The Role of Vitamin D Receptor in Osteoblasts and Bone Mineralisation

Nga Ngoc Lam

University of Adelaide
Faculty of Health Science
School of Medical Sciences

Supervisors: Dr Peter O’Loughlin and Dr Paul Anderson
Musculoskeletal Biology Research Laboratory
SA Pathology, Adelaide

A thesis submitted for the degree of

Doctor of Philosophy to
The University of Adelaide
December 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>4</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>5</td>
</tr>
<tr>
<td>NATIONAL AND INTERNATIONAL MEETINGS, SCIENTIFIC ABSTRACTS</td>
<td>7</td>
</tr>
<tr>
<td>RESEARCH GRANTS AND AWARDS ARRISING FROM THIS THESIS</td>
<td></td>
</tr>
<tr>
<td>1 CHAPTER 1: LITERATURE REVIEW: VITAMIN D RECEPTOR AND BONE HOMEOSTASIS</td>
<td>9</td>
</tr>
<tr>
<td>1.1 INTRODUCTION</td>
<td>10</td>
</tr>
<tr>
<td>1.2 BONE BIOLOGY</td>
<td>11</td>
</tr>
<tr>
<td>1.2.1 Function and composition of bones</td>
<td>11</td>
</tr>
<tr>
<td>1.2.2 Skeletalgenesis</td>
<td>12</td>
</tr>
<tr>
<td>1.2.3 Structure of bone</td>
<td>12</td>
</tr>
<tr>
<td>1.2.3.1 Cortical bone</td>
<td>12</td>
</tr>
<tr>
<td>1.2.3.2 Trabecular bone</td>
<td>13</td>
</tr>
<tr>
<td>1.2.3.3 Surfaces of bone</td>
<td>14</td>
</tr>
<tr>
<td>1.2.4 Cellular composition and activity in bone</td>
<td>14</td>
</tr>
<tr>
<td>1.2.4.1 The osteoblast</td>
<td>14</td>
</tr>
<tr>
<td>1.2.4.1.1 Osteoblast origin and differentiation</td>
<td>14</td>
</tr>
<tr>
<td>1.2.4.1.2 Osteoblast structure</td>
<td>15</td>
</tr>
<tr>
<td>1.2.4.1.3 Osteoblast function</td>
<td>15</td>
</tr>
<tr>
<td>1.2.4.2 The osteoclast</td>
<td>18</td>
</tr>
</tbody>
</table>
1.2.4.2.1 *Osteoclast origin and differentiation*
1.2.4.2.2 *Osteoclast structure*
1.2.4.2.3 *Osteoclast function*
1.2.4.3 The osteocyte
1.2.4.3.1 *Osteocyte origin and differentiation*
1.2.4.3.2 *Osteocyte structure*
1.2.4.3.3 *Osteocyte function*
1.2.5 *Bone modelling and remodelling*
1.2.5.1 Bone modelling
1.2.5.2 Bone remodelling
1.3 *VITAMIN D METABOLISM*
1.3.1 *Renal vitamin D hydroxylases*
1.3.2 *Regulation of renal vitamin D hydroxylases*
1.3.2.1 Calcium, phosphate, PTH and 1,25D
1.3.2.2 Fibroblast growth factor 23 (FGF23)
1.4 *VITAMIN D RECEPTOR*
1.4.1 *Structure of VDR*
1.4.2 *Mechanism of actions*
1.4.2.1 Positive gene regulation
1.4.2.2 Negative gene regulation
1.4.2.3 Non-genomic effects of VDR
1.4.3 *VDR polymorphisms*
1.5 *BIOLOGICAL ACTIONS 1,25D-VDR ON BONE HOMEOSTASIS*
1.5.1 1,25D-VDR actions on calcium homeostasis
1.5.1.1 Intestine
1.5.1.2 Kidney 43
1.5.1.3 Parathyroid gland 43
1.5.2 1,25D-VDR direct actions on bone cells 44
1.5.2.1 Osteoblast 44
1.5.2.2 Osteoclast 45
1.5.2.3 Osteocyte 46
1.6 CLINICAL SKELETAL EFFECTS OF VITAMIN D DEFICIENCY 46
1.7 ANIMAL STUDIES FOR THE ACTIONS OF VITAMIN D ON BONE HOMEOSTASIS
1.7.1 Vitamin D receptor knock-out mouse 48
1.7.2 CYP27B1 knock-out and VDR double knock-out mouse 50
1.7.3 Mature osteoblast-specific VDR transgenic mouse 51
1.8 AIMS AND HYPOTHESES 53
1.8.1 Specific aims 53
1.8.2 Significance of project 53

2 CHAPTER 2: MATERIALS AND METHODS 54
2.1 MATERIALS 55
2.2 ANIMALS 55
2.3 HOUSING 55
2.4 DIET 55
2.5 SEMI-SYNTHETIC DIET 56
2.6 BLOOD BIOCHEMISTRY 61
2.6.1 Blood sample collection 61
2.6.2 Serum calcium and phosphate 61
2.6.3 Serum 1,25 dihydroxyvitamin D₃
2.6.4 Serum 25 hydroxyvitamin D₃
2.6.5 Serum parathyroid hormone
2.6.6 Serum fibroblast growth factor 23

2.7 BONE HISTOLOGY
2.7.1 Fluorochrome labelling injections
2.7.2 Bone preparation for dynamic histomorphometry
2.7.3 Tartrate resistant acid phosphatase (TRAP) staining of osteoclast

2.8 BONE MICRO-COMPUTED TOMOGRAPHY

2.9 TISSUE MESSENGER RNA ANALYSES
2.9.1 Extraction of total RNA
2.9.2 Quantification of messenger RNA
2.9.3 Synthesis of cDNA
2.9.4 Quantitative real-time PCR

2.10 WESTERN IMMUNOBLOTTING
2.10.1 Protein extraction
2.10.2 VDR protein immunoblotting

2.11 PRIMARY BONE CELL CULTURE
2.11.1 Cell preparation and culture conditions
2.11.2 Cell preparation for mineralisation assay
2.11.3 Alizaren red-calcium staining
2.11.4 Von Kossa-phosphate staining
2.11.5 Calcium quantification

2.12 STATISTICAL ANALYSES
2.12.1 Two-way analysis of variance
2.12.2 Tukey’s post-hoc test

3 CHAPTER 3: CHARACTERISTION OF THE OSVDR TRANSGENIC MOUSE

3.1 INTRODUCTION

3.2 METHODS
3.2.1 Animal housing
3.2.2 Micro-computed tomography
3.2.3 Serum biochemistry
3.2.4 Quantitative real-time PCR
3.2.5 Western blot of VDR proteins
3.2.6 Primary osteoblast cell culture
3.2.7 Preparation of cell for mineralisation assays
3.2.8 Detection of mineralisation
3.2.9 Statistical analysis

3.3 RESULTS
3.3.1 Analysis of transgene expression by quantitative real time RT-PCR
3.3.2 Expression of the VDR protein in bones
3.3.3 Effects of OSVDR transgene on serum biochemistry measurements
3.3.4 Characterisation of the OSVDR tibial bone volume at 6-weeks of age
3.3.5 Characterisation of the OSVDR tibial bone volume at 18-weeks of age
3.3.6 In vitro mineralisation of OSVDR osteoblast

3.4 DISCUSSION
3.4.1 Validation of human VDR transgene specific expression
3.4.2 Characterisation of the hemizygous and homozygous OSVDR transgenic
CHAPTER 4: THE ROLE OF VITAMIN D RECEPTOR IN OSTEOBLASTS DURING VITAMIN D DEFICIENCY

4.1 INTRODUCTION

4.2 METHODS

4.2.1 Mice and dietary vitamin D restriction

4.2.2 Micro-computed Tomography

4.2.3 Dynamic histomorphometry

4.2.4 Serum Biochemistry

4.2.5 Messenger RNA analyses

4.2.6 1,25D and osteoblast mineralization

4.2.7 Statistical analysis

4.3 RESULTS

4.3.1 Serum Biochemistry

4.3.2 The role of osteoblastic VDR during vitamin D deficiency on cortical bone parameters

4.3.3 The role of osteoblastic VDR during vitamin D deficiency on trabecular bone volume and bone cell activities

4.3.4 Effects of enhanced osteoblastic VDR on FGF23 production and renal activity

4.3.5 Effects of increased osteoblastic VDR and 1,25D treatment on mineralisation

4.4 DISCUSSION

4.4.1 OSVDR cortical bone effects and vitamin D deficiency

4.4.2 OSVDR trabecular bone effects and vitamin D deficiency
5.3.3 Effects of calcium restriction on kidney gene expression and the contribution of osteoblastic VDR and circulating FGF23

5.3.3.1 $Cyp27b1$ mRNA

5.3.3.2 $Cyp24$ mRNA

5.3.3.3 $Napi2a$ and $Napi2c$ mRNA

5.3.4 Effects of calcium restriction on $Cabc9k$ and $Trvp6$ gene expression

5.3.5 Effects of calcium restriction and the contribution of osteoblastic VDR on bone cell activities as measured by qRT-PCR
5.3.5.1 Bone VDR mRNA

5.3.5.2 Osteoblastic genes

5.3.5.3 Osteoclastic genes

5.3.5.4 Osteocytic genes

5.3.6 Effects of increased osteoblastic VDR and calcium on mineralisation in vitro

5.4 DISCUSSION

5.4.1 VDR activity in osteoblasts is important for bone remodelling

5.4.2 VDR activity in osteoblasts mediate feedback for renal 1,25D synthesis by FGF23, impacting on intestinal calcium absorption

6 CHAPTER 6: SUMMARY AND CONCLUSIONS

6.1 Introduction

6.2 Extent of the bone phenotype of the OSVDR mouse model.

6.3 Evidence for direct local effect of osteoblast-specific vitamin D activity

6.4 Endocrine effect of osteoblast-specific vitamin D activity

6.5 Limitations

6.6 Conclusion

BIBLIOGRAPHY
ABSTRACT

Age-related bone loss is associated with a change in bone remodelling characterised by decreased bone formation relative to bone resorption. It is well described that age-related bone loss is accelerated as a consequence of vitamin D deficiency, a process which can be replicated in rodent studies. While vitamin D has been shown to play important roles for adequate bone mineralisation and the prevention of osteoporosis, the exact mechanisms remain controversial. It is clear that vitamin D is necessary for the stimulation of intestinal calcium and phosphate absorption, maintenance of calcium homeostasis and supply of calcium and phosphate for bone mineralisation. However, vitamin D has also been shown to directly act on bone cells to promote mineralisation as well as regulate bone resorption. The question of the essential nature of the in vivo role for the direct actions of vitamin D on bone has proven to be difficult to resolve. The only published mouse model which addresses the direct actions of vitamin D in osteoblasts is the osteoblast-specific vitamin D receptor transgenic mouse, or OSVDR mouse. Using this transgenic mouse model, it has been reported that the enhanced vitamin D activity in osteoblasts promotes bone formation and mediates reduction in bone resorption most likely through reduced RANKL signalling of osteoclastogenesis. The reported overall bone phenotype of the OSVDR was increased vertebral trabecular bone as well as increased cortical bone volume leading to increased bone strength. In contrast to the findings in OSVDR mice, global VDR knockout mice can mineralise osteoid in the presence of high levels of dietary calcium and phosphate, therefore many have concluded that the role for direct vitamin D activity in bone cells is redundant. This view however, does not take into account the fact that vitamin D activity in bone cells may play a permissive role to optimise bone health by modulating mineralisation and bone resorption.

Thus, the studies conducted in this thesis are aimed to further address the role of osteoblastic VDR in bone remodelling and bone architecture. Specifically, these studies aimed to further
establish the phenotype of the OSVDR mouse model utilising 3D micro-CT analyses as well as establish the role of vitamin D activity in osteoblasts during vitamin D deficiency and dietary calcium depletion. The effects of these physiological interventions on OSVDR mice are described in terms of bone structure, cellular activities, biochemical parameters, and gene expression profiles of bone and other organs involved in calcium and phosphate homeostasis. The overall hypothesis is that VDR activity in mature osteoblast lineage is important to regulate processes of bone remodelling and maintenance of an optimal skeletal structure.

The data presented within these chapters showed that the phenotype of increased bone mineral volume is present in more regions of bone, which was not previously recognised. Furthermore, during vitamin D deficiency, while bone loss occurs in wild-type mice, OSVDR mice maintain both cortical and trabecular bone volume, indicating that bone loss due to vitamin D deficiency is due, at least in part, to reduced vitamin D activity in osteoblasts. In contrast to vitamin D deficiency, the effects of low calcium stress in OSVDR mice results in bone loss comparable to wild-type mice, which is likely to be due to a disruption of bone remodelling, since we observed lowered osteoblast, osteoclast and osteocytes activities.

Intriguingly, low calcium fed OSVDR mice demonstrate a marked increase in serum fibroblast growth factor 23 (FGF23) levels, resulting in suppressed renal 1,25-dihydroxyvitamin D (1,25D) synthesis, and reduced expression of intestinal calcium absorption genes. Thus, the inappropriately low 1,25D-mediated intestinal calcium absorption in OSVDR mice, fed low calcium, may further contribute to the reduction in bone mineralisation and bone volume. These data suggest that in addition to the reported direct action of vitamin D activity in osteoblasts to regulate bone turnover, VDR-mediated activity in osteoblast also plays a role in the endocrine feed-back mechanism of renal 1,25D synthesis, which may contribute to the maintenance of bone mineral and the resulting bone phenotype.

In summary, the findings from this thesis implicate the essential role of vitamin D and VDR in osteoblasts either directly or indirectly impacts on bone homeostasis, including osteoclast
activity, osteoblast differentiation, osteocyte activity, bone FGF23 production and renal feed-
back signalling.
DECLARATION

“This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Nga Ngoc Lam and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text”

“I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.”

“The author acknowledges that copyright of the published work contained within this thesis (as listed in the – Publications arising from this thesis) resides with the copyright holder(s) of those works.”

“I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.”

Nga Ngoc Lam
ACKNOWLEDGMENTS

Dr Paul Anderson
Thanks to my supervisor, Dr Paul Anderson who has provided me with support, enthusiasm and encouragement throughout my PhD study. It was a privileged to work in your laboratory and I have very much enjoyed the research project. Thank you for your advice, knowledge, guidance and reassurance, all of which have been invaluable.

*

Dr Peter O’Loughlin
Thanks to Dr Peter O’Loughlin for being my supervisor. I truly appreciate all your advice and help with my PhD project and the thesis.

*

Prof Howard Morris
Thank you for your enthusiasm, encouragement and invaluable intellectual advice and guidance throughout my studies and to the preparation of this thesis.

*

SA Pathology (IMVS)
To all the members of the Musculoskeletal Biology Research group, I offer sincere thanks for your advice and assistance, support and friendship throughout my PhD journey.

*

Garvan Institute
Thankyou to Dr Paul Baldock and Prof Edith Gardiner for providing the OSVDR transgenic mouse model

*

Family and friends
I would like to express everlasting gratitude to my family and friends. My parents Hoan and Oanh who have raised me into the person I am today, who have always offered encouragement, advice and unconditional love. Thanks to my sisters and brother, Tien, Hao
and Tra who have always been there for support and love. Thank you to my wonderful partner, Thien for all your patience, understanding, support and love throughout the years and for helping me fulfil my dreams and pursue happiness. I love you all.
INTERNATIONAL AND NATIONAL SCIENTIFIC MEETINGS AND AWARDS ARISING FROM WORK PRESENTED IN THIS THESIS

PRESENTATIONS

International

National

Oral: Lam NN, Sawyer RK, Anderson SR, Morris HA, O’Loughlin PD, Anderson PH. Increased bone VDR during low dietary calcium mediates renal negative feedback and impairs osteoclast and osteoblast activities in a mouse model. Australian Health and Medical Research Congress, Melbourne, 2010

6th Clare Valley Bone Meeting, McLaren Vale, 2010

AWARDS

• American Society for Bone and Mineral Research: Young Investigator Travel Award, 2010

• Molecular and Experimental Pathology Society of Australasia: Travel Award, 2010

• Australian Society for Medical Research: Best Poster Award in Healthy Aging, 2009

• Australian & New Zealand Bone and Medical Society: Travel Awards, 2008 and 2009

• Department of Physiology, University of Adelaide. Travel awards, 2008-2010.