OPIOID MAINTAINED SUBJECTS
AND THE EFFECTS OF HIGH DOSE MORPHINE
AND ADJUVANT ANALGESICS

Peter Athanasos
RGN, RPN, BA, BSc (First Class Honours)

Discipline of Pharmacology
School of Medical Sciences
Faculty of Health Sciences
The University of Adelaide

September 2013

A thesis submitted for the degree of Doctor of Philosophy
Table of Contents

Abstract ... i

Declaration ... iii

Acknowledgements ... iv

Publications and Presentations in Support of This Thesis v

Abbreviations, prefixes and symbols ... viii

1. Introduction .. 1
 1.1. Pain .. 3
 1.2. Classification of pain ... 3
 1.3. Pain transmission ... 4
 1.4. Pain modulation mechanisms ... 4
 1.4.1. Spinal mechanisms of pain modulation .. 4
 1.4.1.1. Large fibre inhibition ... 4
 1.4.1.2. Opioid inhibition ... 4
 1.4.2. Supraspinal mechanisms of pain modulation ... 4
 1.4.3. Other forms of pain modulation ... 5
 1.4.4. Developments in our understanding of pain .. 5
 1.4.4.1. Neuroimaging and pain ... 5
 1.5. Treatment of pain ... 6
 1.6. A brief history of opioids .. 7
 1.6.1. The Ebers Papyrus and Theophrastus ... 7
 1.6.2. Paracelsus and Laudanum, Coleridge and De Quincy 7
 1.6.3. John Jones, George Young, addiction and withdrawal 8
 1.6.4. Discovery of morphine and cures for ‘morphinism’ 9
 1.6.5. The hypodermic needle ... 9
 1.6.6. Diacetyl morphine .. 9
 1.6.7. The Narcotics Clinics 1918 to 1922 ... 10
1.7. Brief history of methadone, buprenorphine and LAAM maintenance ... 10
1.8. Opioid pharmacology ... 11
 1.8.1. Mu, kappa and delta receptors ... 11
 1.8.2. mRNA splicing and allelic variants .. 13
 1.8.3. Intracellular events following mu opioid reception ... 13
 1.8.4. Endogenous opioid peptides .. 14
1.9. Opioid Pharmacodynamics .. 15
1.10. Opioid pharmacokinetics .. 16
 1.10.1. Absorption and distribution .. 16
 1.10.2. Metabolism .. 17
 1.10.3. Excretion ... 17
1.11. Methadone and buprenorphine pharmacology .. 18
 1.11.1. Methadone pharmacology ... 18
 1.11.1.1. Methadone pharmacodynamics ... 18
 1.11.1.2. Methadone pharmacokinetics .. 19
 1.11.2. Buprenorphine pharmacology .. 19
 1.11.2.1. Buprenorphine pharmacodynamics .. 19
 1.11.2.2. Buprenorphine pharmacokinetics .. 20
1.12. Tolerance and hyperalgesia ... 21
 1.12.1. Tolerance ... 21
 1.12.2. Hyperalgesia .. 22
1.13. Tolerance in the absence of hyperalgesia .. 22
1.14. Tolerance, hyperalgesia and the opioid maintained patient .. 23
 1.14.1.1. Martin and Inglis .. 27
 1.14.1.2. Ho and Dole .. 27
 1.14.2. Opioid dependent subjects on maintenance treatment .. 27
 1.14.2.1. Compton .. 27
 1.14.2.2. Schall ... 28
 1.14.2.3. Dyer ... 28
 1.14.2.4. Doverty .. 28
 1.14.3. Other opioid maintenance and hyperalgesia ... 29
 1.14.4. Opioid abstinence and the restoration of normal pain sensitivity .. 30
1.15. Cellular and synaptic adaptations following chronic opioid use ... 32
 1.15.1. NMDA receptor cascade ... 32
 1.15.2. Spinal cord glial cells ... 32
 1.15.3. Strategies to overcome hyperalgesia and tolerance ... 33
 1.15.3.1. Recent work .. 33
1.16. Adjuvant analgesia pharmacology ... 35
 1.16.1. S (+) -ketamine pharmacology ... 37
 1.16.1.1. S (+) -ketamine pharmacodynamics ... 37
 1.16.1.2. S (+) -ketamine pharmacokinetics ... 38
 1.16.2. Tramadol pharmacology ... 38
 1.16.2.1. Tramadol pharmacodynamics ... 38
 1.16.2.2. Tramadol pharmacokinetics .. 39
 1.16.3. Ketorolac pharmacology ... 39
 1.16.3.1. Ketorolac pharmacodynamics ... 39
 1.16.3.2. Ketorolac pharmacokinetics .. 40
1.17. History of pain management guidelines in opioid tolerant patients 40
 1.17.1. Conventional doses of analgesics .. 40
 1.17.1.1. Cushman (1972), Rubenstein (1976) ... 40
 1.17.2. Additional methadone approaches .. 41
 1.17.2.1. Rogers (1989), Schulz (1997) and Savage (1998) ... 41
 1.17.3. Large retrospective case studies .. 42
 1.17.3.1. De Leon-Casasola (1993) .. 42
 1.17.3.2. Rapp (1995) ... 42
 1.17.4. Smaller studies ... 42
1.18. Summary ... 44
1.19. Hypotheses ... 44
 1.19.1. Study 1 ... 44
 1.19.2. Study 2 ... 44
 1.19.3. Study 3 ... 45
 1.19.4. Study 4 ... 45

2. Methodology and subjects ... 46
2.1. Introduction and study design ... 46
 2.1.1. Studies 1 and 2. Methadone and buprenorphine subjects plus high dose morphine studies ... 46
 2.1.2. Studies 3 and 4. Methadone and buprenorphine plus adjuvant and high dose morphine studies ... 47
2.2. Ethical considerations .. 47
2.3. Subject inclusion and exclusion criteria .. 48
 2.3.1. Study 1. Methadone subjects plus high dose morphine 49
 2.3.2. Study 2. Buprenorphine subjects plus high dose morphine 49
 2.3.3. Study 3. Methadone subjects plus adjuvant analgesics and high dose morphine ... 49
 2.3.4. Study 4. Buprenorphine subjects plus adjuvant analgesics and high dose morphine ... 50
 2.3.5. Healthy controls plus morphine ... 50
 2.3.6. Healthy controls plus adjuvant analgesics and morphine 50
2.4. Procedure .. 52
 2.4.1. Drug administration .. 52
 2.4.1.1. Methadone and buprenorphine morphine studies 52
 2.4.1.2. Infusions of S-ketamine, tramadol and ketorolac 55
 2.4.2. Blood sampling and assessment times 55
2.5. Nociceptive tests and physiological responses 56
 2.5.1. Cold pressor test .. 56
 2.5.2. Electrical stimulation .. 57
2.6. Drug Assays ... 57
 2.6.1. Plasma morphine, S-ketamine, ketorolac and tramadol concentrations .. 57
 2.6.2. Plasma buprenorphine concentrations 58
 2.6.2.1. Instrumentation ... 58
 2.6.2.2. Liquid chromatography conditions 58
 2.6.2.3. Sample preparation ... 58
 2.6.2.4. Calibration curves .. 59
2.7. Data collection and statistical analysis .. 59
2.8. Discussion .. 60
 2.8.1. Design .. 60
 2.8.2. Target pseudo steady-state plasma drug concentrations 61
 2.8.2.1. Morphine .. 61
3. Study 1. Antinociceptive and respiratory effects of high dose morphine in methadone maintained subjects .. 64

3.1. Introduction .. 64
3.2. Methods .. 64
 3.2.1. Subjects ... 64
 3.2.2. Drug administration ... 65
3.3. Results .. 65
 3.3.1. Plasma morphine concentrations .. 65
 3.3.2. R-(-)-methadone (plasma methadone) concentrations 66
 3.3.3. Cold pressor responses ... 68
 3.3.4. Electrical stimulation .. 70
 3.3.5. Respiration .. 72
 3.3.6. Post methadone maintenance dosing 74
 3.3.6.1. Cold Pressor ... 74
 3.3.6.2. Electrical stimulation .. 74
 3.3.7. Plasma methadone concentration and cold pressor 76
 3.3.8. Adverse events ... 77
3.4. Discussion .. 77

4. Study 2. Antinociceptive and respiratory effects of high dose morphine in buprenorphine maintained subjects .. 80

4.1. Introduction .. 80
4.2. Methods .. 81
 4.2.1. Subjects ... 81
 4.2.2. Drug administration ... 81
4.3. Results .. 82
 4.3.1. Plasma morphine concentrations .. 82
 4.3.2. Plasma buprenorphine and norbuprenorphine concentrations 86
 4.3.3. Cold Pressor .. 88
4.3.4. Electrical stimulation ... 90
4.3.5. Respiration rate .. 92
4.3.6. Concentrations and responses of buprenorphine and methadone subjects .. 94
4.3.7. Responses following buprenorphine maintenance dosing 96
4.3.8. Adverse events .. 96
4.4. Discussion .. 97

5. Study 3. Antinociceptive and respiratory effects of high dose morphine and adjuvant analgesics in methadone maintained subjects 100
5.1. Introduction ... 100
5.2. Methods ... 102
 5.2.1. Subjects .. 102
 5.2.2. Drug administration .. 103
5.3. Results ... 104
 5.3.1. Plasma S-ketamine, ketorolac and tramadol concentrations.... 104
 5.3.2. Plasma morphine concentrations .. 106
 5.3.3. Plasma R-methadone concentrations ... 106
 5.3.4. Cold pressor .. 111
 5.3.4.1. S-ketamine administration day .. 111
 5.3.4.2. Tramadol administration day .. 111
 5.3.4.3. Ketorolac administration day ... 111
 5.3.5. Electrical stimulation .. 114
 5.3.5.1. S-Ketamine day .. 114
 5.3.5.2. Tramadol day .. 114
 5.3.5.3. Ketorolac day ... 114
 5.3.6. Respiration rate .. 116
 5.3.6.1. S-ketamine day .. 116
 5.3.6.2. Tramadol day .. 116
 5.3.6.3. Ketorolac day ... 116
 5.3.7. Adverse events .. 118
5.4. Discussion .. 121
6. Study 4. Antinociceptive and respiratory effects of high dose morphine and adjuvant analgesics in buprenorphine maintained subjects................. 125

6.1. Introduction ... 125
6.2. Methods .. 125
6.2.1. Subjects .. 125
6.2.2. Drug administration .. 126
6.3. Results ... 126

6.3.1.1. Plasma S-ketamine, ketorolac and tramadol concentrations 127
6.3.1.2. Plasma morphine concentrations 130
6.3.1.3. Plasma buprenorphine, norbuprenorphine concentrations 132
6.3.2. Responses ... 134
6.3.2.1. Cold pressor .. 134
6.3.2.2. Electrical stimulation .. 139
6.3.2.3. Respiration rate ... 142
6.3.3. Adverse events ... 142
6.3.4. Methadone, buprenorphine maintained subject comparisons... 143
6.4. Discussion .. 143

7. Summary of major findings and conclusion 147

7.1. Clinical implications of research findings 148
7.1.1. Study 1. Antinociceptive and respiratory effects of high dose morphine in methadone maintained subjects 148
7.1.2. Study 2. Antinociceptive and respiratory effects of high dose morphine in buprenorphine maintained subjects 149
7.1.3. Study 3. Antinociceptive and respiratory effects of high dose morphine and adjuvant analgesics in methadone maintained subjects .. 151
7.1.4. Study 4. Antinociceptive and respiratory effects of high dose morphine and adjuvant analgesics in buprenorphine maintained subjects ... 152
7.1.5. Comparison of methadone subjects to buprenorphine subjects 152
7.2. Strengths and limitations .. 153
7.2.1. Strengths ... 153
7.2.2. Limitations .. 153
7.3. Directions for future research 155
7.4. Conclusion ... 156

Bibliography

List of Tables

Table 1 Pain responses of opioid dependent subjects 26
Table 2 Subject demographics. MMT methadone maintenance treatment clients. BMT buprenorphine maintenance treatment clients. 51
Table 3 Loading and maintenance doses of morphine and adjuvants to achieve target pseudo steady state plasma concentration. MMT methadone maintenance treatment clients. BMT buprenorphine maintenance treatment clients 53
Table 4 Plasma concentrations of morphine, buprenorphine and norbuprenorphine in the buprenorphine morphine study on morphine and saline administration days in buprenorphine maintained subjects. Data are mean±SEM (range). 84
Table 5 Cold pressor and electrical responses and respiration rates for buprenorphine maintained and control subjects in the buprenorphine morphine study on morphine administration days. Data are mean±SEM (range). † P<0.05, †† P<0.01 between group; * P<0.05, ** P<0.01 between treatments. 89
Table 6 Plasma drug concentrations on S-ketamine, tramadol, ketorolac and saline administration days for control and methadone maintained subjects. Morphine administrated during S-ketamine, Tramadol, Ketorolac and Saline infusions described as Morphine (Co-S-Ketamine Infusion), Morphine (Co-Tramadol Infusion), Morphine (Co-Ketorolac Infusion) and Morphine (Co-Saline Infusion). Concentrations are mean±SEM (range). 110
Table 7 Cold pressor and electrical stimulation responses, and respiration rates on S-ketamine, tramadol and ketorolac administration days for control and methadone maintained subjects. Data are mean±SEM (range). † P<0.05, †† P<0.01 between groups, * P<0.05, ** P<0.01 between treatments. 120
Table 8 Plasma drug concentrations on S-ketamine, tramadol, ketorolac and saline administration days for buprenorphine maintained and control subjects. Data are mean±SEM (range). 128
Table 9 Cold pressor and electrical stimulation responses, and respiration rates on S-ketamine, tramadol and ketorolac administration days for buprenorphine maintained and control subjects. Data are mean±SEM (range). † P<0.05 between groups, *P<0.05, ** P<0.01 between treatments. 135
List of Figures

Figure 1 Schematic diagram of the experimental design for studies 1 and 2. Pain was tested, respiration rate was measured and blood samples were taken at time -30 minutes, 0 and hourly thereafter. Blood samples were also taken at 0.25, 0.5 and 0.75 hours after the end of the last infusion. These additional blood sample points are not shown. ... 54

Figure 2 Schematic diagram of the experimental design for studies 3 and 4. Pain was tested, respiration rate was measured and blood samples were taken at times -60 minutes, 0 and hourly thereafter. Blood samples were also taken at 0.25, 0.5 and 0.75 hours after the end of the last infusion. These additional blood sample points are not shown. ... 54

Figure 3 Plasma morphine concentrations (upper panel) in 18 methadone maintained (■) and 10 healthy control participants (▲). Pseudo steady-state plasma concentration 1 (M1), pseudo-steady-state plasma concentration 2 (M2) and the time of the methadone dose administration are indicated. Plasma R-(-)-methadone concentrations (lower panel) from 0 to 310 minutes on morphine administration (▼) and saline administration days (О) in methadone subjects are indicated. The time of the methadone dose administration is also indicated. Data are represented as mean ± SEM. ... 67

Figure 4 Cold pressor (upper panel) and electrical stimulation (lower panel) pain tolerance responses at baseline (B) and Morphine Infusion 2 (M2)(plasma morphine concentrations). *P<0.05, **P<0.01 compared to baseline (0 ng/ml). †††P<0.001 methadone participants versus control participants. 69

Figure 5 Cold pressor pain tolerance (upper panel), electrical stimulation pain tolerance (middle panel) and respiration rate (lower panel) values at baseline (light grey bars) and morphine concentration 2 (M2) (dark grey bars) for daily methadone dose ranges 11-45, 46 to 80 and 81-115 mg per day. Data are represented as mean ± SEM. **P<0.01 compared to baseline 71

Figure 6 Respiration rate responses at different plasma morphine concentrations, Baseline (B) and Morphine Infusion 2 (M2). Data (as mean ± SEM) are shown for methadone maintained and healthy control participants. **P<0.01 compared to baseline (0 ng/ml). ††P<0.01 methadone participants versus control participants ... 73

Figure 7 Pain detection threshold and pain tolerance values in cold pressor (upper panel) and electrical stimulation (lower panel) immediately prior to (Pre) and 2 hours after (Post) methadone administration. Data (as mean ± SEM) were collected from methadone subjects on days when only saline was administered. *** P<0.001, * P<0.05 0 vs. 2 hours. .. 75
Figure 8 Linear regression analysis of plasma R-(-) methadone concentrations and cold pressor pain tolerance values at baseline on the saline administration day ($r^2=0.20$, $P=0.06$) in the 18 methadone maintained subjects. Spearman’s correlation was $p=0.08$, $r=0.4$, 95% confidence intervals of -0.07 to 0.7.

Figure 9 Plasma morphine concentrations in 12 buprenorphine maintained (■) and 10 healthy control subjects (▲). Pseudo steady-state plasma morphine concentration 1 (M1), pseudo-steady-state plasma morphine concentration 2 (M2) and the time of the buprenorphine dose administration are indicated (†). Data are represented as mean ± SEM.

Figure 10 Plasma buprenorphine concentrations (upper panel) at baseline (white), infusion 1 (light grey) and infusion 2 (dark grey) on morphine and saline administration days. Plasma norbuprenorphine concentrations (lower panel) at baseline (white), infusion 1 (light grey) and infusion 2 (dark grey) on morphine and saline administration days. Results are represented as mean ± SEM.

Figure 11 Cold pressor (upper panel) and electrical stimulation (lower panel) mean (± SEM) pain tolerance responses in 10 control and 12 buprenorphine subjects at baseline (B) and morphine infusion 2 (Morphine 2). †† $P<0.01$ between groups; * $P<0.05$; ** $P<0.01$ between treatments. Note different morphine concentrations between buprenorphine and control subjects.

Figure 12 Mean (± SEM) respiration rates (breaths per minute) in 10 control and 12 buprenorphine subjects at baseline and morphine infusion 2 (Morphine 2). † $P<0.05$ between groups, ** $P<0.01$ between treatments. Note different morphine concentrations between the two groups.

Figure 13 Mean (± SEM) Cold pressor (upper panel), electrical stimulation (middle panel) and respiration rates (lower panel) in 18 methadone (M) and 12 buprenorphine (B) maintained subjects at baseline and second morphine infusion (M2). There were no statistically significant differences between the groups at either baseline or second morphine infusion.

Figure 14 Plasma S-ketamine, tramadol and ketorolac concentrations in 6 control and 6 methadone subjects at adjuvant infusion and adjuvant infusion plus morphine are shown. S-ketamine infusion (SK) and S-ketamine/morphine infusion (SKM) (upper panel), Tramadol infusion (T) and tramadol/morphine infusion (TM) (middle panel), and Ketorolac infusion (K) and ketorolac/morphine infusion (KM) (lower panel) are indicated. Results are represented as mean ± SEM.

Figure 15 Plasma morphine concentrations during S-ketamine/morphine infusion (SK), tramadol/morphine infusion (T), ketorolac/morphine infusion (K) and saline placebo/morphine infusion (S) (methadone subjects) in 6 control (upper panel) and 6 methadone subjects (lower panel) are shown. Results are represented as mean ± SEM.
Figure 16 Plasma methadone concentrations in 6 methadone subjects at baseline and at adjuvant/saline placebo infusion (Adjuvant) on saline placebo (S), S-ketamine (SK), tramadol (T) and ketorolac (K) administration days are shown. Results are represented as mean ± SEM.

Figure 17 Plasma methadone concentrations in 6 methadone subjects at adjuvant/saline placebo and morphine infusion (Adjuvant/Morphine) and three hours post methadone administration (Post Dose) on saline placebo (S), S-ketamine (SK), tramadol (T) and ketorolac (K) administration days are shown. Results are represented as mean ± SEM.

Figure 18 Cold pressor pain tolerance responses on S-ketamine (upper panel), tramadol (middle panel) and ketorolac (lower panel) administration days in 6 control and 6 methadone subjects at baseline (B), adjuvant (S-Ketamine (SK), Tramadol (T), Ketorolac (K)) and adjuvant/morphine (S-Ketamine and morphine (SKM), Ketorolac and morphine (KM), Tramadol and morphine (TM)) infusions. Results are represented as mean ± SEM. ††P<0.01, †P<0.05 between groups, * P<0.05 between treatments.

Figure 19 Electrical stimulation pain tolerance responses on S-ketamine (upper panel), tramadol (middle panel) and ketorolac (lower panel) administration days in 6 control and 6 methadone subjects at baseline (B), adjuvant (S-Ketamine (SK), Tramadol (T), Ketorolac (K)) and adjuvant/morphine (S-Ketamine and morphine (SKM), Ketorolac and morphine (KM), Tramadol and morphine (TM)) infusions. Results are represented as mean ± SEM. * P<0.05 between treatments.

Figure 20 Respiration rates on S-ketamine (upper panel), tramadol (middle panel) and ketorolac (lower panel) administration days in 6 control and 6 methadone subjects at baseline (B), adjuvant (S-Ketamine (SK), Tramadol (T), Ketorolac (K)) and adjuvant/morphine (S-Ketamine and morphine (SKM), Ketorolac and morphine (KM), Tramadol and morphine (TM)) infusions. Results are represented as mean ± SEM. †P<0.05 between groups, ** P<0.01 between treatments.

Figure 21 Plasma S-ketamine, tramadol and ketorolac concentrations in 6 control and 6 buprenorphine subjects are shown. S-ketamine infusion (SK), S-ketamine/morphine infusion (SKM) (upper panel), tramadol infusion (T), tramadol/morphine infusion (TM) (middle panel) and ketorolac infusion (K), ketorolac/morphine infusion (KM) are indicated. Results are represented as mean ± SEM.

Figure 22 Plasma morphine concentrations during S-ketamine/morphine infusion (SK), tramadol/morphine infusion (T), ketorolac/morphine infusion (K) and saline placebo/morphine infusion (S) (buprenorphine subjects) in 6 control (upper panel) and 6 buprenorphine subjects (lower panel) are shown. Results are represented as mean ± SEM.

Figure 23 Plasma buprenorphine (upper panel) and norbuprenorphine (lower panel) concentrations at baseline, adjuvant analgesic or
saline infusion (Adjuvant), and adjuvant analgesic or saline/morphine infusion (Adjuvant/Morphine) on saline (white bar), S-ketamine (light grey bar), tramadol (darker grey bar) and ketorolac (darkest grey bar) administration days. Results are represented as mean ± SEM.

Figure 24 Cold pressor mean (±SEM) pain tolerance responses for 6 buprenorphine and 6 control subjects at respective baselines and S-ketamine infusion (SK) and S-ketamine/morphine infusion (SKM) (upper panel), tramadol infusion (T) and tramadol/morphine infusion (TM) (middle panel), and ketorolac infusion (K) and ketorolac/morphine infusion (KM) are shown (lower panel). † P<0.05 between groups, * P<0.05 between treatments.

Figure 25 The percentage changes from baseline for 6 buprenorphine subjects during S-ketamine/morphine infusion (SKM), tramadol/morphine infusion (TM), and 6 control subjects during S-ketamine/morphine infusion (SKM) and tramadol/morphine infusion (TM) are shown. Results are represented as mean ± SEM. The Y axis is in two segments to describe the extent of percentage change for control subjects during the tramadol/morphine infusion.

Figure 26 Electrical stimulation pain tolerance responses on S-ketamine infusion (SK) and S-ketamine/morphine infusion (SKM) (upper panel), tramadol infusion (T) and tramadol/morphine infusion (TM) (middle panel), and ketorolac infusion (K) and ketorolac/morphine infusion (KM) are shown (lower panel). Results are represented as mean ± SEM. * P<0.05 between treatments.

Figure 27 Respiration rates on S-ketamine infusion (SK) and S-ketamine/morphine infusion (SKM) (upper panel), tramadol infusion (T) and tramadol/morphine infusion (TM) (middle panel), and ketorolac infusion (K) and ketorolac/morphine infusion (KM) are shown (lower panel). Results are represented as mean ± SEM. † P<0.05 between groups, ** P<0.01 between treatments.
Abstract

Research has shown that maintenance on methadone and buprenorphine for the treatment of opioid addiction can produce the effects of hyperalgesia. This presents difficulties in the management of moderate to severe acute pain in this population. The situation is complicated by a dearth of evidence-based guidelines for pain management.

The main aims of the four studies described in this thesis were to examine whether very high intravenous morphine doses alone (55.2 mg) (targeting plasma morphine concentrations of 180 ng/ml), or in combination with ketorolac (185.4 mg) (targeting plasma ketorolac concentrations of 4000 ng/ml), tramadol (229 mg) (targeting plasma tramadol concentrations of 1000 ng/ml) or S(+)-Ketamine (S-ketamine) (14.5 mg) (targeting plasma S-ketamine concentrations of 60 ng/ml) (opioid adjuvants) produced antinociception or respiratory effects in methadone maintained subjects (methadone subjects) and buprenorphine maintained subjects (buprenorphine subjects). The antinociceptive tests of the cold pressor and electrical stimulation were utilised. The effects of different maintenance doses of methadone and buprenorphine were also examined. Methadone maintained subjects were stratified into once daily dose groups of 11-45 (n=6), 46-80 (n=6) and 81-115 (n=6) mg per day. Buprenorphine maintained subjects were stratified into once daily dose groups of 2 to 8 (n=4), 9 to 15 (n=4) and 16-22 (n=4) mg per day.

A healthy control group was administered lower doses of morphine alone (11.95 mg), and with adjuvants. The same doses of adjuvants were used in each instance.

In the first study high dose morphine failed to provide antinociception for the methadone subjects. High dose morphine significantly decreased respiration rate, but only by an average of 2 breaths per minute. Methadone subjects were hyperalgesic in the cold pressor test. There were no differences in the antinociceptive responses of the different stratified methadone groups to the high dose morphine. Methadone subjects maintained on the highest doses had the highest respiratory depression.

In the second study buprenorphine subjects performed similarly to methadone subjects in at least three respects: firstly, high dose morphine had little antinociceptive effect; secondly, this dose significantly decreased respiration rate; and thirdly, buprenorphine and methadone subjects were similarly hyperalgesic in the cold pressor test. There were also no differences in the antinociceptive responses of the different buprenorphine groups to the high dose morphine.

In the third study tramadol and ketorolac, when combined with high dose morphine, failed to provide antinociception in either the cold pressor or electrical stimulation tests to methadone subjects. The combination of S-ketamine and high dose morphine provided statistically but not clinically significant improvement in antinociception in the cold pressor test.
In the fourth study ketorolac and high dose morphine did not provide antinociception in buprenorphine maintained subjects. While the combinations of S-ketamine or tramadol and high dose morphine provided statistically significant antinociception for buprenorphine maintained subjects in the cold pressor test, it was not clear whether this change represented a clinically significant improvement.

High dose morphine alone, or combined with opioid adjuvants at these concentrations is unlikely to provide pain relief in this population. The use of higher concentrations of adjuvants in combination with high dose morphine needs to be further evaluated. Other strategies should also be explored that may provide effective pain relief in patients maintained on opioids for the treatment of opioid dependence.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Peter Athanasos, May 2013
Acknowledgements

I would like to acknowledge the excellent help, support and guidance of Professor Jason White, Professor Andrew Somogyi and Emeritus Professor Felix Bochner. They are the best of scientists and it has been a privilege to learn from them.

To those excellent fellows Mark Hutchinson, David Foster, Andrew Menelaou and Tim Mitchell, for their sharp minds, strength of purpose and endless good cheer. To the staff of the Discipline, Anne Tonkin, Abdullah Salem, Rod Irvine, Olga Lopatko, Debbie Wellington, Karen Nunes-Vaz and Erin Morton, thank you. Thanks to Ian Musgrave and his team on level 3, Kosta Farmakis and Francis Dehle for their support, much humour and importantly, a shared love of science. Thanks to Aaron Farquharson for all of his help. Much appreciated. Thanks to Lyell Brougham of Recovery in the Royal Adelaide Hospital.

I wish to thank the following people and organizations: Walter Ling as co-author and co-designer of this set of studies, for his kind hospitality and generosity of spirit, Pfizer Australia Pty Ltd for their generous supply of S-ketamine, and the National Institutes on Drug Abuse, USA for the grant to carry out the studies. I would also like to acknowledge C.S.L. and Roche for their supply of tramadol and ketorolac.

The assays in this thesis were not performed by the author. The assays were performed by other members of the Discipline of Pharmacology, University of Adelaide (Andrew Menelaou and Glynn Morrish). My thanks to them.

My thanks to all the clients and staff at Warinilla, especially Toni Hendry, for their support.

To Jodie Harrison, a lovely person and a dear friend. Particular thanks to David Newcombe. Your support and friendship are valued. Justin Hay, your laughter and companionship has been much appreciated. Charlotte Goess, thank you for your help and friendship.

Peggy Compton. Thank you for our long discussions, excellent guidance, laughter and friendship.

Thank you Meg.

To Michael, Alice and James.

And most importantly, to Michael and Deanna, Diane and Michael, Andrew and Rose.

My family, my world.
Publications and Presentations in Support of This Thesis

Publications

Conference Presentations

Athanasos P, Smith C, Hay J, White J, Somogyi A, Bochner F and Ling W. Opioid dependent patients are cross-tolerant to the antinociceptive effects of S (+) ketamine, ketorolac or tramadol and high dose morphine. 66th Annual Scientific Meeting of the College on Problems of Drug and Alcohol Dependence (2004) San Juan, Puerto Rico (Oral presentation).

Abbreviations, prefixes and symbols

(Morphine 1) (M1)
(Morphine 2) (M2)
5 hydroxytryptamine (5HT)
Analysis of variance (ANOVA)
Australian Professional Society for Alcohol and Other Drugs (APSAD)
Buprenorphine maintained subjects (buprenorphine subjects)
Calcitonin gene-related peptide (CGRP)
Electrospray (ESI)
High-performance liquid chromatography (HPLC)
Hydrochloric acid (HCl)
Liquid chromatograph mass spectrometer (LCMS)
Methadone maintained subjects (methadone subjects)
Post methadone dose (2 hours)
Pre methadone dose (0 hours)
Quality control (QC)
Residual standard deviation of the mean (RSD)
S(+)-Ketamine (S-ketamine)
Standard error of the mean (SEM)