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Abstract

In ungauged catchments or catchments without sufficient streamflow data,

derived flood frequency methods are often applied to provide the basis for

flood risk assessment. The most commonly used event-based methods, such

as design storm and joint probability approaches are able to give fast esti-

mation, but can also lead to prediction bias due to the limitations of inher-

ent assumptions and difficulties in obtaining input information (rainfall and

catchment wetness) related to events that cause extreme floods. An alterna-

tive method is a long continuous simulation which produces more accurate

predictions, but at the cost of massive computational time. In this study a

hybrid method was developed to make the best use of both event-based and

continuous approaches. The method uses a short continuous simulation to

provide inputs for a rainfall-runoff model running in an event-based fashion.
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The total probability theorem is then combined with the peak over thresh-

old method to estimate annual flood distribution. A synthetic case study

demonstrates the efficacy of this procedure compared with existing methods

of estimating annual flood distribution. The main advantage of the hybrid

method is that it provides estimates of the flood frequency distribution with

an accuracy similar to the continuous simulation approach, but with dramat-

ically reduced computation time.

Keywords:

Flood distribution estimation, Design Storm, Stratified Monte Carlo

technique, Rainfall-runoff process, Continuous simulation, Peak over

threshold method

1. Introduction1

Flooding is one of the most frequently occurring natural hazards world-2

wide, and often causes major damage to our society. For example, every year3

in Australia, floods incur millions of dollars damage to critical infrastructure4

and threaten humans lives. Appropriate designs of flow regulation structures,5

such as dam spillways, bridges, pipelines and flood detention basins are vital6

for flood mitigation and the protection of important domestic and commer-7

cial resources. These designs rely on the estimation of both the frequency and8

the magnitude of extreme flow events. However, due to the highly variable9

and complex climatic and hydrological processes that drive flood extremes,10

it is a major challenge to provide reliable predictions.11

12

Existing flood estimation methods can be broken down into two ma-13
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jor groups: flood frequency analysis and derived flood frequency methods14

(Moughamian et al. (1987)).15

16

1.1. Flood frequency analysis17

Flood frequency analysis involves fitting a distribution model to stream-18

flow data so that the flow magnitude associated with a certain occurrence19

probability can be calculated using the mathematical equation of the fitted20

distribution. The success of the analysis depends on achieving a reliable21

fit for the distribution, which requires a sufficiently long and high quality22

streamflow record. Unfortunately it is not available in the vast majority of23

catchments. Furthermore if the catchment has undergone significant land-24

use or climate changes in the past, the historical record cannot support an25

accurate estimation of the flood frequency distribution.26

27

1.2. Derived flood frequency methods28

Derived flood frequency methods have been developed to overcome the29

limitations of flood frequency analysis. These approaches use meteorological30

data (rainfall, potential evapotranspiration) as inputs for a rainfall-runoff31

(RR) model to generate streamflow data. In general, historical rainfall data32

are longer and have more reliable records than streamflow data and only a33

relatively short streamflow record is required to calibrate the RR model. Fur-34

thermore, to provide projections of the impact of climate change, a weather35

generator can be used to simulate the meteorological data for a certain cli-36

mate scenario. The simulated meteorogical data is then input into the RR37
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model to generate streamflow data, from which the flood frequency distribu-38

tion (FFD) under the projected climate condition can be derived. Derived39

flood frequency methods are, therefore, generally preferred over flood fre-40

quency analysis, and have been developed as both analytical and simulation41

approaches.42

43

Analytical methods were initiated in the early 70s by Eagleson (1972).44

The author derived the peak streamflow distribution from the distributions45

of catchment and climate characteristics using a kinematic runoff model in an46

idealised V-shaped flow plane. Further development of the analytical meth-47

ods was achieved by other researches, e.g., Hebson and Wood (1982), James48

and Robinson (1986)) and Raines and Valdes (1993).49

50

Recently, numerical simulation methods for deriving flood frequency dis-51

tribution have undergone considerable development. These simulation tech-52

niques can be classified into two groups: continuous simulation (CS) (Calver53

and Lamb (2000)) and event-based (EB) approaches (e.g Rahman et al.54

(2002)). CS runs a weather generator and a RR model in parallel con-55

tinuously to produce a time series of streamflow data from which the flood56

frequency curve can be derived, while EB approaches focus on the events of57

interest. These usually include rainfall events and catchment wetness condi-58

tions that drive extreme flood events and are sampled from their distributions59

to serve as inputs for the RR model that runs in an event-based fashion. The60

averaged return intervals (ARI) of the generated flood events are associated61

with the ARI of the input events based on certain assumptions.62

4



63

In the following, two mainstream event-based (EB) approaches, i.e., the64

design storm and the joint probability approaches will be reviewed, followed65

by a brief discussion of continuous simulation (CS).66

67

1.2.1. Design storm approach68

Among the EB methods, the most widely adopted one in the guidelines69

of the world practicing water resource institutions (for example, the Aus-70

tralian Rainfall and Runoff AR&R Pilgrim (1987)) can be attributed to the71

design storm (DS) approach, mainly because of its simplicity. This approach72

involves design event rainfall generation, runoff production and hydrograph73

formation. It assumes that a design rainfall event of a given ARI can be74

converted to a design flood of the same ARI and it relies on the specification75

of a rainfall loss (aka antecedent soil moisture deficit) as an indicator of the76

catchment wetness condition. A fixed value, typically the median, is taken77

to represent the rainfall loss/soil moisture deficit (AR&R Pilgrim (1987)),78

which ignores its variability. This assumption (also called as ARI neutrality79

assumption) can lead to significant prediction errors, as the rainfall-runoff80

process is basically a joint probability problem (Kuczera et al. (2003)). For81

example, a 1 in 100 year flood can be caused by a 1 in 50 year rainfall event82

falling on a wet catchment or by a 1 in 200 year rainfall event falling on a dry83

catchment (Michele and Salvadori (2002)). Thus it is important to capture84

the interactions of antecedent soil moisture conditions and extreme rainfall85

events.86

87
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In order to overcome the problems of the ARI neutrality assumption,88

Camici et al. (2011) proposed to calibrate the antecedent soil moisture to89

the value that produces a flood with the same ARI as that of the input90

rainfall event. For each return period of the flood, a design soil moisture91

value is calibrated using the result of a long-term CS as a reference. The92

design soil moisture values are then regionalised as a function of the geo-93

morphological characteristics of the catchment so that they can be applied94

to ungauged catchments with similar characteristics. Given the popularity95

of the DS approach and its major problem of defining the antecedent soil96

moisture condition, the attempt to find the critical soil moisture value that97

maintains ARI neutrality during the transformation from rainfall to runoff98

seems to be practical. Walsh et al. (1991) undertook a similar study for99

New South Wales in Australia. However the regionalisation showed huge100

variability. This indicates the success of this method stongly depends on the101

strength of regionalization. The other significant limitation of this approach102

is that the design soil moisture is likely to undergo signficant change under103

climate change condition. The regionalised design soil moisture inputs are104

therefore likely to produce unreliable estimates of the FFD.105

106

1.2.2. Joint probability approaches107

To account for the joint probability nature of the estimation of extreme108

flood events, event-based Monte Carlo simulation techniques have been de-109

veloped (Rahman et al. (2002)), in which the values of the input variables,110

e.g., rainfall depth and antecedent soil moisture amount are sampled from111

either their joint or independent distribution and input into the RR model112
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to generate a range of streamflow events. Using the total probability theorem113

the exceedance probability of these events can be estimated (Rahman et al.114

(2002)). To reduce the computational time, stratified Monte-Carlo (SMC)115

techniques are used in Nathan et al. (2003), where the sampling procedure116

of the input variables focuses selectively on the probabilistic range of interest.117

118

The major challenge of these techniques is to obtain the correct input dis-119

tributions from the causative events of the annual maximum extreme flows120

that are of interest. These are very difficult to obtain because long-term121

historical records with many extreme events are not readily available. More-122

over, catchment soil moisture conditions are not routinely measured, which123

requires calibrating a RR model to flood events. Currently, practical guide-124

lines (e.g., RORB by Laurenson et al. (2010)) recommend using the distri-125

bution of annual maximum rainfall and some documented rainfall loss distri-126

bution (e.g., Hill et al. (1997)) estimated from short historical data to derive127

the annual FFD. Part of this study will evaluate the use of these practical128

guidelines in the EB approaches for estimating the annual FFD.129

130

As these procedures use the annual maximum rainfall as input and take131

into account the joint probability of rainfall and catchment antecedent soil132

moisture condition, we will collectively name these methods as AMXJP133

methods hereafter, where AMX stands for annual maximum rainfall and134

JP stands for joint probability.135

136
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1.2.3. Continuous simulation137

In contrast to event-based approaches, continuous simulation (CS) (Calver138

and Lamb (2000)) seems to solve all the problems mentioned above, under139

the assumption that the applied weather generator and RR model adequately140

simulate the rainfall-runoff process. It does not postulate ARI neutrality141

between rainfall and runoff, nor does it require estimation of the input dis-142

tributions for an EB procedure. It simply runs a weather generator coupled143

with a RR model in a continuous manner to simulate a long time series of144

streamflow data, from which the annual maximum flows can be extracted145

and in turn the annual FFD can be derived.146

147

The major limitation of the CS approach is that it is computationally148

demanding. For instance, as will be shown in Sec. 4.4.2, to get an estimate149

of the exceedance probability of 1 in 100 year flood with a prediction error150

less than 20%, the minimum length of the simulated streamflow data needs151

to be more than 9, 500 years at a daily time step. If a complicated RR model,152

such as a distributed and/or physically based model is required, the compu-153

tational time can be prohibitive.154

155

1.3. Contribution of this work156

The main contribution of this paper is to develop a hybrid event-based157

approach which overcomes the limitations of current EB approaches with158

a significantly reduced computational time compared with a long-term CS.159

This hybrid method uses a short CS run (e.g. 30-100 years) to provide input160

distributions into an EB approach. As this method explicitly uses concur-161
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rent input events that are the true causative events of the output flows, it is162

named as the hybrid-causative events approach (hybrid-CE). A key innova-163

tion is that the EB approach is combined with the total probability theorem164

to produce a so-called event streamflow distribution, which is converted to165

the annual FFD using the peak over threshold (POT) method. This enables166

improvement in the accuracy of the predictions of the annual FFD compared167

with the existing EB approaches, and a remarkable enhancement in compu-168

tation efficiency compared with a long-term CS.169

170

The paper is organised as follows: Section 2 outlines the hybrid-CE171

methodology. Section 3 presents a synthetic case study to demonstrate the172

advantages of the hybrid technique over the existing EB approaches men-173

tioned above, i.e., the DS and AMXJP methods. Section 4 provides the174

results, which illustrate how the limitations of the DS and AMXJP methods175

produce significant errors in the estimation of annual FFD and then demon-176

strates the accuracy of the hybrid-CE method. The final part of section 4177

compares the three different approaches. Section 5 provides some discussion178

of relevant issues, including future research topics. Section 6 provides the179

summary and conclusions.180

181

2. Development of the Hybrid-CE Approach182

The hybrid-CE approach combines continuous simulation and event-based183

approaches. A long CS of rainfall provides the rainfall distribution and a184

short CS of the rainfall-runoff process provides the soil moisture distribu-185
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tion. Together, they drive an EB simulation of the rainfall-runoff process186

to produce the streamflow distribution. Unlike the AMXJP method, for187

the hybrid-CE method the input rainfall and soil moisture values are drawn188

from the distributions that are estimated from causative events to produce189

an event streamflow distribution. The POT method is then applied to con-190

vert this distribution to the annual FFD.191

192

A schematic diagram shown in Fig. 1 illustrates the interactions between193

different components of the hybrid-CE method. The following sections ex-194

plain the three major components (continuous part, event-based part and195

FFD conversion part) one by one in details. This method is generic and196

can be adapted to provide estimates of the distribution of extremes for the197

events of interest, e.g., either instantaneous peak flow rates or event volumes.198

For the purposes of demonstrating the value of the hybrid-CE method, we199

chose the simplest case study, which is to estimate daily streamflow extremes200

using daily rainfall depth and antecedent soil moisture. Sec. 5.2 discusses201

future extensions to the hybrid-CE method to estimate the more practically202

relevant distribution of extremes of the instantaneous peak flow rate.203

204

In the following discussions, the capital letters R, S and Q denote the205

random variables representing rainfall, soil moisture and streamflow, respec-206

tively and small letters r, s and q the corresponding variates. The capital207

letter F () is used to denote the cumulative distribution function, while the208

small letter f() is used to denote the probability density function.209

210
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2.1. The continuous part211

Although rainfall records are more numerous than streamflow records,212

they may not be available at the time scale or location of interest. In gen-213

eral, stochastic rainfall models (for example Cowpertwait (2006)) can be used214

to circumvent limitations of rainfall records and provide the required long-215

term rainfall simulations.216

217

As in the event-based part of the hybrid-CE method the rainfall distribu-218

tion is needed, the continuous part of the hybrid-CE approach first runs the219

rainfall simulation to generate a long-term rainfall record based on the as-220

sumption that the rainfall simulation runs much faster than the RR model.221

The grounds for this assumption will be addressed in Sec. 3.5. Thus the222

rainfall distribution can be estimated from this long-term record which cov-223

ers more extreme events than the observed data, or under climate change224

conditions, predicts the rainfall in the future in a probabilistic sense.225

226

After that a short-term continuous simulation of the RR model is run227

using part of the generated long rainfall record as input. From this short228

term CS of the RR process, a short time series of soil moisture values as well229

as streamflow values are obtained. Given that soil moisture are less variable230

than rainfall, this short record of the soil moisture is sufficient for the esti-231

mation of its distribution. The short streamflow record will be used to assess232

the POT model parameters, as will be discussed in Sec. 2.3.233

234
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2.2. The event-based part235

After obtaining the rainfall and soil moisture distributions, their values236

(r and s) can be sampled to be input into the RR model. For each EB run of237

the RR model, a streamflow value (q̂) is generated. This value is compared238

to the streamflow value of interest (q). Note that, in general, q can be ei-239

ther an instantaneous flow rate at a given point in time or the volume over240

a given time period during which the amount of rainfall and soil moisture241

are accumulated. As noted earlier, we chose to adopt the simpler case of242

the daily flow volume to exemplify the method. A follow-up discussion on243

the extension of the method to estimate the more complicated case, i.e., the244

instantaneous flow rate, is provided in Sec. 5.2.245

246

Assuming that the RR model is deterministic, with no prediction error,247

the conditional exceedance probability of the streamflow conditioned on the248

rainfall and soil moisture values, P (Q > q|r, s), can be evaluated:249

P (Q > q|r, s) =

 1 if q̂ > q

0 if q̂ ≤ q
(1)

In reality, RR models can have significant predictive errors due to data250

and model structural errors (see Thyer et al. (2009) and Renard et al. (2010)251

for further discussions). If a prediction error is introduced into the RR model,252

the value of P (Q > q|r, s) will range between 0 and 1. For the current study,253

we assume the RR model is deterministic.254

255

Based on the total probability theorem, the unconditional exceedance256

distribution 1− F (q) of the streamflow can be calculated by:257

12



1− F (q) =

∫
ΩR

∫
ΩS

(1− F (q|r, s))f(r, s)dsdr

=

∫
ΩR

∫
ΩS

P (Q > q|r, s)f(r|s)f(s)dsdr (2)

where f(r, s) denotes the joint probability density of rainfall and soil mois-258

ture, while f(s) stands for the rainfall probability density obtained from the259

long-term rainfall simulation and f(r|s) denotes the conditional probability260

density of soil moisture conditioned on rainfall, which is obtained through261

the short-term CS of the RR model. It is worth mentioning that if r and s262

are independent, f(r, s) can be broken down into f(r) · f(s). F (q|r, s) de-263

notes the cumulative conditional distribution of streamflow conditioned on264

the input r and s values. P (Q > q|r, s) is evaluated in Eq. (1).265

266

The double integral in Eq. (2) can be computed through Monte Carlo267

integration (Davis and Rabinowitz (1975)). Nathan et al. (2003) developed268

the stratified Monte-Carlo (SMC) method which improves the calculation269

efficiency by using stratified sampling of the input values on the probabilsitc270

range of interest.271

272

In the hybrid-CE method, we developed an efficient numerical integration273

for extreme events (ENIEE) to solve Eq. (2), where the pairing of r and s is274

done on a grid of the domain Dom = R×S. Using ENIEE Eq. (2) becomes:275

1− F (qk) =
n∑
i

n∑
j

P (qij > qk|ri, sj)f(ri, sj)∆s∆r (3)

13



Compared to the SMC technique, the ENIEE is more efficient, as the276

input r and s values are checked in an ordered manner so that it is easy277

to terminate further evaluations of the RR model at any point of (ri, sj)278

that does not contribute to the qk value under investigation. For the SMC279

method, on the other hand, the program has to wait until all the random280

samplings within the specific intervals are finished. A detailed description of281

the ENIEE is provided in the Appendix.282

283

Like the AMXJP methods, the mathematical theory underpinning the284

event-based part of the hybrid-CE method is also the total probability theo-285

rem. However the major difference lies in the fact that the AMXJP methods286

uses the annual maximum rainfall and user-defined soil moisture events (see287

Sec. 1.2.2) to assess the input distributions for the calculation of the annual288

FFD. In contrast, the hybrid-CE method uses the rainfall and soil moisture289

events that are truly concurrent/causative to the streamflow events at the290

event temporal scale of interest. For example, if the event temporal scale of291

the streamflow is daily/hourly, then the input rainfall and soil moisture distri-292

butions will be evaluated through the daily/hourly rainfall and soil moisture293

events, respectively.294

295

Hence the term F (qk) in Eq. 3 becomes the distribution of streamflows296

at the event temporal scale of interest (referred to as event streamflow dis-297

tribution hereafter). Then the POT method is incorporated to convert this298

distribution to the annual FFD, which will be introduced in the next section.299

300
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One may argue that the event streamflow distribution can be directly esti-301

mated from the output streamflow data of the short CS run of the RR model302

and that is therefore unnecessary to use the EB simulation of the RR process303

and the ENIEE method. However, the short time series of the rainfall data304

that drive the RR model for a short CS run may not contain enough extreme305

events of major interest. Therefore, the short series of streamflow data gen-306

erated by the short CS can lead to enormous uncertainties in the subsequent307

estimation of the extreme events in the annual maximum flow series, whereas308

in the EB component of the hybrid-CE method, the input rainfall events are309

drawn from the distribution which is estimated from the long-term rainfall310

record where more extreme events are present. Therefore the resultant event311

streamflow distribution is more reliable for use in the subsequent derivation312

of the annual FFD.313

314

2.3. Derivation of the annual FFD using the POT method315

The POT method (Shane and Lynn (1964) and Todorovic and Zelenhasic316

(1970)) is often applied in flood frequency studies as an alternative to the317

annual maximum series (AMS) method. A comprehensive discussion on the318

POT method can be found in Rosbjerg (1993). As the current study was319

focused on the estimation of annual FFD, we continued seeking the distribu-320

tion of annual maximum flows. The POT method was adopted as a tool to321

derive the annual FFD from the event streamflow distribution.322

323

In the POT method, the number of peaks over the selected flow threshold324

q0 per year is considered as a random variable, the probability of which is325

15



denoted by:326

P (w peaks > q0 in a year) = Pw (4)

Under the assumption that the peak magnitudes are independent and327

identically distributed (i.i.d) with function F (Q ≤ q|q ≥ q0), the distribution328

of the annual maximum flows (Qa) can be calculated by (Todorovic and329

Zelenhasic (1970)):330

FQa(Qa ≤ q) =
W∑
w=0

Pw
(
F (Q ≤ q|q ≥ q0)

)w
(5)

where W denotes the number of basic time steps (e.g., daily or hourly) in331

a year, depending on the measurement temporal resolution or the event time332

scale of interest. The probability distribution of the number of peaks exceed-333

ing the threshold per year (Pw) is often modeled by the Poisson distribution334

(Rosbjerg (1993)). However Cunnane (1979) suggests that the negative bin-335

monial distribution is more suitable for a POT series which exhibits great336

variability. In the current study (Sec. 3.5.3), it was found that a negative bi-337

nomal distribution fits better to the data, hence it was adopted to the model338

the Pw and thus Eq. (5) becomes:339

FQa(q) =
W∑
w=0

Γ(γ + w)

w!Γ(γ)
(1− p)γpw

(
F (Q ≤ q|q ≥ q0)

)w
= (1− p)γ(1− F (q|q ≥ q0)p)−γ (6)

where p and γ are parameters of the negative binomial distribution. Note340

that F (q|q ≥ q0) is a truncated distribution and the following relationship341

holds true:342
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F (q|q ≥ q0) =
F (q)

1− F (q0)
(7)

where F (q) is the event streamflow distribution which was defined in Sec.343

2.2. The denominator 1 − F (q0) is a normalizing factor. The problem of344

estimating the input distribution of annual concurrent events is therefore345

reduced to estimating the distribution of the input variables in accordance346

with the event time scale of interest. In other words, the extraction of the347

annual causative events from a long data series is no longer necessary and the348

distribution of the input variables can be much more easily obtained either349

through measurements or a short CS run.350

351

2.4. Summary of the hybrid-CE approach352

In summary,the hybrid-CE approach requires the following steps:353

1. A long-term CS is run for the rainfall simulation at the streamflow354

event time scale of interest to generate a long time series of rainfall355

data. The rainfall distribution is estimated from this record.356

357

2. A short rainfall record sampled from the simulated data is put into358

the RR model for a short-term CS run at the same event time scale to359

generate a series of soil moisture values for the estimation of the soil360

moisture distribution. The streamflow record generated by the short361

CS is used to estimate the POT model parameters (q0, p and γ in Eq.362

(6)).363

364
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3. The RR model is run in an event-based manner using the rainfall and365

soil moisture values sampled from the estimated distributions and the366

ENIEE method is implemented to evaluate the event streamflow dis-367

tribution using Eq. (3).368

369

4. The POT method is applied to convert the event streamflow distribu-370

tion to the annual FFD using Eq. (5).371

372

The flow chart of the above steps is illustrated in Fig. 1.373

374

3. Case Study375

In order to demonstrate how the assumptions of the DS and AMXJP ap-376

proaches produce biases in their estimation of the annual FFD, a synthetic377

case study was developed. In this section, the case study is described to show378

that the hybrid-CE approach overcomes these biases and provides more reli-379

able estimates of the annual FFD in an efficient manner.380

381

The rainfall data of the synthetic catchment were generated through a382

1-D continuous rainfall simulation model. The simulated rainfall data were383

input into a lumped RR model to generate a long-term (10,000 years) se-384

quence of daily streamflow values in order to derive the virtual truth annual385

FFD for comparison purpose.386

387
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Simple lumped rainfall and RR models were applied in this case study,388

because the aim was to show the problems of the existing approaches and389

the relative efficacy of the hybrid-CE method. Extensions of the hybrid-CE390

method to a more complicated RR model using realistic catchment data will391

be undertaken in future research (see Sec. 5.2), after the effectiveness of the392

method has been established using simple 1-D models in this study.393

394

3.1. Rainfall simulation model395

The daily rainfall simulation model consists of two parts: an occurrence396

model for the generation of dry-and-wet-day sequence and a model for the397

generation of rainfall amount on wet days (Srikanthan and McMahon (2001)).398

399

The dry/wet day sequence is modeled by a first order stationary Markov400

chain (Weiss (1964)), the parameters of which are the initial/stationary wet-401

day probability PW0 and two conditional probabilities PWW (the probability402

of a wet day given that the previous day was wet) and PDW (the probability403

of a wet day given the previous day was dry).404

405

The rainfall amount on wet days in the case study was drawn from a406

log-normal distribution with parameter values µ = 1.5, σ = 1.0.407

3.2. Rainfall-runoff model408

The applied RR model is a simplified HBV model (Bergström (1995))409

with the snow and the dual-reservoir modules omitted. The snow module410
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was eliminated in order to illustrate a technique that focuses on extreme rain-411

fall driven peak flow events, rather than snow-melt driven (or rain-on-snow)412

peak flow events, as these types of events are rare in Australia. The reser-413

voir module was removed because this study was focussed on the frequency414

distribution of extreme flows. The recession part of the hydrograph which is415

emulated by the reservoir module is not essential to the problem.416

417

3.3. Climate scenarios418

To test the performance of different EB approaches under different cli-419

mate conditions, a wet and a dry climate scenarios were generated using420

different parameter settings for the rainfall simulator and HBV model. The421

selection of the parameters for the two climate scenarios was based on a422

comparison of the annual rainfall and runoff statistics from a database of423

330 Australia catchments (Peel et al. (2000)). The wet/dry climate scenario424

was assigned an annual mean rainfall in the upper/lower 1% of the Peel et al.425

(2000) dataset. Table (1) summarizes the annual statistics of the two climate426

scenarios.427

428

3.4. Virtual truth reference for the annual FFD429

After the model setup, a 10,000-year continuous simulation of the rainfall430

and rainfall-runoff models was carried out at a daily time step for both cli-431

mate scenarios. As metioned at the beginning of the case study, the output432

streamflow data were used to derive the virtual truth annual FFD, which was433
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Annual Annual Annual
CV

Annual

Max [mm] Min [mm] Mean [mm] [-] POE [mm]

Dry
rainfall 1468.18 258.98 674.67 0.20

1277
discharge 249.69 2.61 32.91 0.57

Wet
rainfall 2452.59 928.26 1540.76 0.11

1387
streamflow 998.98 103.62 321.06 0.27

Table 1: Summary of the annual statistics of the two climate scenarios. CV stands for the

coefficient of variance for the annual sums.

used to evaluate the results of the different methods tested in the following.434

435

3.5. Input information436

In EB joint probability approaches, distribution of the input rainfall is437

required. The advantage of fast rainfall simulation technique can be uti-438

lized to generate a long rainfall record for a better estimation of the required439

rainfall distribution. Therefore in this case study, access to the long-term440

rainfall record (10,000 years of daily values) and a short streamflow record441

(e.g., 30-100 years of daily values) were assumed. The difference in the acces-442

sible record lengths was based on the assumption that the rainfall simulation443

would be much faster than the simulation of the rainfall-runoff process. A444

space-time rainfall model using the circulant embedding method and fast445

Fourier transformation needs just one second to simulate a 512× 512 image446

(Qin (2010)). In contrast, it can take hours to run a 2D hydrodynamic model447

at a smaller spatial resolution (Neal et al. (2009)).448
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449

3.5.1. DS approach450

Based on the ARI neutrality assumption of the DS approach, annual451

maximum rainfalls should be used as inputs into the RR model to derive the452

annual FFD. In this case study, the annual maximum rainfalls were extracted453

from the simulated 10,000-year daily rainfall series.454

455

Regarding the antecedent catchment wetness condition, the primary as-456

sumption of the DS approach is that it uses a single fixed representative loss457

value. Typically, a rainfall loss model (e.g, proportional, initial/continuing)458

and a runoff routing procedure are used to convert rainfall to runoff (e.g.459

Laurenson et al. (2010)). Traditionally the representative value of the initial460

loss is taken as the median of some documented distribution assessed from461

historical data. In Hill et al. (1997), the distribution of the initial loss are462

calibrated based on the rainfall events from a POT series (events with ARI463

greater than one year) and their concurrent flow events. The continuing loss464

value is determined through mass balance.465

466

For this case study we used the simplifed HBV model to convert rainfall467

to runoff in the DS approach because it was exactly the same RR model used468

to generate the virtual truth FFD. This enabled us to specifically test the im-469

pact of assessing a single representative antecedent catchment wetness value,470

without introducing errors due to the ability of the RR model to represent471

the virtual truth. Thus a single representative antecedent soil moisture (SM)472

value was used, as it plays the same role in the HBV model as the rainfall473
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loss in a routing model. The rainfall threshold was evaluated based on the474

10,000-year daily rainfall record. Then, with the short daily records (100475

years), the soil moisture values prior to the rainfall events that are above the476

threshold were selected to estimate the SM distribution. Finally the median477

SM value was calculated from this distribution as the representative value.478

479

3.5.2. AMXJP method480

For the AMXJP methods such as Nathan et al. (2003), the design guide-481

lines, e.g., RORB by Laurenson et al. (2010), recommend that the input482

variables (rainfall and soil moisture) are treated as independent variables.483

Thus the term f(r, s) in Eq. (3) becomes f(r) · f(s). For the rainfall distri-484

bution, the distribution of annual maxima is used (Nathan et al. (2003)). In485

this case study, this distribution is estimated from annual maximum rainfalls486

extracted from the 10,000-year daily rainfall data.487

488

It is recommended that the loss distribution is taken from the documented489

distribution as described in Hill et al. (1997) (Nathan et al. (2003), Lauren-490

son et al. (2010)). This is the same as used by the DS approach to obtain491

the representative value. Therefore the soil moisture distribution estimated492

for the DS approach in the previous section was used to test the AMXJP493

method in this study.494

495
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3.5.3. Hybrid-CE method496

In the application of the hybrid-CE method, first the dependence be-497

tween the daily rainfall depth and soil moisture amount was investigated498

using Pearson’s ρ, Spearman’s ρ and empirical copulas (Nelsen (2006)) as499

measures of dependence. No significant dependence was found. Therefore500

as in the AMXJP method, the individual distributions of rainfall and soil501

moisture were used. The distribution of the daily rainfall depth was directly502

assessed from the entire 10,000-year daily rainfall record. The distribution503

of the daily soil moisture conditions was estimated using the 100-year daily504

SM record sampled from the long-term daily SM record (10,000 years).505

506

In addition to the input distributions, the occurrence model of the peaks507

over threshold and its parameters have to be specified for the POT method508

to convert the daily flow distribution to the annual FFD.509

510

First of all, the peak threshold should be chosen. Rosbjerg (1987) pointed511

out that a flow threshold that corresponds to a yearly occurrence number ex-512

ceeding 5 leads to a significant positive correlation between the peak magni-513

tudes which violates the basic assumption of the POT method. On the other514

hand, too small value of the occurrence rate limits the number of events in a515

short record for statistical analysis. Therefore in this study, a flow threshold516

was chosen such that its average yearly occurrence number was 3.517

518

Two different models of the occurrence rate of peaks were considered,519

the Poisson and the negative binomial distributions. Visual inspection of520
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the frequency curves of the number of peaks per year from the 10,000 year521

streamflow record (not shown) showed that the negative binomial distribu-522

tion provided a better fit than the Poisson to the observed data. Table 2523

reports the results of the chi-squared test and confirms the above findings.524

525

Poisson Negative Binomial

df Chi-S P-value df Chi-S P-value

Dry 10 170270.3 0 24 22.1 0.57

Wet 10 26792.4 0 17 19.3 0.31

Table 2: Result of the chi-squared test for the goodness of fit of the occurrence models. ’df ’

denotes the degree of freedom, ’Chi-S’ denotes the chi-squared test statistics.

Therefore the negative binomial distribution was adopted. The model526

parameters γ and p in Eq. (6) were estimated using the method of moments527

(Cunnane (1979)).528

529

In the following application of the hybrid-CE approach, the POT model530

parameters (q0, p and γ) were assessed from the random samples of 100-year531

daily records of streamflow generated by the CS. This means for different532

random samples, different sets of POT model parameters were estimated.533

534
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4. Results535

4.1. DS approach536

Fig. 2 shows the predicted annual FFD from the DS approach for both537

the wet and the dry climate scenarios compared to the virtual truth annual538

FFD. Black curves indicate the virtual truth distributions. The light blue539

curves DS-100 indicate the results using randomly sampled 100-year records540

(in total 100 independent records) to assess the representative SM value. In541

addition, in order to check the model performance in a condition free from542

sampling error, the entire 10,000-year record was used to derive the represen-543

tative SM value, and the results DS-10000 are shown by the dark blue curves.544

545

The results highlight an overall under-estimation. For the very small546

flood values, however, the DS approach produces a slight over-estimation.547

548

4.2. AMXJP approach549

Fig. 3 shows the results of the AMXJP approach. The curves represent-550

ing AMXJP-10000 and AMXJP-100 have similar meanings as DS-10000 and551

DS-100 described in Sec 4.1. The results show an averaged good agreement552

with the virtual truth, but with relatively large estimation uncertainties.553

554

The purple dashed lines representing the results of JPCE-10000 indi-555

cate the outcome of the joint probability method using input distributions556

estimated from the causative events, i.e., rainfall and SM events that are557

concurrent with/prior to the annual maximum flow events. They are also in558
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line with the virtual truth. The slight discrepancies are due to the fact that559

the JPCE approach ignores the dependence between the causative rainfall560

and SM events.561

562

4.3. Hybrid-CE method563

Fig. 4 shows the results of the hybrid-CE method. A relatively good564

agreement between the average behaviour of the predictions using the short565

records (HCE-100 ) and the virtual truth can be observed. The same ap-566

plies to the predictions resulted from the use of the entire 10,000-year record567

(HCE-10000 ).568

569

4.3.1. Optimal short record for the hybrid-CE method570

As shown above, the predictions of HCE-10000 by the hybrid-CE method571

are in line with the virtual truth distribution. But it relies on obtaining the572

input daily SM distribution and the POT model parameters from the entire573

10,000-year data records. That requires a long CS of the RR model. However,574

as noted before, the aim of the hybrid-CE method is to avoid running a long575

CS of the RR model, as it can be very computationally expensive. On the576

other hand, using short records generated by a short CS of the RR model577

for the estimation, due to sampling variability, the predicted distribution578

can have large or small errors compared with the virtual truth distribution.579

Therefore the question is whether certain statistics of the short record can580

be found which selects a short record among the different random samples581

so that the error in predicting the annual FFD due to random sampling is582
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minimized.583

584

As stated in Sec. 3.5, it was assumed that a long-term rainfall record can585

be simulated. The goal here was to choose a short (30-100 years) rainfall586

record from the long rainfall record in order to produce a short CS of the587

RR model from which the best estimates of the SM distribution and POT588

parameters can be obtained. The selection of the short rainfall record was589

determined by the match between the statistical properties of the short rain-590

fall record and those of the long record.591

592

Several statistics (daily mean, median, standard deviation and skewness)593

and different record lengths were tested (30 to 100 years with an increment of594

10 years). It was found that mean daily rainfall provided the best statistics595

for selecting the short rainfall record.596

597

Fig. 5 shows the results of using this approach for choosing the optimal598

short record for the 30, 40 and 50-year record lengths. The values of RP599

in Fig. 5 indicate the percentage of the random samples of short records600

outperform the optimal short record. These figures and the low RP values601

illustrate the fact that this method for choosing the optimal short record602

provides a good match to the virtual truth distribution, even for the record603

length of 30 years.604

605
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4.4. Comparison of methods606

4.4.1. Predictive ability607

Fig. 6 and 7 compare the 95% confidence limits and the averaged results608

of the three methods for the dry and wet cases, respectively. They show that609

the DS approach produced the worst performance. There are significant610

under-estimations especially for the high annual maximum extreme flows.611

This outcome demonstrates that using a fixed representative antecedent SM612

value produces poor performance and highlights the importance of consider-613

ing the variabilities of key input variables other than rainfall.614

615

The AMXJP approach provided good predictive performance on average,616

however, it produced the largest prediction uncertainties among the three617

methods. This good performance was despite using arbitrarily chosen SM618

distributions, that were not based on the causative events. Fig. 8 shows619

that this good predictive performance was due to a compensation of errors620

between the annual max rainfall distribution and SM distribution used by621

AMXJP (similar effect is observed for the wet case which was not shown).622

The AMXJP approach relies on this compensation of errors to produce re-623

liable predictions of the annual FFD. A relevant question is whether this624

compensation of errors applies only to this simplified case study and if it can625

be relied upon over a large range of climate and catchment conditions.626

627

The hybrid-CE method provided good predictive performance on average628

except for a slight overestimation for the low flows in the dry case. The resul-629

tant estimation uncertainty was smaller than for the AMXJP approach, but630
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higher than for the DS approach. The DS approach produces the narrowest631

prediction band simply because it does not take into account the variability632

of SM conditions like the other two methods. Despite the additional com-633

plexities in the hybrid-CE method (estimating input distributions and POT634

model parameters) compared with the AMXJP approach it produces smaller635

prediction uncertainties. This demonstrates the relative robustness of the636

hybrid-CE method. Note that the relative uncertainty due to sampling vari-637

ability is greater in the dry case than in the wet case for all three methods.638

This is likely to be because of the larger coefficients of variance of the rainfall639

and runoff data (Table 1).640

641

A comparison of the relative prediction errors of the three different meth-642

ods for different record lengths is demonstrated by Fig. 9 and 10 which show643

the probability distribution of the difference in the normalized root mean644

square errors (NRMSE) normalized to the range of the true values from the645

virtual truth distribution. The differences in the NRMSE were calculated646

between the results of different methods. For example, to compare the per-647

formance of the DS and the hybrid-CE approaches, the NRMSE DS minus648

NRMSE HCE was calculated, while to compare the AMXJP and hybrid-649

CE approaches, the NRMSE AMXJP minus NRMSE HCE was calculated.650

A positive NRMSE difference indicates that the hybrid-CE outperforms ei-651

ther the DS or AMXJP. The probability distribution was based on 400, 200652

and 100 independent replicates (from the 10,000-year record) for the differ-653

ent record lengths of 25, 50 and 100 years, respectively. The percentage654

of replicates with a positive NRMSE differences indicates the probability655
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that hybrid-CE outperforms either DS or AMXJP. Fig. 9 and 10 show that656

hybrid-CE clearly outperforms DS (greater than 90% positive NRMSE differ-657

ence for the dry case and 85% to 95% for the wet case), and also outperforms658

the AMXJP approach for the dry case (60-70% positive NRMSE difference),659

while there is only a marginal improvement in performance compared to the660

AMXJP for the wet case (55-60% positive NRMSE difference).661

662

These results indicate that if a single short record is randomly selected it663

is likely that the hybrid-CE method will produce more accurate estimates of664

the annual FFD than the DS and AMXJP approaches, particularly for the665

dry case. In addition, Sec. 4.3.1 has shown that by selecting the optimal666

short record for the hybrid-CE method the prediction error due to random667

sampling of the short records is significantly reduced and the result is very668

close to that of using the entire 10,000-year records. Overall, these results669

clearly illustrate that the hybrid-CE method provides more reliable predic-670

tions than both the DS and AMXJP approaches.671

672

4.4.2. Computational efficiency673

The previous section showed that the hybrid-CE method provides more674

reliable predictions of the annual FFD than the DS and AMXJP methods.675

The main advantage of the hybrid-CE approach over the long-term CS ap-676

proach is its computational efficiency. For example, to achieve a prediction677

error less than 20% for the exceedance probability of the 1 in 100 year flood678

the required number of years n to be simulated in the CS at a daily time679

step can be calculated according to the principle of Binomial proportion con-680
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fidence interval (Brown et al. (2001)):681

682

1.96×
√
p̂(1− p̂)

n
< 0.20p̂ (8)

Eq. (8) shows that to achieve the desired prediction accuracy, the num-683

ber of events which the RR model must simulate in the CS at a daily time684

step is 3, 470, 420. In comparison, the hybrid-CE method needs only 1.4%685

of the number of events to be simulated by the RR model, if 100 years of686

daily CS run is required for estimating the SM distribution and the POT687

parameters. If only 30 years of a CS run is sufficient to get this information,688

the number of events which the RR model simulates can be further reduced689

to 0.68% of that of the long CS run. This reduction in computational time690

offers major advantages when a complicated distributed RR model such as691

(Vischel et al. (2008)) or HydroGeoSphere (Therrien et al. (2010)) is required692

to estimate the annual FFD. Table 3 compares the prediction accuracy and693

computational efficiency of the different methods.694

695

5. Discussions696

5.1. Comparing the hybrid CE approach against existing approaches697

The synthetic case study demonstrated that the hybrid-CE method out-698

performs the traditional DS and AMXJP event-based methods in terms of699

prediction accuracy. For the DS method, the ARI neutrality assumption and700

the use of a fixed representative SM value lead to significant underprediction701
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Method
Relative

Predictive Performance
computation time

DS 1 both over and under-estimation

AMXJP 100∗
large prediction uncertainties,

reliability based on aribtrary assumptions

CS 104 − 106 minimal bias, least uncertainty

HCE 100∗ small bias, reduced uncertainty

Table 3: Comparison of the performance of different methods. *Long enough to manage

the sampling error to acceptable level.

(13% to 46% for the dry case and 2.3% to 17% for the wet case on aver-702

age) of the annual FFD. This under-estimation is due to a combination of703

assuming a fixed value of the SM and the non-linear increase in event runoff704

response when the SM increases. As the DS method is the most widely used705

approach for estimating annual FFD, this is of major concern to flood engi-706

neers who use this method. The study suggests that flood risks are currently707

being under-estimated. The degree of this under-estimation will vary due to708

catchment and climate conditions. For example in this simplified synthetic709

case study, the relative errors in the dry case were far higher than errors in710

the wet case study. These results should sound a warning for flood engineers711

who use DS approaches.712

713

For the AMXJP method, the use of the entire SM distribution resulted in714

improved performance relative to the DS approach, but with a lower predic-715

tive accuracy and higher predictive uncertainty than provided by the hybrid-716
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CE method (see Fig. 6, 7, 9 and 10). Another significant concern with the717

AMXJP method is that it relies on the compensation of errors arising from718

the use of an arbitrarily assumed SM distribution combined with the annual719

maximum rainfall distribution to provide good predictive performance. In720

the simplified synthetic case study this produced reasonable performance.721

However, whether this is true, in a more realistic case study, using a more722

realistic rainfall and RR model is an open question. A more realistic rain-723

fall model would produce subdaily rainfall predictions, taking into account724

seasonally varying wet and dry spell durations and rainfall intensities (e.g.725

the DRIP model of Heneker et al. (2001)) and also inter-annual and multi-726

decadal variability (e.g. CIMSS approach of Henley et al. (2011)). A more727

realistic RR model would provide predictions of the subdaily flow, taking into728

account the non-linear spatially varying catchment processes of infiltration729

and soil moisture to generate baseflow, interflow and surface flow, which at730

any time can contribute to the flood peak (e.g. TOPKAPI, Vischel et al.731

(2008)). Given these complexities it is unclear that assuming an arbitrary732

SM distribution based on a POT series of the rainfall would provide reli-733

able predictive performance across a large range of catchment and climate734

conditions. In contrast, the hybrid-CE is a conceptually sounder approach735

because it uses the rainfall and SM distributions of the causative events that736

produce the streamflow events to provide efficient and reliable estimates of737

the annual FFD.738

739

Another drawback of the DS and AMXJP approaches is that to esti-740

mate the annual FFD under climate change conditions, a CS run of the RR741
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model is required in order to re-estimate the antecedent soil moisture con-742

dition for the event-based RR model. The length of time the CS should be743

run to capture the changes in the antecedent SM is indeterminate. One of744

the advantages of the hybrid-CE approach is that it can easily be adapted745

to assess impacts for climate change scenarios, since it needs only a short746

CS to update the input information, i.e., the SM distribution and the POT747

model parameters for the event-based RR model. Therefore it has the poten-748

tial to provide unbiased efficient predictions under climate change conditions.749

750

As mentioned in the introduction, CS has the greatest potential to pro-751

vide reliable estimates of the FFD for both current and changed climate752

scenarios, but is the most computationally expensive method, particularly753

as RR models are likely to become complex in the future (e.g. TOPKAPI,754

Hydrogeosphere). The hybrid-CE approach is approximately 100-1000 times755

faster than the CS approach. Though the hybrid-CE approach does require756

some additional calculations related to the EINEE and POT methods, the757

additional computational time of these is minor compared to the compu-758

tational efficiency from a 100 to 1000 times reduction in the runtime of a759

complicated distributed rainfall-runoff model. This would further improve if760

parallel computing was utilised, since event based approaches are far easier761

to parallelise than a single long run of CS.762

763

Given the conceptually sounder approach of using causative events and764

the improved predictive accuracy compared with existing EB approaches,765

and the vastly increased computational efficiency compared with the CS ap-766
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proach, the hybrid-CE approach ranks ahead of the other approaches for767

estimating the annual FFD. However, there is still significant work required768

to further develop the hybrid-CE approach in order to provide the practically769

relevant estimates of floods in more realistic case-study catchments.770

771

5.2. Future development of the hybrid-CE method772

The advantages of the hybrid-CE method were demonstrated in this paper773

using a simplified synthetic case study where the extreme daily flow volumes774

were estimated. Future research will extend the hybrid-CE method to pro-775

vide flood predictions for more realistic practical applications. Of primary776

interest is estimating the instantaneous peak flood rate instead of the daily777

flow volume. As mentioned in the previous section, this will require using a778

more realistic subdaily rainfall model, that takes into account spatially and779

temporally varying rainfall characteristics and a RR model that captures780

spatial variability of catchment properties and runoff-routing at the subdaily781

time steps. The EB component of the hybrid-CE model must be run for782

the entire event duration, as opposed to a single time step. As the current783

AMXJP method (Nathan et al. (2003)), already takes into account several784

of these factors (seasonality, event duration modelling, temporal rainfall pat-785

terns) these existing techniques will be incorporated into the hybrid-CE ap-786

proach, tested and refined as necessary. These future extensions will enable787

the hybrid-CE approach to provide more realistic predictions for practical788

applications.789

790

One of the major assumptions of all the derived flood frequency methods791
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is the ability of the rainfall model and RR model to properly capture the792

dominant physical processes which produce extreme flood events. Inherent793

in the development of any environmental model is the predictive uncertainty794

produced by data errors and model structural uncertainty (refer to Thyer795

et al. (2009) and Renard et al. (2010) for further discussions). These predic-796

tion errors can be incorporated into the hybrid-CE approach, by modifying797

Eq. (1) to be probabilistic rather than deterministic. Note the challenge is798

how to specify this probabilistic description given the complex, heteroscedas-799

tic and autocorrelated errors in hydrological model predictions. Research is800

ongoing on developing robust approaches to handle these errors, see for ex-801

ample Schoups and Vrugt (2010) and enhancements proposed by Evin et al.802

(2013).803

804

6. Conclusions805

This paper has introduced a new hybrid causative event method for pro-806

viding an efficient and robust estimation of annual flood frequency distribu-807

tion. The method uses a short continuous simulation of the rainfall-runoff808

process to provide inputs to an event-based approach for estimating the dis-809

tribution of streamflow events at the time scale of interest. The peak over810

threshold method is incorporated to convert this distribution to the annual811

frequency distribution. It successfully combines the accuracy of continu-812

ous simulation method with the efficiency of event-based methods. It takes813

into account the joint probability nature of the rainfall-runoff process, which814

overcomes the prediction errors induced by the assumptions of the widely815
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adopted design storm approach. The use of causative events provides a816

conceptually sounder approach than the AMXJP method by avoiding the817

reliance on arbitrary assumptions and compensatory errors. Significantly, it818

reduces computational demand compared with a long continuous simulation819

run of the rainfall-runoff model. The study reported here demonstrated the820

advantages (more efficient and reliable predictions) of the hybrid causative821

event approach over existing approaches using a simplified case study which822

estimated extreme daily flow volumes. Future work will extend the hybrid823

causative event approach to more realistic practical applications which esti-824

mate extreme instantaneous peak flows, taking into account the spatially and825

temporally varying characteristics of the rainfall and rainfall-runoff processes.826
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832

Appendix: Efficient numerical integration for extreme events833

The procedure of the ENIEE method is outlined as follows:834

835

1. The range of the streamflow Q values of interest is discretized into m836

number of intervals. The mid points qk of these intervals are extracted.837

838
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2. The ranges of the rainfall depth R and soil moisture amount S that are839

causative to the streamflows of interest are discretized into n intervals840

with increments of ∆r and ∆s, respectively. The mid points ri and si841

are extracted.842

843

3. The outmost loop starts from the highest value of Q, namely, q1. For844

q1, the inner loop also starts from the biggest value of R, i.e., r1. r1845

is combined with every possible S value sj in the innermost loop to846

produce a streamflow using the RR model.847

848

4. The innermost loop also begins by first starting at the highest value849

s1 and search along the S values, until the smallest streamflow which850

is greater than q1 is found. The innermost loop is terminated at this851

point and the corresponding sj value is recorded and denoted as sq1,r1T .852

853

5. The R loop continues to the next value r2 and the terminating sq1,r2T is854

recorded likewise.855

856

6. Step 5 moves on to the lower end of the R range until the smallest R857

value which contributes to a streamflow that is greater than q1. The858

loop of R is terminated and this R value is recorded and denoted as859

rq1T . Any R value that is smaller than rq1T will not produce a streamflow860

that is greater than q1 even it is combined with the biggest S value s1.861

862

39



7. Then a set of the recorded S values ST = (sq1,r1T , sq1,r2T , . . . , s
q1,r

q1
T

T ) cor-863

responding to all the checked R values, i.e., r1, r2, . . . , r
q1
T is constructed.864

865

8. The exceedance probability of q1 is calculated using Eq. (3) for every866

checked pair of (ri, sj).867

868

9. The Q loop moves on to q2. For each ri value, steps 4 to 8 are repeated,869

except that the starting point of the S loop is signified by the previ-870

ously recorded sq1,riT and a new ending value sq2,riT for each ri is recorded871

to replace this entry in ST set for the next Q value to be checked.872

873

10. As this procedure moves beyond the previously recorded rq1T , the loop874

of S starts from the very beginning, i.e., s1. The R loop continues until875

the smallest R value rq2T that contributes to q2 as described in step 5.876

Thus the set ST is updated as (sq2,r1T , sq2,r2T , . . . , s
q2,r

q2
T

T ).877

878

11. The exceedance probability of q2 is calculated using Eq. (3) for all the879

checked combinations of R and S values in this run and added by the880

exceedance probability of q1 calculated before. As q2 is less than q1, the881

part of the probability exceeding q1 does not need to be recalculated882

for q2.883

884

12. This procedure repeats for the rest of the Q values under study.885

886
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Fig. 11 illustrates this procedure. As one can see, as the evaluation moves887

on to the lower end of Q range, the computation accelerates as all the calcu-888

lations done for the previous Q values can be used.889

890
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Figure 1: Flow chart showing the procedure of the hybrid-CE method.
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Figure 2: Results of the DS approach. Black curves indicate the virtual truth distributions,

while the light blue curves indicate the predicted distributions using randomly sampled 100-

yr synthetic records to derive 100 distributions of SM, to illustrate the impact of sampling

error. The dark blue curves show the predicted distribution based on the SM values from

the 10,000-yr synthetic records to illustrate the results free from sampling error.

Figure 3: Results of the AMXJP approach. Black curves indicate the virtual truth distri-

bution, light green curves the results of using randomly sampled 100-yr synthetic records

to derive the SM distributions, dark green curves the results of using 10,000-yr synthetic

records, purple curves the results of using causative input events.
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Figure 4: Results of the hybrid-CE method. Black curves indicate the virtual truth distri-

bution. Pink curves show the results of using randomly sampled 100-yr synthetic records

to assess the daily SM distributions and the POT model parameters, while red curves the

results of using 10,000-yr CS results.

49



Figure 5: Prediction of results using the selected optimal short records. Black curves

indicate the virtual truth distributions, pink curves the results using randomly sampled

short records, red curves the results using the optimal short records. The values of RP

indicate the % of the random samples outperform the optimal record.
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Figure 6: Comparsion of the 95% confidence limits and averaged preditions of different

methods for the dry case.
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Figure 7: Comparsion of the 95% confidence limits and averaged preditions of different

methods for the wet case.
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Figure 8: Comparsion of the input distributions used in the AMXJP approach and the
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Figure 9: Comparison of NRMSE between DS and hybrid-CE method (DS-HCE), AMXJP

and hybrid-CE methods (AMXJP-HCE) for different record lengths of the dry case.
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Figure 10: Comparison of NRMSE between DS and hybrid-CE methods (DS-HCE),

AMXJP and hybrid-CE methods (AMXJP-HCE) for different record lengths of the wet

case.
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Figure 11: Illustration of the gridding procedure for the first two flow values. Black area

indicates the grid points at which the RR model is evaluated and blue area the grid points

that are unnecessary to be checked.
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