Predicting Chemotherapy-Induced Febrile Neutropenia Outcomes in Adult Cancer Patients: An Evidence-Based Prognostic Model

Yee Mei, Lee
Cert Nursing (S’pore), RN,
Adv. Dip. (Oncology) in Nursing (S’pore),
Bsc of Nursing (Monash),
Master of Nursing (S’pore)

Thesis submitted for the Doctor of Philosophy
School of Translational Health Science
The University of Adelaide
Adelaide, South Australia
Australia

November 2013
Table of Contents

TABLE OF CONTENTS ... II
LIST OF TABLES ... VII
LIST OF FIGURES .. VIII
LIST OF ABBREVIATIONS ... XI
ABSTRACT .. XII
DECLARATION ... XIII
ACKNOWLEDGEMENTS ... IX
PUBLICATIONS ... XIXV

1 INTRODUCTION TO THE THESIS .. 15
 1.1 CLINICAL CONTEXT .. 15
 1.2 CLINICAL IMPACT OF CHEMOTHERAPY-INDUCED FEBRILE NEUTROPENIA 16
 1.3 ECONOMIC IMPLICATIONS OF CHEMOTHERAPY-INDUCED FEBRILE NEUTROPENIA 18
 1.4 EVOLVING PRACTICE IN THE MANAGEMENT OF FEBRILE NEUTROPENIA 18
 1.5 PROGNOSTIC FACTORS AND PROGNOSTIC MODELS .. 21
 1.6 PROGNOSTIC FACTORS AND MODELS FOR RISK STRATIFICATION OF FEBRILE NEUTROPENIA PATIENTS ... 22
 1.7 CURRENT STATE OF PROGNOSTIC FACTORS AND MODELS FOR RISK STRATIFICATION OF FEBRILE NEUTROPENIA PATIENTS .. 23
 1.8 OPTIMAL PROGNOSTIC MODEL FOR RISK STRATIFICATION OF FEBRILE NEUTROPENIA PATIENTS .. 25
 1.9 SIGNIFICANCE OF THE RESEARCH .. 25
 1.10 STRUCTURE OF THE THESIS ... 26

2 BACKGROUND ... 27
 2.1 INTRODUCTION TO THE CHAPTER ... 27
 2.2 NEUTROPHILS AND THE BODY IMMUNE SYSTEM .. 27
 2.3 GRADES OF NEUTROPENIA .. 29
 2.4 CHEMOTHERAPY-INDUCED NEUTROPENIA .. 30
 2.5 CHALLENGES IN THE MANAGEMENT OF CHEMOTHERAPY-INDUCED FEBRILE NEUTROPENIA ... 32
 2.6 CHEMOTHERAPY-INDUCED NEUTROPENIA AND FEBRILE NEUTROPENIA – RISK FACTORS AND PREVENTIVE MEASURES .. 34
 2.6.1 Use of colony-stimulating factors in patients with neutropenia 35
 2.6.2 Use of antimicrobial prophylaxis in patients with neutropenia 37
 2.7 FACTORS PREDICTIVE OF FEBRILE NEUTROPENIA OUTCOMES 39
 2.7.1 Patient-related factors .. 39
 2.7.2 Disease-related factors ... 43
 2.7.3 Treatment-related factors ... 45
 2.7.4 Febrile episode-related factors ... 47
 2.7.5 Diagnostic / Laboratory markers .. 53
2.8 Summary of Prognostic Factors for the Risk Stratification of Patients with Febrile Neutropenia

2.9 Prognostic Models for Risk Stratification of Patients with Febrile Neutropenia

2.9.1 Talcott model

2.9.2 MASCC risk-index score

2.9.3 Risk model for patients with haematology malignancies

2.9.4 Summary of the prognostic models

2.10 Current State of Evidence

3 Systematic Review of Prognostic Factors for Febrile Neutropenia Outcomes in Adult Cancer Patients

3.1 Introduction to the Chapter

3.2 Evidence-Based Practice

3.3 Barriers of Evidence-Based Healthcare Adoption

3.4 The Joanna Briggs Institute Model of Evidence-Based Healthcare

3.4.1 Framework of the Joanna Briggs Institute model

3.5 Systematic Review

3.6 Scope of Review for Factors Associated with Febrile Neutropenia Outcomes

3.7 Challenges Associated with Systematic Review of Prognostic Factors

3.8 Meta-Analysis of Individual Patient Data

3.9 Systematic Review Protocol

3.9.1 Statement of the review question

3.9.2 Objectives of the review

3.9.3 Review Questions:

3.9.4 Inclusion criteria

3.9.5 Search strategy

3.9.6 Method of the review

3.9.7 Results of the systematic review

3.9.8 Review findings

3.9.9 Patient-related factors

3.9.10 Disease-related factors

3.9.11 Treatment-related factors

3.9.12 Febrile neutropenia episode-related factors

3.9.13 Laboratory markers

3.9.14 Factors summarised according to the odd ratios

3.9.15 Summary of the review findings

3.9.16 Discussion

3.9.17 Limitations of the Review

3.9.18 Conclusions to the systematic review

3.9.19 Implications for practice

3.9.20 Implications for research
4 PRIMARY STUDY TO ESTABLISH CANDIDATE FACTORS FOR THE PROGNOSIS OF FEBRILE NEUTROPENIA

4.1 INTRODUCTION TO THE CHAPTER

4.2 PROGNOSIS AND ITS UTILITY IN DECISION MAKING

4.3 SINGLE VERSUS MULTIPLE PREDICTORS IN PROGNOSTICATION

4.4 TYPES OF PROGNOSTIC STUDIES

4.5 PROGNOSTIC FACTORS AND MODEL DEVELOPMENT

4.6 QUALITY OF PROGNOSTIC STUDIES

4.6.1 Study design: prospective compared with retrospective designs

4.6.2 Selection of candidate variables

4.6.3 Choice of appropriate outcome measures

4.6.4 Sample size and events in analysis – some limitations

4.6.5 Reporting of results

4.7 PRIMARY STUDY: DESIGN AND METHODS

4.7.1 Justification for primary study

4.7.2 Purpose of the study

4.7.3 Study questions

4.7.4 Site of study

4.7.5 Study design

4.7.6 Sampling

4.7.7 Study population

4.7.8 Sample Size

4.7.9 Operational definitions for variables

4.7.10 Outcomes

4.7.11 Data extraction and management

4.7.12 Statistical analysis

4.7.13 Ethics and Human Subject Issues

4.8 RESULTS

4.8.1 Patient characteristics

4.8.2 Outcomes measure

4.8.3 Patient-related factors

4.8.4 Disease-related factors

4.8.5 Treatment-related factors

4.8.6 Febrile episode-related factors

4.8.7 Laboratory results

4.8.8 Summary of the results

4.8.9 Discussion

4.8.10 Limitations of the primary cohort study

4.8.11 Conclusion

5 PROGNOSTIC MODEL DEVELOPMENT

5.1 INTRODUCTION TO THE CHAPTER

5.2 PROGNOSTIC MODELS – AN OVERVIEW

5.3 CHARACTERISTICS OF GOOD PROGNOSTIC MODELS
5.4 BUILDING A MULTIVARIATE PROGNOSTIC MODEL

5.4.1 Selection of candidate predictors

5.4.2 Data quality and handling

5.4.3 Approach to final model derivation

5.4.4 Assessment of model performance

5.4.5 Model validation

5.4.6 Barriers to prognostic model implementation

5.5 RESULTS:

5.5.1 Development of a prognostic model for febrile neutropenic outcomes

5.5.2 Preliminary validation of BW and LB models

5.6 DISCUSSION

5.6.1 Backward WALD elimination model and literature-based selected predictors model

5.6.2 Comparison between the prognostic models

5.6.3 Limitations

5.7 CONCLUSIONS

5.7.1 Implications for practice

5.7.2 Future research

6 DISCUSSION AND CONCLUSION

6.1 INTRODUCTION TO THE CHAPTER

6.2 REVIEW OF CURRENT APPROACH TO RISK STRATIFICATION AND MANAGEMENT OF PATIENTS WITH FEBRILE NEUTROPENIA

6.3 SUMMARY OF THE STUDIES

6.3.1 Systematic review of prognostic factors for febrile neutropenia outcomes

6.3.2 Primary study for prognostic factors associated with febrile neutropenia outcomes

6.3.3 Development of a new prognostic model for febrile neutropenia outcomes

6.4 IMPLICATIONS FOR CLINICAL PRACTICE

6.4.1 The literature-based prognostic model for febrile neutropenia outcomes

6.5 IMPLICATIONS FOR SYNTHESIS SCIENCE

6.5.1 Improvement in the conduct and reporting of prognostic research

6.5.2 Improvement in methodology for the systematic review of prognostic studies

6.6 IMPLICATIONS FOR RESEARCH

6.6.1 Risk-targeted interventions for management of febrile neutropenia

6.6.2 Validation of newly developed prognostic model for febrile neutropenic outcomes

6.6.3 Comparative studies and impact analysis
List of Tables

Table 2.1 National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 (CTCAE) for Neutrophils ... 29
Table 3.1 Results for the critical appraisal of included studies using the JBI-MAStARI critical appraisal instrument .. 97
Table 3.2 Summary of Clinical Factors Predictive of High- and Low-risk from the Included Studies according to Sub-groups ... 99
Table 3.3 Patient-related factors predictive of FN outcomes .. 100
Table 3.4 Disease-related factors predictive of FN outcomes ... 101
Table 3.5 Disease-related factors predictive of FN outcomes ... 101
Table 3.6 Febrile neutropenia episode-related factors predictive of FN outcomes 103
Table 3.7 Laboratory markers predictive of FN outcomes .. 106
Table 3.8 ORs above 5 (Factors associated with low-risk) .. 108
Table 3.9 ORs above 5 (Factors associated with high-risk) .. 108
Table 3.10 ORs above 2 (Factors associated with low-risk) .. 109
Table 3.11 ORs above 2 (Factors associated with high-risk) .. 109
Table 3.12 OR above 1 (Factors associated with high-risk) ... 110
Table 3.13 Factors with OR not statistically significant ... 110
Table 4.1 Candidate variables included in the primary study ... 146
Table 4.2 Variables and their categories ... 148
Table 4.3 Demographics of sample population ... 157
Table 4.4 Outcomes measure for primary cohort study ... 160
Table 4.5 Patient-related factors and febrile neutropenia outcomes ... 162
Table 4.6 Disease-related factors and febrile neutropenia outcomes ... 164
Table 4.7 Treatment-related factors and febrile neutropenia outcomes 165
Table 4.8 Febrile episode-related factors and febrile neutropenia outcomes 168
Table 4.9 Laboratory results and febrile neutropenia outcomes ... 172
Table 4.10 The area under the receiver operating characteristic curve for 5 models generated from multivariate logistic regression ... 200
Table 5.1 Backward WALD elimination prognostic model for chemotherapy-induced febrile neutropenia in adult cancer patients ... 201
Table 5.2 Literature-based (LB) model for chemotherapy-induced febrile neutropenia in adult cancer patients .. 202
Table 5.3 Demographics for cancer patients experiencing second episode of febrile neutropenia ... 204
Table 5.4 Results from preliminary internal validation of BW and LB models 205
Table 5.5 Preliminary internal validation for backward WALD (BW) and literature-based (LB) models .. 210
Table 5.6 Current prognostic models for outcomes of febrile neutropenia in adult cancer patients .. 212
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Risk factors /Predictors for CIN and FN and its complications from published studies</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>JBI Model of Evidence-Based Healthcare</td>
<td>73</td>
</tr>
<tr>
<td>3.2</td>
<td>Overview of the JBI process for systematic review</td>
<td>76</td>
</tr>
<tr>
<td>3.3</td>
<td>Identification and selection of studies</td>
<td>92</td>
</tr>
<tr>
<td>3.4</td>
<td>Meta-analysis for hypotension as a prognostic factor for high-risk patient with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bacteraemia</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Meta-analysis for hypotension as a prognostic factor for high-risk FN patients with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gram-negative bacteraemia</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Meta-analysis for thrombocytopenia (platelets <50,000/mm³) as a prognostic factor for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>high-risk patients</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Steps in the development of a multivariable prognostic model</td>
<td>131</td>
</tr>
<tr>
<td>5.1</td>
<td>Example and explanation of the area under the receiving operator characteristic curves</td>
<td>194</td>
</tr>
<tr>
<td>5.2</td>
<td>The area under the receiver operating characteristic curve for 5 models generated from</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>multivariate logistic regression</td>
<td></td>
</tr>
</tbody>
</table>
Abstract

Aims: This thesis explored and examined the clinical factors associated with the outcomes of chemotherapy-induced febrile neutropenia for adult cancer patients and confirms the independent predictive value of these factors. Established as predictors, the factors were used to formulate a multivariable prognostic model to stratify patients according to their risk groupings (high- or low-risk) for adverse outcomes for febrile neutropenia. Newly developed models underwent preliminary validation for their performance as prognostic models for febrile neutropenia outcomes.

Background: Accuracy in risk stratification for cancer patients presenting with chemotherapy-induced febrile neutropenia is of critical importance. Serious morbidity may result when treatment is tailored according to misclassified levels of risk. New predictors and prediction tools used for risk stratification have been reported in the recent years. A systematic review was conducted on this topic as part of the thesis and the findings showed a lack of conclusive information on predictive values for some factors identified as predictors, and limitations in prognostic research studies’ methodologies which affect the internal and external validity of the risk prediction tools.

Methods: Clinical factors identified through the systematic review contributed to the candidate factors investigated. Additional factors were also included based on other primary studies not included in the systematic review. A retrospective review of patients’ medical records was conducted. Tests of association using
univariate analysis were conducted on these variables. Significant variables were tested and adjusted for confounders in a multivariate logistic regression analysis to formulate a multivariable tool for risk stratification of patients presenting with febrile neutropenia.

Results: Predictive values for some variables were re-established while some variables failed to demonstrate their predictive values in a univariate analysis. After statistically adjusting to the current factors used in existing prognostic models, a new risk prediction tool was developed predict the risk of adverse outcomes. This tool has been subjected to preliminary validation that confirmed its potential utility. Limitations of the study included single-centre data and the small sample size.

Conclusions: Application of a risk prediction tool has its benefits and limitations. However, enhancement of the methodological rigor and comprehensiveness of reporting of results in prognosis research needs to be emphasised for clarity in interpretation and implementation of the studies' findings. Despite the promising initial validation of the tool developed in this thesis, further extensive validation and evaluation of the tool's performance are needed to show the true impact of the tool on clinical practice.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANC</td>
<td>Absolute neutrophil count</td>
</tr>
<tr>
<td>APC</td>
<td>Absolute phagocyte count</td>
</tr>
<tr>
<td>BW</td>
<td>Backward Wald</td>
</tr>
<tr>
<td>CBC</td>
<td>Complete blood cell</td>
</tr>
<tr>
<td>CCF</td>
<td>Congestive cardiac failure</td>
</tr>
<tr>
<td>CDI</td>
<td>Clinically documented infection</td>
</tr>
<tr>
<td>CIN</td>
<td>Chemotherapy-induced neutropenia</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CSF</td>
<td>(Granulocyte) colony stimulating factor</td>
</tr>
<tr>
<td>EBHC</td>
<td>Evidence-based healthcare</td>
</tr>
<tr>
<td>EBM</td>
<td>Evidence-based medicine</td>
</tr>
<tr>
<td>ECOG</td>
<td>Eastern Cooperative Oncology Group</td>
</tr>
<tr>
<td>FN</td>
<td>Febrile neutropenia</td>
</tr>
<tr>
<td>IDSA</td>
<td>Infectious Diseases Society of America</td>
</tr>
<tr>
<td>IHD</td>
<td>Ischaemic heart disease</td>
</tr>
<tr>
<td>IPD</td>
<td>Individual patient data</td>
</tr>
<tr>
<td>JBI</td>
<td>Joanna Briggs Institute</td>
</tr>
<tr>
<td>LB</td>
<td>Literature-based (selected predictors)</td>
</tr>
<tr>
<td>MASTARI</td>
<td>Meta Analysis of Statistics, Assessment and Review Instrument</td>
</tr>
<tr>
<td>MDI</td>
<td>Microbiologically documented infection</td>
</tr>
<tr>
<td>MoAbs</td>
<td>Monoclonal antibodies</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>PUO</td>
<td>Pyrexia of unknown origin</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver operating characteristic</td>
</tr>
<tr>
<td>WBC</td>
<td>White blood cell</td>
</tr>
</tbody>
</table>
Declaration

I certify that this thesis contains is a record of original work and contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below*) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

__ __
Yee Mei, Lee Date
Acknowledgements

With sincere thanks to my supervisors Dr David Tivey and Dr Jared Campbell for their willing support, guidance and encouragement as I worked through the final preparation of this thesis and made it to completion.

My deepest appreciation to Associate Professor Craig Lockwood, Professor Alan Pearson AM and Dr Suzanne Robertson-Malt, for they have never failed to affirm and protect the flickers of curiosity, uncertainties and enthusiasm but encouraged me to let go of the sails, venture and discover.

This work has been possible with the support from the following persons:

Adjunct A/Prof Joe Sim, Chief Executive Officer and Adjunct A/Prof Lee Siu Yin, Director of Nursing, National University Hospital, Singapore for their commendation for the scholarship.

Professor John Wong E.L, Deputy Chief Executive of the NUHS and Director of the National University Cancer Institute, Singapore and Adjunct A/Prof Emily Ang, Deputy Director of Nursing, National University Hospital, Singapore for their continuous support of my aspirations for cancer care.

Dr Chan Yiong Huak, Head, Biostatistics Unit and Dr Ma Thin Mar Win, Yong Loo Lin School of Medicine National University Health System, Singapore, National University Hospital for their continuous advice and statistical support.

Royal Adelaide Hospital staff who have been a tremendous help in my data collection.

Colleagues and patients from NUH, fellow students and “family” from the Joanna Briggs Institute who have extended support, constant words of encouragement and friendship that have made a difference to the journey.

And, my family who believes in me.
Publications

The work of the chapter 3 has been published as follows:
