Targeting Histone Deacetylases to Suppress Bone Loss in Similar Chronic Inflammatory Diseases, Periodontitis and Rheumatoid Arthritis

Melissa Cantley BHlthSc (Hons)
Discipline of Anatomy and Pathology
School of Medical Sciences
University of Adelaide

Supervisors: Associate Professor David Haynes & Professor Mark Bartold
Table of Contents

Table of Abbreviations ... i
Abstract ... iii
Student Declaration .. iv
Acknowledgements ... v
List of Jointly Authored Papers Included in Thesis vi
Papers Included in Appendices ... vi
Chapter 1. Histone Deacetylase Inhibitors as Suppressors of Bone Destruction in Inflammatory Diseases ... 1
 1.1 Introduction ... 1
 1.2 Normal Bone Remodeling ... 2
 1.3 Pathological Bone Loss .. 4
 1.3.1 Periodontitis ... 4
 1.3.2 Rheumatoid Arthritis .. 6
 1.3.3 Relationship between PD and RA 9
 1.4 Inflammation, Bone Loss and Osteoimmunology 11
 1.4.1 Osteoclasts ... 11
 1.4.1.1 Osteoclast Bone Resorption 12
 1.4.1.2 Role of Osteoclasts in Pathological Bone Loss 13
 1.4.1.3 Osteoclastogenesis ... 14
 1.4.1.4 RANKL/OPG ... 15
 1.4.1.5 Intracellular Mediators of Osteoclast Formation 18
 1.4.1.6 Nuclear Factor of Activated T Cells (NFATc1) 19
 1.5 Treatment of Pathological Bone Loss Diseases 20
 1.5.1 Anti-Inflammatory Treatments 21
 1.5.1.1 Conventional Treatments 21
 1.5.1.2 Biologic DMARDS ... 23
 1.5.2 Anti-Resorptive Therapies .. 26
 1.5.2.1 Osteoclast Inhibition .. 26
 1.5.2.2 Inhibiting RANK/RANKL Signalling - Denosumab 26
 1.6 Novel Targets for Treating Bone Loss 27
 1.6.1 Histone Deacetylase Inhibitors (HDACi) 28
 1.6.1.1 Background of HAT and HDACs 28
 1.6.1.2 Biological Properties of HDACi 29
 1.6.1.3 Expression and Inhibition of Specific HDACs 30
 1.6.1.4 HDACi and Osteoclasts 32
 1.6.1.5 HDACi for the Treatment of Bone Resorption 33
 1.6.1.6 Potential Side Effects of HDACi Treatment 34
 1.7 Conclusion ... 35
 1.8 Hypotheses .. 35
 1.9 Aims .. 36
 1.10 References .. 37
Chapter 2. Pre-existing Periodontitis Exacerbates Experimental Arthritis in a Mouse Model ... 51
Chapter 3. Inhibitors of Histone Deacetylases in Class I and Class II Suppress Human Osteoclasts In Vitro ... 66
Chapter 4. Histone Deacetylase Inhibitors and Periodontal Bone Loss ... 85
Chapter 5. Class I and II Histone Deacetylase (HDAC) Expression in Human Periodontitis ... 100
 5.1 Abstract .. 106
 5.2 Introduction .. 107
5.3 Materials and Methods .. 109
5.3.1 Patient Samples .. 109
5.3.2 Sample Preparation.. 110
5.3.3 RNA Expression of HDAC 1-10 ... 110
5.3.4 Immunohistochemical Detection of HDAC 5 and 8 .. 111
5.3.5 Semiquantitative Analysis (SQA) of IHC .. 112
5.4 Results .. 112
5.4.1 mRNA Expression of HDAC 1-10 ... 112
5.4.2 Expression of HDAC 5 and 8 Protein ... 113
5.5 Discussion .. 113
5.6 References .. 121

Chapter 6. Inhibiting Histone Deacetylase 1 (HDAC 1) Suppresses Both Inflammation and Bone Loss in Arthritis ... 125
6.1 Abstract ... 133
6.2 Introduction .. 135
6.3 Methods .. 138
6.3.1 Histone Deacetylase Inhibitors (HDACi) .. 138
6.3.2 In vitro Osteoclast Assay .. 139
6.3.3 Cell Viability ... 139
6.3.4 Osteoclast Formation ... 140
6.3.5 Osteoclast Activity ... 140
6.3.6 Inflammatory Gene Expression In Vitro ... 141
6.3.7 Real Time PCR to Determine mRNA Expression .. 141
6.3.8 Collagen Antibody Induced Arthritis (CAIA) Model ... 142
6.3.9 CAIA Induction .. 142
6.3.10 Live Animal Micro CT Scanning .. 143
6.3.11 Histological Analysis ... 144
6.4 Results .. 144
6.4.1 Osteoclast Formation and Activity ... 144
6.4.2 Gene Expression in Osteoclasts ... 145
6.4.3 Inflammatory Cytokines and Chemokine Gene Expression 146
6.4.4 Collagen Induced Arthritis .. 146
6.4.5 Weight Changes .. 146
6.4.6 Inflammation ... 147
6.4.7 Bone Loss .. 147
6.5 Discussion .. 148
6.6 Conclusion .. 151
6.7 References .. 153

Chapter 7. Discussion .. 164
7.1 Discussion ... 164
7.2 References .. 178

Chapter 8. Conclusions and Future Directions ... 183
Appendices Included As Part of the Thesis .. 185
Appendix 1. Histone Deacetylase Inhibitors as Suppressors of Bone Destruction in Inflammatory Diseases ... 186
Appendix 2. Epigenetic Regulation of Inflammation: Progressing From Broad Acting Histone Deacetylase (HDAC) Inhibitors to Targeting Specific HDACs 204
Appendix 3. List of Other Publications, Awards and Presentations During Candidature 214
Table of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDAC</td>
<td>Histone deacetylase</td>
</tr>
<tr>
<td>HAT</td>
<td>Histone acetyltransferase</td>
</tr>
<tr>
<td>HDACi</td>
<td>Histone deacetylase inhibitors</td>
</tr>
<tr>
<td>PD</td>
<td>Periodontitis</td>
</tr>
<tr>
<td>RA</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour necrosis factor alpha</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>M-CSF</td>
<td>Macrophage colony stimulating factor</td>
</tr>
<tr>
<td>RANKL</td>
<td>Receptor activator of nuclear factor kappa B ligand</td>
</tr>
<tr>
<td>RANK</td>
<td>Receptor activator of nuclear factor kappa B</td>
</tr>
<tr>
<td>NFATc1</td>
<td>Nuclear Factor of Activated T cells</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor kappa B</td>
</tr>
<tr>
<td>OPG</td>
<td>Osteoprotegerin</td>
</tr>
<tr>
<td>TRAF-6</td>
<td>TNF receptor factor-6</td>
</tr>
<tr>
<td>AP-1</td>
<td>Activator protein-1</td>
</tr>
<tr>
<td>IKK</td>
<td>IκB kinase</td>
</tr>
<tr>
<td>CTR</td>
<td>Calcitonin receptor</td>
</tr>
<tr>
<td>TRAP</td>
<td>Tartrate Resistant Acid Phosphatase</td>
</tr>
<tr>
<td>OSCAR</td>
<td>Osteoclast-associated receptor</td>
</tr>
<tr>
<td>CAIA</td>
<td>Collagen antibody induced arthritis</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>Micro CT</td>
<td>Micro Computed Tomography</td>
</tr>
<tr>
<td>DMARDs</td>
<td>Disease modifying anti-arthritis drugs</td>
</tr>
<tr>
<td>MTX</td>
<td>Methotrexate</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>Cath-K</td>
<td>Cathepsin K</td>
</tr>
<tr>
<td>mAb</td>
<td>Monoclonal antibody</td>
</tr>
<tr>
<td>SAHA</td>
<td>Suberoxylanilide hydroxamic acid</td>
</tr>
<tr>
<td>TSA</td>
<td>Trichostatin A</td>
</tr>
<tr>
<td>PBMCs</td>
<td>Peripheral blood mononuclear cells</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Monocyte Chemotactic Protein 1</td>
</tr>
<tr>
<td>MIP-1α</td>
<td>Macrophage Inflammatory Protein 1α</td>
</tr>
<tr>
<td>CIA</td>
<td>Collagen induced arthritis</td>
</tr>
<tr>
<td>PTH</td>
<td>Parathyroid hormone</td>
</tr>
<tr>
<td>IFN-β</td>
<td>Interferon Beta</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon Gamma</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix metallo-proteinase</td>
</tr>
<tr>
<td>BMD</td>
<td>Bone mineral density</td>
</tr>
</tbody>
</table>
Abstract

Rheumatoid arthritis (RA) and periodontitis are two common chronic inflammatory diseases characterized by soft tissue inflammation and associated bone loss. Despite the high prevalence of these conditions and our growing knowledge of the mechanisms involved in the disease processes, the control of bone destruction is still a challenging problem. For this reason it is important to identify anti-resorptive agents that may also inhibit inflammation which can be delivered orally upon diagnosis. Histone deacetylase inhibitors (HDACi) are one such potential therapeutic agent. The aim of this research was to use in vitro human peripheral blood mononuclear cells and human osteoclast assays in conjunction with animal models of periodontitis and inflammatory arthritis to determine the effects of novel HDACi (1179.4b which targets class I and II HDACs and NW-21 targets HDAC 1) on both inflammation and bone loss. The results of this thesis have identified that both RA and periodontitis are interrelated diseases, however, the specific HDACs involved in regulating the inflammatory and resorptive processes may be distinct. It is evident that, in arthritis, HDAC 1 is important in tissue inflammation, in periodontitis HDAC 1, 5, 8 and 9 are important and in osteoclasts HDAC 5 and 8 are up regulated. HDACi such as 1179.4b, NW-21 and MS-275 (class I specific HDACi) have been shown to have the potential to treat inflammatory bone loss. Further studies are necessary to elucidate the roles of each HDAC in RA and periodontitis and better target HDACi therapy.
Student Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Melissa Cantley and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below*) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Pre-existing periodontitis exacerbates experimental arthritis in a mouse model. MD Cantley, DR Haynes, V Marino, PM Bartold. *Journal of Clinical Periodontology* 2011;38:532–541

Histone deacetylase inhibitors as suppressors of bone destruction in inflammatory diseases. MD Cantley, PM Bartold, DP Fairlie, KD Rainsford, DR Haynes. *J Pharmacy and Pharmacology* 2012;64(6):763-74

Signed: M Cantley

Witnessed: M Cantley

Date: / /2013
Acknowledgements

• **Bone and Joint Laboratory:** Firstly, I wish to thank **David Haynes** for being my supervisor and for all the guidance, support and opportunities you have given to me, not just during my PhD but over the last 5 years. **Tania Crotti** you have been a wonderful mentor to me throughout my PhD. I have enjoyed attending many conferences with you, particularly in America. Thank you for all your advice and guidance. Thank you **Kencana Dharmapatni** for all your support and help with immunostaining, I couldn’t have done this part without you.

• **Periodontal Research Group:** Thank you to Mark Bartold for being my co-supervisor and for all your support and help particularly with the clinical side of periodontitis. To, **Victor Marino**, the animal models would not have been possible without your help. I really appreciate all your help and for all the weekend drug treatments and CT scanning, thank you. You are always so positive and will help where ever you can. Thank you to **Catherine Offler** for all your help with editing my thesis which made my life so much easier! Thank you to **Dr Tracy Fitzsimmons, Ms Ceilidh Marchant** and all the rest of the periodontal research group members, it has been great working with you.

• **Institute of Molecular Bioscience, University of Queensland:** Thank you to **David Fairlie** for supply of all the HDACi used in the studies. You have been a fantastic support to me, thank you for all help and suggestions on the pharmacological aspect of the drugs. Thank you also to **Praveer Gupta, Dr Andrew Lucke, Dr Giang Le** for your knowledge and help and advice on the HDACi.

• **School of Medical Sciences:** Thank you to **Dale Caville** and **Tavik Morgenstern** for help with imaging and figures for my publications and thesis.

• Thank you to **Llew Spargo** for help with establishing the collagen antibody induced arthritis model.

• The **IMVS Animal House Staff** who have been very helpful and made the animal work so much easier.

• **Adelaide Microscopy:** Thank you to all the staff for your help and expertise with imaging and analysis.

• Thank you to **Kat Nehme** for being such a wonderful friend and always being so encouraging. You make difficult things seem so simple!

• My wonderful fiancé **Chris:** I could not have finished this without you and your support. You are the most patient person I know! Thank you.

• Thank you to my **family (Mum, Dad and Adam)** for always being so positive and encouraging me.
List of Jointly Authored Papers Included in Thesis

Chapter 2. Pre-existing periodontitis exacerbates experimental arthritis in a mouse model.
MD Cantley, DR Haynes, V Marino, PM Bartold.
Journal of Clinical Periodontology 2011;38:532–541

Chapter 3. Inhibitors of histone deacetylases in Class I and Class II suppress human osteoclasts *in vitro*.
MD Cantley, DP Fairlie, PM Bartold, KD Rainsford, GT Le, AJ Lucke, CA Holding, DR Haynes.
Journal of Cellular Physiology 2011;226(12):3233-41

Chapter 4. Histone deacetylase inhibitors and periodontal bone loss.
Journal of Periodontal Research 2011;46(6):697-703

Chapter 5. Class I and I histone deacetylase (HDAC) expression in human periodontitis.
MD Cantley, TN Crotti, PM Bartold, DR Haynes.
(Manuscript in preparation)

Chapter 6. Targeting HDAC 1 to suppress both inflammation and bone loss in arthritis.
MD Cantley, DP Fairlie, PM Bartold, V Marino, DR Haynes.
(Manuscript in preparation)

Papers Included in Appendices

Appendix 1. Histone deacetylase inhibitors as suppressors of bone destruction in inflammatory diseases.
MD Cantley, PM Bartold, DP Fairlie, KD Rainsford, DR Haynes.
J Pharmacy and Pharmacology 2012;64(6):763-74

Appendix 2. Epigenetic regulation of inflammation: progressing from broad acting histone deacetylase (HDAC) inhibitors to targeting specific HDACs.
MD Cantley, DR Haynes.