TOWARDS ESTABLISHING LONG-LASTING NEUROPLASTIC CHANGE IN THE HUMAN PRIMARY MOTOR CORTEX

A thesis submitted for the Degree of

DOCTOR OF PHILOSOPHY

By

Mitchell Ryan Goldsworthy B. Sc. (Biomedical Science), Hons.

The Robinson Institute Discipline of Obstetrics and Gynaecology School of Paediatrics and Reproductive Health The University of Adelaide

May 2013

.iv v
vi
• 1
iii
.ix
1

1.4. TH	ERAPEUTIC APPLICATION OF rTMS PROTOCOLS
1.4.1.	Therapeutic application of rTMS in treating psychiatric disorders
1.4.2.	Therapeutic application of rTMS in treating movement disorders
1.4.3.	The application of rTMS as an adjunctive treatment of motor dysfunction
	resulting from stroke
1.4.4.	Critical analysis of the therapeutic potential of rTMS protocols
1.5. TH	E CONSOLIDATION OF NEUROPLASTIC CHANGE
1.5.1.	Increasing the persistence of LTP with repeated trains of stimulation in animal
	models
1.5.2.	Mechanistically distinct phases of synaptic modulation
1.5.3.	The consolidation of neuroplastic change within the human cortex
1.5.4.	Some considerations for the repeated application of rTMS to the human motor
	cortex
1.6. OP	TIMISING TBS APPLICATION
1.6.1.	Variability of the neuroplastic response to rTMS
1.7. SU	MMARY
2. THE	APPLICATION OF SPACED THETA BURST PROTOCOLS
INDUCES	LONG-LASTING NEUROPLASTIC CHANGES IN THE HUMAN
MOTOR C	ORTEX
2.1. AB	STRACT
2.2. INT	TRODUCTION
2.3. MA	TERIALS AND METHODS
2.3.1.	Subjects

2.3.2.	Stimulation and recording
2.3.3.	TBS paradigm
2.3.4.	Sham stimulation
2.3.5.	Experiments
2.3.6.	Data analyses
2.4. RE	SULTS
2.4.1.	Experiment 1 – single cTBS at AMT ₈₀ vs. paired cTBS at AMT ₈₀ 57
2.4.2.	Experiment 2 – single cTBS at RMT ₇₀ vs. paired cTBS at RMT ₇₀
2.4.3.	Relationship between the responses to single and paired cTBS trains
2.4.4.	Stimulation intensity of paired cTBS trains at AMT ₈₀ and RMT ₇₀ 60
2.4.5.	Experiment 3 – paired cTBS trains at RMT ₇₀ primed with an initial voluntary
	contraction
2.4.6.	Experiment 4 – paired cTBS trains at RMT ₆₅
2.4.7.	Experiment 5 - duration of paired cTBS-induced after-effects when applied at
	RMT ₇₀
2.4.8.	Experiment 6 - relationship between the response to the first train and the
	outcome to paired cTBS applied at RMT ₇₀
2.5. DIS	SCUSSION
2.5.1.	Single cTBS trains had no significant effect on corticospinal excitability 66
2.5.2.	Paired cTBS trains at RMT70 induced a long-lasting suppression of corticospinal
	excitability
2.5.3.	Why are paired trains at RMT_{70} more effective than paired trains at AMT_{80} ? 68
2.5.4.	Other factors which may have influenced the response to paired cTBS trains 69
2.5.5.	Mechanisms by which paired cTBS increases neuroplasticity induction

3.	NEU	UROPLASTIC MODULATION OF INHIBITORY MOTOR CO	RTICAL
NI	ETWC	ORKS BY SPACED THETA BURST STIMULATION	75
	3.1.	ABSTRACT	75
	3.2.	INTRODUCTION	76
	3.3.	MATERIALS AND METHODS	78
	3.3.1	1. Subjects	78
	3.3.2	2. Stimulation and recording	78
	3.3.3	3. Continuous theta burst stimulation	79
	3.3.4	4. Short-interval intracortical inhibition	
	3.3.5	5. Long-interval intracortical inhibition	80
	3.3.6	6. Experiments	
	3.3.7	7. Data analyses	
	3.4.	RESULTS	
	3.4.1	1. Experiment 1 – single cTBS protocol	
	3.4.2	2. Experiment 2 – paired cTBS protocols	
	3.4.3	3. Comparison of single and paired cTBS conditions	
	3.5.	DISCUSSION	
	3.5.1	1. Effects of single cTBS on MEP amplitude and SICI	89
	3.5.2	2. Effects of paired cTBS on MEP amplitude and SICI	
	3.5.3	3. Effects of single and paired cTBS protocols on LICI	91
	3.5.4		

4.1. A	BSTRACT	95
.2. II	NTRODUCTION	
4.3. N	IATERIALS AND METHODS	
4.3.1.	Subjects	
4.3.2.	Stimulation and recording	
4.3.3.	TBS for plasticity induction	
4.3.4.	TBS for plasticity reversal	
4.3.5.	Experiments	
4.3.6.	Data analyses	
.4. R	ESULTS	
4.4.1.	Experiment 1 – no cTBS	
4.4.2.	Experiment 2 – single cTBS	
4.4.3.	Experiment 3 – paired cTBS	
4.4.4.	Factors affecting MEP de-depression following contraction	
4.4.5.	Experiment 4 – single cTBS (control)	
4.4.6.	Experiment 5 – de-depression by iTBS150	
4.5. D	DISCUSSION	116
A CO	OMPARISON OF TWO DIFFERENT CONTINUOUS THE	ETA BURST
`IMUL A	ATION PARADIGMS APPLIED TO THE HUMAN	PRIMARY
OTOR	CORTEX	

5.2. IN	TRODUCTION	123
5.3. MA	ATERIALS AND METHODS	125
5.3.1.	Subjects	125
5.3.2.	Stimulation and recording	125
5.3.3.	Magnetic brainstem stimulation (BST)	126
5.3.4.	TBS paradigms	126
5.3.5.	Experimental design	128
5.3.6.	Data analyses	129
5.4. RE	ESULTS	130
5.4.1.	Experiment 1 – comparison of $cTBS_{std}$ and $cTBS_{mod}$ paradigms	130
5.4.2.	Experiment 2 – site of action for the $cTBS_{mod}$ paradigm	135
5.4.3.	Experiment 3 – control for the intensity of stimulation	135
5.5. DI	SCUSSION	137
5.5.1.	Comparison of the $cTBS_{std}$ and $cTBS_{mod}$ -induced after-effects with the theorem of the transformation of transformation of the transformation of the transformation of transformation of the transformation of transformation of the transformation of transformat	hose
	observed in other studies	138
5.5.2.	Cortical site of $cTBS_{mod}$ -induced MEP suppression	140
5.5.3.	Using RMT instead of AMT to set the stimulation intensity	140
5.5.4.	Variations in inter and intra-burst frequencies	142
5.5.5.	Mechanisms responsible for the MEP suppression	143
6. GENE	RAL DISCUSSION	146
6.1. TH	IE REPEATED APPLICATION OF cTBS	146
6.2. MC	OTOR NETWORKS TARGETED BY REPEATED cTBS	150
6.3. CC	ONSOLIDATION BY REPEATED cTBS	153

6.4. OPTIMISING THE PARAMETERS FOR SINGLE cTBS 157
6.5. CONCLUDING REMARKS 160
. APPENDICES161
7.1. APPENDIX I: TRANSCRANIAL MAGNETIC STIMULATION (TMS)
ADULT SAFETY SCREEN161
7.2. APPENDIX II: PUBLICATIONS ARISING FROM THIS THESIS
7.3. APPENDIX III: CHAPTER 2 STATEMENT OF AUTHORSHIP 163
7.4. APPENDIX IV: CHAPTER 3 STATEMENT OF AUTHORSHIP 164
7.5. APPENDIX V: CHAPTER 4 STATEMENT OF AUTHORSHIP 165
7.6. APPENDIX VI: CHAPTER 5 STATEMENT OF AUTHORSHIP 166
. REFERENCES

ABSTRACT

Neuroplasticity is critical for learning, memory, and recovery of lost function following neurological insult. Whilst non-invasive brain stimulation techniques capable of inducing these neuroplastic changes within the human cortex could be therapeutically beneficial for a range of neurological and psychiatric conditions, the short duration, instability, and variability of induced effects limits their therapeutic potential. This thesis has investigated approaches to enhance the duration, stability, and consistency of the neuroplastic response to non-invasive brain stimulation protocols applied to the human primary motor cortex.

The neuroplasticity-inducing paradigm employed throughout this thesis was continuous theta burst stimulation (cTBS), a repetitive transcranial magnetic stimulation (rTMS) paradigm shown to suppress human motor cortical excitability. Studies in animals have shown the repeated, spaced application of stimulation protocols to prolong the duration of experimentally-induced synaptic plasticity. Therefore, Chapter 2 examined whether the spaced application of repeated cTBS protocols enhanced the lifetime of induced neuroplastic effects within the human primary motor cortex. Whilst the neuroplastic response to a single cTBS protocol was minimal, paired cTBS protocols spaced 10 min apart induced a strong suppression of motor cortical excitability that lasted for at least 2 h. A further set of experiments were performed to determine the possible contribution of the inhibitory motor networks to this enhanced neuroplastic response (Chapter 3). Although paired cTBS reduced the excitability of GABA_A-mediated inhibitory motor networks, this effect was only modest. Also, paired cTBS had no effect on GABA_B-mediated inhibition. These findings suggest that the enhanced neuroplastic response to

paired cTBS was likely the result of greater suppression within excitatory motor networks rather than a facilitation of inhibitory motor networks.

In addition to prolonging the duration of experimentally-induced synaptic plasticity, the repeated application of stimulation protocols has also been shown to consolidate these plastic changes in animal models, making them resistant to reversal by subsequent behaviourally-relevant physiological activity. In Chapter 4, I investigated whether the neuroplastic response to paired cTBS was similarly resistant to reversal by behavioural engagement of the stimulated motor regions. Whilst a voluntary activation of the targeted hand muscles reversed the neuroplastic response to a single cTBS protocol, the long-lasting neuroplastic response to paired cTBS was resistant to the same reversal effects. These results suggest that, similar to animal models of synaptic plasticity, the neuroplasticity induced by cTBS may be consolidated when repeated protocols are applied in a spaced manner.

Although Chapters 2, 3, and 4 show a long-lasting and robust response to repeated cTBS protocols, the neuroplastic response to a single cTBS was highly variable between subjects. This may have been due, in part, to non-optimal stimulation characteristics. Therefore, the experiments described in Chapter 5 compared the efficacy of the standard cTBS paradigm (cTBS_{std}) to that of a slightly modified variant (cTBS_{mod}). Compared to cTBS_{std}, cTBS_{mod}-induced neuroplasticity was highly consistent between subjects, suggesting that this may be the more effective neuroplasticity-inducing paradigm.

This thesis demonstrates approaches for inducing long-lasting neuroplastic changes within the human primary motor cortex. These findings have important implications for the therapeutic application of rTMS.

DECLARATION

I, Mitchell Ryan Goldsworthy, certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

<u>Goldsworthy MR</u>, Pitcher JB, Ridding MC (2012) The application of spaced theta burst protocols induces long-lasting neuroplastic changes in the human motor cortex. Eur J Neurosci 35:125-134.

<u>Goldsworthy MR</u>, Pitcher JB, Ridding MC (2012) A comparison of two different continuous theta burst stimulation paradigms applied to the human primary motor cortex. Clin Neurophysiol 123:2256-2263.

<u>Goldsworthy MR</u>, Pitcher JB, Ridding MC (2013) Neuroplastic modulation of inhibitory motor cortical networks by spaced theta burst stimulation protocols. Brain Stimul 6:340-345.

SIGNED.....

DATE.....

ACKNOWLEDGEMENTS

First and foremost, I would like to sincerely thank my supervisors Associate Professor Michael Ridding and Dr Julia Pitcher. Their constant support and willingness to help at a moment's notice has been invaluable throughout this process, and I am extremely grateful to have had such excellent supervision. This thesis certainly would not have been possible without them.

I would like to thank all members of the Neuromotor Plasticity and Development (NeuroPAD) group, past and present, for their assistance over the years. Their friendship and encouragement have meant the world to me. I would also like to extend thanks to Professor Ulf Ziemann and Dr Florian Müller-Dahlhaus for their guidance and supervision during my research stay in Frankfurt, and also to the entire Motor Cortex Group from the Department of Neurology at the Goethe-University Frankfurt for their friendship and support.

I am incredibly grateful to my amazing family. I would like to thank my parents for their unconditional support over the years (and their willingness to feed me!), as well as my brother and sister for putting up with me! I would especially like to thank Mal for her patience and loving support.

Last, but not least, I would like to thank each and every subject who gave up their time to participate in my experiments. Without their help this thesis would not have been possible.

LIST OF FIGURES

Figure 2-1:	Schematic overview of experimental design
Figure 2-2:	The time course of change in MEP amplitudes following a single train and
	paired trains of cTBS applied at AMT ₈₀ (Experiment 1)58
Figure 2-3:	The time course of change in MEP amplitudes following a single train and
	paired trains of cTBS applied at RMT ₇₀ (Experiment 2) 60
Figure 2-4:	Correlations between the MEP responses to single and paired cTBS trains.
Figure 2-5:	The time course of change in MEP amplitudes following paired cTBS
	trains at RMT_{70} primed with an initial voluntary contraction and RMT_{65}
	(Experiment 4)64
Figure 2-6:	Duration of paired cTBS-induced after-effects and the relationship between
	cTBS trains
Figure 3-1:	Experimental timelines
Figure 3-2:	The effect of a single cTBS protocol on RMT, MEP amplitude, SICI, and
	LICI
Figure 3-3:	The effect of paired cTBS protocols on RMT, MEP amplitude, SICI, and
	LICI
Figure 4-1:	Schematic overview of experimental design
Figure 4-2:	The influence of a sub-maximal voluntary contraction on MEP responses to
	no cTBS (Experiment 1), single cTBS (Experiment 2), and paired cTBS
	(Experiment 3)107
Figure 4-3:	Factors affecting the de-depression of single cTBS-induced MEP
	suppression by a voluntary contraction (Experiment 2)

- Figure 5-2: Raw electromyographic data traces from one representative subject...... 131

LIST OF TABLES

Table 3-1: Comparison of baseline measures for the single and paired cTBS conditions.

AIMS & GENERAL INTRODUCTION

Neuronal networks within the human brain undergo constant reorganizational changes throughout life in response to different experiences, a phenomenon termed neuroplasticity. Neuroplasticity is an essential property of the human nervous system and is critically important for an array of normal brain processes. The human motor system has a remarkable capacity for undergoing this neuroplastic change, enabling us to learn and continually refine the accuracy and efficacy of a large range of complex movements. Likewise, this motor cortical plasticity is important for the recovery of motor skills lost due to neurological injury. For instance, in the chronic stages following stroke, much of the recovery of motor function is likely to occur as a result of neuroplasticity. Accordingly, a central focus of neuroscientific research has been to develop therapeutic strategies which beneficially enhance this neuroplastic change. It is hoped that these strategies may someday be used either on their own or in conjunction with conventional rehabilitative therapies to drive neuroplasticity within the affected brain region and promote recovery of lost function. One such strategy exists in the form of non-invasive brain stimulation.

There is much promise of non-invasive brain stimulation techniques to be used as therapeutic agents in treating a range of neurological and psychiatric conditions. However, given the short lifetime and instability of their induced effects within the human motor system, as well as the high variability of individual responses, the implementation of these techniques in a clinical setting is, at present, far from established. Thus, the studies described in this thesis have aimed to optimise the application of these non-invasive brain stimulation protocols such that they produce longer lasting and more robust neuroplastic effects within the human motor system.

Unlike the long-lasting synaptic plasticity induced experimentally in animal models using trains of electrical stimulation, the neuroplasticity induced within the human primary motor cortex using repetitive transcranial magnetic stimulation (rTMS) has a very short lifetime that rarely persists for more than 1 h. This discrepancy may be due to differences in the approaches used to apply stimulation trains: whereas rTMS is applied as a single train in humans, the stimulation protocols used in animals are often applied repeatedly in a spaced manner.

Following a review of the literature in Chapter 1, the first three experimental chapters of this thesis will examine the possible benefits of applying repeated trains of an rTMS paradigm (continuous theta burst stimulation; cTBS) to the human primary motor cortex. Specifically, I will examine the lifetime of the induced neuroplastic changes (Chapter 2), the motor networks at which these changes are likely to occur (Chapter 3), and also the stability of these changes in the presence of behaviourally-relevant physiological activity (Chapter 4). The final experimental chapter will shift focus to the stimulation parameters used for cTBS, with the aim of optimising a single cTBS application such that the induced neuroplastic changes in the human primary motor cortex are less variable between individuals (Chapter 5). This thesis will close with a discussion of the main findings, with a focus on the implications of this research for the therapeutic application of non-invasive brain stimulation.