Studies of Fluorescence Profile Reconstruction Systematics at the Pierre Auger Observatory

Max Malacari
For the degree of Master of Philosophy

Principal Supervisor: Prof Bruce R. Dawson
Co-Supervisor: EProf Roger Clay

May, 2013
Declaration of Originality

I, Max Malacari, certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Max Malacari

May, 2013
Abstract

In the fluorescence technique employed at the Pierre Auger Observatory, Nitrogen fluorescence at UV wavelengths, due to excitation of atmospheric molecules by charged air shower particles, is used to estimate the energy of incoming cosmic rays. However, due to the relativistic nature of the charged particles in the cascade, direct and scattered Cherenkov light contaminates the isotropically emitted fluorescence light. These ‘extra’ photons, if not accurately accounted for, will affect the assumed fluorescence emission, thereby altering reconstructed shower energies.

Assuming an isotropic distribution of cosmic ray arrival directions, there should be no preferential arrival direction in which a given fluorescence detector observes an event. However, a misrepresentation of the number of Cherenkov photons assumed to be arriving at the telescope aperture would cause an excess or deficit of events directed towards the telescope above some fixed energy, as these events are highly Cherenkov contaminated. Using Monte Carlo simulations of extensive air showers in the atmosphere mimicking the observed power law energy spectrum, effects on the distribution of arrival directions with respect to the fluorescence telescopes due to changes in the assumed Cherenkov normalisation can be explored. This thesis aims to put a limit on the possible deviation from the currently accepted Cherenkov model based on the current level of statistics at the Pierre Auger Observatory.

An accurate description of Cherenkov light production in extensive air showers is essential for improving our confidence in the energy assignments of the observatory and also serves to further our understanding of cosmic ray air shower physics.
I would like to thank my supervisors, Bruce Dawson and Roger Clay, for their guidance and encouragement during my time as a Master of Philosophy candidate. Their knowledge and enthusiasm for cosmic ray astrophysics and physics in general has been inspiring and I couldn’t have completed this thesis without them.

It has been a pleasure to work alongside the other members of the High Energy Astrophysics research group for the last two years. Everyone has been extremely friendly and always willing to lend a hand or offer advice on a technical problem. In particular I must acknowledge the help and advice given by Steven Saffi, my office mate, on all manner of issues related to my research project - his problem solving skills have been invaluable at times.

I am indebted to my many friends both at the University of Adelaide and out in the real world for their informal support and encouragement over the last two years.

Finally I would like to thank my parents, Heather and David, and my brother Camillo, for their unwavering support over the course of my studies and for always encouraging me to pursue whatever makes me happy.
Contents

1 **Ultra High Energy Cosmic Rays**
 1.1 A brief history .. 1
 1.2 Energy spectrum .. 2
 1.3 Mass composition .. 4
 1.4 Acceleration mechanisms and propagation 6
 1.4.1 Stochastic acceleration of charged particles 6
 1.5 Anisotropy .. 9

2 **Extensive Air Showers** ... 11
 2.1 The Heitler Model ... 12
 2.2 Hadron initiated showers 14

3 **EAS Detection Methods** ... 17
 3.1 Surface arrays .. 17
 3.2 Fluorescence detectors ... 18
 3.3 Hybrid detectors .. 20
 3.4 Geometry and energy reconstruction 20
 3.4.1 Surface arrays .. 20
 3.4.2 Fluorescence detectors 21
 3.4.3 Hybrid detectors .. 23
 3.5 Experiments ... 24
CONTENTS

4 Pierre Auger Observatory 25
 4.1 Surface detector 26
 4.1.1 SD triggering conditions 27
 4.2 Fluorescence detector 29
 4.2.1 FD triggering conditions 29
 4.3 Hybrid mode ... 30

5 Cherenkov Light in EAS 33
 5.1 Cherenkov radiation 34
 5.2 Analytical description of Cherenkov light production 35
 5.3 Treatment of Cherenkov light in fluorescence profile reconstruction 38

6 Verifying the Cherenkov Normalisation 45
 6.1 Rescaling the Cherenkov normalisation: a semi-analytical model 45
 6.2 A new method for testing the Cherenkov normalisation 52
 6.3 Telescope azimuth transformation 52
 6.4 Method: distribution templates via direct energy rescaling 54
 6.4.1 Method workflow 58

7 Obtaining Full Reconstruction Efficiency 63
 7.1 Telescope azimuth transformation revisited 64
 7.2 \(X_{\text{max}}\) viewing efficiency 66
 7.2.1 Toy Monte Carlo simulation 67
 7.2.2 Simulation parameters 69
 7.2.3 Aperture effects 70
 7.2.4 Results .. 73
 7.3 Cherenkov light triggering bias 74
 7.4 Fluorescence telescope trigger efficiency 76