The Role of the Free Fatty Acid, Lauric Acid, in Appetite Regulation and its Potential as an Appetite-Suppressant

A thesis submitted by
Kate Feltrin

For the degree of
Doctor of Philosophy

Discipline of Medicine
School of Medicine
University of Adelaide

December 2007
Table of contents

List of abbreviations ... xi
Thesis summary .. xii
Statement of originality .. xvi
Dedication ... xvii
Acknowledgements ... xviii
Publications arising from thesis ... xxi
Other publications .. xxiii

Chapter 1: Nutrient-regulation of appetite and gastrointestinal function

1.1 Introduction ... 1
1.2 Role of nutrients in the regulation of gastrointestinal motility ... 2
 1.2.1 Fasting gastrointestinal motility ... 3
 1.2.2 Postprandial gastrointestinal motility .. 4
1.3 Functions of different regions of the stomach and small intestine ... 5
 1.3.1 Function of the stomach ... 5
 1.3.2 Function of the pylorus ... 6
 1.3.3 Function of the small intestine .. 6
1.4 Effect of nutrients on gastrointestinal hormone secretion .. 7
 1.4.1 Cholecystokinin ... 7
 1.4.2 Glucagon-like peptides ... 7
 1.4.3 Peptide YY .. 8
 1.4.4 Pancreatic polypeptide ... 9
 1.4.5 Ghrelin .. 9
1.5 Relationship between appetite and energy intake with gastrointestinal motility .. 10
 1.5.1 Proximal stomach ... 10
 1.5.2 Distal stomach .. 11
 1.5.3 Pylorus ... 12
 1.5.4 Small intestine ... 13
1.6 The role of gastrointestinal hormones in mediating the effects of nutrients on gastrointestinal motility and energy intake .. 14
Table of contents

1.6.1 Cholecystokinin

Effects of CCK on gastrointestinal function ..15

Effects of CCK on appetite and energy intake ...16

1.6.2 Glucagon-like peptides (GLP-1 and GLP-2)

Effects of GLP-1 and GLP-2 on gastrointestinal function17

Effects of GLP-1 and GLP-2 on appetite and energy intake18

1.6.3 Peptide YY

Effects of PYY on gastrointestinal function ...19

Effects of PYY on appetite and energy intake ..19

1.6.4 Pancreatic polypeptide

Effects of PP on gastrointestinal function ...20

Effects of PP on appetite and energy intake ..21

1.6.5 Ghrelin

Effects of ghrelin on gastrointestinal function ..22

Effects of ghrelin on appetite and energy intake ..22

1.7 Role of region and length of small intestinal nutrient exposure on gastro-intestinal function and energy intake ..23

1.7.1 Effects of the length of small intestinal nutrient exposure23

1.7.2 Effects of the region of small intestinal nutrient exposure25

1.8 Role of energy load and concentration of nutrients delivered into the small intestine ...26

1.8.1 Physiological responses dependent on load ...26

1.8.2 Physiological responses dependent on concentration27

1.8.3 Physiological responses dependent on both load and concentration28

1.9 Interactions between stimuli within the gastrointestinal tract on appetite and energy intake ...29

1.9.1 Interactions between gastric distension with small intestinal nutrients29

1.9.2 Interaction between gastric distension and CCK ..29

1.9.3 Interaction between small intestinal nutrients and CCK30

1.9.4 Interaction between CCK and ghrelin ...30

1.9.5 Interaction between CCK and GLP-1 ..30

1.10 Role of adipose tissue in the chronic regulation of appetite and energy intake .31

1.11 Role of the central nervous system in the regulation of appetite and energy intake ...32
Chapter 2: The effects of fatty acids on gastrointestinal function and energy intake

2.1 Introduction ...35
2.2 The importance of fat digestion ..36
2.3 Effect of fatty acids on gastrointestinal motility, hormone secretion and energy intake ...38
 2.3.1 Effect of fatty acids on gastroduodenal motility38
 2.3.2 Effect of fatty acids on pancreatic and gallbladder function39
 2.3.3 Effect of fatty acids on gastrointestinal hormone secretion40
 2.3.4 Effect of fatty acid chain length on appetite and energy intake42
2.4 Impact of load and concentration in the effects of fatty acids on gastrointestinal function and energy intake ...44
2.5 Role of post-absorptive factors in the regulation of gastrointestinal function and energy intake by fatty acids ...45
 2.5.1 Fatty acid absorption pathways ..46
 2.5.2 Synthesis and secretion of chylomicrons and apolipoprotein A-IV46
 Role of chylomicrons and apolipoprotein A-IV in the regulation of gastrointestinal function and energy intake ...47
 2.5.3 Role of vagal afferent activation ..47
2.6 Cytotoxic properties of fatty acids on intestinal mucosa – potential effects on energy intake ...50
2.7 Effects of oral ingestion of fatty acids ...51
 2.7.1 Comparative effects of intraduodenal, intragastric and oral nutrient delivery on energy intake ...51
2.8 Summary ...52

Chapter 3: Common methodologies

3.1 Introduction ..54
3.2 Subjects ..54
 3.2.1 Inclusion/Exclusion criteria ..54
3.3 Ethics approval ...55
3.4 Study environment ..56
3.5 Measurement of antropyloroduodenal motility ..56
 3.5.1 Nasoduodenal intubation and manometry ..56
 3.5.2 Data acquisition and analyses ...57
3.6 Measurement of gastrointestinal hormones ...58
 3.6.1 Plasma ghrelin ..59
 3.6.2 Plasma cholecystokinin ..59
 3.6.3 Plasma glucagon-like peptide-1 ...60
 3.6.4 Plasma glucagon-like peptide-2 ...60
 3.6.5 Plasma peptide YY ...61
 3.6.6 Plasma pancreatic polypeptide ...63
3.7 Measurement of appetite perceptions and energy intake ..63
 3.7.1 Three Factor Eating Questionnaire ...63
 3.7.2 Visual analogue scale questionnaires ...64
 3.7.3 Energy intake ..65
3.8 Preparation and administration of study interventions ...66
 3.8.1 Free fatty acids ..66
 3.8.2 Hormones for intravenous infusion ...67
3.9 Data and statistical analyses ..68

Chapter 4: Effect of fatty acid chain length on suppression of ghrelin and stimulation of PYY, GLP-2 and PP secretion in healthy men

4.1 Summary ..69
4.2 Introduction ...69
4.3 Materials and methods ..71
 4.3.1 Subjects ..71
 4.3.2 Study design ...71
 4.3.3 Preparation of fatty acid solutions ..71
 4.3.4 Protocol ..72
 4.3.5 Measurement of plasma ghrelin, PYY, GLP-2 and PP concentrations72
 4.3.6 Data and statistical analyses ..72
4.4 Results ..73
 4.4.1 Plasma ghrelin concentrations (Figure 4.1) ...73
Chapter 5: Comparative effects of intraduodenal administration of lauric and oleic acids on antrypyloroduodenal motility, plasma cholecystokinin and peptide YY, appetite and energy intake in healthy male

5.1 Summary ...84
5.2 Introduction ... 85
5.3 Materials and methods ...86
 5.3.1 Subjects .. 86
 5.3.2 Study design ...87
 5.3.3 Preparation of C12 and C18:1 solutions ..87
 5.3.4 Protocol .. 87
 5.3.5 Measurements ..88
 Antropyloroduodenal pressures ...88
 Plasma CCK and GLP-1 concentrations ..88
 Appetite perceptions and energy intake ..89
 5.3.6 Data and statistical analysis ...89
5.4 Results...90
 5.4.1 Antropyloroduodenal motility ...90
 Antral pressure waves ...90
 Pyloric pressures ...90
 Duodenal pressure waves ..91
 Antropyloroduodenal pressure wave sequences ...91
 5.4.2 Plasma hormone concentrations ..91
 Plasma CCK ...91
 Plasma PYY ..91
 5.4.3 Appetite perceptions and energy intake ...92
5.5 Discussion ...97
Chapter 6: Dose-related effects of lauric acid on antropyloroduodenal motility, gastrointestinal hormone release, appetite, and energy intake in healthy men

6.1 Summary ... 101
6.2 Introduction .. 102
6.3 Materials and methods ... 105
 6.3.1 Subjects .. 105
 6.3.2 Study design .. 105
 6.3.3 Preparation and doses of C12 solutions .. 106
 6.3.4 Protocol ... 106
 6.3.5 Measurements .. 107
 Antropyloroduodenal pressures ... 107
 Plasma CCK and GLP-1 concentrations ... 107
 Appetite perceptions and energy intake .. 107
 6.3.6 Data and statistical analyses ... 108
6.4 Results ... 109
 6.4.1 Antropyloroduodenal pressures ... 109
 Antral pressures .. 109
 Pyloric pressures .. 110
 Duodenal pressures .. 110
 Antropyloroduodenal pressure waves sequences 111
 6.4.2 Plasma hormone concentration ... 111
 Plasma CCK concentrations .. 111
 Plasma GLP-1 concentrations ... 112
 6.4.3 Appetite perceptions and energy intake .. 113
6.5 Discussion .. 119
Chapter 7: Effects of lauric acid on upper gut motility, plasma cholecystokinin and peptide YY and energy intake are load, but not concentration, dependent in humans

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Summary</td>
<td>124</td>
</tr>
<tr>
<td>7.2 Introduction</td>
<td>125</td>
</tr>
<tr>
<td>7.3 Materials and methods</td>
<td>127</td>
</tr>
<tr>
<td>7.3.1 Subjects</td>
<td>127</td>
</tr>
<tr>
<td>7.3.2 Study design</td>
<td>128</td>
</tr>
<tr>
<td>7.3.3 Preparation of C12 solutions</td>
<td>128</td>
</tr>
<tr>
<td>Experimental protocol 1: Different loads of C12 at 56 mM (“C12 load”)</td>
<td>129</td>
</tr>
<tr>
<td>Experimental protocol 2: Different concentrations of C12 at 0.4 kcal/min (“C12 concentration”)</td>
<td>129</td>
</tr>
<tr>
<td>7.3.4 Protocol</td>
<td>130</td>
</tr>
<tr>
<td>7.3.5 Measurements</td>
<td>131</td>
</tr>
<tr>
<td>Antropyloroduodenal pressures</td>
<td>131</td>
</tr>
<tr>
<td>Plasma CCK and PYY concentrations</td>
<td>131</td>
</tr>
<tr>
<td>Appetite perceptions and energy intake</td>
<td>131</td>
</tr>
<tr>
<td>7.3.6 Data and statistical analyses</td>
<td>131</td>
</tr>
<tr>
<td>7.4 Results</td>
<td>132</td>
</tr>
<tr>
<td>7.4.1 Effects of load of C12</td>
<td>133</td>
</tr>
<tr>
<td>Antropyloroduodenal pressures</td>
<td>133</td>
</tr>
<tr>
<td>Plasma hormone concentrations</td>
<td>134</td>
</tr>
<tr>
<td>Appetite perceptions and energy intake</td>
<td>135</td>
</tr>
<tr>
<td>7.4.2 Effects of concentration of C12 dialysis</td>
<td>135</td>
</tr>
<tr>
<td>Antropyloroduodenal pressures</td>
<td>135</td>
</tr>
<tr>
<td>Plasma hormone concentrations</td>
<td>136</td>
</tr>
<tr>
<td>Appetite perceptions and energy intake</td>
<td>137</td>
</tr>
<tr>
<td>7.4.3 Comparison between C12(0.4) (“C12 load”) and C12(56) (“C12 concentration”)</td>
<td>137</td>
</tr>
<tr>
<td>7.5 Discussion</td>
<td>142</td>
</tr>
</tbody>
</table>
Chapter 8: Evaluation of the interactions between cholecystokinin and glucagon-like peptide-1 in their effects on appetite, energy intake and antropyloroduodenal motility in healthy men

8.1 Summary ... 147
8.2 Introduction ... 148
8.3 Materials and methods ... 150
 8.3.1 Subjects .. 150
 8.3.2 Study design ... 151
 8.3.3 Protocol .. 151
 8.3.4 Measurements ... 152
 Appetite perceptions and energy intake ... 152
 Antropyloroduodenal motility ... 152
 Plasma CCK and GLP-1 concentrations .. 152
 8.3.5 Data and statistical analyses .. 153
8.4 Results... 154
 8.4.1 Appetite perceptions and energy intake ... 154
 Desire to eat ... 154
 Fullness .. 154
 Nausea ... 154
 Energy intake .. 155
 8.4.2 Antropyloroduodenal pressures ... 155
 Antral pressures ... 155
 Pyloric pressures ... 156
 Duodenal pressures ... 157
 8.4.3 Antropyloroduodenal pressure wave sequences... 157
 8.4.4 Plasma CCK and GLP-1 concentrations .. 158
8.5 Discussion ... 165

Chapter 9: Acute effects of oral lauric acid on appetite and energy intake in healthy males

9.1 Summary ... 170
9.2 Introduction ... 171
9.3 Pilot study: Effect of C12 on gastrointestinal symptoms 173
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.1 Methods and materials</td>
<td>173</td>
</tr>
<tr>
<td>Subjects</td>
<td>173</td>
</tr>
<tr>
<td>Study design</td>
<td>173</td>
</tr>
<tr>
<td>Preparation of C12 capsules</td>
<td>175</td>
</tr>
<tr>
<td>Protocol</td>
<td>174</td>
</tr>
<tr>
<td>Measurement of gastrointestinal symptoms</td>
<td>174</td>
</tr>
<tr>
<td>9.3.2 Results</td>
<td>174</td>
</tr>
<tr>
<td>9.3.3 Conclusion</td>
<td>175</td>
</tr>
<tr>
<td>9.4 Effects of oral C12 ingestion on appetite and energy intake</td>
<td>176</td>
</tr>
<tr>
<td>9.4.1 Methods and materials</td>
<td>176</td>
</tr>
<tr>
<td>Subjects</td>
<td>176</td>
</tr>
<tr>
<td>Study design</td>
<td>176</td>
</tr>
<tr>
<td>Preparation of C12 capsules</td>
<td>177</td>
</tr>
<tr>
<td>Protocol</td>
<td>177</td>
</tr>
<tr>
<td>Assessment of appetite and energy intake</td>
<td>178</td>
</tr>
<tr>
<td>Data and statistical analyses</td>
<td>178</td>
</tr>
<tr>
<td>9.4.2 Results</td>
<td>179</td>
</tr>
<tr>
<td>Appetite perceptions and gastrointestinal symptoms</td>
<td>179</td>
</tr>
<tr>
<td>Energy intake</td>
<td>180</td>
</tr>
<tr>
<td>9.4.3 Discussion</td>
<td>185</td>
</tr>
<tr>
<td>Chapter 10: Conclusion</td>
<td>190</td>
</tr>
<tr>
<td>Appendix I</td>
<td>194</td>
</tr>
<tr>
<td>Appendix II</td>
<td>198</td>
</tr>
<tr>
<td>Appendix III</td>
<td>199</td>
</tr>
<tr>
<td>Appendix IV</td>
<td>200</td>
</tr>
<tr>
<td>References</td>
<td>201</td>
</tr>
</tbody>
</table>
List of abbreviations

I

125I 125 Iodine
Apo A-IV Apolipoprotein A-IV
APD Antropyloroduodenal pressure waves
AUC Area under the curve
BMI Body mass index
BSA Bovine serum albumin
C4 Butyric acid, saturated fatty acid with 4 carbon atoms
C8 Caprylic acid, saturated fatty acid with 8 carbon atoms
C10 Decanoic acid, saturated fatty acid with 10 carbon atoms
C12 Lauric acid, saturated fatty acid with 12 carbon atoms
C18:1 Oleic acid, monounsaturated fatty acid with 18 carbon atoms
C18:2 Linoleic acid, polyunsaturated fatty acid with 18 carbon atoms
CCK Cholecystokinin
CV Coefficient of variation
GI Gastrointestinal tract
GLP-1 Glucagon-like peptide-1
GLP-2 Glucagon-like peptide-2
HCl Hydrochloric acid
HPLC High pressure liquid chromatography
ID Intraduodenal
IPPWs Isolated pyloric pressure waves
L-81 Pluronic L-81
LOX Loxiglumide
MMC Migrating motor complex
NaOH Sodium hydroxide
NPY Neuropeptide Y
PP Pancreatic polypeptide
PYY Peptide YY
PWs Pressure waves
PWSs Pressure wave sequences
THL Tetrahydrolipstatin
VAS Visual analogue scale questionnaire
Thesis summary

The presence of nutrients, particularly fat, in the small intestine modulates gastrointestinal function and subsequent energy intake, and it is well established that the digestion of fat into free fatty acids is required for these effects to occur. Furthermore, the effects of fatty acids are dependent on their chain length. The research presented in this thesis relates to the effects of fatty acids, particularly lauric acid, on the regulation of gastrointestinal function and the suppression of energy intake.

One of the first studies in humans to evaluate the effect of fatty acid chain length established that fatty acids with ≥ 12 carbon atoms slow gastric emptying, while fatty acids with ≤ 10 carbon atoms have no effect, indicating that there may be a separation in the effects of fatty acids occurring between those with ≤ 10 and ≥ 12 carbon atoms. More recent studies in humans have determined that there are marked differences in the effects of intraduodenal lauric acid, a saturated fatty acid with 12 carbon atoms (“C12”), and decanoic acid, a saturated fatty acid with 10 carbon atoms (“C10), on the modulation of gastrointestinal motility, hormone secretion and energy intake. For example, C12, but not C10, markedly suppresses energy intake, modulates pressure waves in the antropyloroduodenal (APD) region and stimulates glucagon-like peptide-1 (GLP-1) secretion, while both C12 and C10 stimulate cholecystokinin (CCK) secretion, however, the effect of C12 was much greater. A previous study in humans has also shown that intraduodenal administration of a long-chain fatty acid, such as oleic acid, a monounsaturated fatty acid with 18 carbon atoms (“C18:1”), suppresses energy intake when compared with a short-chain fatty acid, such as capric acid, a saturated fatty acid with 8 carbon atoms (“C8”). While there have been no direct comparisons between fatty acids with 12 or more carbon atoms (eg C12 vs C18:1) on gastrointestinal function
and energy intake, there is evidence in animals that C12 may be more potent in suppressing energy intake than C18:1.

The first study presented in this thesis (Chapter 4) assessed the effects of intraduodenal C12 and C10 in healthy men on the gastrointestinal hormones; ghrelin, peptide YY (PYY), glucagon-like peptide-2 (GLP-2) and pancreatic polypeptide (PP). C12, but not C10, markedly stimulated the secretion of PYY and GLP-2 and suppressed ghrelin secretion, while both C12 and C10 slightly increased PP secretion.

The effects of intraduodenal C12 and C18:1 delivered at the same energy load (0.4 kcal/min) on APD motility, secretion of CCK and PYY and energy intake were compared in healthy males (Chapter 5). Both C12 and C18:1 stimulated isolated pyloric pressure waves (IPPWs), suppressed the number of antral pressure waves (PWs) and increased plasma CCK concentrations, with no differences between the two fatty acids. In contrast, while both C12 and C18:1 increased basal pyloric pressure and plasma PYY concentrations, C12 had a greater effect on basal pyloric pressure than C18:1, while C18:1 had a greater effect on PYY than C12. Interestingly, C12, but not C18:1, suppressed energy intake.

While a previous study in humans has shown that C12 markedly suppressed energy intake, this was associated with nausea in some subjects, hence, confounding the interpretation of the results. In order to determine whether the effects of C12 on energy intake were physiological, or related to nausea, a dose-response study was performed using loads ranging from: 0.1 – 0.4 kcal/min, but this was also associated with varying C12 concentrations (Chapter 6). C12 potently modulated APD motility, increased
plasma CCK and GLP-1 concentrations and suppressed energy intake in a dose-dependent manner, in the absence of nausea. However, as both load and concentration of the C12 solutions were varied, it was unclear whether these effects were load- or concentration-dependent. Therefore, the study in Chapter 7 assessed the response to (i) increasing loads of C12 (0.2 – 0.4 kcal/min), at a fixed concentration (56 mM) and (ii) increasing concentrations of C12 (40 – 72 mM), at a fixed load (0.4 kcal/min), on gastrointestinal function and energy intake. Increasing load, but not concentration, of C12 modulated gastrointestinal motility, increased plasma CCK and PYY concentrations and suppressed energy intake.

As both CCK and GLP-1 are secreted in response to nutrient ingestion, the study in Chapter 8 assessed whether CCK-8 and GLP-1 interacted in their effects on gastrointestinal function and energy intake. – Intravenous CCK-8 (1.8 pmol/kg/min) and GLP-1 (0.9 pmol/kg/min) were administered alone and in combination. At the doses evaluated, CCK-8 suppressed energy intake, decreased the number of antral and duodenal PWs and increased IPPWs, while GLP-1 only decreased antral and duodenal PWs, but had no effect on energy intake and IPPWs. The combination of CCK-8 and GLP-1 only decreased the number of duodenal PWs to a greater extent than either infusion alone, but this did not exceed the sum of the individual effects of CCK-8 and GLP-1.

A previous study has demonstrated that following intragastric administration of C12, the effects of C12 on gastrointestinal function, including suppression of antral contractions, relaxation of the proximal stomach and stimulation CCK secretion, which are associated with the suppression of energy intake, are still maintained. Hence, C12
may have the potential to be utilised as an oral appetite-suppressant. The study in Chapter 9 investigated the effects of increasing doses of orally ingested C12 between 2 – 6 g on appetite and energy intake. While oral ingestion of C12 had no effect on appetite perceptions, subsequent energy intake was markedly suppressed, in the absence of adverse effects, following the ingestion of 2 g and 6 g of C12.

In conclusion, intraduodenal infusion of C12 in humans has marked effects on gastrointestinal function and energy intake, specifically, the modulation of APD motility, secretion of CCK, GLP-1, GLP-2, PYY and PP, and suppression of ghrelin secretion and energy intake, when compared with fatty acids with both shorter and longer chain lengths. The effect of C12 on gastrointestinal function and energy intake is also dependent on load, but not concentration, of C12 administration. Moreover, oral ingestion of C12 also has a marked effect on the suppression of energy intake, in the absence of any adverse effects.
Statement of originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available in the University Library.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder/s of those works

Kate Feltrin

December 2007
Dedication

For my wonderful parents, Claude and Judy,
And
For my love, my best-friend, Troy

I am forever grateful
Acknowledgements

The studies reported in this thesis were performed in the Discipline of Medicine University of Adelaide, Royal Adelaide Hospital and The Gastrointestinal Investigation Unit, Ward Q7, Royal Adelaide Hospital.

Financial support was provided to me by the Royal Adelaide Hospital Dawes Post-graduate Scholarship (2004 – 2007), and also by the Discipline of Medicine.

Firstly, my sincere thanks go to both of my supervisors Dr Christine Feinle-Bisset and Professor Michael Horowitz. To Christine, thank you for all of your advice, support and friendship throughout my time here in the Discipline of Medicine, your enthusiasm and drive have been very motivating. To Michael, thank you for your guidance, encouragement and kindness over the past 5 years, and for making me feel so positive about what I have achieved. Your wisdom, knowledge and dedication are inspirational. I am also very grateful to the both of you for giving me the opportunity to travel and present at international conferences. It has been a privilege to work with two individuals so passionate about their field of research. – This experience has been invaluable.

To my exceptional co-workers and great friends, Tanya Little, Amelia Pilichiewicz and Ixchel Brennan (“Team Feinle-Bisset”) – You have all been so supportive and positive throughout the highs and lows, and have made this experience all that much more enjoyable! Tanya, it has been an absolute pleasure working with you, even amongst all the nausea! Your timely advice and encouragement has been much appreciated! Amelia, you made me feel welcome from the first day I started and have been a great support ever since! – The dramatic stories about your weekends have definitely been a source of much amusement! Ixchel, thank you for being such an amazing friend, both professionally and personally – I am so appreciative of the laughter we have shared, our long chats and for the way you have always been able to put things into perspective for me! I look forward to more good times in the future!
Acknowledgements

Thank you to all the staff and students in the Discipline of Medicine who have encouraged and supported me along the way, it has been a pleasure working and socialising with you all! I would particularly like to thank those in the so-called “cool office” – Diana Gentilcore, Paul Cavuoto, Kamilia Tai, and in the last year, Lisa Philip – for all of your advice and the many laughs we have shared! And those not lucky enough to be in the “cool office” – Sean Martin, Reawika Chaikomin and the newest recruit, Lora Vanis – You have also provided me with much support and entertainment.

Thank you to Judith Wishart for all of your hard work analysing the blood samples in Chapters 5 – 8.

To the students who made me feel so welcome when I first arrived in the Discipline of Medicine, Rosalie Vosso, Barbara Parker, Natalie Luscombe-Marsh and Deirdre O’Donovan, thank you for showing me the ropes! Special thanks to Rosalie for first exposing me to manometry, and the life of inserting tubes into people’s noses, and for having so much patience with me during my first few studies!

To the International collaborators I have had the pleasure of working with: Professor Thomas Rades – thank you for your assistance with numerous fatty acid solutions; Mr Michael Patterson, Professor Mohammad Ghatelai and Professor Stephen Bloom – thank you for the analysis of ghrelin, PYY, GLP-2 and PP in Chapter 4; Professor Andre Smout – thank you for making motility analysis all that much easier! And last, but not least, Professor James Meyer. – Jim, I am extremely grateful for all your invaluable contributions to so much of my work, and all of the support and encouragement you have provided me with throughout my time here in the Discipline of Medicine, – it has been a privilege to work so closely with you, even if you are based in LA! Your knowledge of the literature, particularly relating to fatty acids, is phenomenal and has amazed me to no end.
A special thank you to all of the volunteers who have participated in numerous tube studies, and to those who have swallowed an endless number of capsules! I am particularly grateful to those volunteers who participated in multiple studies, even if some of them were not so pleasant! Thank you for your time, trust and entertaining conversations, you made studies all that more enjoyable.

To those in Q7: Laura Besanko, Carly Burgstad, Dora Di Matteo and Rochelle Botten – Thank you all for your help and great conversations during the period of time when Tanya and I spent so much time over there completing studies. I would also like to thank Marcus Tippet for all your technical support.

To Michelle Thornton and Skye Jeffery for being the most amazing friends a girl could ask for! Thank you for always being there when I needed you the most. Fun times are ahead!

To the Smith family (my second family!) Trevor, Sue, Natasha, and James, thank you for always maintaining a keen interest in my studies – even if it was hard to understand what I was actually doing! Your support has been much appreciated!

To my amazing family – Mum and Dad, thank you for all of your love, support and encouragement throughout my life, especially throughout the last few years – I thank you for shaping me into the person I am today. To my brother and sister, Cory and Abby, thank you for always making me see the humorous side of life – without sharing your laughter, sometimes at my own expense, I would not have survived the past 4 years!

To my Nonna and Nonno – for all the love and generosity you showed me throughout my life, and for being so proud of me – Nonno I know you are smiling down on me.

Finally, I would like to thank Troy for being so patient and supportive, particularly throughout the last 4 years – especially when work, writing and studies were not always going to plan. Thank you for all of your love, encouragement and all of the fun times we have shared together – I would not have been able to achieve all that I have without you. I am so grateful to have you in my life!
Publications arising from thesis

Other publications

