Different competing risks models applied to data from the Australian Orthopaedic Association National Joint Replacement Registry 51
 5.1 Preface .. 51
 5.2 Statement of authorship .. 52
 5.3 Article ... 53
 5.3.1 Abstract ... 53
7.3.5 Discussion.. 116

8 Summary and conclusions... 120

8.1 Main findings and contributions ... 120

8.1.1 Non-parametric competing risks methods and arthroplasty data .. 120

8.1.2 Competing risks regression and arthroplasty data 121

8.1.3 Multi-state models and arthroplasty histories......................... 122

8.1.4 Application of multi-state models and osteoarthritis............. 123

8.2 Limitations and future directions .. 124

8.3 Conclusion ... 126

9 References... 127
List of Tables

Table 4.1: Distribution of outcomes for the three study groups. 36

Table 4.2: Percent estimates (95% confidence interval) of revision in patients aged 75-84 years with FNOF... 38

Table 4.3: Percent estimates (95% confidence interval) of revision in patients with FNOF receiving Austin-Moore or Thompson prostheses. 42

Table 4.4: Percent estimates (95% confidence interval) of revision in patients with osteoarthritis who underwent total hip replacement – by age group..... 44

Table 4.5: Data from the Norwegian Arthroplasty Register. Percent estimates (with 95% confidence interval) of revision in patients with osteoarthritis who underwent total hip replacement – by age group. 49

Table 5.1: Distribution of outcomes by covariate status. 60

Table 5.2: Estimates of hazard and subdistribution hazard ratios of revision based on a Cox-Aalen and a modified Fine and Gray model respectively, effect of fixation varies with time. 63

Table 5.3: Relationship between HRs and subHRs, modified from Lau et al. [109] 73

Table 5.4: Cause specific hazard ratios (HRs) and subdistribution hazard ratios (subHRs) for different covariate for a stratified Cox PH model and a modified Fine and Gray model respectively. 74

Table 6.1: Numbers and percent of events in the 10 state model (see Figure 6.1) at the end of the study period for patients whose first arthroplasty was a either a left or a right total hip arthroplasty for osteoarthritis. 84

Table 6.2: Effect of sex adjusted for age on the transition hazards between states (see Figure 6.1) for patients whose first arthroplasty was a total hip arthroplasty for osteoarthritis. .. 88

Table 7.1: Distribution of individuals according to covariates. 107

Table 7.2: Numbers and percent of events in the multi state model (Figure 7.1) at the end of the study period for patients whose first arthroplasty was a either a hip or a knee arthroplasty for OA. .. 108
Table 7.3: Effect of side of first arthroplasty (hip or knee) on hazards for selected transitions in the model.
List of Figures

Figure 2.1: Traditional survival model with one event of interest and hazard rate $\lambda(t)$.

Figure 2.2: Competing risks model with two absorbing states and cause specific hazards $\lambda_1(t)$ and $\lambda_2(t)$.

Figure 2.3: Multi-state model with three transient states, one absorbing state (dead) and transition intensities $\lambda_{gh}(t)$ from state g to state h, where $g = 0, 1, 2$ and $h = 1, 2, 3$.

Figure 4.1: Estimates of revision by type of prosthesis in patients with FNOF aged 75-84 years.

Figure 4.2: Estimates of death by type of prosthesis in patients with FNOF aged 75-84 years.

Figure 4.3: Relative overestimation of KM estimates compared to CIF estimates by years after primary procedure and type of prosthesis; patients aged 75-84 years with FNOF.

Figure 4.4: Estimates of revision by type of prosthesis (cementless Austin Moore vs. cemented Thompson) in patients with FNOF.

Figure 4.5: Estimates of death by type of prosthesis (cementless Austin Moore vs. cemented Thompson) in patients with FNOF.

Figure 4.6: Estimates of revision by age group in patients with OA and THA.

Figure 4.7: Estimates of death by age group in patients with OA and THA.

Figure 4.8: Estimates of revision by age group in patients with OA and THA (data from the NAR).

Figure 4.9: Estimates of death by age group in patients with OA and THA (data from the NAR).

Figure 5.1: Estimates of CIFs for revision for each variable.

Figure 5.2: Estimates of CIFs for death for each variable.
Figure 5.3: Effect of cementless fixation vs. cemented fixation on the subdistribution hazard of revision with 95% point wise confidence bands. The slope of the curve indicates the additional probability of revision for cementless fixation in relation to cemented fixation. .. 65

Figure 5.4: Comparison of predictions of revision based on Cox-Aalen (grey) and modified Fine and Gray models (black); effect of type of fixation varies with time. .. 66

Figure 6.1: Multi-state model with 10 states for patient who received a first hip arthroplasty followed by possibly a second arthroplasty (hip or knee), revisions of these, and death. ... 81

Figure 6.2: Example of the multi-state model with SNAH code on a subsample of patients who received a left hip prosthesis as first arthroplasty, followed by another primary arthroplasty or a revision of the left hip. (Number of events in parentheses).. 85

Figure 6.3: State occupation probabilities for patients in 3 age groups after first hip arthroplasty based on the model in Figure 6.1 (revision: state 2, hip: state 3, knee: state 4, dead: state 10, other: state 5-9). .. 86

Figure 7.1: Multi-state model .. 105

Figure 7.2: Comparing hazards of receiving a left knee arthroplasty between individuals who had received a right hip arthroplasty with individuals who had received a left hip arthroplasty. HR: hazard ratio, $\lambda(t|R)_{1\rightarrow3}$: hazard of receiving a left knee given that first hip was a right hip, $\lambda(t|L)_{1\rightarrow3}$: hazard of receiving a left knee given that first hip was a left hip. .. 112

Figure 7.3: Comparing hazards of receiving a right knee between individuals who had received arthroplasties in right hip and left knee with individuals who had received arthroplasties in left hip and left knee. HR: hazard ratio, $\lambda(t|R)_{3\rightarrow8}$: hazard of receiving a right knee given that first hip was a right hip, $\lambda(t|L)_{3\rightarrow8}$: hazard of receiving a right knee given that first hip was a left hip. .. 113

Figure 7.4: Estimated probabilities for receiving a knee arthroplasty after having received a hip arthroplasty (AU: Australia, NOR: Norway, left panel: state 3, right panel: state 4). ... 114

Figure 7.5: Estimated probabilities for receiving a hip arthroplasty after having received a knee arthroplasty (AU: Australia, NOR: Norway, left panel: state 3, right panel: state 4). ... 115
ABSTRACT

Background: Arthroplasty registry data are traditionally analysed using standard survival methods, that is, Kaplan-Meier survival curves and the Cox proportional hazards model. The outcome of interest is usually the time from the primary procedure until occurrence of a single event – revision of the prosthesis. Other outcomes may also be of interest, for example, time to death, time to receiving another arthroplasty and the association between covariates and these events. The rise in life expectancy of the population combined with an increasing number of joint replacements being performed has resulted in many patients experiencing several joint replacement procedures during their lifetime. The analyses of registry data such as these require the use of more sophisticated statistical methods. Application and evaluation of statistical methods to analyse registry data containing complex arthroplasty histories are lacking.

Aim: The aim of this thesis was to investigate the use of statistical methods in the analysis of multiple event data contained in arthroplasty registries. Within this broad aim the objectives were to investigate the use of competing risks methods in estimating the risk and rate of revision, investigate methods for handling covariates with time-varying effect, investigate the use of multi-state modelling techniques in providing a more comprehensive analysis and description of complex arthroplasty histories than traditional survival methods and to develop a notation system to facilitate the description and analysis of arthroplasty event history data.

Methods: Data were obtained from the Australian Orthopaedic Association National Joint Replacement Registry and the Norwegian Arthroplasty Register. Estimates of revision from the Kaplan-Meier method were compared to estimates from the cumulative incidence function which accounts for the competing risk of death. Effects of covariates on the rate and risk of revision were estimated with competing risk regression and compared to estimates from the Cox proportional hazards model.
Multi-state models were set up and applied to the data. The Summary Notation for Arthroplasty Histories (SNAH) was developed in order to help manage and analyse this type of data.

Results: The Kaplan-Meier method substantially overestimated the risk of revision compared to estimates using competing risks methods when the incidence of the competing risk of death was high. The influence of some covariates on the hazard rate was different to the influence on the actual probability of occurrence of the event as this was modulated by their relationship with the competing event. Multi-state models, in combination with SNAH codes, were well suited to the management and analysis of arthroplasty registry data on patients who had multiple joint procedures over time. Multi-state modelling techniques proved useful in the investigation of the progression of end-stage osteoarthritis in data from two national arthroplasty registries.

Conclusion: In the presence of competing risks, the Kaplan-Meier method may lead to biased estimates of the risk of revision, and hazard ratios obtained from the Cox proportional hazards model and competing risks regression models need to be interpreted with care. Multi-state models provide a useful tool to analyse data containing complex arthroplasty histories.

**Declaration**

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time

Signed: ……………………………

Marianne KH Gillam (Candidate)

Date: ………………………..
Manuscripts Contributing to this Thesis

Supplementary article data: http://www.actaorthop.org/sup_files/5260_SAD.pdf

Presentations Arising from this Thesis

Gillam MH. Competing Risks Survival Analysis Applied to Data from the Australian Orthopaedic Association National Joint Replacement Registry. Australasian Faculty of Public Health Medicine (AFPHM) annual meeting. Adelaide, November 2012.

Gillam MH. Investigation of the progression of end stage osteoarthritis using data from the Australian and Norwegian joint replacement registries. School of Population Health Seminar Series. Adelaide, August 2012.

Gillam MH. Multi-state models and arthroplasty histories. AFPHM annual meeting. Adelaide, November 2011.

Gillam MH, Salter A, Ryan P, Graves SE. Regression Models for Competing Risks Applied to Data on Patients with Fractured Neck of Femur from the Australian

Acknowledgments

I would like to sincerely thank my supervisors, Phil Ryan and Amy Salter. This thesis would not have been possible without them. I have benefited from Phil’s wisdom and linguistic precision, Amy’s encouragement and demands for clarity, and their ongoing guidance and support. Thank you both.

Thank you to my co-authors from the Australian Orthopaedic Association National Joint Replacement Registry (AOA NJRR): Stephen Graves, who has been unfailingly generous with his advice and expertise, and to Richard de Steiger and Lisa Miller for their constructive comments. I am grateful for having had the opportunity to collaborate with Stein Atle Lie, Ove Furnes and Leif Havelin from the Norwegian Arthroplasty Register (NAR). They have provided invaluable comments and contributions, and it has been a real pleasure to work with them in my native language.

Thank you to the AOA, the NAR, the hospitals, the orthopaedic surgeons and their patients whose data made this work possible.

I am also thankful to the Faculty of Health Sciences Research Committee who awarded me a Postgraduate Travelling Fellowship for health science research and to the AOA NJRR for funding to attend a conference.

Thank you to my fellow PhD students, especially Allison, Aris, Chuangzhou, Helene, Nasreen, Vanda and Vicki in my thesis writing group, and to George and Lisa, my office colleagues, for providing support, inspiration, constructive feedback and motivation.

I am grateful to my parents, Lise and Egill, and my brother, Morten for their inspiration, great understanding and for always taking a keen interest in what I am doing.

Finally, thank you to my loving husband Charles and my three wonderful children Astrid, Magnus and Marit with whom I am so lucky to share my life.
Abbreviations

AOANJRR: Australian Orthopaedic Association National Joint Replacement Registry

CIF: Cumulative Incidence Function

Cox PH: Cox Proportional Hazards

CPR: Cumulative Percent Revision

FNOF: Fractured Neck of Femur

HR: Hazard Ratio

KM: Kaplan-Meier

NAR: Norwegian Arthroplasty Register

OA: Osteoarthritis

RD: Relative Differences

SNAH: Summary Notation for Arthroplasty Histories

SubHR: Subdistribution Hazard

THA: Total Hip Arthroplasty

TKA: Total Knee Arthroplasty