MANAGING POST-FIRE SOIL EROSION IN THE SOUTHERN MOUNT LOFTY RANGES

Rowena Helen Morris

Bachelor Science (Hons) Geomorphology (University of Sydney)
Graduate Diploma Education (University of Adelaide)
February 2013

Thesis presented for the degree of
Doctorate of Philosophy
Faculty of Science, School of Earth and Environmental Sciences
Abstract

Post-fire soil erosion is a great concern to land managers due to the potential adverse effects on water quality, the alteration to soil profiles and the detrimental impacts on human communities. To reduce the potential adverse effects of post-fire erosion mitigation actions have been instigated following severe wildfires. Various programs of prescribed burning have been initiated to reduce the risk of wildfires. In order to predict and manage post-fire erosion a clear understanding is needed of the influential environmental variables, associated processes and whether mitigation actions will be effective. In the Southern Mount Lofty Ranges there is a paucity of post-fire erosion data from which to generate evidence-based predictive models and management recommendations.

This thesis has the overarching goal of developing evidence-based options for managing post-fire sediment movement in the Southern Mount Lofty Ranges. Evidence-based management of sediment movement from both prescribed fire and wildfire can reduce potential erosion and hence protect regional natural services such as soil profile formation, soil mineral health, the regulation of water quality and maintenance of local landscape character. A case study of the Southern Mount Lofty Ranges is used to produce evidence-based options for managing post-fire erosion in relation to a wildfire at Mount Bold and ten prescribed burns conducted within the Southern Mount Lofty Ranges. Field techniques included visual erosion assessments, erosion pins, terrestrial laser scanning, digital close range photogrammetry and sediment traps. Experiments were designed to incorporate the spatial differences within the topography. Regression modelling was used to analyse environmental variables that influence post-fire sediment movement.

Erosion assessments indicated that after prescribed burning sediment movement occurred in 52% of the burnt areas compared to only 4% in the unburnt areas, however magnitude of movement was only minor. Fire severity was the most influential variable in generating sediment movement after prescribed burning. In contrast slope steepness was the most influential environmental variable in relation to the magnitude of erosion after the 2007 wildfire at Mount Bold. After a 1 in 5 year rainfall event hay-bale sediment barriers will reduce but not prevent post-fire charcoal-rich sediment and debris reaching water reservoirs.
Managing soil erosion in the post-fire landscape requires an appreciation of the influencing environmental variables and the available mitigation options. This thesis highlights the importance of recognising the spatial variability of the topography when managing post-fire erosion. A suite of environmental variables including fire severity, rainfall, aspect, bioturbation, slope length, slope angle and cross-slope curvature need consideration when predicting the occurrence of sediment movement following prescribed fire. Mitigation actions to minimise the adverse effects of post-fire erosion need to take account of rainfall intensity, fire severity and topographical influences. Management of post-fire soil erosion in the Southern Mount Lofty Ranges also needs a recognition of the potential influence on regional natural services including soil profile formation, regulating water quality and maintaining local landscape character.
Contents

ABSTRACT .. iii

TABLE OF CONTENTS .. v

DECLARATION ... viii

PUBLICATIONS AND COPYRIGHT DETAILS .. ix

ACKNOWLEDGEMENTS .. xii

CHAPTER 1 INTRODUCTION .. 1

1.1 Purpose for the research .. 3

1.1.1 Erosion and natural services .. 3

1.1.2 Erosion from wildfires ... 4

1.1.3 Erosion from prescribed fire .. 5

1.1.4 Managing post-fire erosion ... 7

1.1.5 Southern Mount Lofty Ranges case study 10

1.1.6 Evidence-based management .. 15

1.1.7 Summary ... 17

1.2 Aims ... 18

1.3 Structure of the thesis ... 19

1.4 References (Chapter 1) .. 21

CHAPTER 2 COMPARISON OF POST-FIRE SOIL

EROSION ASSESSMENT METHODS ... 29

2.1 Copyright details .. 31

2.2 Statement of contributions ... 31

CHAPTER 3 SOIL EROSION FOLLOWING PRESCRIBED

BURNING ... 53

3.1 Copyright details .. 55

3.2 Statement of contributions ... 55

CHAPTER 4 SEDIMENT TRAPPING AFTER A WILDFIRE

AT MOUNT BOLD ... 91

4.1 Copyright details .. 93

4.2 Statement of contributions ... 93
For the purpose of this exercise, I will construct a table from the given text that includes all the chapters, sections, appendices, and pages as listed. Here is the table:

<table>
<thead>
<tr>
<th>Chapter Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 5 SOIL EROSION AND MITIGATION AFTER THE MOUNT BOLD WILDFIRE</td>
<td>109</td>
</tr>
<tr>
<td>5.1 Copyright details</td>
<td>111</td>
</tr>
<tr>
<td>5.2 Statement of contributions</td>
<td>111</td>
</tr>
<tr>
<td>CHAPTER 6 DISCUSSION AND CONCLUSION</td>
<td>125</td>
</tr>
<tr>
<td>6.1 Overall significance and contribution to knowledge</td>
<td>127</td>
</tr>
<tr>
<td>6.1.1 Soil profile formation and soil mineral health</td>
<td>129</td>
</tr>
<tr>
<td>6.1.2 Water quality</td>
<td>130</td>
</tr>
<tr>
<td>6.1.3 General landscape character</td>
<td>131</td>
</tr>
<tr>
<td>6.2 Problems encountered</td>
<td>132</td>
</tr>
<tr>
<td>6.3 Future direction of the work</td>
<td>135</td>
</tr>
<tr>
<td>6.4 Evidence-based management of post-fire erosion</td>
<td>137</td>
</tr>
<tr>
<td>6.5 Conclusion</td>
<td>138</td>
</tr>
<tr>
<td>6.6 References (Chapter 6)</td>
<td>139</td>
</tr>
<tr>
<td>APPENDIXES</td>
<td>143</td>
</tr>
<tr>
<td>APPENDIX A HOLOCENE PALAEOFIRE</td>
<td>145</td>
</tr>
<tr>
<td>A1 Copyright details</td>
<td>147</td>
</tr>
<tr>
<td>A2 Statement of contribution</td>
<td>147</td>
</tr>
<tr>
<td>APPENDIX B EMERGENCY RESPONSE</td>
<td>165</td>
</tr>
<tr>
<td>B1 Copyright details</td>
<td>167</td>
</tr>
<tr>
<td>B2 Statement of contribution</td>
<td>167</td>
</tr>
<tr>
<td>APPENDIX C CONFERENCE POSTERS</td>
<td>181</td>
</tr>
<tr>
<td>C1 Managing soil erosion in the Southern Mount Lofty Ranges</td>
<td>183</td>
</tr>
<tr>
<td>C2 The dirt on assessing post-fire erosion</td>
<td>184</td>
</tr>
<tr>
<td>C3 Prescribed burning and sediment movement</td>
<td>185</td>
</tr>
<tr>
<td>C4 Does an emergency response protect our water reservoirs?</td>
<td>186</td>
</tr>
<tr>
<td>C5 Terrestrial laser scanning and sediment movement</td>
<td>187</td>
</tr>
<tr>
<td>C6 Trapping sediment following bushfire at Mount Bold</td>
<td>188</td>
</tr>
<tr>
<td>C7 Laser scanning of sediment movement after bushfire</td>
<td>189</td>
</tr>
</tbody>
</table>
APPENDIX D FIRE NOTE AND CASE STUDY ... 191

D1 Fire note: Protecting our water reservoirs with sediment traps 193

D2 Case study: Measuring sediment movement 197
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Rowena Morris and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed: ________________________ Date: 8/2/13

Rowena Helen Morris
Publications and copyright details

Journal papers

Copyright holder of the work:
SAGE Publications Ltd, 1 Oliver's Yard, 55 City Road, London, United Kingdom, EC1Y 1SP

Copyright holder of the work:
International Association of Wildland Fire, through CSIRO Publishing, PO Box 1139, Collingwood, Victoria, 3066, Australia

Refereed conference papers

Copyright holder of the work:
Bushfire Cooperative Research Centre, Level 5, 340 Albert Street, East Melbourne, Victoria, 3002, Australia

Copyright holder of the work:
Engineers Australia, Engineering House, 11 National Circuit, Barton, ACT, 2600, Australia

Copyright holder of the work:
International Association of Hydrological Science, IAHS Press, Centre for Ecology and Hydrology, Wallingford, Oxfordshire, United Kingdom, OX10 8BB

Conference proceeding

Copyright holder of the work:
Bushfire Cooperative Research Centre, Level 5, 340 Albert Street, East Melbourne, Victoria, 3002, Australia

Conference posters

Copyright holder of all posters:
Bushfire Cooperative Research Centre, Level 5, 340 Albert Street, East Melbourne, Victoria, 3002, Australia

Fire note and case study

Fire Note
Bushfire CRC (2010) Protecting our water reservoir with sediment traps

Copyright holder of the work:
Bushfire Cooperative Research Centre, Level 5, 340 Albert Street, East Melbourne, Victoria, 3002, Australia

Case study

Copyright holder of the work:
Maptek Pty Ltd 31 Flemington Street, Glenside, South Australia, 5065, Australia
Acknowledgements

Completing this thesis has been an amazing journey that would not have been possible without the assistance of supervisors, universities, government agencies, private companies, funding bodies, friends and family. I extend my gratitude to everyone involved. In particular I’d like to acknowledge the following people and organisations who have contributed to this thesis research.

I would especially like to thank my four supervisors who have patiently contributed to my PhD journey and provided invaluable assistance. Bertram Ostendorf, my primary supervisor, opened my mind to incorporating the importance of spatial evidence in environmental decision making. I am indebted for his encouragement, time and dedication throughout my candidature. Deirdre Dragovich spent ten years convincing me to come back to academia and study more geomorphology. Deirdre has been an outstanding life mentor, muse, friend and an essential academic supervisor. Ross Bradstock inspired me to explore science as a land manager and his fire science knowledge was invaluable. Meredith Henderson sparked the initial decision to start my PhD journey in order to increase the existing research into fire science in South Australia. Her land management knowledge and access to the relevant government departments was much appreciated. All four supervisors were located in different areas including two different states of Australia. Their combined knowledge was essential for completing this thesis.

Academic and administrative staff from Adelaide University provided ideas, equipment and social support towards this thesis. Thanks to Cameron Grant and Duy Nguyen for conducting the soil survey laboratory work. Thanks to Ariella Helfgott from the Maths Department for help with volume equations. Megan Lewis, Head of the Soil and Lands Systems Discipline, created a wonderful friendly department in which to study.

I’d like to thank the many staff of Wollongong University who made me welcome after our interstate relocation, especially Trent Penman, Owen Price and Anne Porter who taught me the need and joy of statistics. I’d like to extend my appreciation to friends from the University of South Australia (UniSA) for encouraging me to start a PhD and especially to Paul Connelly who bounced ideas and designed the digital close-range photogrammetry set-up. Paul was assisted by three UniSA students: Liam Sloan, Mark Ciccarello and Lateif Alshayji.
Due to the management focus of this thesis many government agencies, organisations and private businesses were involved. Many thanks for the project support and staff involvement from the Department of Environment, Water and Natural Resources. In particular I’d like to acknowledge Ian Tanner for his advice regarding prescribed burns and his continued interest in my results. Also I extend my thanks to Richards Coombs, Tim Fuhlbohm, Gerry Giebel, Tim Groves, Tammy Leggett, Angus Meek, Charlotte Morgan, Anne McLean and Nick Severin.

The South Australia Water Authority supported this study by providing access to numerous reserves and mitigation sites after the Mount Bold wildfire. They also provided invaluable data and water quality results. Both Monique Blason and Dani Boddington provided wonderful encouragement, support and advice in relation to both the Mount Bold and Warren components. In particular I’d like to acknowledge Shane Caliss who was instrumental to the sediment trapping program; he also assisted with installing erosion pins and provided fantastic knowledgeable company in the field. I also extend my thanks to John Bormann, Claude Centofanti, Bert Eerden, Jacqueline Frizenschaf, Daryl Jones, Richard Munn, Ken Ruge and all the staff at the Mount Bold reservoir.

Maptek Pty Ltd kindly supported the research by trialing their I-Site 4400LR terrestrial laser scanner (TLS) at the Mount Bold reservoir. A special acknowledgement goes to James Moncrieff who shared his expertise both in the field and in the office in relation to using the scanner and software for modelling. Thanks are also extended to Jason Richards, Jane Ball and staff from Maptek. Since 2007 the developments in TLS have been incredible; I look forward to seeing the future application of TLS in post-fire erosion studies.

Thanks to the Country Fire Service (CFS) for being interested in erosion research and conducting the prescribed burns. Special thanks to Mark Thomason and Tim Groves (Mapping Support Unit) for providing Incident Action Plans and operational maps from the Mount Bold wildfire. Thank-you to the CFS Promotion Unit, especially Pip McGowan, for access to the online fire photos during my candidature. I’d also like to mention Peter Clemett and Linton Johnston for providing data from the Australian Bureau of Meteorology. I also thank Bob Conroy from the NSW Office of Environment and Heritage: he was always interested in my studies and he encouraged my involvement with the Burnt Area Assessment Team.
Financial support was provided by the Bushfire Cooperative Research Centre, Native Vegetation Grant and the Australian Government postgraduate award. I’d especially like to thank the Bushfire CRC group who were extremely supportive both financially and socially. The Bushfire CRC provided access to both the lead researchers and research end-users via their annual conferences and funding to attend international conferences. They also provided invaluable training and personal encouragement over the entire duration of my candidature. On a personal note I’d like to thank my fellow Bushfire CRC students for sharing the PhD journey and I’d especially like to thank Lyndsey Wright who provided supportive encouragement towards completing my studies whilst I raised my children.

I have a strong belief that raising a well-rounded child needs a strong, functioning community. In a similar notion I have found that completing a PhD also needs a dedicated community. I’d like to thank my parent friends from Keiraville school, preschool, playgroup, canteen, mmm walkers and the neighborhood for sharing and helping with the juggle. I’d especially like to thank my Adelaide friends for their hospitality during my numerous field trips to back to Adelaide. To my fellow students at both Adelaide and Wollongong thank-you for sharing the PhD journey, your friendship was invaluable.

I’d also like to acknowledge the Kaurna people as the traditional custodians of the Adelaide Plains area and the Peramangk people as the traditional custodians of the Adelaide Hills where I studied, and express my respect of their spiritual relationship with their country. I’d like to acknowledge Max Dulumunmun Harrison, an elder from the Yuin people based in the south coast of New South Wales, whose view that you need to “walk the land to talk the land” confirmed and inspired my commitment to field-based studies.

To my amazing, supportive and patient family I extend my largest gratitude. My loveable husband, Sol Buckman has been absolutely wonderful. His encouragement and support made this whole PhD possible. For the copious care of my children including the need for interstate travel I thank my parents and in-laws. Mum and Dad thanks for the understanding dinners and compassionate views during the journey. To my three gorgeous boys: Kai, Liam and Isaac, thank-you for your patience whilst I completed my studies. Dear Isaac, finally you can experience life outside of the PhD.