Exploring the currency of spirometric predictive equations from the viewpoint of the Lung Age concept.

Wendy Lynne Newbury

Discipline of General Practice
School of Population Health
Faculty of Health Sciences
The University of Adelaide
Australia

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Adelaide

June 2013
Table of Contents

Abstract ... iv
Declaration .. vi
Acknowledgements ... vii
Abbreviations .. viii

Chapter 1: Introduction .. 9

Chapter 2: Literature Review .. 11

- Background on spirometry .. 11
- 20th Century developments .. 16
- Standardisation of spirometry ... 17
- Predictive values .. 18
- Chronic Obstructive Pulmonary Disease ... 21
- Effects of smoking ... 26
- Spirometry in smoking cessation counselling .. 30
 - Research where spirometry was part of the intervention ... 34
 - Research where spirometry results were communicated using lung age ... 35
- Conclusion ... 42
- Research Question ... 43

Chapter 3: Exploring the need to update lung age equations .. 44

- Background .. 44
- Discussion relating to Paper One .. 45

Chapter 4: Newer equations better predict lung age in smokers: a retrospective analysis using a cohort of randomly selected participants. .. 56

- Introduction ... 56

Chapter 5: Investigating Delta Lung Age in independent datasets ... 67

- Introduction ... 67
- Methods ... 68
- Results .. 71
- Discussion .. 84

Chapter 6: Discussion .. 89

- Main results ... 89
- Cohort and Period Effects ... 90
Cohort Effect .. 91
Period effect ... 91
Cohort and period effects in relation to LA research 93
Inconsistencies between comparisons ... 95
Lung Age in Smoking cessation .. 96
Counselling: .. 96
Paradigms of smoking cessation counselling 96
Subjective age versus chronological age 97
In relation to other research .. 98
Japanese lung age .. 98
Hansen ∆LA ... 99
Editorial comment to Papers One and Two 100
Collated equations .. 101
Global Lung Initiative (GLI) – a new type of predictive equation 101
Limitations .. 103
Recommendations ... 105

Chapter 7: Summary .. 107

Chapter 8: Appendices .. 108

Appendix 1: A pilot study to evaluate Australian predictive equations for the Impulse Oscillometry System ... 109
Appendix 2: Should we use ‘lung age?’ .. 116
Appendix 3: Measuring the lung age of smokers 120
Appendix 4: Lung age is a useful concept and calculation 123
Appendix 5: Paradoxes of spirometry results, and smoking cessation 126
Appendix 6: Lung Age Estimator, Primary Care Respiratory Toolkit ... 129
Appendix 7: Dawning of a new lung age? 133
Appendix 8: Changes in Predicted FEV1 across 40 years according to different predictive equations ... 136
Appendix 9: Age distributions of samples 137

Chapter 9: Bibliography .. 143
Abstract

Spirometry is used to diagnose respiratory disease, to monitor disease progression and response to treatment, and in epidemiological surveys. As a large burden of disease is caused by cigarette smoking, spirometry has been incorporated in smoking cessation counselling in an attempt to improve quit rates. The concept of lung age (LA) was developed in 1985 in an effort to make spirometry results more easily understood by the lay person. Research results using LA to aid quitting remain inconclusive. This thesis investigates the need to update LA equations, as predictive equations based on old data may not be relevant for today’s populations, and contemporary equations may result in a stronger message for smokers.

New LA equations were firstly developed using contemporary Australian data and four further LA equations were derived from previously published FEV₁ predictive equations. A series of comparisons of LA equations in contemporary Australian datasets followed.

The first project compared the original Morris LA equations with newly developed Australian LA equations in an independent workplace dataset (males only).

The second project compared four extra LA equations derived from previously published FEV₁ equations from Europe, the United Kingdom, America and Australia with the Morris and the new Australian equations. An independent dataset of randomly-selected males and females was used to compare these equations with the Morris LA equations and contemporary Australian LA equations.
Lastly, a different type of LA equation expressed as delta lung age (ΔLA), the difference between chronological age and lung age, based on the ratio of Forced Expiratory Volume in one second/Forced Vital Capacity (FEV$_1$/FVC), was compared with three other LA equations based on FEV$_1$ alone. This project used three independent datasets (urban, rural and a workplace) for added strength.

All LA equations confirmed poorer lung function in smokers than in never smokers in all 3 independent datasets. LA estimates were approximately 20 years lower using the original Morris equations when compared with the newest LA equations. The differences seen between estimated LA using all six equations were consistent in each analysis. The ΔLA equation gave extreme LA estimates in both the community-based datasets compared with the LA equations based on FEV$_1$ alone.

These results show that the Morris LA equations need to be updated. However, there appears to be no advantage in using the ΔLA equation. The differences between the older and the newer LA equations are most likely a result of cohort and period effects. This is also the case in the predictive equations themselves. Continuously updating predictive equations using recently acquired data will result in LA equations that are more relevant to contemporary populations.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed: __________________________ Date: 25th June 2013

Wendy Newbury (candidate)
Acknowledgements

I would like to thank the North West Adelaide Health Study team, the Whyalla Intergenerational Study of Health team, and the Metropolitan Fire Service Study team for generously providing access to their datasets. Obviously, this data would not exist without the hard work of the research and clinic teams, and the subjects themselves. I sincerely thank you all.

A special thank you is also due to the Port Lincoln subjects who kindly presented for spirometry and IOS tests in 2007.

I would like to thank the Discipline of Rural Health, University of Adelaide, for providing a workplace for me in Port Lincoln for the duration of my candidature. The support provided by their IT team is gratefully acknowledged.

Special thanks are also due to Nancy Briggs, and Michelle Lorimer, for statistical assistance and support.

To my supervisors, Alan Crockett and Richard Ruffin, I sincerely thank you both. In particular, Alan has been incredibly supportive, happy to share his knowledge of all things respiratory, and very generous with his time over the last six years. Thank you Alan for introducing me to a respiratory world very different to the one I knew from my nursing training many years ago.

To my husband Jonathan and our daughters, thank you all for helping me get through these last 4 years – and for every distraction away from my computer. Thanks for your belief that I could do this. Your encouragement helped me beyond belief.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATS</td>
<td>American Thoracic Society</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic Obstructive Pulmonary Disease</td>
</tr>
<tr>
<td>CS</td>
<td>Current Smokers</td>
</tr>
<tr>
<td>ECSC</td>
<td>European Community for Steel and Coal</td>
</tr>
<tr>
<td>ERS</td>
<td>European Respiratory Society</td>
</tr>
<tr>
<td>FEF<sub>50</sub></td>
<td>Forced Expiratory Flow at 50%</td>
</tr>
<tr>
<td>FEV<sub>1</sub></td>
<td>Forced expiratory volume in first second</td>
</tr>
<tr>
<td>FEV<sub>1</sub>/FVC</td>
<td>ratio of FEV<sub>1</sub> to FVC</td>
</tr>
<tr>
<td>FVC</td>
<td>Forced Vital Capacity</td>
</tr>
<tr>
<td>IOS</td>
<td>Impulse Oscillometry System</td>
</tr>
<tr>
<td>LA</td>
<td>Lung Age</td>
</tr>
<tr>
<td>∆LA</td>
<td>Delta Lung Age (Difference between LA and chronological age)</td>
</tr>
<tr>
<td>LLN</td>
<td>Lower Limit of Normal</td>
</tr>
<tr>
<td>MFS</td>
<td>Metropolitan Fire Service</td>
</tr>
<tr>
<td>NHANES III</td>
<td>Third National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>NWAHS</td>
<td>North West Adelaide Health Study</td>
</tr>
<tr>
<td>PEF</td>
<td>Peak Expiratory Flow</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised Controlled Trial</td>
</tr>
<tr>
<td>SA</td>
<td>South Australia</td>
</tr>
<tr>
<td>SDL-age</td>
<td>Spirometry Derived Lung Age</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>ULN</td>
<td>Upper Limit of Normal</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>WISH</td>
<td>Whyalla Intergenerational Study of Health</td>
</tr>
</tbody>
</table>