Design and Synthesis and Testing of

Conformationally Constrained

Peptidomimetics

Joanna Duncan

A thesis submitted in total fulfilment of the requirements for

the degree of Doctor of Philosophy

2013

Department of Chemistry

The University of Adelaide

Abstract IV		
Declaration	n VII	
Acknowled	lgmentsVIII	
Abbreviati	onsIX	
1 Inti	roduction1	
1.1 H	Protein-protein interactions	
1.2 N	Mediating protein-protein interactions	
1.2.1	Peptides as drugs	
1.2.2	Disadvantages of peptides3	
1.2.3	Peptidomimetics5	
1.3 H	Peptide secondary structure	
1.4 (Classes of peptidomimetic9	
1.4.1	Side chain modification	
1.4.2	Strategies for restriction of ϕ , ψ and ω torsion angles11	
1.5 A	A ring closing metathesis route to peptidomimetics	
1.5.1	A brief history of metathesis	
1.5.2	Peptidomimetics by ring closing metathesis19	
1.6 H	Research described in this thesis22	
1.7 F	References	
2 Syr	nthesis of medium sized rings comprised of β -amino acids by ring closing	
me	tathesis	
2.1 H	Peptidomimetics from β-amino acids	
2.2 \$	Synthesis and analysis of cyclic scaffolds45	
2.2.1	Synthesis of building blocks 2.31 – 2.3645	

	2.2.2	Synthesis of cyclic scaffolds	53
	2.2.3	Synthesis and NMR analysis of tripeptides	
		containing cyclic scaffolds	55
	2.3 Co	nclusions	64
	2.4 Ref	ferences	66
3	Synth	esis of macrocyclic protease inhibitors	70
5	•	pain and its inhibition	
	5.1 Cal		/1
	3.1.1	The role of calpain in pathological conditions	74
	3.1.2	Calpain inhibitors	76
	3.2 Syr	nthesis of the N-terminal FBS macrocycle 3.02	84
	3.3 Des	sign, synthesis and testing of diol-containing macrocycles	
	3.0	3 and 3.04	92
	3.3.1	Computational modelling of diols 3.03 and 3.04	94
	3.3.2	Synthesis of diol-based inhibitors	100
	3.4 Des	sign and synthesis of novel macrocycle 3.05	
	3.4.1	Designing a macrocycle to investigate selectivity towards	
		calpain II, α-chymotrypsin and 20S proteasome	
	3.4.2	Synthesis of macrocycle 3.05	109
	3.5 Co	nclusions	112
	References	5	113

4	In vitro testing of macrocycles synthesised in Chapter 31	19
4.1	Introduction1	20
4.2	Assay of compounds 3.02, 3.03 and 3.04 against ovine calpain II1	21

	4.3	Analysis of calpain II inhibition data126
	4.4	Biological testing of 3.05137
	4.5	Conclusions144
	4.6	References146
5	In	<i>vivo</i> testing of tritiated macrocycles
	5.1	Introduction150
	5.1.	Summary of <i>in vivo</i> trials of CAT0811152
	5.2	Results and discussion
	5.2.	Synthesis and formulation of radio-labelled analogues155
	5.2.2	2 In Vivo study methods
	5.2.	3 Liquid scintillation counting results
	5.2.3 5.3	Liquid scintillation counting results
	5.3	Conclusions171
6	5.3 5.4	Conclusions171
6	5.3 5.4	Conclusions
6	5.3 5.4 E	Conclusions
6	5.3 5.4 E 6.1	Conclusions 171 References for Chapter 5 172 xperimental 174 General methods and experimental procedures 175

A1	Liquid Scintillation	Counting (LSC)	
----	----------------------	----------------	--

Abstract

This thesis describes the design, synthesis and testing of peptidomimetics preorganised into bioactive conformations. **Chapter One** introduces the concept of peptidomimetics, their importance as potential pharmaceuticals. The concept of constraining a compound into a bioactive conformation (α -helix, β -turn or β -strand) by incorporation of a ring or bridge is discussed. The technique of ring closing metathesis as a strategy for cyclisation of peptidomimetics is introduced.

Chapter Two surveys β -turn mimics comprised of β -amino acids. The synthesis of novel cyclic peptidomimetics comprised of β -amino acids (cyclised by ring closing metathesis) is presented. Three of the cyclic dipeptides were predicted (through *in silico* conformational searches) to adopt a β -turn motif. Cyclic scaffolds **2.62**, **2.65** and **2.66** were each incorporated into a tri-peptide to give **2.68**, **2.69** and **2.70**. The propensity of each tri-peptide to adopt a β -turn motif was investigated by ¹H NMR. There is strong evidence that **2.70** has a β -turn geometry based on the presence of an intra-molecular hydrogen bond between the *i* and *i*+*3* residues.

Chapter Three introduces cysteine protease calpain II as the primary biological target for this thesis. Calpain is implicated in cataract formation and its inhibition is a logical approach to cataract prevention. Proteases are known to, almost universally, bind substrates and inhibitors in a β -strand conformation. Four macrocycles, designed to be preorganised in a β -strand geometry, were synthesised by ring closing metathesis (compounds **3.02** – **3.05**). Macrocycle **3.02** was made to investigate the suitability of an N-terminal 4-fluoro-benzyl-sulfonyl (FBS) in macrocyclic calpain

inhibitors. The synthesis of **3.02** was optimised to give the required compound in 33% yield compared to a reported 1% for analogue **CAT0811**. Diols **3.03** and **3.04** (as a mixture with **3.03** in an 85:15 ratio) were designed to explore possible hydrophilic interactions with the active site of calpain. Macrocycle **3.05** was designed to investigate the relative importance of having an aromatic residue at P_1 for inhibition of calpain, α -chymotrypsin and the 20S proteasome.

Chapter Four reports the in vitro testing of macrocycles 3.02, 3.03 and 3.04 against calpain II and discusses these results in the context of the SAR study completed by the Abell group to identify the criteria for the most potent macrocyclic calpain inhibitor. CAT0811 was confirmed as the most potent macrocyclic calpain II inhibitor to date with an IC₅₀ of 0.03 μ M. Macrocycle 3.02 had an IC₅₀ of 0.045 μ M against calpain II, confirming the suitability of FBS as an N-terminus in these macrocycles. Macrocycle 3.03 had an IC₅₀ of 3.7 μ M against calpain II, suggesting a diol substituent is not tolerated by the enzyme at P_1 . Diol 3.04 (as a mixture with 3.03) in an 85:15 ratio) was essentially inactive against calpain II (IC50 > 50 μ M), presumably as 3.04 has a low propensity to adopt a β -strand conformation. Macrocycle 3.05 had an IC₅₀ of 0.15 μM against calpain II, a Ki of 686 μM against αchymotrypsin and an IC₅₀ of 1.46 µM against the chymotrypsin-like sub-site of the 20S proteasome. CAT0811 was inactive against α -chymotrypsin and had an IC₅₀ of $1.51 \mu M$ against the chymotrypsin-like sub-site of the 20S proteasome. While modification to the P₁ and P₃ positions moderately influenced the selectivity of the macrocycles (comparing 3.05 with CAT0811), a much more dramatic affect was gain by modification of the P_2 residue (as in **4.02**).

Chapter Five reports the synthesis and *in vivo* testing of tritiated analogues of **CAT0811** and **4.04** by reduction of **CAT0811** with NaBT₄ to give macrocycle **5.02**, and subsequent oxidation of **5.02** to give **5.03**. Compounds **5.02** and **5.03** were separately formulated and administered to sheep from the cataract flock. Liquid scintillation counting was used to get a preliminary outlook on the absorption, distribution and excretion of the macrocycles and to investigate the phenomenon of les crossover of the inhibitors. Previous *in vivo* trials of **CAT0811** have reported that when the formulated inhibitor is administered to the left lens, both lenses are equally observed to have slowing of cataract progression (p < 0.05). Levels of tritium in the treated and untreated lenses were measured. Equal amounts of **5.02** were found in both lenses 48 h after application. This supports our hypothesis that lens crossover of the macrocycles is occurring.

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Joanna Duncan

Acknowledgements

Primarily, thank you to Professor Andrew Abell for his support, guidance and supervision throughout this PhD. I am especially grateful for the time he has spent guiding me in the writing of this thesis.

I would like to thank the post doctoral fellows and senior PhD students who have provided invaluable assistance during my studies, especially Dr Matthew Jones, Dr Steve Aiken, Dr Stephen McNabb, Dr Markus Pietsch, Dr Seth Jones, Dr Scott Walker, Dr William Tieu and Dr Ashok Pehere.

I would also like to acknowledge the people who helped me in this research, especially, Dr Matthew Jones, Dr Markus Pietsch and Dr Ondrej Zvarec for performing the calpain assays, Dr Paul Nielson and Limei Sieu for performing the 20S proteasome assays, Dr Stephen McNabb and Dr Blair Stuart for performing the molecular modelling studies, Michelle Zhang for help with the chymotrypsin assay and Jade Cottam for helping with the HPLC. I would also like to say a big thank you to all the technical staff at the University of Canterbury and the University of Adelaide for their help over the years.

Finally I would like to thank my family and friends for their support and love over the course of these studies – I could not have done this without you.

Abbreviations

aq	aqueous
Boc	<i>tert</i> -butoxycarbonyl
br	broad (spectroscopic)
calc	calculated
Cbz	benzyloxycarbonyl
conc	concentrated
Су	cyclohexyl
DCM	dichloromethane
d.e.	diasteromeric excess
DIPEA	N,N-diisopropylethylamine
DMB	2,4-dimethoxy benzaldehyde
DMF	dimethylformamide
DMSO	dimethyl sulphoxide
EM	effective molarity
eq	equivalent
ESI	electrospray ionisation
Et	ethyl
FDA	Food and Drug Administration (US)
FTIR	Fourier transform infrared
GABA	gamma-aminobutyric acid
h	hour(s)
HATU	2-(7-aza-1 <i>H</i> -benzotriazol-1-yl)-1,1,3,3-tetramethyluronium
	hexafluorophosphate

HIV	Human Immunodeficiency Virus
HPLC	high-performance liquid chromatography
HRMS	high-resolution mass spectrometry
IR	infrared
LDA	lithium diisopropylamide
LiHMDS	lithium hexamethyl-disilyl-amide
lit.	literature value
Me	methyl
MS	mass spectrometry
m/z	mass-to-charge ratio
NaHMDS	Sodium-hexamethyl-disilyl-amide
NMR	nuclear magnetic resonance
PDB	Protein Data Bank
Ph	phenyl
ppm	part(s) per million
Ру	pyridine
quant	quantitative
RCM	ring closing metathesis
rt	room temperature
SAR	structure activity relationship
spec	spectrometry
TCE	1,1,2-trichloroethane
temp	temperature
TFA	trifluoroacetic acid
THF	tetrahydrofuran

- TLC thin layer chromatography
- UV ultraviolet
- v/v volume per unit volume
- w/w weight per unit weight