Molecular Characterisation of the Polyhistidine Triad Proteins of *Streptococcus pneumoniae*

Charles Deveron Plumptre, BA (Hons)
A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy from the University of Adelaide

February 2013

Research Centre for Infectious Diseases
School of Molecular and Biomedical Science
The University of Adelaide
Adelaide, S.A., Australia
Table of Contents

Abstract ... v
Declaration .. vii
Abbreviations ... ix
Acknowledgements .. xi
Chapter 1: Introduction ... 1
1.1 Significance of Streptococcus pneumoniae for human health ... 1
1.2 Pathogenesis of pneumococcal disease and underlying molecular mechanisms 1
 1.2.1 Colonisation .. 2
 1.2.2 Progression to invasive disease .. 3
 1.2.3 Host immune response to pneumococci ... 3
1.3 Treatment and prevention of pneumococcal disease ... 4
 1.3.1 Antibiotics .. 4
 1.3.2 Vaccines in current use and their limitations ... 5
 1.3.3 Alternative vaccination strategies .. 6
 1.3.4 Protein-based vaccines ... 8
1.4 Protein vaccine candidates ... 9
 1.4.1 Pneumolysin ... 9
 1.4.2 Pneumococcal surface protein A (PspA) ... 10
 1.4.3 Pneumococcal surface protein C (PspC) ... 11
 1.4.4 Pneumococcal surface adhesin A (PsaA) ... 11
 1.4.5 Combination vaccines ... 12
1.5 Polyhistidine triad proteins .. 12
 1.5.1 Structural features of Pht proteins ... 13
 1.5.2 Genetic organisation and regulation of expression of pht genes 15
 1.5.3 Use in vaccines .. 16
 1.5.4 Roles and functions of Pht proteins in pathogenesis ... 19
1.6 Zinc homeostasis in S. pneumoniae .. 22
 1.6.1 Requirement for zinc and its import and export ... 22
 1.6.2 Mechanism of zinc toxicity .. 23
 1.7 Project aims .. 24
Chapter 2: Materials and Methods ... 27
2.1 Strains and plasmids .. 27
2.2 Growth media ... 29
2.3 Oligonucleotide primers ... 29
2.4 Manipulation of DNA .. 32
 2.4.1 PCR, agarose gel electrophoresis and DNA sequencing .. 32
 2.4.2 Restriction digestion and ligation ... 33
2.5 Transformation of bacteria ... 33
 2.5.1 THY method for pneumococcal transformation ... 33
 2.5.2 Preparation of pneumococcal competent cells and back transformation 33
 2.5.3 Preparation of competent E. coli and transformation ... 34
2.6 Expression and purification of proteins .. 34
 2.6.1 Expression of pneumococcal proteins ... 34
 2.6.2 Purification of pneumococcal proteins .. 34
 2.6.3 Cloning, expression and purification of factor H and SCR domain proteins 35
2.7 Enzyme-linked immunosorbent assay ... 36
2.8 Surface plasmon resonance ... 36
2.9 Flow cytometry ... 37
2.10 Preparation of bacterial lysates and precipitation of proteins from culture supernatants 37
2.11 Cell wall digestion assay ... 38
2.12 Assay for release of Phd over time ... 38
2.13 SDS-PAGE and Western blotting .. 38
2.14 Inductively coupled plasma mass spectrometry .. 39
 2.14.1 Purified proteins ... 39
 2.14.2 Pneumococcal cultures .. 39
7.2 Signal peptide prediction for PhtD ... 138
7.3 Construction of ΔphtABDE strains complemented with altered forms of phtD 141
7.4 Deletion of amino acid stretches causing loss of surface attachment of PhtD 141
7.5 Site-directed mutagenesis in PhtD leading to loss of attachment 146
7.6 Assessment of the chemical nature of attachment by released protein assay 149
7.7 Digestion of the cell wall leads to release of PhtD .. 151
7.8 Culture supernatant swaps show that PhtD does not reversibly detach from and re-attach to the cell surface ... 153
7.9 PhtD is released over time .. 156
7.10 Comparison of levels of PhtD in the culture supernatants of four pneumococcal strains .. 159
7.11 Discussion ... 161

Chapter 8: Final Discussion ... 165
8.1 Importance of research into Pht proteins ... 165
8.2 Functions of Pht proteins .. 165
 8.2.1 Binding of FHL-1 and defence against complement deposition 165
 8.2.2 Role in zinc homeostasis .. 166
8.3 Use of Pht proteins as protective immunogens ... 167
8.4 Surface attachment and release of PhtD .. 168
8.5 Future directions .. 170

References ... 173

Publications and Conference Presentations ... 193
Abstract

The polyhistidine triad (Pht) proteins are a family of proteins defined by the presence of multiple copies of the histidine triad motif (HxxHxH). There are four members of this family in *Streptococcus pneumoniae*: PhtA, B, D and E. The proteins are found on the cell surface and immunisation with them has been shown to elicit protective immunity against disease caused by this Gram positive pathogen.

The aim of the work presented in this thesis was to extend our understanding of the structure and functions of these proteins, as well as to explore their potential use in vaccines. Firstly, the previously reported interaction of the Pht proteins with factor H (a negative regulator of the alternative pathway of the complement system) was investigated by testing binding of the proteins to different regions of factor H by ELISA and flow cytometry. This revealed that the Pht proteins bind to the first seven domains of factor H more strongly than they do to the full length protein.

Pht proteins have also been implicated in binding to zinc ions. In this work the proteins were found to interact to a certain extent with a number of transition metal ions. However, measurements of metal ion content of wild-type and ΔphtABDE mutant strains only showed decreases in zinc and nickel content of the mutant relative to the wild-type. Growth of the mutant strain was impaired relative to wild-type in media with low concentrations of available zinc. Further work indicated that this phenotype is linked to the zinc-specific ABC transporter substrate binding proteins AdcA and AdcAII, and implied that the Pht proteins may facilitate acquisition of zinc by AdcAII.

It is not clear which region or regions of the Pht proteins are required for protective immunity to be induced against pneumococcal disease when used as immunogens. To investigate this, truncated derivatives of PhtA and PhtD were cloned, expressed and purified and analysed for their capacity to bind antibodies that had been generated against the full length protein. This led to the identification of immunogenic regions in both proteins which were subsequently tested as immunogens in mouse models of pneumococcal disease and colonisation. However, significant protective effects were not found in almost all cases, including for control groups immunised with the full length proteins, leading to the conclusion that PhtA and PhtD are not effective vaccine candidates in the models tested.
Lastly, the mechanism of attachment of PhtD to the cell surface was examined by deletion of regions near the N-terminus of the protein and subsequent analysis of the surface accessibilities of the mutant forms of the protein. These experiments identified a short stretch of amino acids that are required for the protein to be cell-associated. Furthermore, a considerable proportion of the total amount of wild-type PhtD produced was found to be released into culture supernatants. Further experiments revealed that the released protein could not re-attach to the surface and that PhtD release occurs in a number of different pneumococcal strains.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Charles Deveron Plumptre and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

...

Charles Deveron Plumptre

....../....../.........
Abbreviations

°C degrees Celsius
μg microgram/s
μl microlitre/s
μM micromolar
ABC transporter ATP-binding cassette transporter
ATP adenosine triphosphate
bp base pairs
C+Y casein hydrolysate medium with yeast extract
CFU colony forming units
cml chloramphenicol
DNA deoxyribonucleic acid
EDTA ethylenediaminetetraacetic acid disodium salt
ELISA enzyme-linked immunosorbent assay
ery erythromycin
FITC fluorescein-5-isothiocyanate
g relative centrifugal force
h hour/s
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid
ICPMS inductively-coupled plasma mass spectrometry
IPTG isopropyl-β-D-thio-galactopyranoside
kb kilobase/s
K_D dissociation constant
kDa kilodalton/s
kg kilogram/s
kpsi kilopounds per square inch
l litre/s
LB Luria Bertani broth
M molar
mg milligram/s
min minute/s
ml millilitre/s
mM millimolar
MOPS 3-(N-morpholino)propanesulphonic acid
ng nanogram/s
Ni-NTA nickel-nitrilotriacetic acid
nm nanometres
OD$_{600}$ optical density at 600 nm
PAGE polyacrylamide gel electrophoresis
PBS phosphate buffered saline
PCR polymerase chain reaction
PMSF phenylmethylsulphonyl fluoride
RT room temperature
s second/s
SBP solute-binding protein
SDS sodium dodecyl sulphate
spec spectinomycin
spp species
TBE tris-borate EDTA buffer
tet tetracycline
TPEN N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine
TTBS Tween tris buffered saline
v/v volume per volume
w/v weight per volume
WT wild-type
Acknowledgements

Firstly I would like to thank my principal supervisor Professor James Paton for giving me the opportunity to come to Australia to do a PhD, as well as for all of the time and effort he has put in to help me complete it and to develop as a scientist. Thanks also to my co-supervisor Dr David Ogunniyi for all of the encouragement, help and advice he has given me, both in the lab and on the soccer pitch.

I would like to thank Dr Chris McDevitt for the large contributions he has made to many aspects of my project, as well as all of the members of the Paton group for their help and friendship throughout my project. To the alpha males Dr Richard Harvey, Brock Herdman and Dr Adam ‘TGM’ Potter, thank you for introducing me ever more to Australian culture, and to the afternoon tea club of Dr Catherine Hughes, Stephanie Philp, Dr Lauren McAllister and Melissa Chai, thank you for always inviting me, especially for when there was cake! Thanks to Dr Claudia Trappetti, Dr Layla Mahdi and Dr Austen Chen for hysterical, delightful and incomprehensible conversation respectively. Thanks also to Dr Adrienne Paton, Zarina Amin, Dr Hui Wang, Dr Trisha Rogers, Dr Miranda Ween, Dr Bart Eijkelkamp, Victoria Lewis, Jacqui Morey, Jon Whittall, Stephanie Begg, Ursula Talbot and Dr Tony Focareta. I feel lucky to have landed in a lab filled with so many friendly and helpful people and that I get to work in such a relaxed and productive environment.

I would also like to thank a number of others who have helped me along the way. Thanks to Dr Stephen Kidd for help with zeta potential measurements, to Dr Alistair Standish for anti-CpsD antibody, to Tatiana Soares Da Costa, Dr Emma Parkinson-Lawrence, Shee Chee Ong and Dr Briony Forbes for help with surface plasmon resonance experiments and to Sarah Wilkinson for help with circular dichroism spectroscopy. I am also very grateful to the Northcote Trust for their financial support throughout my PhD.

Lastly thanks to my amazing fiancée Rachel for putting up with me talking about Phtproteins for three years, and I am looking forward to many more together.