Defining Habitat Use by Declining Woodland Birds to Inform Restoration Programs

Phillip John Northeast
BSc (Hons)

Discipline of Ecology, Evolution and Landscape Science
School of Earth & Environmental Sciences
The University of Adelaide

Thesis submitted for the degree of Doctor of Philosophy

October 2013
Do you just look, or do you see?
Table of Contents

Table of Contents .. i

List of Figures .. iv

List of Tables .. x

Abstract .. xiv

Declaration ... xvi

Acknowledgements ... xvii

Chapter 1 Project review: Revegetating the Para Woodland Reserve 1

 History of land clearance across the Adelaide region ... 1
 Local extinctions and species decline .. 5
 Revegetation and the Para Woodland Reserve ... 7
 The Ph. D project ... 10
 Thesis overview ... 14

Chapter 2 Literature review: Effective revegetation for woodland birds 17

 Introduction .. 17
 Fate of woodland birds in Australia ... 18
 Extinction debt .. 19
 Revegetation ... 20
 Time lags in habitat development .. 21
 Connectivity within fragmented landscapes ... 22
 Broad-scale revegetation .. 24
 Proximity to remnant vegetation ... 25
 Habitat area requirement ... 26
 The need to re-establish temperate woodlands over agricultural soils 28
 Guidelines to inform revegetation activities ... 32
 Summary .. 35

Chapter 3 Coarse-scale habitat use by declining woodland bird species 39

 Introduction .. 39
 Methods .. 40
 Study area .. 40
 Ten hectare study sites ... 42
 Habitat and vegetation surveys ... 44
 Bird surveys .. 46
 Analyses .. 48
 Results .. 52
 Habitat assessment .. 52
 Declining bird species .. 66
 Habitat associations by declining bird species ... 72
 Discussion ... 74
Table of Contents

Chapter 4 Structural habitat heterogeneity within ten hectare sites

- Introduction ... 79
- Methods .. 80
- Results .. 82
 - Site 1 – grassy woodland ... 84
 - Site 2 – closed heath woodland 90
 - Site 3 – closed heath woodland 96
 - Site 4 – open woodland with few trees 102
 - Site 5 – closed heath woodland 108
 - Site 6 – grassy woodland ... 114
 - Site 7 – grazed woodland ... 120
 - Site 8 – open heath woodland 126
 - Site 9 – closed heath woodland 132
 - Site 10 – open heath woodland 138
 - Site 11 – open heath woodland 144
 - Site 12 – closed heath woodland 150
 - Site 13 – closed heath woodland 156
 - Site 14 – open heath woodland 162
 - Site 15 – grassy woodland 168
- Discussion ... 174

Chapter 5 Habitat associations by bird species within ten hectare sites

- Introduction .. 179
- Methods ... 180
- Results .. 181
- Discussion ... 203

Chapter 6 Area requirements of woodland birds in the Mount Lofty region

- Introduction ... 211
- Methods ... 212
 - Justification of the methods used 216
- Results .. 218
- Discussion ... 241

Chapter 7 Variable habitat use within individual home ranges

- Introduction ... 249
- Methods ... 250
- Results .. 256
- Discussion ... 270

Chapter 8 Fine-scale habitat use by birds

- Introduction ... 281
- Methods ... 283
 - Bird surveys and data analyses 283
 - Plot sizes for habitat surveys 285
 - Habitat surveys and data analyses 286
 - Combined bird and habitat data analyses 289
- Results .. 292
Table of Contents

Disproportionate habitat use within home ranges ... 292
Brown Treecreeper .. 294
Buff-rumped Thornbill ... 297
Hooded Robin .. 297
Rufous Whistler ... 299
White-browed Babbler ... 302
White-winged Chough ... 305
Willie Wagtail ... 308
Yellow-rumped Thornbill ... 310
Yellow Thornbill .. 312
Discussion ... 314

Chapter 9 Habitat use by co-inhabiting bird species ... 323
Introduction .. 323
Methods ... 325
Study sites and bird species .. 325
Bird surveys and data analyses .. 326
Results ... 329
Altona Chatterton ... 329
Altona Kies ... 333
Para Wirra Recreation Park .. 337
Sandy Creek ... 340
Discussion ... 343

Chapter 10 Summary and concluding comments .. 347
Synopses of chapters ... 347
Area requirements versus habitat quality ... 350
Inter-species relationships ... 353
Recommendations for future bird studies ... 354
References ... 357
Appendices .. 399
List of Figures

Figure 1.1: Extent of native vegetation clearance across the southern Mount Lofty Ranges, South Australia... 3

Figure 1.2: Article that appeared on the front page of The Advertiser (June 1977) calling for land clearance across South Australia to be curbed .. 5

Figure 1.3: The Para Woodland Reserve consisting of two parcels of land 1.5 km apart, the Yaringa Block and the Barossa Block... 9

Figure 1.4: A schematic diagram of selected foraging guilds within remnant woodlands of the north-central zone of the southern Mount Lofty Ranges, South Australia ... 12

Figure 2.1: Pre-European vegetation communities across the Adelaide Plains ... 31

Figure 2.2: The Para Woodland Reserve situated within an agricultural zone that has largely been cleared of its native vegetation .. 37

Figure 3.1: Survey sites across the north-central zone of the southern Mount Lofty Ranges within a 15 km radius of the Para Woodland Reserve .. 41

Figure 3.2: Cluster analysis dendrogram of survey sites based upon habitat attributes ... 55

Figure 3.3: Two-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features in respect to habitat types .. 59

Figure 3.4: Vegetation differences within six ten hectare sites that were broadly classified *a priori* as closed heath woodland .. 65

Figure 3.5: Dendrogram of ten hectare survey sites based upon bird species associations .. 68

Figure 3.6: Two-dimensional Nonmetric Multidimensional Scaling ordination for declining bird species in respect to habitat types .. 71

Figure 3.7: Distributions of the Hooded Robin (*Melanodryas cucullata*), Jacky Winter (*Microeca fascinans*) and Scarlet Robin (*Petroica boodang*) across three habitat types .. 72

Figure 3.8: Distributions of the Rufous Whistler (*Pachycephala rufiventris*) and Golden Whistler (*Pachycephala pectoralis*) across three habitat types .. 73

Figure 3.9: Distributions of the Common Bronzewing (*Phaps chalcoptera*) and Brush Bronzewing (*Phaps elegans*) across three habitat types ... 73

Figure 3.10: Distributions of the Brown Treecreeper (*Climacteris picumnus*) and White-throated Treecreeper (*Cormobates leucophaeus*) across three habitat types ... 74

Figure 4.1: Hierarchical clustering of 166, 25 m × 25 m squares used to survey the entire ten hectares of Site 1 ... 85

Figure 4.2: Three-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features within Site 1 .. 88

Figure 4.3: Habitat heterogeneity within Site 1 ... 89

Figure 4.4: Hierarchical clustering of 163, 25 m × 25 m squares used to survey the entire ten hectares of Site 2 ... 91

Figure 4.5: Three-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features within Site 2 ... 94

Figure 4.6: Habitat heterogeneity within Site 2 ... 95

Figure 4.7: Hierarchical clustering of 162, 25 m × 25 m squares used to survey the entire ten hectares of Site 3 ... 97

Figure 4.8: Three-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features within Site 3 ... 100

Figure 4.9: Habitat heterogeneity within Site 3 ... 101
Figure 4.10: Hierarchical clustering of 157, 25 m × 25 m squares used to survey the entire ten hectares of Site 4 .. 103

Figure 4.11: Two-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features within Site 4 .. 106

Figure 4.12: Habitat heterogeneity within Site 4 .. 107

Figure 4.13: Hierarchical clustering of 169, 25 m × 25 m squares used to survey the entire ten hectares of Site 5 .. 109

Figure 4.14: Three-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features within Site 5 .. 112

Figure 4.15: Habitat heterogeneity within Site 5 .. 113

Figure 4.16: Hierarchical clustering of 165, 25 m × 25 m squares used to survey the entire ten hectares of Site 6 .. 115

Figure 4.17: Three-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features within Site 6 .. 118

Figure 4.18: Habitat heterogeneity within Site 6 .. 119

Figure 4.19: Hierarchical clustering of 170, 25 m × 25 m squares used to survey the entire ten hectares of Site 7 .. 121

Figure 4.20: Three-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features within Site 7 .. 124

Figure 4.21: Habitat heterogeneity within Site 7 .. 125

Figure 4.22: Hierarchical clustering of 164, 25 m × 25 m squares used to survey the entire ten hectares of Site 8 .. 127

Figure 4.23: Three-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features within Site 8 .. 130

Figure 4.24: Habitat heterogeneity within Site 8 .. 131

Figure 4.25: Hierarchical clustering of 168, 25 m × 25 m squares used to survey the entire ten hectares of Site 9 .. 133

Figure 4.26: Three-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features within Site 9 .. 136

Figure 4.27: Habitat heterogeneity within Site 9 .. 137

Figure 4.28: Hierarchical clustering of 169, 25 m × 25 m squares used to survey the entire ten hectares of Site 10 .. 139

Figure 4.29: Three-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features within Site 10 .. 142

Figure 4.30: Habitat heterogeneity within Site 10 .. 143

Figure 4.31: Hierarchical clustering of 166, 25 m × 25 m squares used to survey the entire ten hectares of Site 11 .. 145

Figure 4.32: Three-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features within Site 11 .. 148

Figure 4.33: Habitat heterogeneity within Site 11 .. 149

Figure 4.34: Hierarchical clustering of 161, 25 m × 25 m squares used to survey the entire ten hectares of Site 12 .. 151

Figure 4.35: Three-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features within Site 12 .. 154

Figure 4.36: Habitat heterogeneity within Site 12 .. 155

Figure 4.37: Hierarchical clustering of 169, 25 m × 25 m squares used to survey the entire ten hectares of Site 13 .. 157
List of Figures

Figure 4.38: Three-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features within Site 13 ... 160
Figure 4.39: Habitat heterogeneity within Site 13 ... 161
Figure 4.40: Hierarchical clustering of 163, 25 m × 25 m squares used to survey the entire ten hectares of Site 14 ... 163
Figure 4.41: Three-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features within Site 14 ... 166
Figure 4.42: Habitat heterogeneity within Site 14 ... 167
Figure 4.43: Hierarchical clustering of 165, 25 m × 25 m squares used to survey the entire ten hectares of Site 15 ... 169
Figure 4.44: Three-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features within Site 15 ... 172
Figure 4.45: Habitat heterogeneity within Site 15 .. 173
Figure 5.1: Midstorey plant species within Site 5 .. 184
Figure 5.2: Average number of Slender Cypress-pine (*Callitris gracilis*) and Drooping Sheoak (*Allocasuarina verticillata*) in three vegetation clusters within Site 11 .. 192

Figure 6.1: Minimum home range estimate for the Brown Treecreeper (*Climacteris picumnus*) based on Minimum Convex Polygon analysis at Altona Chatterton ... 221
Figure 6.2: Minimum home range estimate for the Brown Treecreeper (*Climacteris picumnus*) based on Minimum Convex Polygon analysis at Altona Kies ... 221
Figure 6.3: Minimum home range estimate for the Brown Treecreeper (*Climacteris picumnus*) based on Minimum Convex Polygon analysis at Altona Torbreck (2009) ... 222
Figure 6.4: Minimum home range estimate for the Brown Treecreeper (*Climacteris picumnus*) based on Minimum Convex Polygon analysis at Altona Torbreck (2010) ... 222
Figure 6.5: Minimum home range estimate for the Buff-rumped Thornbill (*Acanthiza reguloides*) based on Minimum Convex Polygon analysis at Para Wirra Site A ... 223
Figure 6.6: Minimum home range estimate for the Buff-rumped Thornbill (*Acanthiza reguloides*) based on Minimum Convex Polygon analysis at Para Wirra Site B (2009) ... 223
Figure 6.7: Minimum home range estimate for the Buff-rumped Thornbill (*Acanthiza reguloides*) based on Minimum Convex Polygon analysis at Para Wirra Site B (2010) ... 224
Figure 6.8: Minimum home range estimate for the the Hooded Robin (*Melanodryas cucullata*) based on Minimum Convex Polygon analysis at Altona Chatterton (during fine weather in 2009) ... 224
Figure 6.9: Minimum home range estimate for the Hooded Robin (*Melanodryas cucullata*) based on Minimum Convex Polygon analysis at Altona Chatterton (during a storm in 2009) ... 225
Figure 6.10: Minimum home range estimate for the Hooded Robin (*Melanodryas cucullata*) based on Minimum Convex Polygon analysis at Altona Chatterton (during fine weather in 2010) 225
Figure 6.11: Minimum home range estimate for the Hooded Robin (*Melanodryas cucullata*) based on Minimum Convex Polygon analysis at Altona Chatterton (during light showers in 2010) ... 226
Figure 6.12: Minimum home range estimate for the Hooded Robin (*Melanodryas cucullata*) based on Minimum Convex Polygon analysis at Altona Kies ... 226
Figure 6.13: Minimum home range estimate for the Hooded Robin (*Melanodryas cucullata*) based on Minimum Convex Polygon analysis at Sandy Creek ... 227
Figure 6.14: Minimum home range estimate for the Rufous Whistler (*Pachycephala rufiventris*) based on Minimum Convex Polygon analysis at Altona Kies ... 227
Figure 6.15: Minimum home range estimate for the Rufous Whistler (*Pachycephala rufiventris*) based on Minimum Convex Polygon analysis at Altona Landcare ... 228
Figure 6.16: Minimum home range estimate for the Rufous Whistler (Pachycephala rufiventris) based on Minimum Convex Polygon analysis at Sandy Creek (2009) 228

Figure 6.17: Minimum home range estimate for the Rufous Whistler (Pachycephala rufiventris) based on Minimum Convex Polygon analysis at Sandy Creek (2010) 229

Figure 6.18: Minimum home range estimate for the White-browed Babbler (Pomatostomus superciliosus) based on Minimum Convex Polygon analysis at Altona Chatterton 229

Figure 6.19: Minimum home range estimate for the White-browed Babbler (Pomatostomus superciliosus) based on Minimum Convex Polygon analysis at Altona Kies (2009) 230

Figure 6.20: Minimum home range estimate for the White-browed Babbler (Pomatostomus superciliosus) based on Minimum Convex Polygon analysis at Altona Kies (2010) 230

Figure 6.21: Minimum home range estimate for the White-browed Babbler (Pomatostomus superciliosus) based on Minimum Convex Polygon analysis at Sandy Creek 231

Figure 6.22: Minimum home range estimate for the White-winged Chough (Corcorax melanorhamphos) based on Minimum Convex Polygon analysis at Para Wirra 231

Figure 6.23: Minimum home range estimate for the White-winged Chough (Corcorax melanorhamphos) based on Minimum Convex Polygon analysis at Sandy Creek (2009) ... 232

Figure 6.24: Minimum home range estimate for the White-winged Chough (Corcorax melanorhamphos) based on Minimum Convex Polygon analysis at Sandy Creek (2010) ... 232

Figure 6.25: Minimum home range estimate for the Willie Wagtail (Rhipidura leucophrys) based on Minimum Convex Polygon analysis at Altona Chatterton (2009) 233

Figure 6.26: Minimum home range estimate for the Willie Wagtail (Rhipidura leucophrys) based on Minimum Convex Polygon analysis at Altona Chatterton (2011) 233

Figure 6.27: Minimum home range estimate for the Willie Wagtail (Rhipidura leucophrys) based on Minimum Convex Polygon analysis at Altona Kies Site A .. 234

Figure 6.28: Minimum home range estimate for the Willie Wagtail (Rhipidura leucophrys) based on Minimum Convex Polygon analysis at Altona Kies Site B (2009) 234

Figure 6.29: Minimum home range estimate for the Willie Wagtail (Rhipidura leucophrys) based on Minimum Convex Polygon analysis at Altona Kies Site B (2010) 235

Figure 6.30: Minimum home range estimate for the Willie Wagtail (Rhipidura leucophrys) based on Minimum Convex Polygon analysis at Sandy Creek .. 235

Figure 6.31: Minimum home range estimate for the Yellow-rumped Thornbill (Acanthiza chrysorrhoa) based on Minimum Convex Polygon analysis at Altona Chatterton (2009) 236

Figure 6.32: Minimum home range estimate for the Yellow-rumped Thornbill (Acanthiza chrysorrhoa) based on Minimum Convex Polygon analysis at Altona Chatterton (2010) 236

Figure 6.33: Minimum home range estimate for the Yellow-rumped Thornbill (Acanthiza chrysorrhoa) based on Minimum Convex Polygon analysis at Altona Kies .. 237

Figure 6.34: Minimum home range estimate for the Yellow Thornbill (Acanthiza nana) based on Minimum Convex Polygon analysis at Altona Chatterton .. 237

Figure 6.35: Minimum home range estimate for the Yellow Thornbill (Acanthiza nana) based on Minimum Convex Polygon analysis at Altona Kies .. 238

Figure 6.36: Minimum home range estimate for the Yellow Thornbill (Acanthiza nana) based on Minimum Convex Polygon analysis at Para Wirra Site A .. 238

Figure 6.37: Minimum home range estimate for the Yellow Thornbill (Acanthiza nana) based on Minimum Convex Polygon analysis at Para Wirra Site B .. 239

Figure 6.38: Minimum home range estimate for the Yellow Thornbill (Acanthiza nana) based on Minimum Convex Polygon analysis at Sandy Creek Site A (2009) 239

Figure 6.39: Minimum home range estimate for the Yellow Thornbill (Acanthiza nana) based on Minimum Convex Polygon analysis at Sandy Creek Site A (2010) 240
List of Figures

Figure 6.40: Minimum home range estimate for the Yellow Thornbill (Acanthiza nana) based on Minimum Convex Polygon analysis at Sandy Creek Site B (2009) ... 240
Figure 6.41: Minimum home range estimate for the Yellow Thornbill (Acanthiza nana) based on Minimum Convex Polygon analysis at Sandy Creek Site B (2010) ... 241
Figure 7.1: Histogram of habitat use by Rufous Whistlers (Pachycephala rufiventris) within the Sandy Creek Conservation Park ... 254
Figure 7.2: Minimum home range for a family group of three Hooded Robins (Melanodryas cucullata) at Altona Kies, compared to the ten hectare survey site for this area 258
Figure 7.3: Pair of Hooded Robins (Melanodryas cucullata) surveyed at Altona Chatterton over two consecutive days, displaying both temporal and spatial disproportionate habitat use 259
Figure 7.4: Use of habitat by a cohesive group of five White-browed Babblers (Pomatostomus superciliosus) at Altona Chatterton ... 261
Figure 7.5: Influence of fire on Brown Treecreepers (Climacteris picumnus) at Altona Chatterton ... 264
Figure 7.6: Habitat use by Hooded Robins (Melanodryas cucullata) at Altona Chatterton, comparing periods of fine weather stormy conditions ... 269
Figure 7.7: Foraging by a pair of Willie Wagtails (Rhipidura leucophrys) at Altona Kies Site B 269
Figure 7.8: Foraging by Buff-rumped Thornbills (Acanthiza reguloides) within Para Wirra Site B. ... 270
Figure 8.1: Cost-complexity pruning curve generated for a classification tree using the rpart functions in R .. 291
Figure 8.2: Brown Treecreeper (Climacteris picumnus) classification tree for two site types on two habitat variables ... 295
Figure 8.3: Hooded Robin (Melanodryas cucullata) classification tree for two site types on two habitat variables ... 298
Figure 8.4: Comparison of foraging heights between male and female Rufous Whistlers (Pachycephala rufiventris) .. 300
Figure 8.5: Rufous Whistler (Pachycephala rufiventris) classification tree for two site types on a single habitat variable ... 301
Figure 8.6: White-browed Babbler (Pomatostomus superciliosus) classification tree for two site types on two habitat variables ... 303
Figure 8.7: Graphical location classification tree for two site types on two habitat variables comparing the Altona woodland with the Sandy Creek Conservation Park for the White-browed Babbler (Pomatostomus superciliosus) ... 304
Figure 8.8: White-winged Chough (Corcorax melanorhamphos) classification tree for two site types on two habitat variables .. 306
Figure 8.9: Graphical location classification tree for two site types on two habitat variables comparing the Sandy Creek Conservation Park with the Altona woodland for the White-winged Chough (Corcorax melanorhamphos) ... 307
Figure 8.10: Willie Wagtail (Rhipidura leucophrys) classification tree for two site types on a single habitat variable ... 309
Figure 8.11: Yellow-rumped Thornbill (Acanthiza chrysothoa) classification tree for two site types on a single habitat variable .. 311
Figure 8.12: Yellow Thornbill (Acanthiza nana) classification tree for two site types on two habitat variables .. 313
Figure 9.1: Survey site at Altona Chatterton comparing habitat use by the Hooded Robin, *Melanodryas cucullata* White-browed Babbler (*Pomatostomus superciliosus*), Willie Wagtail (*Rhipidura leucophrys*) and Yellow-rumped Thornbill (*Acanthiza chrysorrhoa*) ... 330

Figure 9.2: Two-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features used by four bird species surveyed at Altona Chatterton ... 332

Figure 9.3: Survey site at Altona Kies comparing habitat use by the Yellow Thornbill (*Acanthiza nana*), Yellow-rumped Thornbill (*A. chrysorrhoa*), Willie Wagtail (*Rhipidura leucophrys*), Brown Treecreeper (*Climacteris picumnus*), Hooded Robin (*Melanodryas cucullata*), Rufous Whistler (*Pachycephala rufiventris*) and White-browed Babbler (*Pomatostomus superciliosus*) ... 334

Figure 9.4: Two-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features used by seven bird species surveyed at Altona Kies ... 336

Figure 9.5: Survey site within the Para Wirra Recreation Park comparing habitat use by the Yellow Thornbill (*Acanthiza nana*), Buff-rumped Thornbill (*A. reguloides*) and White-winged Chough (*Corcorax melanorhamphos*) ... 338

Figure 9.6: Two-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features used by three bird species surveyed within the Para Wirra Recreation Park ... 339

Figure 9.7: Survey site at Sandy Creek comparing habitat use by the Hooded Robin (*Melanodryas cucullata*), Rufous Whistler (*Pachycephala rufiventris*), White-browed Babbler (*Pomatostomus superciliosus*), White-winged Chough (*Corcorax melanorhamphos*) and Willie Wagtail (*Rhipidura leucophrys*) ... 341

Figure 9.8: Two-dimensional Nonmetric Multidimensional Scaling ordination for vegetation features used by five bird species surveyed at Sandy Creek ... 342
List of Tables

Table 3.1: Five ten hectare survey sites classified *a priori* as grassy woodland within the north-central zone of the southern Mount Lofty Ranges ... 53
Table 3.2: Five ten hectare survey sites classified *a priori* as open heath woodland within the north-central zone of the southern Mount Lofty Ranges ... 53
Table 3.3: Five ten hectare survey sites classified *a priori* as closed heath woodland within the north-central zone of the southern Mount Lofty Ranges ... 54
Table 3.4: Eigenvalues for the three functions interpreted during Regularized Discrimination Analysis .. 57
Table 3.5: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the woodland type group classifications .. 57
Table 3.6: Average percent cover of habitat attributes within four habitat types .. 58
Table 3.7: Grass species recorded within ten hectare survey sites .. 60
Table 3.8: Weed species recorded within ten hectare survey sites .. 61
Table 3.9: Shrub species (< 1 m) within ten hectare survey sites .. 61
Table 3.10: Midstorey plant species (1 – 4 m) within ten hectare survey sites .. 62
Table 3.11: Proportions of overstorey tree species (> 4 m high) within ten hectare survey sites .. 63
Table 3.12: Overstorey trees per hectare (> 4 m high) within ten hectare survey sites .. 64
Table 3.13: Woodland birds detected within the north-central zone of the southern Mount Lofty Ranges near the Para Woodland Reserve, South Australia .. 66
Table 3.14: Indicator bird species from Indicator Species Analysis .. 70
Table 4.1: Non-parametric Multi-response Permutation Procedures used to test the null hypothesis that no differences exist among the hierarchical clusters that were identified for each of 15 sites .. 83
Table 4.2: Number (and percent) of 25 m × 25 m survey squares that were misclassified within each ten hectare site, using Regularized Discriminant Analysis .. 83
Table 4.3: Eigenvalues for the five functions interpreted during Regularized Discrimination Analysis for Site 1 .. 86
Table 4.4: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the cluster type classifications for Site 1 .. 86
Table 4.5: Average percent cover of habitat attributes within the six vegetation clusters (and an outlier) for Site 1 .. 87
Table 4.6: Eigenvalues for the four functions interpreted during Regularized Discrimination Analysis for Site 2 .. 92
Table 4.7: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the cluster type classifications for Site 2 .. 92
Table 4.8: Average percent cover of habitat attributes within the five vegetation clusters for Site 2 .. 93
Table 4.9: Eigenvalues for the two functions interpreted during Regularized Discrimination Analysis for Site 3 .. 98
Table 4.10: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the cluster type classifications for Site 3 .. 98
Table 4.11: Average percent cover of habitat attributes within the three cluster types for Site 3 .. 99
Table 4.12: Eigenvalues for the two functions interpreted during Regularized Discrimination Analysis for Site 4 .. 104
Table 4.13: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the cluster type classifications for Site 4 .. 104
Table 4.14: Average percent cover of habitat attributes within the three cluster types for Site 4 ... 105
Table 4.15: Eigenvalues for the two functions interpreted during Regularized Discrimination Analysis for Site 5 ... 110
Table 4.16: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the cluster type classifications for Site 5 ... 110
Table 4.17: Average percent cover of habitat attributes within the three cluster types for Site 5 ... 111
Table 4.18: Eigenvalues for the three functions interpreted during Regularized Discrimination Analysis for Site 6 ... 116
Table 4.19: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the cluster type classifications for Site 6 ... 116
Table 4.20: Average percent cover of habitat attributes within the three cluster types (and two outliers) for Site 6 ... 117
Table 4.21: Eigenvalues for the three functions interpreted during Regularized Discrimination Analysis for Site 7 .. 122
Table 4.22: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the cluster type classifications for Site 7 .. 122
Table 4.23: Average percent cover of habitat attributes within the four cluster types for Site 7 ... 123
Table 4.24: Eigenvalues for the three functions interpreted during Regularized Discrimination Analysis for Site 8 .. 128
Table 4.25: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the cluster type classifications for Site 8 .. 128
Table 4.26: Average percent cover of habitat attributes within the four cluster types for Site 8 ... 129
Table 4.27: Eigenvalues for the two functions interpreted during Regularized Discrimination Analysis for Site 9 .. 134
Table 4.28: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the cluster type classifications for Site 9 .. 134
Table 4.29: Average percent cover of habitat attributes within the three cluster types for Site 9 ... 135
Table 4.30: Eigenvalues for the two functions interpreted during Regularized Discrimination Analysis for Site 10 .. 140
Table 4.31: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the cluster type classifications for Site 10 .. 140
Table 4.32: Average percent cover of habitat attributes within the three cluster types for Site 10 ... 141
Table 4.33: Eigenvalues for the two functions interpreted during Regularized Discrimination Analysis for Site 11 .. 146
Table 4.34: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the cluster type classifications for Site 11 .. 146
Table 4.35: Average percent cover of habitat attributes within the three cluster types for Site 11 ... 147
Table 4.36: Eigenvalues for the four functions interpreted during Regularized Discrimination Analysis for Site 12 .. 152
Table 4.37: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the cluster type classifications for Site 12 .. 152
List of Tables

Table 4.38: Average percent cover of habitat attributes within the five cluster types for Site 12... 153
Table 4.39: Eigenvalues for the five functions interpreted during Regularized Discrimination Analysis for Site 13 ... 158
Table 4.40: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the cluster type classifications for Site 13 .. 158
Table 4.41: Average percent cover of habitat attributes within the six cluster types for Site 13.. 159
Table 4.42: Eigenvalues for the three functions interpreted during Regularized Discrimination Analysis for Site 14 ... 164
Table 4.43: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the cluster type classifications for Site 14 .. 164
Table 4.44: Average percent cover of habitat attributes within the four cluster types for Site 14.. 165
Table 4.45: Eigenvalues for the four functions interpreted during Regularized Discrimination Analysis for Site 15 ... 170
Table 4.46: Wilks’ Lambda computations from Regularized Discrimination Analysis used to help interpret the cluster type classifications for Site 15 ... 170
Table 4.47: Average percent cover of habitat attributes within the four cluster types (and an outlier) for Site 15 .. 171
Table 5.1: Indicator values for indicator bird species for Site 5 calculated from Indicator Species Analysis .. 183
Table 5.2: Indicator values for indicator bird species for Site 7 calculated from Indicator Species Analysis .. 185
Table 5.3: Plant species used for foraging by a selection of nectarivorous bird species 187
Table 5.4: Indicator values for indicator bird species for Site 4 calculated from Indicator Species Analysis .. 188
Table 5.5: Indicator values for indicator bird species for Site 1 calculated from Indicator Species Analysis .. 189
Table 5.6: Indicator values for indicator bird species for Site 11 calculated from Indicator Species Analysis .. 191
Table 5.7: Indicator values for indicator bird species for Site 14 calculated from Indicator Species Analysis .. 193
Table 5.8: Indicator values for indicator bird species for Site 3 calculated from Indicator Species Analysis .. 195
Table 5.9: Indicator values for indicator bird species for Site 9 calculated from Indicator Species Analysis .. 196
Table 5.10: Indicator values for indicator bird species for Site 13 calculated from Indicator Species Analysis .. 197
Table 5.11: Plant species used for foraging by the Buff-rumped Thornbill (Acanthiza reguloides) ... 199
Table 5.12: Indicator values for indicator bird species for Site 2 calculated from Indicator Species Analysis .. 200
Table 5.13: Percent cover of plant species below four metres within Site 2 201
Table 5.14: Indicator values for indicator bird species for Site 6 calculated from Indicator Species Analysis .. 202
Table 6.1: Minimum home range estimates for birds of nine woodland species within the north-central zone of the southern Mount Lofty Ranges, South Australia.............................. 219
Table 6.2: Minimum home range data for birds of nine woodland species at various locations within the north-central zone of the southern Mount Lofty Ranges, South Australia 220

Table 7.1: Survey efficiency as a percent of time visual contact was maintained and the activities of birds recorded throughout the day ... 257

Table 7.2: Average time spent per waypoint location for individuals of nine woodland bird species .. 258

Table 7.3: Quantitative analysis of temporal variability in habitat use within the minimum home range of a pair of Hooded Robins (*Melanodryas cucullata*) at Altona Chatterton 260

Table 7.4: Quantitative analysis of spatial variability in habitat use within the minimum home range of a cohesive group of five White-browed Babblers (*Pomatostomus superciliosus*) at Altona Chatterton on day .. 262

Table 7.5: Quantitative analyses of annual variability in habitat use within individual minimum home ranges of nine bird species within the north-central zone of the southern Mount Lofty Ranges near the Para Woodland Reserve, South Australia ... 268

Table 8.1: The number of 30 m x 30 m survey plots associated with sites interpreted to be high use habitat areas (i.e. hot-spots) within individual minimum home ranges of nine bird species . 293

Table 8.2: Foraging substrates and plant species used by the Brown Treecreeper (*Climacteris picumnus*) at three sites within the Altona woodland ... 296

Table 8.3: Percent of time spent foraging in different plant species by individuals of Yellow Thornbills (*Acanthiza nana*) .. 314

Table 9.1: Survey locations and the co-inhabiting bird species that were observed within the north-central zone of the southern Mount Lofty Ranges near the Para Woodland Reserve, South Australia ... 326

Table 9.2: Percent habitat overlap between four co-inhabiting bird species at Altona Chatterton.. ... 331

Table 9.3: Percent habitat overlap between seven co-inhabiting bird species at Altona Kies 335

Table 9.4: Percent habitat overlap between three co-inhabiting bird species within the Para Wirra Recreation Park .. 338

Table 9.5: Percent habitat overlap between five co-inhabiting bird species at Sandy Creek....... 341
Abstract

Declines in woodland bird species across southern Australia is an ongoing concern, despite massive reductions in the rates of native habitat clearance. Species decline is particularly evident within the more isolated regions, such as the Mount Lofty Ranges (MLR) in South Australia. Within the MLR, a suite of woodland bird species are currently in decline, while a number of more common species are also now showing signs of being in trouble. It has been predicted that within the MLR, around 35 to 50 woodland bird species will eventually suffer local extinction under a status quo scenario. Proactive efforts aimed at addressing species decline and looming species loss need to be implemented. One such venture is the Para Woodland Reserve revegetation scheme. This 321 ha Reserve located within the north-central zone of the southern MLR, consists of cleared farming land that has been set aside for the re-establishment of woodland habitats through revegetation. The goal for these new woodlands, once established, is to attract and then support individuals of numerous woodland bird species that are currently in decline within the local region.

The first aim of this thesis was to determine if particular woodland types are better than other woodland types in supporting declining woodland bird species, or whether different species of woodland birds associated with different woodland types. If the latter, a mix of different woodland types would need to be reconstructed to maximise the range of bird species that the revegetated Para Woodland Reserve is likely to eventually support. Further, within a certain type of woodland, there is likely to be considerable spatial, structural and/or floristic heterogeneity that in turn may also influence which parts of that woodland will be used by individuals of different bird species. The second aim of this thesis was to document the extent of any heterogeneity within a woodland type and to determine if use by specific bird species was associated with specific habitat features within that woodland. Armed with such knowledge, a deliberate program that is aimed at incorporating specific habitat heterogeneity within the planting regime could be implemented to increase the likely use of new habitats by a suite of declining bird species.

Several novel approaches for surveying birds were employed during this project. In contrast to the popular twenty-minute / two-hectare survey method that is often used to infer broad habitat associations by birds, this project used survey areas that incorporated ten hectares. The strengths of this method are that the habitat associations of bird species
are reported at the scale of the surveyed area, and that the results do not need to be extrapolated beyond the habitat areas being surveyed (i.e. no assumptions are made regarding unsurveyed habitat for birds). Also, most bird surveys are concentrated on periods of peak bird activity (usually mornings) and are limited to times of fine weather conditions only. Instead, for the fine-scale habitat use surveys within individual home ranges, the birds were intensively surveyed for sustained periods between dawn and dusk over multiple days, regardless of the weather conditions. This approach avoided the typical survey biases mentioned above and helped to expose a more holistic view of habitat use by the birds. Much of the information that was gained from using this technique would have otherwise been missed had traditional bird survey methods been employed.

The key findings of this project include, 1) certain bird species responded to one (or two) particular woodland types, seemingly regardless of where within the landscape that woodland was located, 2) a relatively homogeneous woodland at ten hectares contained significant structural habitat heterogeneity, 3) numerous bird species were statistically associated with specific components of habitat structure within ten hectare sites, 4) the minimum home range requirements of birds belonging to several declining woodland species within the MLR were much larger than expected (i.e. 12 – 36 ha), 5) habitat use by birds within individual home ranges varied appreciably, in both time and space, 6) specific habitat attributes associated with either high use habitat areas (i.e. hot-spots) or low use habitat areas (i.e. cold-spots) helped to explain habitat associations by individuals of various bird species, and 7) these same habitat attributes helped to differentiate habitat use between birds of different species that co-existed within a common habitat area.

Recommendations for both the revegetation works on the Para Woodland Reserve and more broadly include, 1) revegetation should provide habitat areas that cover at least tens, if not hundreds, of hectares, 2) plant a variety of woodland types at large spatial scales (e.g. 10 ha each) to cater for a broader suite of locally declining bird species, 3) within each woodland type, incorporate structural (and floristic) heterogeneity at fine spatial scales (e.g. 30 m × 30 m), 4) identify and incorporate the habitat needs of individual bird species at fine spatial scales (e.g. multiple patches covering approximately 30 m × 30 m each), and 5) provide for multiple co-inhabiting bird species by planting a repeated mosaic of different habitat patches at these finer-scales, with each patch “type” catering to the individual habitat needs of one (or a few) pre-determined bird species.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution in my name and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of The University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Phillip John Northeast

01/10/2013
Acknowledgements

Conceptualisation of this project was the brainchild of Associate Professor David C. Paton. Advice, guidance and editorial comment offered by my supervisors David C. Paton and Daniel Rogers was always welcome. Thanks are also extended to Joel Allan and David Coombe for technical support with Arc-GIS. This thesis is also the product of comments that were received from the originally examined thesis. I acknowledge the input both original examiners made towards this re-submitted thesis. However a special mention goes to the arbitrator, who provided further invaluable comments, guidance and insight.

This project relied exclusively on approval for site access from various organisations and private landholders; namely the South Australian Department of Environment, Water and Natural Resources, SA Water, Williamstown-Lyndoch Landcare Group Inc., Torbreck Vinters Pty. Ltd., Doreen Kies, Roland Chatterton, David Lee and Di Smith.

Valuable assistance is also greatly appreciated in identifying plants (Graham Bell, State Herbarium SA), seeds (Thai Te, Seed Conservation Centre), ants (Archie McArthur, SA Museum; Steve Shattuck, CSIRO) and other invertebrates (Prof. Andy Austin and Dr John Jennings, The University of Adelaide).

Warm thanks go to Audra Johnstone (Australian National University) for making available an unpublished Honours thesis. I am also grateful to the Department of Environment, Water and Natural Resources (Mapland) for supplying satellite imagery of the survey region.

Finally, during my candidature I was privileged to receive the FJ Sandoz Scholarship from The University of Adelaide. Also, a generous grant was provided by the Para Woodland Steering Committee, through joint partners Nature Foundation of South Australia and the Department of Environment, Water and Natural Resources, South Australia. These funds helped make this project possible and are gratefully acknowledged.